Cleanup: Make TogglePinnedToStartScreen() Windows only.
[chromium-blink-merge.git] / media / base / yuv_convert.cc
blob431183abb398c71db8e8fae9e605bf69e2597b8a
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // This webpage shows layout of YV12 and other YUV formats
6 // http://www.fourcc.org/yuv.php
7 // The actual conversion is best described here
8 // http://en.wikipedia.org/wiki/YUV
9 // An article on optimizing YUV conversion using tables instead of multiplies
10 // http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf
12 // YV12 is a full plane of Y and a half height, half width chroma planes
13 // YV16 is a full plane of Y and a full height, half width chroma planes
15 // ARGB pixel format is output, which on little endian is stored as BGRA.
16 // The alpha is set to 255, allowing the application to use RGBA or RGB32.
18 #include "media/base/yuv_convert.h"
20 #include "base/cpu.h"
21 #include "base/logging.h"
22 #include "base/memory/scoped_ptr.h"
23 #include "base/third_party/dynamic_annotations/dynamic_annotations.h"
24 #include "build/build_config.h"
25 #include "media/base/simd/convert_rgb_to_yuv.h"
26 #include "media/base/simd/convert_yuv_to_rgb.h"
27 #include "media/base/simd/filter_yuv.h"
28 #include "media/base/simd/yuv_to_rgb_table.h"
30 #if defined(ARCH_CPU_X86_FAMILY)
31 #if defined(COMPILER_MSVC)
32 #include <intrin.h>
33 #else
34 #include <mmintrin.h>
35 #endif
36 #endif
38 // Assembly functions are declared without namespace.
39 extern "C" { void EmptyRegisterState_MMX(); } // extern "C"
41 namespace media {
43 typedef void (*FilterYUVRowsProc)(uint8*,
44 const uint8*,
45 const uint8*,
46 int,
47 uint8);
49 typedef void (*ConvertRGBToYUVProc)(const uint8*,
50 uint8*,
51 uint8*,
52 uint8*,
53 int,
54 int,
55 int,
56 int,
57 int);
59 typedef void (*ConvertYUVToRGB32Proc)(const uint8*,
60 const uint8*,
61 const uint8*,
62 uint8*,
63 int,
64 int,
65 int,
66 int,
67 int,
68 YUVType);
70 typedef void (*ConvertYUVAToARGBProc)(const uint8*,
71 const uint8*,
72 const uint8*,
73 const uint8*,
74 uint8*,
75 int,
76 int,
77 int,
78 int,
79 int,
80 int,
81 YUVType);
83 typedef void (*ConvertYUVToRGB32RowProc)(const uint8*,
84 const uint8*,
85 const uint8*,
86 uint8*,
87 ptrdiff_t,
88 const int16[1024][4]);
90 typedef void (*ConvertYUVAToARGBRowProc)(const uint8*,
91 const uint8*,
92 const uint8*,
93 const uint8*,
94 uint8*,
95 ptrdiff_t,
96 const int16[1024][4]);
98 typedef void (*ScaleYUVToRGB32RowProc)(const uint8*,
99 const uint8*,
100 const uint8*,
101 uint8*,
102 ptrdiff_t,
103 ptrdiff_t,
104 const int16[1024][4]);
106 static FilterYUVRowsProc g_filter_yuv_rows_proc_ = NULL;
107 static ConvertYUVToRGB32RowProc g_convert_yuv_to_rgb32_row_proc_ = NULL;
108 static ScaleYUVToRGB32RowProc g_scale_yuv_to_rgb32_row_proc_ = NULL;
109 static ScaleYUVToRGB32RowProc g_linear_scale_yuv_to_rgb32_row_proc_ = NULL;
110 static ConvertRGBToYUVProc g_convert_rgb32_to_yuv_proc_ = NULL;
111 static ConvertRGBToYUVProc g_convert_rgb24_to_yuv_proc_ = NULL;
112 static ConvertYUVToRGB32Proc g_convert_yuv_to_rgb32_proc_ = NULL;
113 static ConvertYUVAToARGBProc g_convert_yuva_to_argb_proc_ = NULL;
115 // Empty SIMD registers state after using them.
116 void EmptyRegisterStateStub() {}
117 #if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
118 void EmptyRegisterStateIntrinsic() { _mm_empty(); }
119 #endif
120 typedef void (*EmptyRegisterStateProc)();
121 static EmptyRegisterStateProc g_empty_register_state_proc_ = NULL;
123 // Get the appropriate value to bitshift by for vertical indices.
