Unregister from GCM when the only GCM app is removed
[chromium-blink-merge.git] / tools / relocation_packer / src / elf_file.cc
blob5853c9d7d5547de5108bb3b99ce79f533d00446c
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // Implementation notes:
6 //
7 // We need to remove a piece from the ELF shared library. However, we also
8 // want to ensure that code and data loads at the same addresses as before
9 // packing, so that tools like breakpad can still match up addresses found
10 // in any crash dumps with data extracted from the pre-packed version of
11 // the shared library.
13 // Arranging this means that we have to split one of the LOAD segments into
14 // two. Unfortunately, the program headers are located at the very start
15 // of the shared library file, so expanding the program header section
16 // would cause a lot of consequent changes to files offsets that we don't
17 // really want to have to handle.
19 // Luckily, though, there is a segment that is always present and always
20 // unused on Android; the GNU_STACK segment. What we do is to steal that
21 // and repurpose it to be one of the split LOAD segments. We then have to
22 // sort LOAD segments by offset to keep the crazy linker happy.
24 // All of this takes place in SplitProgramHeadersForHole(), used on packing,
25 // and is unraveled on unpacking in CoalesceProgramHeadersForHole(). See
26 // commentary on those functions for an example of this segment stealing
27 // in action.
29 #include "elf_file.h"
31 #include <stdlib.h>
32 #include <sys/types.h>
33 #include <unistd.h>
34 #include <algorithm>
35 #include <string>
36 #include <vector>
38 #include "debug.h"
39 #include "elf_traits.h"
40 #include "libelf.h"
41 #include "packer.h"
43 namespace relocation_packer {
45 // Stub identifier written to 'null out' packed data, "NULL".
46 static const uint32_t kStubIdentifier = 0x4c4c554eu;
48 // Out-of-band dynamic tags used to indicate the offset and size of the
49 // android packed relocations section.
50 static const ELF::Sword DT_ANDROID_REL_OFFSET = DT_LOOS;
51 static const ELF::Sword DT_ANDROID_REL_SIZE = DT_LOOS + 1;
53 // Alignment to preserve, in bytes. This must be at least as large as the
54 // largest d_align and sh_addralign values found in the loaded file.
55 // Out of caution for RELRO page alignment, we preserve to a complete target
56 // page. See http://www.airs.com/blog/archives/189.
57 static const size_t kPreserveAlignment = 4096;
59 // Alignment values used by ld and gold for the GNU_STACK segment. Different
60 // linkers write different values; the actual value is immaterial on Android
61 // because it ignores GNU_STACK segments. However, it is useful for binary
62 // comparison and unit test purposes if packing and unpacking can preserve
63 // them through a round-trip.
64 static const size_t kLdGnuStackSegmentAlignment = 16;
65 static const size_t kGoldGnuStackSegmentAlignment = 0;
67 namespace {
69 // Get section data. Checks that the section has exactly one data entry,
70 // so that the section size and the data size are the same. True in
71 // practice for all sections we resize when packing or unpacking. Done
72 // by ensuring that a call to elf_getdata(section, data) returns NULL as
73 // the next data entry.
74 Elf_Data* GetSectionData(Elf_Scn* section) {
75 Elf_Data* data = elf_getdata(section, NULL);
76 CHECK(data && elf_getdata(section, data) == NULL);
77 return data;
80 // Rewrite section data. Allocates new data and makes it the data element's
81 // buffer. Relies on program exit to free allocated data.
82 void RewriteSectionData(Elf_Scn* section,
83 const void* section_data,
84 size_t size) {
85 Elf_Data* data = GetSectionData(section);
86 CHECK(size == data->d_size);
87 uint8_t* area = new uint8_t[size];
88 memcpy(area, section_data, size);
89 data->d_buf = area;
92 // Verbose ELF header logging.
93 void VerboseLogElfHeader(const ELF::Ehdr* elf_header) {
94 VLOG(1) << "e_phoff = " << elf_header->e_phoff;
95 VLOG(1) << "e_shoff = " << elf_header->e_shoff;
96 VLOG(1) << "e_ehsize = " << elf_header->e_ehsize;
97 VLOG(1) << "e_phentsize = " << elf_header->e_phentsize;
98 VLOG(1) << "e_phnum = " << elf_header->e_phnum;
99 VLOG(1) << "e_shnum = " << elf_header->e_shnum;
100 VLOG(1) << "e_shstrndx = " << elf_header->e_shstrndx;
103 // Verbose ELF program header logging.
104 void VerboseLogProgramHeader(size_t program_header_index,
105 const ELF::Phdr* program_header) {
106 std::string type;
107 switch (program_header->p_type) {
108 case PT_NULL: type = "NULL"; break;
109 case PT_LOAD: type = "LOAD"; break;
110 case PT_DYNAMIC: type = "DYNAMIC"; break;
111 case PT_INTERP: type = "INTERP"; break;
112 case PT_PHDR: type = "PHDR"; break;
113 case PT_GNU_RELRO: type = "GNU_RELRO"; break;
114 case PT_GNU_STACK: type = "GNU_STACK"; break;
115 case PT_ARM_EXIDX: type = "EXIDX"; break;
116 default: type = "(OTHER)"; break;
118 VLOG(1) << "phdr[" << program_header_index << "] : " << type;
119 VLOG(1) << " p_offset = " << program_header->p_offset;
120 VLOG(1) << " p_vaddr = " << program_header->p_vaddr;
121 VLOG(1) << " p_paddr = " << program_header->p_paddr;
122 VLOG(1) << " p_filesz = " << program_header->p_filesz;
123 VLOG(1) << " p_memsz = " << program_header->p_memsz;
124 VLOG(1) << " p_flags = " << program_header->p_flags;
125 VLOG(1) << " p_align = " << program_header->p_align;
128 // Verbose ELF section header logging.
129 void VerboseLogSectionHeader(const std::string& section_name,
130 const ELF::Shdr* section_header) {
131 VLOG(1) << "section " << section_name;
132 VLOG(1) << " sh_addr = " << section_header->sh_addr;
133 VLOG(1) << " sh_offset = " << section_header->sh_offset;
134 VLOG(1) << " sh_size = " << section_header->sh_size;
135 VLOG(1) << " sh_addralign = " << section_header->sh_addralign;
138 // Verbose ELF section data logging.
