Support for unpacked ARM packed relocations.
[chromium-blink-merge.git] / components / nacl / loader / nonsfi / elf_loader.cc
blobc62117b459810672acbe5acd743204afa0128b77
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "components/nacl/loader/nonsfi/elf_loader.h"
7 #include <elf.h>
8 #include <link.h>
10 #include <cstring>
11 #include <string>
12 #include <sys/mman.h>
14 #include "base/logging.h"
15 #include "base/strings/string_number_conversions.h"
16 #include "native_client/src/include/portability.h"
17 #include "native_client/src/shared/platform/nacl_host_desc.h"
18 #include "native_client/src/trusted/desc/nacl_desc_base.h"
19 #include "native_client/src/trusted/desc/nacl_desc_effector_trusted_mem.h"
20 #include "native_client/src/trusted/service_runtime/include/bits/mman.h"
22 // Extracted from native_client/src/trusted/service_runtime/nacl_config.h.
23 #if NACL_ARCH(NACL_BUILD_ARCH) == NACL_x86
24 # if NACL_BUILD_SUBARCH == 64
25 # define NACL_ELF_E_MACHINE EM_X86_64
26 # elif NACL_BUILD_SUBARCH == 32
27 # define NACL_ELF_E_MACHINE EM_386
28 # else
29 # error Unknown platform.
30 # endif
31 #elif NACL_ARCH(NACL_BUILD_ARCH) == NACL_arm
32 # define NACL_ELF_E_MACHINE EM_ARM
33 #elif NACL_ARCH(NACL_BUILD_ARCH) == NACL_mips
34 # define NACL_ELF_E_MACHINE EM_MIPS
35 #else
36 # error Unknown platform.
37 #endif
39 namespace nacl {
40 namespace nonsfi {
41 namespace {
43 // Page size for non-SFI Mode.
44 const ElfW(Addr) kNonSfiPageSize = 4096;
45 const ElfW(Addr) kNonSfiPageMask = kNonSfiPageSize - 1;
47 NaClErrorCode ValidateElfHeader(const ElfW(Ehdr)& ehdr) {
48 if (std::memcmp(ehdr.e_ident, ELFMAG, SELFMAG)) {
49 LOG(ERROR) << "Bad elf magic";
50 return LOAD_BAD_ELF_MAGIC;
53 #if NACL_BUILD_SUBARCH == 32
54 if (ehdr.e_ident[EI_CLASS] != ELFCLASS32) {
55 LOG(ERROR) << "Bad elf class";
56 return LOAD_NOT_32_BIT;
58 #elif NACL_BUILD_SUBARCH == 64
59 if (ehdr.e_ident[EI_CLASS] != ELFCLASS64) {
60 LOG(ERROR) << "Bad elf class";
61 return LOAD_NOT_64_BIT;
63 #else
64 # error Unknown platform.
65 #endif
67 if (ehdr.e_type != ET_DYN) {
68 LOG(ERROR) << "Not a relocatable ELF object (not ET_DYN)";
69 return LOAD_NOT_EXEC;
72 if (ehdr.e_machine != NACL_ELF_E_MACHINE) {
73 LOG(ERROR) << "Bad machine: "
74 << base::HexEncode(&ehdr.e_machine, sizeof(ehdr.e_machine));
75 return LOAD_BAD_MACHINE;
78 if (ehdr.e_version != EV_CURRENT) {
79 LOG(ERROR) << "Bad elf version: "
80 << base::HexEncode(&ehdr.e_version, sizeof(ehdr.e_version));
83 return LOAD_OK;
86 // Returns the address of the page starting at address 'addr' for non-SFI mode.
87 ElfW(Addr) GetPageStart(ElfW(Addr) addr) {
88 return addr & ~kNonSfiPageMask;
91 // Returns the offset of address 'addr' in its memory page. In other words,
92 // this equals to 'addr' - GetPageStart(addr).
93 ElfW(Addr) GetPageOffset(ElfW(Addr) addr) {
94 return addr & kNonSfiPageMask;
97 // Returns the address of the next page after address 'addr', unless 'addr' is
98 // at the start of a page. This equals to:
99 // addr == GetPageStart(addr) ? addr : GetPageStart(addr) + kNonSfiPageSize
100 ElfW(Addr) GetPageEnd(ElfW(Addr) addr) {
101 return GetPageStart(addr + kNonSfiPageSize - 1);
104 // Converts the pflags (in phdr) to mmap's prot flags.
105 int PFlagsToProt(int pflags) {
106 return ((pflags & PF_X) ? PROT_EXEC : 0) |
107 ((pflags & PF_R) ? PROT_READ : 0) |
108 ((pflags & PF_W) ? PROT_WRITE : 0);
111 // Converts the pflags (in phdr) to NaCl ABI's prot flags.