124 int GetVerticalShift(YUVType type) {
125 switch (type) {
126 case YV16:
127 return 0;
128 case YV12:
129 case YV12J:
130 return 1;
132 NOTREACHED();
133 return 0;
136 const int16 (&GetLookupTable(YUVType type))[1024][4] {
137 switch (type) {
138 case YV12:
139 case YV16:
140 return kCoefficientsRgbY;
141 case YV12J:
142 return kCoefficientsRgbY_JPEG;
144 NOTREACHED();
145 return kCoefficientsRgbY;
148 void InitializeCPUSpecificYUVConversions() {
149 CHECK(!g_filter_yuv_rows_proc_);
150 CHECK(!g_convert_yuv_to_rgb32_row_proc_);
151 CHECK(!g_scale_yuv_to_rgb32_row_proc_);
152 CHECK(!g_linear_scale_yuv_to_rgb32_row_proc_);
153 CHECK(!g_convert_rgb32_to_yuv_proc_);
154 CHECK(!g_convert_rgb24_to_yuv_proc_);
155 CHECK(!g_convert_yuv_to_rgb32_proc_);
156 CHECK(!g_convert_yuva_to_argb_proc_);
157 CHECK(!g_empty_register_state_proc_);
159 g_filter_yuv_rows_proc_ = FilterYUVRows_C;
160 g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_C;
161 g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_C;
162 g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_C;
163 g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_C;
164 g_convert_rgb24_to_yuv_proc_ = ConvertRGB24ToYUV_C;
165 g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_C;
166 g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_C;
167 g_empty_register_state_proc_ = EmptyRegisterStateStub;
169 // Assembly code confuses MemorySanitizer.
170 #if defined(ARCH_CPU_X86_FAMILY) && !defined(MEMORY_SANITIZER)
171 g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_MMX;
173 #if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
174 g_empty_register_state_proc_ = EmptyRegisterStateIntrinsic;
175 #else
176 g_empty_register_state_proc_ = EmptyRegisterState_MMX;
177 #endif
179 g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_SSE;
180 g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_SSE;
182 g_filter_yuv_rows_proc_ = FilterYUVRows_SSE2;
183 g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_SSE2;
185 #if defined(ARCH_CPU_X86_64)
186 g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE2_X64;
188 // Technically this should be in the MMX section, but MSVC will optimize out
189 // the export of LinearScaleYUVToRGB32Row_MMX, which is required by the unit
190 // tests, if that decision can be made at compile time. Since all X64 CPUs
191 // have SSE2, we can hack around this by making the selection here.
192 g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_MMX_X64;
193 #else
194 g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE;
195 g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_SSE;
196 #endif
198 base::CPU cpu;
199 if (cpu.has_ssse3()) {
200 g_convert_rgb24_to_yuv_proc_ = &ConvertRGB24ToYUV_SSSE3;
202 // TODO(hclam): Add ConvertRGB32ToYUV_SSSE3 when the cyan problem is solved.
203 // See: crbug.com/100462
205 #endif
208 // Empty SIMD registers state after using them.
209 void EmptyRegisterState() { g_empty_register_state_proc_(); }
211 // 16.16 fixed point arithmetic
212 const int kFractionBits = 16;
213 const int kFractionMax = 1 << kFractionBits;
214 const int kFractionMask = ((1 << kFractionBits) - 1);
216 // Scale a frame of YUV to 32 bit ARGB.
217 void ScaleYUVToRGB32(const uint8* y_buf,
218 const uint8* u_buf,
219 const uint8* v_buf,
220 uint8* rgb_buf,
221 int source_width,
222 int source_height,
223 int width,
224 int height,
225 int y_pitch,
226 int uv_pitch,
227 int rgb_pitch,
228 YUVType yuv_type,
229 Rotate view_rotate,
230 ScaleFilter filter) {
231 // Handle zero sized sources and destinations.
232 if ((yuv_type == YV12 && (source_width < 2 || source_height < 2)) ||
233 (yuv_type == YV16 && (source_width < 2 || source_height < 1)) ||
234 width == 0 || height == 0)
235 return;
237 // 4096 allows 3 buffers to fit in 12k.
238 // Helps performance on CPU with 16K L1 cache.
239 // Large enough for 3830x2160 and 30" displays which are 2560x1600.