139 void VerboseLogSectionData(const Elf_Data* data) {
140 VLOG(1) << " data";
141 VLOG(1) << " d_buf = " << data->d_buf;
142 VLOG(1) << " d_off = " << data->d_off;
143 VLOG(1) << " d_size = " << data->d_size;
144 VLOG(1) << " d_align = " << data->d_align;
147 } // namespace
149 // Load the complete ELF file into a memory image in libelf, and identify
150 // the .rel.dyn or .rela.dyn, .dynamic, and .android.rel.dyn or
151 // .android.rela.dyn sections. No-op if the ELF file has already been loaded.
152 bool ElfFile::Load() {
153 if (elf_)
154 return true;
156 Elf* elf = elf_begin(fd_, ELF_C_RDWR, NULL);
157 CHECK(elf);
159 if (elf_kind(elf) != ELF_K_ELF) {
160 LOG(ERROR) << "File not in ELF format";
161 return false;
164 ELF::Ehdr* elf_header = ELF::getehdr(elf);
165 if (!elf_header) {
166 LOG(ERROR) << "Failed to load ELF header: " << elf_errmsg(elf_errno());
167 return false;
169 if (elf_header->e_machine != ELF::kMachine) {
170 LOG(ERROR) << "ELF file architecture is not " << ELF::Machine();
171 return false;
173 if (elf_header->e_type != ET_DYN) {
174 LOG(ERROR) << "ELF file is not a shared object";
175 return false;
178 // Require that our endianness matches that of the target, and that both
179 // are little-endian. Safe for all current build/target combinations.
180 const int endian = elf_header->e_ident[EI_DATA];
181 CHECK(endian == ELFDATA2LSB);
182 CHECK(__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__);
184 // Also require that the file class is as expected.
185 const int file_class = elf_header->e_ident[EI_CLASS];
186 CHECK(file_class == ELF::kFileClass);
188 VLOG(1) << "endian = " << endian << ", file class = " << file_class;
189 VerboseLogElfHeader(elf_header);
191 const ELF::Phdr* elf_program_header = ELF::getphdr(elf);
192 CHECK(elf_program_header);
194 const ELF::Phdr* dynamic_program_header = NULL;
195 for (size_t i = 0; i < elf_header->e_phnum; ++i) {
196 const ELF::Phdr* program_header = &elf_program_header[i];
197 VerboseLogProgramHeader(i, program_header);
199 if (program_header->p_type == PT_DYNAMIC) {
200 CHECK(dynamic_program_header == NULL);
201 dynamic_program_header = program_header;
204 CHECK(dynamic_program_header != NULL);
206 size_t string_index;
207 elf_getshdrstrndx(elf, &string_index);
209 // Notes of the dynamic relocations, packed relocations, and .dynamic
210 // sections. Found while iterating sections, and later stored in class
211 // attributes.
212 Elf_Scn* found_relocations_section = NULL;
213 Elf_Scn* found_android_relocations_section = NULL;
214 Elf_Scn* found_dynamic_section = NULL;
216 // Notes of relocation section types seen. We require one or the other of
217 // these; both is unsupported.
218 bool has_rel_relocations = false;
219 bool has_rela_relocations = false;
221 Elf_Scn* section = NULL;
222 while ((section = elf_nextscn(elf, section)) != NULL) {
223 const ELF::Shdr* section_header = ELF::getshdr(section);
224 std::string name = elf_strptr(elf, string_index, section_header->sh_name);
225 VerboseLogSectionHeader(name, section_header);
227 // Note relocation section types.
228 if (section_header->sh_type == SHT_REL) {
229 has_rel_relocations = true;
231 if (section_header->sh_type == SHT_RELA) {
232 has_rela_relocations = true;
235 // Note special sections as we encounter them.
236 if ((name == ".rel.dyn" || name == ".rela.dyn") &&
237 section_header->sh_size > 0) {
238 found_relocations_section = section;
240 if ((name == ".android.rel.dyn" || name == ".android.rela.dyn") &&
241 section_header->sh_size > 0) {
242 found_android_relocations_section = section;
244 if (section_header->sh_offset == dynamic_program_header->p_offset) {
245 found_dynamic_section = section;
248 // Ensure we preserve alignment, repeated later for the data block(s).
249 CHECK(section_header->sh_addralign <= kPreserveAlignment);
251 Elf_Data* data = NULL;
252 while ((data = elf_getdata(section, data)) != NULL) {
253 CHECK(data->d_align <= kPreserveAlignment);
254 VerboseLogSectionData(data);
258 // Loading failed if we did not find the required special sections.
259 if (!found_relocations_section) {
260 LOG(ERROR) << "Missing or empty .rel.dyn or .rela.dyn section";
261 return false;
263 if (!found_android_relocations_section) {
264 LOG(ERROR) << "Missing or empty .android.rel.dyn or .android.rela.dyn "
265 << "section (to fix, run with --help and follow the "
266 << "pre-packing instructions)";
267 return false;
269 if (!found_dynamic_section) {
270 LOG(ERROR) << "Missing .dynamic section";
271 return false;
274 // Loading failed if we could not identify the relocations type.
275 if (!has_rel_relocations && !has_rela_relocations) {
276 LOG(ERROR) << "No relocations sections found";
277 return false;
279 if (has_rel_relocations && has_rela_relocations) {
280 LOG(ERROR) << "Multiple relocations sections with different types found, "
281 << "not currently supported";
282 return false;
285 elf_ = elf;
286 relocations_section_ = found_relocations_section;
287 dynamic_section_ = found_dynamic_section;
288 android_relocations_section_ = found_android_relocations_section;
289 relocations_type_ = has_rel_relocations ? REL : RELA;
290 return true;
293 namespace {
295 // Helper for ResizeSection(). Adjust the main ELF header for the hole.
