Support for unpacked ARM packed relocations.
[chromium-blink-merge.git] / media / cast / cast_defines.h
blob64b20c96da6df5e9135da2600d5138c968c3d6f5
1 // Copyright 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef MEDIA_CAST_CAST_DEFINES_H_
6 #define MEDIA_CAST_CAST_DEFINES_H_
8 #include <stdint.h>
10 #include <map>
11 #include <set>
13 #include "base/basictypes.h"
14 #include "base/compiler_specific.h"
15 #include "base/logging.h"
16 #include "base/time/time.h"
17 #include "media/cast/transport/cast_transport_config.h"
19 namespace media {
20 namespace cast {
22 const int64 kDontShowTimeoutMs = 33;
23 const float kDefaultCongestionControlBackOff = 0.875f;
24 const uint32 kVideoFrequency = 90000;
25 const uint32 kStartFrameId = UINT32_C(0xffffffff);
27 // This is an important system-wide constant. This limits how much history the
28 // implementation must retain in order to process the acknowledgements of past
29 // frames.
30 const int kMaxUnackedFrames = 255;
32 const size_t kMaxIpPacketSize = 1500;
33 const int kStartRttMs = 20;
34 const int64 kCastMessageUpdateIntervalMs = 33;
35 const int64 kNackRepeatIntervalMs = 30;
37 enum CastInitializationStatus {
38 STATUS_AUDIO_UNINITIALIZED,
39 STATUS_VIDEO_UNINITIALIZED,
40 STATUS_AUDIO_INITIALIZED,
41 STATUS_VIDEO_INITIALIZED,
42 STATUS_INVALID_CAST_ENVIRONMENT,
43 STATUS_INVALID_CRYPTO_CONFIGURATION,
44 STATUS_UNSUPPORTED_AUDIO_CODEC,
45 STATUS_UNSUPPORTED_VIDEO_CODEC,
46 STATUS_INVALID_AUDIO_CONFIGURATION,
47 STATUS_INVALID_VIDEO_CONFIGURATION,
48 STATUS_GPU_ACCELERATION_NOT_SUPPORTED,
49 STATUS_GPU_ACCELERATION_ERROR,
52 enum DefaultSettings {
53 kDefaultAudioEncoderBitrate = 0, // This means "auto," and may mean VBR.
54 kDefaultAudioSamplingRate = 48000,
55 kDefaultMaxQp = 56,
56 kDefaultMinQp = 4,
57 kDefaultMaxFrameRate = 30,
58 kDefaultNumberOfVideoBuffers = 1,
59 kDefaultRtcpIntervalMs = 500,
60 kDefaultRtpHistoryMs = 1000,
61 kDefaultRtpMaxDelayMs = 100,
64 enum PacketType {
65 kNewPacket,
66 kNewPacketCompletingFrame,
67 kDuplicatePacket,
68 kTooOldPacket,
71 // kRtcpCastAllPacketsLost is used in PacketIDSet and
72 // on the wire to mean that ALL packets for a particular
73 // frame are lost.
74 const uint16 kRtcpCastAllPacketsLost = 0xffff;
76 // kRtcpCastLastPacket is used in PacketIDSet to ask for
77 // the last packet of a frame to be retransmitted.
78 const uint16 kRtcpCastLastPacket = 0xfffe;
80 const size_t kMinLengthOfRtcp = 8;
82 // Basic RTP header + cast header.
83 const size_t kMinLengthOfRtp = 12 + 6;
85 // Each uint16 represents one packet id within a cast frame.
86 // Can also contain kRtcpCastAllPacketsLost and kRtcpCastLastPacket.
87 typedef std::set<uint16> PacketIdSet;
88 // Each uint8 represents one cast frame.
89 typedef std::map<uint8, PacketIdSet> MissingFramesAndPacketsMap;
91 // TODO(pwestin): Re-factor the functions bellow into a class with static
92 // methods.
94 // January 1970, in NTP seconds.
95 // Network Time Protocol (NTP), which is in seconds relative to 0h UTC on
96 // 1 January 1900.
97 static const int64 kUnixEpochInNtpSeconds = INT64_C(2208988800);
99 // Magic fractional unit. Used to convert time (in microseconds) to/from
100 // fractional NTP seconds.
101 static const double kMagicFractionalUnit = 4.294967296E3;
103 // The maximum number of Cast receiver events to keep in history for the
104 // purpose of sending the events through RTCP.
105 // The number chosen should be more than the number of events that can be
106 // stored in a RTCP packet.