240 const int kFilterBufferSize = 4096;
241 // Disable filtering if the screen is too big (to avoid buffer overflows).
242 // This should never happen to regular users: they don't have monitors
243 // wider than 4096 pixels.
244 // TODO(fbarchard): Allow rotated videos to filter.
245 if (source_width > kFilterBufferSize || view_rotate)
246 filter = FILTER_NONE;
248 unsigned int y_shift = GetVerticalShift(yuv_type);
249 // Diagram showing origin and direction of source sampling.
250 // ->0 4<-
251 // 7 3
253 // 6 5
254 // ->1 2<-
255 // Rotations that start at right side of image.
256 if ((view_rotate == ROTATE_180) || (view_rotate == ROTATE_270) ||
257 (view_rotate == MIRROR_ROTATE_0) || (view_rotate == MIRROR_ROTATE_90)) {
258 y_buf += source_width - 1;
259 u_buf += source_width / 2 - 1;
260 v_buf += source_width / 2 - 1;
261 source_width = -source_width;
263 // Rotations that start at bottom of image.
264 if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_180) ||
265 (view_rotate == MIRROR_ROTATE_90) || (view_rotate == MIRROR_ROTATE_180)) {
266 y_buf += (source_height - 1) * y_pitch;
267 u_buf += ((source_height >> y_shift) - 1) * uv_pitch;
268 v_buf += ((source_height >> y_shift) - 1) * uv_pitch;
269 source_height = -source_height;
272 int source_dx = source_width * kFractionMax / width;
274 if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_270)) {
275 int tmp = height;
276 height = width;
277 width = tmp;
278 tmp = source_height;
279 source_height = source_width;
280 source_width = tmp;
281 int source_dy = source_height * kFractionMax / height;
282 source_dx = ((source_dy >> kFractionBits) * y_pitch) << kFractionBits;
283 if (view_rotate == ROTATE_90) {
284 y_pitch = -1;
285 uv_pitch = -1;
286 source_height = -source_height;
287 } else {
288 y_pitch = 1;
289 uv_pitch = 1;
293 // Need padding because FilterRows() will write 1 to 16 extra pixels
294 // after the end for SSE2 version.
295 uint8 yuvbuf[16 + kFilterBufferSize * 3 + 16];
296 uint8* ybuf =
297 reinterpret_cast<uint8*>(reinterpret_cast<uintptr_t>(yuvbuf + 15) & ~15);
298 uint8* ubuf = ybuf + kFilterBufferSize;
299 uint8* vbuf = ubuf + kFilterBufferSize;
301 // TODO(fbarchard): Fixed point math is off by 1 on negatives.
303 // We take a y-coordinate in [0,1] space in the source image space, and
304 // transform to a y-coordinate in [0,1] space in the destination image space.
305 // Note that the coordinate endpoints lie on pixel boundaries, not on pixel
306 // centers: e.g. a two-pixel-high image will have pixel centers at 0.25 and
307 // 0.75. The formula is as follows (in fixed-point arithmetic):
308 // y_dst = dst_height * ((y_src + 0.5) / src_height)
309 // dst_pixel = clamp([0, dst_height - 1], floor(y_dst - 0.5))
310 // Implement this here as an accumulator + delta, to avoid expensive math
311 // in the loop.
312 int source_y_subpixel_accum =
313 ((kFractionMax / 2) * source_height) / height - (kFractionMax / 2);
314 int source_y_subpixel_delta = ((1 << kFractionBits) * source_height) / height;
316 // TODO(fbarchard): Split this into separate function for better efficiency.
317 for (int y = 0; y < height; ++y) {
318 uint8* dest_pixel = rgb_buf + y * rgb_pitch;
319 int source_y_subpixel = source_y_subpixel_accum;
320 source_y_subpixel_accum += source_y_subpixel_delta;
321 if (source_y_subpixel < 0)
322 source_y_subpixel = 0;
323 else if (source_y_subpixel > ((source_height - 1) << kFractionBits))
324 source_y_subpixel = (source_height - 1) << kFractionBits;
326 const uint8* y_ptr = NULL;
327 const uint8* u_ptr = NULL;
328 const uint8* v_ptr = NULL;
329 // Apply vertical filtering if necessary.
330 // TODO(fbarchard): Remove memcpy when not necessary.