296 void AdjustElfHeaderForHole(ELF::Ehdr* elf_header,
297 ELF::Off hole_start,
298 ssize_t hole_size) {
299 if (elf_header->e_phoff > hole_start) {
300 elf_header->e_phoff += hole_size;
301 VLOG(1) << "e_phoff adjusted to " << elf_header->e_phoff;
303 if (elf_header->e_shoff > hole_start) {
304 elf_header->e_shoff += hole_size;
305 VLOG(1) << "e_shoff adjusted to " << elf_header->e_shoff;
309 // Helper for ResizeSection(). Adjust all section headers for the hole.
310 void AdjustSectionHeadersForHole(Elf* elf,
311 ELF::Off hole_start,
312 ssize_t hole_size) {
313 size_t string_index;
314 elf_getshdrstrndx(elf, &string_index);
316 Elf_Scn* section = NULL;
317 while ((section = elf_nextscn(elf, section)) != NULL) {
318 ELF::Shdr* section_header = ELF::getshdr(section);
319 std::string name = elf_strptr(elf, string_index, section_header->sh_name);
321 if (section_header->sh_offset > hole_start) {
322 section_header->sh_offset += hole_size;
323 VLOG(1) << "section " << name
324 << " sh_offset adjusted to " << section_header->sh_offset;
329 // Helper for ResizeSection(). Adjust the offsets of any program headers
330 // that have offsets currently beyond the hole start.
331 void AdjustProgramHeaderOffsets(ELF::Phdr* program_headers,
332 size_t count,
333 ELF::Phdr* ignored_1,
334 ELF::Phdr* ignored_2,
335 ELF::Off hole_start,
336 ssize_t hole_size) {
337 for (size_t i = 0; i < count; ++i) {
338 ELF::Phdr* program_header = &program_headers[i];
340 if (program_header == ignored_1 || program_header == ignored_2)
341 continue;
343 if (program_header->p_offset > hole_start) {
344 // The hole start is past this segment, so adjust offset.
345 program_header->p_offset += hole_size;
346 VLOG(1) << "phdr[" << i
347 << "] p_offset adjusted to "<< program_header->p_offset;
352 // Helper for ResizeSection(). Find the first loadable segment in the
353 // file. We expect it to map from file offset zero.
354 ELF::Phdr* FindFirstLoadSegment(ELF::Phdr* program_headers,
355 size_t count) {
356 ELF::Phdr* first_loadable_segment = NULL;
358 for (size_t i = 0; i < count; ++i) {
359 ELF::Phdr* program_header = &program_headers[i];
361 if (program_header->p_type == PT_LOAD &&
362 program_header->p_offset == 0 &&
363 program_header->p_vaddr == 0 &&
364 program_header->p_paddr == 0) {
365 first_loadable_segment = program_header;
368 LOG_IF(FATAL, !first_loadable_segment)
369 << "Cannot locate a LOAD segment with address and offset zero";
371 return first_loadable_segment;
374 // Helper for ResizeSection(). Deduce the alignment that the PT_GNU_STACK
375 // segment will use. Determined by sensing the linker that was used to
376 // create the shared library.
377 size_t DeduceGnuStackSegmentAlignment(Elf* elf) {
378 size_t string_index;
379 elf_getshdrstrndx(elf, &string_index);
381 Elf_Scn* section = NULL;
382 size_t gnu_stack_segment_alignment = kLdGnuStackSegmentAlignment;
384 while ((section = elf_nextscn(elf, section)) != NULL) {
385 const ELF::Shdr* section_header = ELF::getshdr(section);
386 std::string name = elf_strptr(elf, string_index, section_header->sh_name);
388 if (name == ".note.gnu.gold-version") {
389 gnu_stack_segment_alignment = kGoldGnuStackSegmentAlignment;
390 break;
394 return gnu_stack_segment_alignment;
397 // Helper for ResizeSection(). Find the PT_GNU_STACK segment, and check
398 // that it contains what we expect so we can restore it on unpack if needed.
399 ELF::Phdr* FindUnusedGnuStackSegment(Elf* elf,
400 ELF::Phdr* program_headers,
401 size_t count) {
402 ELF::Phdr* unused_segment = NULL;
403 const size_t stack_alignment = DeduceGnuStackSegmentAlignment(elf);
405 for (size_t i = 0; i < count; ++i) {
406 ELF::Phdr* program_header = &program_headers[i];
408 if (program_header->p_type == PT_GNU_STACK &&
409 program_header->p_offset == 0 &&
410 program_header->p_vaddr == 0 &&
411 program_header->p_paddr == 0 &&
412 program_header->p_filesz == 0 &&
413 program_header->p_memsz == 0 &&
414 program_header->p_flags == (PF_R | PF_W) &&
415 program_header->p_align == stack_alignment) {
416 unused_segment = program_header;
419 LOG_IF(FATAL, !unused_segment)
420 << "Cannot locate the expected GNU_STACK segment";
422 return unused_segment;
425 // Helper for ResizeSection(). Find the segment that was the first loadable
426 // one before we split it into two. This is the one into which we coalesce
427 // the split segments on unpacking.
428 ELF::Phdr* FindOriginalFirstLoadSegment(ELF::Phdr* program_headers,
429 size_t count) {
430 const ELF::Phdr* first_loadable_segment =
431 FindFirstLoadSegment(program_headers, count);
433 ELF::Phdr* original_first_loadable_segment = NULL;
435 for (size_t i = 0; i < count; ++i) {
436 ELF::Phdr* program_header = &program_headers[i];
438 // The original first loadable segment is the one that follows on from
439 // the one we wrote on split to be the current first loadable segment.
440 if (program_header->p_type == PT_LOAD &&
441 program_header->p_offset == first_loadable_segment->p_filesz) {
442 original_first_loadable_segment = program_header;
445 LOG_IF(FATAL, !original_first_loadable_segment)
446 << "Cannot locate the LOAD segment that follows a LOAD at offset zero";
448 return original_first_loadable_segment;
451 // Helper for ResizeSection(). Find the segment that contains the hole.