112 int PFlagsToNaClProt(int pflags) {
113 return ((pflags & PF_X) ? NACL_ABI_PROT_EXEC : 0) |
114 ((pflags & PF_R) ? NACL_ABI_PROT_READ : 0) |
115 ((pflags & PF_W) ? NACL_ABI_PROT_WRITE : 0);
118 // Returns the load size for the given phdrs, or 0 on error.
119 ElfW(Addr) GetLoadSize(const ElfW(Phdr)* phdrs, int phnum) {
120 ElfW(Addr) begin = ~static_cast<ElfW(Addr)>(0);
121 ElfW(Addr) end = 0;
123 for (int i = 0; i < phnum; ++i) {
124 const ElfW(Phdr)& phdr = phdrs[i];
125 if (phdr.p_type != PT_LOAD) {
126 // Do nothing for non PT_LOAD header.
127 continue;
130 begin = std::min(begin, phdr.p_vaddr);
131 end = std::max(end, phdr.p_vaddr + phdr.p_memsz);
134 if (begin > end) {
135 // The end address looks overflowing, or PT_LOAD is not found.
136 return 0;
139 return GetPageEnd(end) - GetPageStart(begin);
142 // Reserves the memory for the given phdrs, and stores the memory bias to the
143 // load_bias.
144 NaClErrorCode ReserveMemory(const ElfW(Phdr)* phdrs,
145 int phnum,
146 ElfW(Addr)* load_bias) {
147 ElfW(Addr) size = GetLoadSize(phdrs, phnum);
148 if (size == 0) {
149 LOG(ERROR) << "ReserveMemory failed to calculate size";
150 return LOAD_UNLOADABLE;
153 // Make sure that the given program headers represents PIE binary.
154 for (int i = 0; i < phnum; ++i) {
155 if (phdrs[i].p_type == PT_LOAD) {
156 // Here, phdrs[i] is the first loadable segment.
157 if (phdrs[i].p_vaddr != 0) {
158 // The binary is not PIE (i.e. needs to be loaded onto fixed addressed
159 // memory. We don't support such a case.
160 LOG(ERROR)
161 << "ReserveMemory: Non-PIE binary loading is not supported.";
162 return LOAD_UNLOADABLE;
164 break;
168 void* start = mmap(0, size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
169 if (start == MAP_FAILED) {
170 LOG(ERROR) << "ReserveMemory: failed to mmap.";
171 return LOAD_NO_MEMORY;
174 *load_bias = reinterpret_cast<ElfW(Addr)>(start);
175 return LOAD_OK;
178 NaClErrorCode LoadSegments(
179 const ElfW(Phdr)* phdrs, int phnum, ElfW(Addr) load_bias,
180 struct NaClDesc* descriptor) {
181 for (int i = 0; i < phnum; ++i) {
182 const ElfW(Phdr)& phdr = phdrs[i];
183 if (phdr.p_type != PT_LOAD) {
184 // Not a load target.
185 continue;
188 // Addresses on the memory.
189 ElfW(Addr) seg_start = phdr.p_vaddr + load_bias;
190 ElfW(Addr) seg_end = seg_start + phdr.p_memsz;
191 ElfW(Addr) seg_page_start = GetPageStart(seg_start);
192 ElfW(Addr) seg_page_end = GetPageEnd(seg_end);
193 ElfW(Addr) seg_file_end = seg_start + phdr.p_filesz;
195 // Addresses on the file content.
196 ElfW(Addr) file_start = phdr.p_offset;
197 ElfW(Addr) file_end = file_start + phdr.p_filesz;
198 ElfW(Addr) file_page_start = GetPageStart(file_start);
200 uintptr_t seg_addr = (*NACL_VTBL(NaClDesc, descriptor)->Map)(
201 descriptor,
202 NaClDescEffectorTrustedMem(),
203 reinterpret_cast<void *>(seg_page_start),
204 file_end - file_page_start,
205 PFlagsToNaClProt(phdr.p_flags),
206 NACL_ABI_MAP_PRIVATE | NACL_ABI_MAP_FIXED,
207 file_page_start);
208 if (NaClPtrIsNegErrno(&seg_addr)) {
209 LOG(ERROR) << "LoadSegments: [" << i << "] mmap failed, " << seg_addr;
210 return LOAD_NO_MEMORY;
213 // Handle the BSS: fill Zero between the segment end and the page boundary
214 // if necessary (i.e. if the segment doesn't end on a page boundary).