331 if (filter & media::FILTER_BILINEAR_V) {
332 int source_y = source_y_subpixel >> kFractionBits;
333 y_ptr = y_buf + source_y * y_pitch;
334 u_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
335 v_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
337 // Vertical scaler uses 16.8 fixed point.
338 uint8 source_y_fraction = (source_y_subpixel & kFractionMask) >> 8;
339 if (source_y_fraction != 0) {
340 g_filter_yuv_rows_proc_(
341 ybuf, y_ptr, y_ptr + y_pitch, source_width, source_y_fraction);
342 } else {
343 memcpy(ybuf, y_ptr, source_width);
345 y_ptr = ybuf;
346 ybuf[source_width] = ybuf[source_width - 1];
348 int uv_source_width = (source_width + 1) / 2;
349 uint8 source_uv_fraction;
351 // For formats with half-height UV planes, each even-numbered pixel row
352 // should not interpolate, since the next row to interpolate from should
353 // be a duplicate of the current row.
354 if (y_shift && (source_y & 0x1) == 0)
355 source_uv_fraction = 0;
356 else
357 source_uv_fraction = source_y_fraction;
359 if (source_uv_fraction != 0) {
360 g_filter_yuv_rows_proc_(
361 ubuf, u_ptr, u_ptr + uv_pitch, uv_source_width, source_uv_fraction);
362 g_filter_yuv_rows_proc_(
363 vbuf, v_ptr, v_ptr + uv_pitch, uv_source_width, source_uv_fraction);
364 } else {
365 memcpy(ubuf, u_ptr, uv_source_width);
366 memcpy(vbuf, v_ptr, uv_source_width);
368 u_ptr = ubuf;
369 v_ptr = vbuf;
370 ubuf[uv_source_width] = ubuf[uv_source_width - 1];
371 vbuf[uv_source_width] = vbuf[uv_source_width - 1];
372 } else {
373 // Offset by 1/2 pixel for center sampling.
374 int source_y = (source_y_subpixel + (kFractionMax / 2)) >> kFractionBits;
375 y_ptr = y_buf + source_y * y_pitch;
376 u_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
377 v_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
379 if (source_dx == kFractionMax) { // Not scaled
380 g_convert_yuv_to_rgb32_row_proc_(
381 y_ptr, u_ptr, v_ptr, dest_pixel, width, kCoefficientsRgbY);
382 } else {
383 if (filter & FILTER_BILINEAR_H) {
384 g_linear_scale_yuv_to_rgb32_row_proc_(y_ptr,
385 u_ptr,
386 v_ptr,
387 dest_pixel,
388 width,
389 source_dx,
390 kCoefficientsRgbY);
391 } else {
392 g_scale_yuv_to_rgb32_row_proc_(y_ptr,
393 u_ptr,
394 v_ptr,
395 dest_pixel,
396 width,
397 source_dx,
398 kCoefficientsRgbY);
403 g_empty_register_state_proc_();
406 // Scale a frame of YV12 to 32 bit ARGB for a specific rectangle.
407 void ScaleYUVToRGB32WithRect(const uint8* y_buf,
408 const uint8* u_buf,
409 const uint8* v_buf,
410 uint8* rgb_buf,
411 int source_width,
412 int source_height,
413 int dest_width,
414 int dest_height,
415 int dest_rect_left,
416 int dest_rect_top,
417 int dest_rect_right,
418 int dest_rect_bottom,
419 int y_pitch,
420 int uv_pitch,
421 int rgb_pitch) {
422 // This routine doesn't currently support up-scaling.
423 CHECK_LE(dest_width, source_width);
424 CHECK_LE(dest_height, source_height);
426 // Sanity-check the destination rectangle.
427 DCHECK(dest_rect_left >= 0 && dest_rect_right <= dest_width);
428 DCHECK(dest_rect_top >= 0 && dest_rect_bottom <= dest_height);
429 DCHECK(dest_rect_right > dest_rect_left);
430 DCHECK(dest_rect_bottom > dest_rect_top);
432 // Fixed-point value of vertical and horizontal scale down factor.
433 // Values are in the format 16.16.
434 int y_step = kFractionMax * source_height / dest_height;
435 int x_step = kFractionMax * source_width / dest_width;
437 // Determine the coordinates of the rectangle in 16.16 coords.
438 // NB: Our origin is the *center* of the top/left pixel, NOT its top/left.