452 Elf_Scn* FindSectionContainingHole(Elf* elf,
453 ELF::Off hole_start,
454 ssize_t hole_size) {
455 Elf_Scn* section = NULL;
456 Elf_Scn* last_unholed_section = NULL;
458 while ((section = elf_nextscn(elf, section)) != NULL) {
459 const ELF::Shdr* section_header = ELF::getshdr(section);
461 // Because we get here after section headers have been adjusted for the
462 // hole, we need to 'undo' that adjustment to give a view of the original
463 // sections layout.
464 ELF::Off offset = section_header->sh_offset;
465 if (section_header->sh_offset >= hole_start) {
466 offset -= hole_size;
469 if (offset <= hole_start) {
470 last_unholed_section = section;
473 LOG_IF(FATAL, !last_unholed_section)
474 << "Cannot identify the section before the one containing the hole";
476 // The section containing the hole is the one after the last one found
477 // by the loop above.
478 Elf_Scn* holed_section = elf_nextscn(elf, last_unholed_section);
479 LOG_IF(FATAL, !holed_section)
480 << "Cannot identify the section containing the hole";
482 return holed_section;
485 // Helper for ResizeSection(). Find the last section contained in a segment.
486 Elf_Scn* FindLastSectionInSegment(Elf* elf,
487 ELF::Phdr* program_header,
488 ELF::Off hole_start,
489 ssize_t hole_size) {
490 const ELF::Off segment_end =
491 program_header->p_offset + program_header->p_filesz;
493 Elf_Scn* section = NULL;
494 Elf_Scn* last_section = NULL;
496 while ((section = elf_nextscn(elf, section)) != NULL) {
497 const ELF::Shdr* section_header = ELF::getshdr(section);
499 // As above, 'undo' any section offset adjustment to give a view of the
500 // original sections layout.
501 ELF::Off offset = section_header->sh_offset;
502 if (section_header->sh_offset >= hole_start) {
503 offset -= hole_size;
506 if (offset < segment_end) {
507 last_section = section;
510 LOG_IF(FATAL, !last_section)
511 << "Cannot identify the last section in the given segment";
513 return last_section;
516 // Helper for ResizeSection(). Order loadable segments by their offsets.
517 // The crazy linker contains assumptions about loadable segment ordering,
518 // and it is better if we do not break them.
519 void SortOrderSensitiveProgramHeaders(ELF::Phdr* program_headers,
520 size_t count) {
521 std::vector<ELF::Phdr*> orderable;
523 // Collect together orderable program headers. These are all the LOAD
524 // segments, and any GNU_STACK that may be present (removed on packing,
525 // but replaced on unpacking).
526 for (size_t i = 0; i < count; ++i) {
527 ELF::Phdr* program_header = &program_headers[i];
529 if (program_header->p_type == PT_LOAD ||
530 program_header->p_type == PT_GNU_STACK) {
531 orderable.push_back(program_header);
535 // Order these program headers so that any PT_GNU_STACK is last, and
536 // the LOAD segments that precede it appear in offset order. Uses
537 // insertion sort.
538 for (size_t i = 1; i < orderable.size(); ++i) {
539 for (size_t j = i; j > 0; --j) {
540 ELF::Phdr* first = orderable[j - 1];
541 ELF::Phdr* second = orderable[j];
543 if (!(first->p_type == PT_GNU_STACK ||
544 first->p_offset > second->p_offset)) {
545 break;
547 std::swap(*first, *second);
552 // Helper for ResizeSection(). The GNU_STACK program header is unused in
553 // Android, so we can repurpose it here. Before packing, the program header
554 // table contains something like:
556 // Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
557 // LOAD 0x000000 0x00000000 0x00000000 0x1efc818 0x1efc818 R E 0x1000
558 // LOAD 0x1efd008 0x01efe008 0x01efe008 0x17ec3c 0x1a0324 RW 0x1000
559 // DYNAMIC 0x205ec50 0x0205fc50 0x0205fc50 0x00108 0x00108 RW 0x4
560 // GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0
562 // The hole in the file is in the first of these. In order to preserve all
563 // load addresses, what we do is to turn the GNU_STACK into a new LOAD entry
564 // that maps segments up to where we created the hole, adjust the first LOAD
565 // entry so that it maps segments after that, adjust any other program
566 // headers whose offset is after the hole start, and finally order the LOAD
567 // segments by offset, to give:
569 // Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
570 // LOAD 0x000000 0x00000000 0x00000000 0x14ea4 0x14ea4 R E 0x1000
571 // LOAD 0x014ea4 0x00212ea4 0x00212ea4 0x1cea164 0x1cea164 R E 0x1000
572 // DYNAMIC 0x1e60c50 0x0205fc50 0x0205fc50 0x00108 0x00108 RW 0x4
573 // LOAD 0x1cff008 0x01efe008 0x01efe008 0x17ec3c 0x1a0324 RW 0x1000
575 // We work out the split points by finding the .rel.dyn or .rela.dyn section
576 // that contains the hole, and by finding the last section in a given segment.
578 // To unpack, we reverse the above to leave the file as it was originally.
579 void SplitProgramHeadersForHole(Elf* elf,
580 ELF::Off hole_start,
581 ssize_t hole_size) {
582 CHECK(hole_size < 0);
583 const ELF::Ehdr* elf_header = ELF::getehdr(elf);
584 CHECK(elf_header);
586 ELF::Phdr* elf_program_header = ELF::getphdr(elf);
587 CHECK(elf_program_header);
589 const size_t program_header_count = elf_header->e_phnum;
591 // Locate the segment that we can overwrite to form the new LOAD entry,
592 // and the segment that we are going to split into two parts.
593 ELF::Phdr* spliced_header =
594 FindUnusedGnuStackSegment(elf, elf_program_header, program_header_count);
595 ELF::Phdr* split_header =
596 FindFirstLoadSegment(elf_program_header, program_header_count);
598 VLOG(1) << "phdr[" << split_header - elf_program_header << "] split";
599 VLOG(1) << "phdr[" << spliced_header - elf_program_header << "] new LOAD";
601 // Find the section that contains the hole. We split on the section that
602 // follows it.