107 static const size_t kReceiverRtcpEventHistorySize = 512;
109 inline bool IsNewerFrameId(uint32 frame_id, uint32 prev_frame_id) {
110 return (frame_id != prev_frame_id) &&
111 static_cast<uint32>(frame_id - prev_frame_id) < 0x80000000;
114 inline bool IsNewerRtpTimestamp(uint32 timestamp, uint32 prev_timestamp) {
115 return (timestamp != prev_timestamp) &&
116 static_cast<uint32>(timestamp - prev_timestamp) < 0x80000000;
119 inline bool IsOlderFrameId(uint32 frame_id, uint32 prev_frame_id) {
120 return (frame_id == prev_frame_id) || IsNewerFrameId(prev_frame_id, frame_id);
123 inline bool IsNewerPacketId(uint16 packet_id, uint16 prev_packet_id) {
124 return (packet_id != prev_packet_id) &&
125 static_cast<uint16>(packet_id - prev_packet_id) < 0x8000;
128 inline bool IsNewerSequenceNumber(uint16 sequence_number,
129 uint16 prev_sequence_number) {
130 // Same function as IsNewerPacketId just different data and name.
131 return IsNewerPacketId(sequence_number, prev_sequence_number);
134 // Create a NTP diff from seconds and fractions of seconds; delay_fraction is
135 // fractions of a second where 0x80000000 is half a second.
136 inline uint32 ConvertToNtpDiff(uint32 delay_seconds, uint32 delay_fraction) {
137 return ((delay_seconds & 0x0000FFFF) << 16) +
138 ((delay_fraction & 0xFFFF0000) >> 16);
141 inline base::TimeDelta ConvertFromNtpDiff(uint32 ntp_delay) {
142 uint32 delay_ms = (ntp_delay & 0x0000ffff) * 1000;
143 delay_ms >>= 16;
144 delay_ms += ((ntp_delay & 0xffff0000) >> 16) * 1000;
145 return base::TimeDelta::FromMilliseconds(delay_ms);
148 inline void ConvertTimeToFractions(int64 ntp_time_us,
149 uint32* seconds,
150 uint32* fractions) {
151 DCHECK_GE(ntp_time_us, 0) << "Time must NOT be negative";
152 const int64 seconds_component =
153 ntp_time_us / base::Time::kMicrosecondsPerSecond;
154 // NTP time will overflow in the year 2036. Also, make sure unit tests don't
155 // regress and use an origin past the year 2036. If this overflows here, the
156 // inverse calculation fails to compute the correct TimeTicks value, throwing
157 // off the entire system.
158 DCHECK_LT(seconds_component, INT64_C(4263431296))
159 << "One year left to fix the NTP year 2036 wrap-around issue!";
160 *seconds = static_cast<uint32>(seconds_component);
161 *fractions = static_cast<uint32>(
162 (ntp_time_us % base::Time::kMicrosecondsPerSecond) *
163 kMagicFractionalUnit);
166 inline void ConvertTimeTicksToNtp(const base::TimeTicks& time,
167 uint32* ntp_seconds,
168 uint32* ntp_fractions) {
169 base::TimeDelta elapsed_since_unix_epoch =
170 time - base::TimeTicks::UnixEpoch();
172 int64 ntp_time_us =
173 elapsed_since_unix_epoch.InMicroseconds() +
174 (kUnixEpochInNtpSeconds * base::Time::kMicrosecondsPerSecond);
176 ConvertTimeToFractions(ntp_time_us, ntp_seconds, ntp_fractions);
179 inline base::TimeTicks ConvertNtpToTimeTicks(uint32 ntp_seconds,
180 uint32 ntp_fractions) {
181 int64 ntp_time_us =
182 static_cast<int64>(ntp_seconds) * base::Time::kMicrosecondsPerSecond +
183 static_cast<int64>(ntp_fractions) / kMagicFractionalUnit;
185 base::TimeDelta elapsed_since_unix_epoch = base::TimeDelta::FromMicroseconds(
186 ntp_time_us -
187 (kUnixEpochInNtpSeconds * base::Time::kMicrosecondsPerSecond));
188 return base::TimeTicks::UnixEpoch() + elapsed_since_unix_epoch;
191 inline base::TimeDelta RtpDeltaToTimeDelta(int64 rtp_delta, int rtp_timebase) {
192 DCHECK_GT(rtp_timebase, 0);
193 return rtp_delta * base::TimeDelta::FromSeconds(1) / rtp_timebase;
196 inline uint32 GetVideoRtpTimestamp(const base::TimeTicks& time_ticks) {
197 base::TimeTicks zero_time;
198 base::TimeDelta recorded_delta = time_ticks - zero_time;
199 // Timestamp is in 90 KHz for video.
200 return static_cast<uint32>(recorded_delta.InMilliseconds() * 90);
203 } // namespace cast
204 } // namespace media
206 #endif // MEDIA_CAST_CAST_DEFINES_H_