439 // If we're down-scaling by more than a factor of two, we start with a 50%
440 // fraction to avoid degenerating to point-sampling - we should really just
441 // fix the fraction at 50% for all pixels in that case.
442 int source_left = dest_rect_left * x_step;
443 int source_right = (dest_rect_right - 1) * x_step;
444 if (x_step < kFractionMax * 2) {
445 source_left += ((x_step - kFractionMax) / 2);
446 source_right += ((x_step - kFractionMax) / 2);
447 } else {
448 source_left += kFractionMax / 2;
449 source_right += kFractionMax / 2;
451 int source_top = dest_rect_top * y_step;
452 if (y_step < kFractionMax * 2) {
453 source_top += ((y_step - kFractionMax) / 2);
454 } else {
455 source_top += kFractionMax / 2;
458 // Determine the parts of the Y, U and V buffers to interpolate.
459 int source_y_left = source_left >> kFractionBits;
460 int source_y_right =
461 std::min((source_right >> kFractionBits) + 2, source_width + 1);
463 int source_uv_left = source_y_left / 2;
464 int source_uv_right = std::min((source_right >> (kFractionBits + 1)) + 2,
465 (source_width + 1) / 2);
467 int source_y_width = source_y_right - source_y_left;
468 int source_uv_width = source_uv_right - source_uv_left;
470 // Determine number of pixels in each output row.
471 int dest_rect_width = dest_rect_right - dest_rect_left;
473 // Intermediate buffer for vertical interpolation.
474 // 4096 bytes allows 3 buffers to fit in 12k, which fits in a 16K L1 cache,
475 // and is bigger than most users will generally need.
476 // The buffer is 16-byte aligned and padded with 16 extra bytes; some of the
477 // FilterYUVRowsProcs have alignment requirements, and the SSE version can
478 // write up to 16 bytes past the end of the buffer.
479 const int kFilterBufferSize = 4096;
480 const bool kAvoidUsingOptimizedFilter = source_width > kFilterBufferSize;
481 uint8 yuv_temp[16 + kFilterBufferSize * 3 + 16];
482 // memset() yuv_temp to 0 to avoid bogus warnings when running on Valgrind.
483 if (RunningOnValgrind())
484 memset(yuv_temp, 0, sizeof(yuv_temp));
485 uint8* y_temp = reinterpret_cast<uint8*>(
486 reinterpret_cast<uintptr_t>(yuv_temp + 15) & ~15);
487 uint8* u_temp = y_temp + kFilterBufferSize;
488 uint8* v_temp = u_temp + kFilterBufferSize;
490 // Move to the top-left pixel of output.
491 rgb_buf += dest_rect_top * rgb_pitch;
492 rgb_buf += dest_rect_left * 4;
494 // For each destination row perform interpolation and color space
495 // conversion to produce the output.
496 for (int row = dest_rect_top; row < dest_rect_bottom; ++row) {
497 // Round the fixed-point y position to get the current row.
498 int source_row = source_top >> kFractionBits;
499 int source_uv_row = source_row / 2;
500 DCHECK(source_row < source_height);
502 // Locate the first row for each plane for interpolation.
503 const uint8* y0_ptr = y_buf + y_pitch * source_row + source_y_left;
504 const uint8* u0_ptr = u_buf + uv_pitch * source_uv_row + source_uv_left;
505 const uint8* v0_ptr = v_buf + uv_pitch * source_uv_row + source_uv_left;
506 const uint8* y1_ptr = NULL;
507 const uint8* u1_ptr = NULL;
508 const uint8* v1_ptr = NULL;
510 // Locate the second row for interpolation, being careful not to overrun.
511 if (source_row + 1 >= source_height) {
512 y1_ptr = y0_ptr;
513 } else {
514 y1_ptr = y0_ptr + y_pitch;
516 if (source_uv_row + 1 >= (source_height + 1) / 2) {
517 u1_ptr = u0_ptr;
518 v1_ptr = v0_ptr;
519 } else {
520 u1_ptr = u0_ptr + uv_pitch;
521 v1_ptr = v0_ptr + uv_pitch;
524 if (!kAvoidUsingOptimizedFilter) {
525 // Vertical scaler uses 16.8 fixed point.