603 Elf_Scn* holed_section =
604 FindSectionContainingHole(elf, hole_start, hole_size);
606 size_t string_index;
607 elf_getshdrstrndx(elf, &string_index);
609 ELF::Shdr* section_header = ELF::getshdr(holed_section);
610 std::string name = elf_strptr(elf, string_index, section_header->sh_name);
611 VLOG(1) << "section " << name << " split after";
613 // Find the last section in the segment we are splitting.
614 Elf_Scn* last_section =
615 FindLastSectionInSegment(elf, split_header, hole_start, hole_size);
617 section_header = ELF::getshdr(last_section);
618 name = elf_strptr(elf, string_index, section_header->sh_name);
619 VLOG(1) << "section " << name << " split end";
621 // Split on the section following the holed one, and up to (but not
622 // including) the section following the last one in the split segment.
623 Elf_Scn* split_section = elf_nextscn(elf, holed_section);
624 LOG_IF(FATAL, !split_section)
625 << "No section follows the section that contains the hole";
626 Elf_Scn* end_section = elf_nextscn(elf, last_section);
627 LOG_IF(FATAL, !end_section)
628 << "No section follows the last section in the segment being split";
630 // Split the first portion of split_header into spliced_header.
631 const ELF::Shdr* split_section_header = ELF::getshdr(split_section);
632 spliced_header->p_type = split_header->p_type;
633 spliced_header->p_offset = split_header->p_offset;
634 spliced_header->p_vaddr = split_header->p_vaddr;
635 spliced_header->p_paddr = split_header->p_paddr;
636 CHECK(split_header->p_filesz == split_header->p_memsz);
637 spliced_header->p_filesz = split_section_header->sh_offset;
638 spliced_header->p_memsz = split_section_header->sh_offset;
639 spliced_header->p_flags = split_header->p_flags;
640 spliced_header->p_align = split_header->p_align;
642 // Now rewrite split_header to remove the part we spliced from it.
643 const ELF::Shdr* end_section_header = ELF::getshdr(end_section);
644 split_header->p_offset = spliced_header->p_filesz;
645 CHECK(split_header->p_vaddr == split_header->p_paddr);
646 split_header->p_vaddr = split_section_header->sh_addr;
647 split_header->p_paddr = split_section_header->sh_addr;
648 CHECK(split_header->p_filesz == split_header->p_memsz);
649 split_header->p_filesz =
650 end_section_header->sh_offset - spliced_header->p_filesz;
651 split_header->p_memsz =
652 end_section_header->sh_offset - spliced_header->p_filesz;
654 // Adjust the offsets of all program headers that are not one of the pair
655 // we just created by splitting.
656 AdjustProgramHeaderOffsets(elf_program_header,
657 program_header_count,
658 spliced_header,
659 split_header,
660 hole_start,
661 hole_size);
663 // Finally, order loadable segments by offset/address. The crazy linker
664 // contains assumptions about loadable segment ordering.
665 SortOrderSensitiveProgramHeaders(elf_program_header,
666 program_header_count);
669 // Helper for ResizeSection(). Undo the work of SplitProgramHeadersForHole().
670 void CoalesceProgramHeadersForHole(Elf* elf,
671 ELF::Off hole_start,
672 ssize_t hole_size) {
673 CHECK(hole_size > 0);
674 const ELF::Ehdr* elf_header = ELF::getehdr(elf);
675 CHECK(elf_header);
677 ELF::Phdr* elf_program_header = ELF::getphdr(elf);
678 CHECK(elf_program_header);
680 const size_t program_header_count = elf_header->e_phnum;
682 // Locate the segment that we overwrote to form the new LOAD entry, and
683 // the segment that we split into two parts on packing.
684 ELF::Phdr* spliced_header =
685 FindFirstLoadSegment(elf_program_header, program_header_count);
686 ELF::Phdr* split_header =
687 FindOriginalFirstLoadSegment(elf_program_header, program_header_count);
689 VLOG(1) << "phdr[" << spliced_header - elf_program_header << "] stack";
690 VLOG(1) << "phdr[" << split_header - elf_program_header << "] coalesce";
692 // Find the last section in the second segment we are coalescing.
693 Elf_Scn* last_section =
694 FindLastSectionInSegment(elf, split_header, hole_start, hole_size);
696 size_t string_index;
697 elf_getshdrstrndx(elf, &string_index);
699 const ELF::Shdr* section_header = ELF::getshdr(last_section);
700 std::string name = elf_strptr(elf, string_index, section_header->sh_name);
701 VLOG(1) << "section " << name << " coalesced";
703 // Rewrite the coalesced segment into split_header.
704 const ELF::Shdr* last_section_header = ELF::getshdr(last_section);
705 split_header->p_offset = spliced_header->p_offset;
706 CHECK(split_header->p_vaddr == split_header->p_paddr);
707 split_header->p_vaddr = spliced_header->p_vaddr;
708 split_header->p_paddr = spliced_header->p_vaddr;
709 CHECK(split_header->p_filesz == split_header->p_memsz);
710 split_header->p_filesz =
711 last_section_header->sh_offset + last_section_header->sh_size;
712 split_header->p_memsz =
713 last_section_header->sh_offset + last_section_header->sh_size;
715 // Reconstruct the original GNU_STACK segment into spliced_header.
716 const size_t stack_alignment = DeduceGnuStackSegmentAlignment(elf);
717 spliced_header->p_type = PT_GNU_STACK;
718 spliced_header->p_offset = 0;
719 spliced_header->p_vaddr = 0;
720 spliced_header->p_paddr = 0;
721 spliced_header->p_filesz = 0;
722 spliced_header->p_memsz = 0;
723 spliced_header->p_flags = PF_R | PF_W;
724 spliced_header->p_align = stack_alignment;
726 // Adjust the offsets of all program headers that are not one of the pair
727 // we just coalesced.
728 AdjustProgramHeaderOffsets(elf_program_header,
729 program_header_count,
730 spliced_header,
731 split_header,
732 hole_start,
733 hole_size);
735 // Finally, order loadable segments by offset/address. The crazy linker
736 // contains assumptions about loadable segment ordering.
737 SortOrderSensitiveProgramHeaders(elf_program_header,
738 program_header_count);
741 // Helper for ResizeSection(). Rewrite program headers.