215 ElfW(Addr) seg_file_end_offset = GetPageOffset(seg_file_end);
216 if ((phdr.p_flags & PF_W) && seg_file_end_offset > 0) {
217 memset(reinterpret_cast<void *>(seg_file_end), 0,
218 kNonSfiPageSize - seg_file_end_offset);
221 // Hereafter, seg_file_end is now the first page address after the file
222 // content. If seg_end is larger, we need to zero anything between them.
223 // This is done by using a private anonymous mmap for all extra pages.
224 seg_file_end = GetPageEnd(seg_file_end);
225 if (seg_page_end > seg_file_end) {
226 void* zeromap = mmap(reinterpret_cast<void *>(seg_file_end),
227 seg_page_end - seg_file_end,
228 PFlagsToProt(phdr.p_flags),
229 MAP_FIXED | MAP_ANONYMOUS | MAP_PRIVATE,
230 -1, 0);
231 if (zeromap == MAP_FAILED) {
232 LOG(ERROR) << "LoadSegments: [" << i << "] Failed to zeromap.";
233 return LOAD_NO_MEMORY;
237 return LOAD_OK;
240 } // namespace
242 struct ElfImage::Data {
243 // Limit of elf program headers allowed.
244 enum {
245 MAX_PROGRAM_HEADERS = 128
248 ElfW(Ehdr) ehdr;
249 ElfW(Phdr) phdrs[MAX_PROGRAM_HEADERS];
250 ElfW(Addr) load_bias;
253 ElfImage::ElfImage() {
256 ElfImage::~ElfImage() {
259 uintptr_t ElfImage::entry_point() const {
260 if (!data_) {
261 LOG(DFATAL) << "entry_point must be called after Read().";
262 return 0;
264 return data_->ehdr.e_entry + data_->load_bias;
267 NaClErrorCode ElfImage::Read(struct NaClDesc* descriptor) {
268 DCHECK(!data_);
270 ::scoped_ptr<Data> data(new Data);
272 // Read elf header.
273 ssize_t read_ret = (*NACL_VTBL(NaClDesc, descriptor)->PRead)(
274 descriptor, &data->ehdr, sizeof(data->ehdr), 0);
275 if (NaClSSizeIsNegErrno(&read_ret) ||
276 static_cast<size_t>(read_ret) != sizeof(data->ehdr)) {
277 LOG(ERROR) << "Could not load elf headers.";
278 return LOAD_READ_ERROR;
281 NaClErrorCode error_code = ValidateElfHeader(data->ehdr);
282 if (error_code != LOAD_OK)
283 return error_code;
285 // Read program headers.
286 if (data->ehdr.e_phnum > Data::MAX_PROGRAM_HEADERS) {
287 LOG(ERROR) << "Too many program headers";
288 return LOAD_TOO_MANY_PROG_HDRS;
291 if (data->ehdr.e_phentsize != sizeof(data->phdrs[0])) {
292 LOG(ERROR) << "Bad program headers size\n"
293 << " ehdr_.e_phentsize = " << data->ehdr.e_phentsize << "\n"
294 << " sizeof phdrs[0] = " << sizeof(data->phdrs[0]);
295 return LOAD_BAD_PHENTSIZE;
298 size_t read_size = data->ehdr.e_phnum * data->ehdr.e_phentsize;
299 read_ret = (*NACL_VTBL(NaClDesc, descriptor)->PRead)(
300 descriptor, data->phdrs, read_size, data->ehdr.e_phoff);
302 if (NaClSSizeIsNegErrno(&read_ret) ||
303 static_cast<size_t>(read_ret) != read_size) {
304 LOG(ERROR) << "Cannot load prog headers";
305 return LOAD_READ_ERROR;
308 data_.swap(data);
309 return LOAD_OK;
312 NaClErrorCode ElfImage::Load(struct NaClDesc* descriptor) {
313 if (!data_) {
314 LOG(DFATAL) << "ElfImage::Load() must be called after Read()";
315 return LOAD_INTERNAL;
318 NaClErrorCode error =
319 ReserveMemory(data_->phdrs, data_->ehdr.e_phnum, &data_->load_bias);
320 if (error != LOAD_OK) {
321 LOG(ERROR) << "ElfImage::Load: Failed to allocate memory";
322 return error;
325 error = LoadSegments(
326 data_->phdrs, data_->ehdr.e_phnum, data_->load_bias, descriptor);
327 if (error != LOAD_OK) {
328 LOG(ERROR) << "ElfImage::Load: Failed to load segments";
329 return error;
332 return LOAD_OK;
335 } // namespace nonsfi
336 } // namespace nacl