526 uint8 fraction = (source_top & kFractionMask) >> 8;
527 g_filter_yuv_rows_proc_(
528 y_temp + source_y_left, y0_ptr, y1_ptr, source_y_width, fraction);
529 g_filter_yuv_rows_proc_(
530 u_temp + source_uv_left, u0_ptr, u1_ptr, source_uv_width, fraction);
531 g_filter_yuv_rows_proc_(
532 v_temp + source_uv_left, v0_ptr, v1_ptr, source_uv_width, fraction);
534 // Perform horizontal interpolation and color space conversion.
535 // TODO(hclam): Use the MMX version after more testing.
536 LinearScaleYUVToRGB32RowWithRange_C(y_temp,
537 u_temp,
538 v_temp,
539 rgb_buf,
540 dest_rect_width,
541 source_left,
542 x_step,
543 kCoefficientsRgbY);
544 } else {
545 // If the frame is too large then we linear scale a single row.
546 LinearScaleYUVToRGB32RowWithRange_C(y0_ptr,
547 u0_ptr,
548 v0_ptr,
549 rgb_buf,
550 dest_rect_width,
551 source_left,
552 x_step,
553 kCoefficientsRgbY);
556 // Advance vertically in the source and destination image.
557 source_top += y_step;
558 rgb_buf += rgb_pitch;
561 g_empty_register_state_proc_();
564 void ConvertRGB32ToYUV(const uint8* rgbframe,
565 uint8* yplane,
566 uint8* uplane,
567 uint8* vplane,
568 int width,
569 int height,
570 int rgbstride,
571 int ystride,
572 int uvstride) {
573 g_convert_rgb32_to_yuv_proc_(rgbframe,
574 yplane,
575 uplane,
576 vplane,
577 width,
578 height,
579 rgbstride,
580 ystride,
581 uvstride);
584 void ConvertRGB24ToYUV(const uint8* rgbframe,
585 uint8* yplane,
586 uint8* uplane,
587 uint8* vplane,
588 int width,
589 int height,
590 int rgbstride,
591 int ystride,
592 int uvstride) {
593 g_convert_rgb24_to_yuv_proc_(rgbframe,
594 yplane,
595 uplane,
596 vplane,
597 width,
598 height,
599 rgbstride,
600 ystride,
601 uvstride);
604 void ConvertYUY2ToYUV(const uint8* src,
605 uint8* yplane,
606 uint8* uplane,
607 uint8* vplane,
608 int width,
609 int height) {
610 for (int i = 0; i < height / 2; ++i) {
611 for (int j = 0; j < (width / 2); ++j) {
612 yplane[0] = src[0];
613 *uplane = src[1];
614 yplane[1] = src[2];
615 *vplane = src[3];
616 src += 4;
617 yplane += 2;
618 uplane++;
619 vplane++;
621 for (int j = 0; j < (width / 2); ++j) {
622 yplane[0] = src[0];
623 yplane[1] = src[2];
624 src += 4;
625 yplane += 2;
630 void ConvertNV21ToYUV(const uint8* src,
631 uint8* yplane,
632 uint8* uplane,
633 uint8* vplane,
634 int width,
635 int height) {
636 int y_plane_size = width * height;
637 memcpy(yplane, src, y_plane_size);
639 src += y_plane_size;
640 int u_plane_size = y_plane_size >> 2;
641 for (int i = 0; i < u_plane_size; ++i) {
642 *vplane++ = *src++;
643 *uplane++ = *src++;
647 void ConvertYUVToRGB32(const uint8* yplane,
648 const uint8* uplane,
649 const uint8* vplane,
650 uint8* rgbframe,
651 int width,
652 int height,
653 int ystride,
654 int uvstride,
655 int rgbstride,
656 YUVType yuv_type) {
657 g_convert_yuv_to_rgb32_proc_(yplane,
658 uplane,
659 vplane,
660 rgbframe,
661 width,
662 height,
663 ystride,
664 uvstride,
665 rgbstride,
666 yuv_type);
669 void ConvertYUVAToARGB(const uint8* yplane,
670 const uint8* uplane,
671 const uint8* vplane,
672 const uint8* aplane,
673 uint8* rgbframe,
674 int width,
675 int height,
676 int ystride,
677 int uvstride,
678 int astride,
679 int rgbstride,
680 YUVType yuv_type) {
681 g_convert_yuva_to_argb_proc_(yplane,
682 uplane,
683 vplane,
684 aplane,
685 rgbframe,
686 width,
687 height,
688 ystride,
689 uvstride,
690 astride,
691 rgbstride,
692 yuv_type);
695 } // namespace media