742 void RewriteProgramHeadersForHole(Elf* elf,
743 ELF::Off hole_start,
744 ssize_t hole_size) {
745 // If hole_size is negative then we are removing a piece of the file, and
746 // we want to split program headers so that we keep the same addresses
747 // for text and data. If positive, then we are putting that piece of the
748 // file back in, so we coalesce the previously split program headers.
749 if (hole_size < 0)
750 SplitProgramHeadersForHole(elf, hole_start, hole_size);
751 else if (hole_size > 0)
752 CoalesceProgramHeadersForHole(elf, hole_start, hole_size);
755 // Helper for ResizeSection(). Locate and return the dynamic section.
756 Elf_Scn* GetDynamicSection(Elf* elf) {
757 const ELF::Ehdr* elf_header = ELF::getehdr(elf);
758 CHECK(elf_header);
760 const ELF::Phdr* elf_program_header = ELF::getphdr(elf);
761 CHECK(elf_program_header);
763 // Find the program header that describes the dynamic section.
764 const ELF::Phdr* dynamic_program_header = NULL;
765 for (size_t i = 0; i < elf_header->e_phnum; ++i) {
766 const ELF::Phdr* program_header = &elf_program_header[i];
768 if (program_header->p_type == PT_DYNAMIC) {
769 dynamic_program_header = program_header;
772 CHECK(dynamic_program_header);
774 // Now find the section with the same offset as this program header.
775 Elf_Scn* dynamic_section = NULL;
776 Elf_Scn* section = NULL;
777 while ((section = elf_nextscn(elf, section)) != NULL) {
778 ELF::Shdr* section_header = ELF::getshdr(section);
780 if (section_header->sh_offset == dynamic_program_header->p_offset) {
781 dynamic_section = section;
784 CHECK(dynamic_section != NULL);
786 return dynamic_section;
789 // Helper for ResizeSection(). Adjust the .dynamic section for the hole.
790 template <typename Rel>
791 void AdjustDynamicSectionForHole(Elf_Scn* dynamic_section,
792 ELF::Off hole_start,
793 ssize_t hole_size) {
794 Elf_Data* data = GetSectionData(dynamic_section);
796 const ELF::Dyn* dynamic_base = reinterpret_cast<ELF::Dyn*>(data->d_buf);
797 std::vector<ELF::Dyn> dynamics(
798 dynamic_base,
799 dynamic_base + data->d_size / sizeof(dynamics[0]));
801 for (size_t i = 0; i < dynamics.size(); ++i) {
802 ELF::Dyn* dynamic = &dynamics[i];
803 const ELF::Sword tag = dynamic->d_tag;
805 // DT_RELSZ or DT_RELASZ indicate the overall size of relocations.
806 // Only one will be present. Adjust by hole size.
807 if (tag == DT_RELSZ || tag == DT_RELASZ) {
808 dynamic->d_un.d_val += hole_size;
809 VLOG(1) << "dynamic[" << i << "] " << dynamic->d_tag
810 << " d_val adjusted to " << dynamic->d_un.d_val;
813 // DT_RELCOUNT or DT_RELACOUNT hold the count of relative relocations.
814 // Only one will be present. Packing reduces it to the alignment
815 // padding, if any; unpacking restores it to its former value. The
816 // crazy linker does not use it, but we update it anyway.
817 if (tag == DT_RELCOUNT || tag == DT_RELACOUNT) {
818 // Cast sizeof to a signed type to avoid the division result being
819 // promoted into an unsigned size_t.
820 const ssize_t sizeof_rel = static_cast<ssize_t>(sizeof(Rel));
821 dynamic->d_un.d_val += hole_size / sizeof_rel;
822 VLOG(1) << "dynamic[" << i << "] " << dynamic->d_tag
823 << " d_val adjusted to " << dynamic->d_un.d_val;
826 // DT_RELENT and DT_RELAENT do not change, but make sure they are what
827 // we expect. Only one will be present.
828 if (tag == DT_RELENT || tag == DT_RELAENT) {
829 CHECK(dynamic->d_un.d_val == sizeof(Rel));
833 void* section_data = &dynamics[0];
834 size_t bytes = dynamics.size() * sizeof(dynamics[0]);
835 RewriteSectionData(dynamic_section, section_data, bytes);
838 // Resize a section. If the new size is larger than the current size, open
839 // up a hole by increasing file offsets that come after the hole. If smaller
840 // than the current size, remove the hole by decreasing those offsets.
841 template <typename Rel>
842 void ResizeSection(Elf* elf, Elf_Scn* section, size_t new_size) {
843 ELF::Shdr* section_header = ELF::getshdr(section);
844 if (section_header->sh_size == new_size)
845 return;
847 // Note if we are resizing the real dyn relocations.
848 size_t string_index;
849 elf_getshdrstrndx(elf, &string_index);
850 const std::string section_name =
851 elf_strptr(elf, string_index, section_header->sh_name);
852 const bool is_relocations_resize =
853 (section_name == ".rel.dyn" || section_name == ".rela.dyn");
855 // Require that the section size and the data size are the same. True
856 // in practice for all sections we resize when packing or unpacking.
857 Elf_Data* data = GetSectionData(section);
858 CHECK(data->d_off == 0 && data->d_size == section_header->sh_size);
860 // Require that the section is not zero-length (that is, has allocated
861 // data that we can validly expand).
862 CHECK(data->d_size && data->d_buf);
864 const ELF::Off hole_start = section_header->sh_offset;
865 const ssize_t hole_size = new_size - data->d_size;
867 VLOG_IF(1, (hole_size > 0)) << "expand section size = " << data->d_size;
868 VLOG_IF(1, (hole_size < 0)) << "shrink section size = " << data->d_size;
870 // Resize the data and the section header.
871 data->d_size += hole_size;
872 section_header->sh_size += hole_size;
874 // Add the hole size to all offsets in the ELF file that are after the
875 // start of the hole. If the hole size is positive we are expanding the
876 // section to create a new hole; if negative, we are closing up a hole.
878 // Start with the main ELF header.
879 ELF::Ehdr* elf_header = ELF::getehdr(elf);
880 AdjustElfHeaderForHole(elf_header, hole_start, hole_size);
882 // Adjust all section headers.
883 AdjustSectionHeadersForHole(elf, hole_start, hole_size);
885 // If resizing the dynamic relocations, rewrite the program headers to
886 // either split or coalesce segments, and adjust dynamic entries to match.
887 if (is_relocations_resize) {
888 RewriteProgramHeadersForHole(elf, hole_start, hole_size);
890 Elf_Scn* dynamic_section = GetDynamicSection(elf);
891 AdjustDynamicSectionForHole<Rel>(dynamic_section, hole_start, hole_size);
895 // Find the first slot in a dynamics array with the given tag. The array
896 // always ends with a free (unused) element, and which we exclude from the
897 // search. Returns dynamics->size() if not found.
898 size_t FindDynamicEntry(ELF::Sword tag,
899 std::vector<ELF::Dyn>* dynamics) {
900 // Loop until the penultimate entry. We exclude the end sentinel.
901 for (size_t i = 0; i < dynamics->size() - 1; ++i) {
902 if (dynamics->at(i).d_tag == tag)
903 return i;
906 // The tag was not found.
907 return dynamics->size();
910 // Replace the first free (unused) slot in a dynamics vector with the given
911 // value. The vector always ends with a free (unused) element, so the slot
912 // found cannot be the last one in the vector.
913 void AddDynamicEntry(const ELF::Dyn& dyn,
914 std::vector<ELF::Dyn>* dynamics) {
915 const size_t slot = FindDynamicEntry(DT_NULL, dynamics);
916 if (slot == dynamics->size()) {
917 LOG(FATAL) << "No spare dynamic array slots found "
918 << "(to fix, increase gold's --spare-dynamic-tags value)";
921 // Replace this entry with the one supplied.
922 dynamics->at(slot) = dyn;
923 VLOG(1) << "dynamic[" << slot << "] overwritten with " << dyn.d_tag;
926 // Remove the element in the dynamics vector that matches the given tag with
927 // unused slot data. Shuffle the following elements up, and ensure that the
928 // last is the null sentinel.
929 void RemoveDynamicEntry(ELF::Sword tag,
930 std::vector<ELF::Dyn>* dynamics) {
931 const size_t slot = FindDynamicEntry(tag, dynamics);
932 CHECK(slot != dynamics->size());
934 // Remove this entry by shuffling up everything that follows.
935 for (size_t i = slot; i < dynamics->size() - 1; ++i) {
936 dynamics->at(i) = dynamics->at(i + 1);
937 VLOG(1) << "dynamic[" << i
938 << "] overwritten with dynamic[" << i + 1 << "]";
941 // Ensure that the end sentinel is still present.
942 CHECK(dynamics->at(dynamics->size() - 1).d_tag == DT_NULL);
945 // Construct a null relocation without addend.
946 void NullRelocation(ELF::Rel* relocation) {
947 relocation->r_offset = 0;
948 relocation->r_info = ELF_R_INFO(0, ELF::kNoRelocationCode);
951 // Construct a null relocation with addend.
952 void NullRelocation(ELF::Rela* relocation) {
953 relocation->r_offset = 0;
954 relocation->r_info = ELF_R_INFO(0, ELF::kNoRelocationCode);
955 relocation->r_addend = 0;
958 // Pad relocations with the given number of null entries. Generates its
959 // null entry with the appropriate NullRelocation() invocation.
960 template <typename Rel>
961 void PadRelocations(size_t count, std::vector<Rel>* relocations) {
962 Rel null_relocation;
963 NullRelocation(&null_relocation);
964 std::vector<Rel> padding(count, null_relocation);
965 relocations->insert(relocations->end(), padding.begin(), padding.end());
968 } // namespace
970 // Remove relative entries from dynamic relocations and write as packed
971 // data into android packed relocations.
972 bool ElfFile::PackRelocations() {
973 // Load the ELF file into libelf.
974 if (!Load()) {
975 LOG(ERROR) << "Failed to load as ELF";
976 return false;
979 // Retrieve the current dynamic relocations section data.
980 Elf_Data* data = GetSectionData(relocations_section_);
982 if (relocations_type_ == REL) {
983 // Convert data to a vector of relocations.
984 const ELF::Rel* relocations_base = reinterpret_cast<ELF::Rel*>(data->d_buf);
985 std::vector<ELF::Rel> relocations(
986 relocations_base,
987 relocations_base + data->d_size / sizeof(relocations[0]));
989 LOG(INFO) << "Relocations : REL";
990 return PackTypedRelocations<ELF::Rel>(relocations);
993 if (relocations_type_ == RELA) {
994 // Convert data to a vector of relocations with addends.
995 const ELF::Rela* relocations_base =
996 reinterpret_cast<ELF::Rela*>(data->d_buf);
997 std::vector<ELF::Rela> relocations(
998 relocations_base,
999 relocations_base + data->d_size / sizeof(relocations[0]));
1001 LOG(INFO) << "Relocations : RELA";
1002 return PackTypedRelocations<ELF::Rela>(relocations);
1005 NOTREACHED();
1006 return false;
1009 // Helper for PackRelocations(). Rel type is one of ELF::Rel or ELF::Rela.
1010 template <typename Rel>
1011 bool ElfFile::PackTypedRelocations(const std::vector<Rel>& relocations) {
1012 // Filter relocations into those that are relative and others.
1013 std::vector<Rel> relative_relocations;
1014 std::vector<Rel> other_relocations;
1016 for (size_t i = 0; i < relocations.size(); ++i) {
1017 const Rel& relocation = relocations[i];
1018 if (ELF_R_TYPE(relocation.r_info) == ELF::kRelativeRelocationCode) {
1019 CHECK(ELF_R_SYM(relocation.r_info) == 0);
1020 relative_relocations.push_back(relocation);
1021 } else {
1022 other_relocations.push_back(relocation);
1025 LOG(INFO) << "Relative : " << relative_relocations.size() << " entries";
1026 LOG(INFO) << "Other : " << other_relocations.size() << " entries";
1027 LOG(INFO) << "Total : " << relocations.size() << " entries";
1029 // If no relative relocations then we have nothing packable. Perhaps
1030 // the shared object has already been packed?
1031 if (relative_relocations.empty()) {
1032 LOG(ERROR) << "No relative relocations found (already packed?)";
1033 return false;
1036 // If not padding fully, apply only enough padding to preserve alignment.
1037 // Otherwise, pad so that we do not shrink the relocations section at all.
1038 if (!is_padding_relocations_) {
1039 // Calculate the size of the hole we will close up when we rewrite
1040 // dynamic relocations.
1041 ssize_t hole_size =
1042 relative_relocations.size() * sizeof(relative_relocations[0]);
1043 const ssize_t unaligned_hole_size = hole_size;
1045 // Adjust the actual hole size to preserve alignment. We always adjust
1046 // by a whole number of NONE-type relocations.
1047 while (hole_size % kPreserveAlignment)
1048 hole_size -= sizeof(relative_relocations[0]);
1049 LOG(INFO) << "Compaction : " << hole_size << " bytes";
1051 // Adjusting for alignment may have removed any packing benefit.
1052 if (hole_size == 0) {
1053 LOG(INFO) << "Too few relative relocations to pack after alignment";
1054 return false;
1057 // Find the padding needed in other_relocations to preserve alignment.
1058 // Ensure that we never completely empty the real relocations section.
1059 size_t padding_bytes = unaligned_hole_size - hole_size;
1060 if (padding_bytes == 0 && other_relocations.size() == 0) {
1061 do {
1062 padding_bytes += sizeof(relative_relocations[0]);
1063 } while (padding_bytes % kPreserveAlignment);
1065 CHECK(padding_bytes % sizeof(other_relocations[0]) == 0);
1066 const size_t padding = padding_bytes / sizeof(other_relocations[0]);
1068 // Padding may have removed any packing benefit.
1069 if (padding >= relative_relocations.size()) {
1070 LOG(INFO) << "Too few relative relocations to pack after padding";
1071 return false;
1074 // Add null relocations to other_relocations to preserve alignment.
1075 PadRelocations<Rel>(padding, &other_relocations);
1076 LOG(INFO) << "Alignment pad : " << padding << " relocations";
1077 } else {
1078 // If padding, add NONE-type relocations to other_relocations to make it
1079 // the same size as the the original relocations we read in. This makes
1080 // the ResizeSection() below a no-op.
1081 const size_t padding = relocations.size() - other_relocations.size();
1082 PadRelocations<Rel>(padding, &other_relocations);
1085 // Pack relative relocations.
1086 const size_t initial_bytes =
1087 relative_relocations.size() * sizeof(relative_relocations[0]);
1088 LOG(INFO) << "Unpacked relative: " << initial_bytes << " bytes";
1089 std::vector<uint8_t> packed;
1090 RelocationPacker packer;
1091 packer.PackRelativeRelocations(relative_relocations, &packed);
1092 const void* packed_data = &packed[0];
1093 const size_t packed_bytes = packed.size() * sizeof(packed[0]);
1094 LOG(INFO) << "Packed relative: " << packed_bytes << " bytes";
1096 // If we have insufficient relative relocations to form a run then
1097 // packing fails.
1098 if (packed.empty()) {
1099 LOG(INFO) << "Too few relative relocations to pack";
1100 return false;
1103 // Run a loopback self-test as a check that packing is lossless.
1104 std::vector<Rel> unpacked;
1105 packer.UnpackRelativeRelocations(packed, &unpacked);
1106 CHECK(unpacked.size() == relative_relocations.size());
1107 CHECK(!memcmp(&unpacked[0],
1108 &relative_relocations[0],
1109 unpacked.size() * sizeof(unpacked[0])));
1111 // Make sure packing saved some space.
1112 if (packed_bytes >= initial_bytes) {
1113 LOG(INFO) << "Packing relative relocations saves no space";
1114 return false;
1117 // Rewrite the current dynamic relocations section to be only the ARM
1118 // non-relative relocations, then shrink it to size.
1119 const void* section_data = &other_relocations[0];
1120 const size_t bytes = other_relocations.size() * sizeof(other_relocations[0]);
1121 ResizeSection<Rel>(elf_, relocations_section_, bytes);
1122 RewriteSectionData(relocations_section_, section_data, bytes);
1124 // Rewrite the current packed android relocations section to hold the packed
1125 // relative relocations.
1126 ResizeSection<Rel>(elf_, android_relocations_section_, packed_bytes);
1127 RewriteSectionData(android_relocations_section_, packed_data, packed_bytes);
1129 // Rewrite .dynamic to include two new tags describing the packed android
1130 // relocations.
1131 Elf_Data* data = GetSectionData(dynamic_section_);
1132 const ELF::Dyn* dynamic_base = reinterpret_cast<ELF::Dyn*>(data->d_buf);
1133 std::vector<ELF::Dyn> dynamics(
1134 dynamic_base,
1135 dynamic_base + data->d_size / sizeof(dynamics[0]));
1136 // Use two of the spare slots to describe the packed section.
1137 ELF::Shdr* section_header = ELF::getshdr(android_relocations_section_);
1139 ELF::Dyn dyn;
1140 dyn.d_tag = DT_ANDROID_REL_OFFSET;
1141 dyn.d_un.d_ptr = section_header->sh_offset;
1142 AddDynamicEntry(dyn, &dynamics);
1145 ELF::Dyn dyn;
1146 dyn.d_tag = DT_ANDROID_REL_SIZE;
1147 dyn.d_un.d_val = section_header->sh_size;
1148 AddDynamicEntry(dyn, &dynamics);
1150 const void* dynamics_data = &dynamics[0];
1151 const size_t dynamics_bytes = dynamics.size() * sizeof(dynamics[0]);
1152 RewriteSectionData(dynamic_section_, dynamics_data, dynamics_bytes);
1154 Flush();
1155 return true;
1158 // Find packed relative relocations in the packed android relocations
1159 // section, unpack them, and rewrite the dynamic relocations section to
1160 // contain unpacked data.
1161 bool ElfFile::UnpackRelocations() {
1162 // Load the ELF file into libelf.
1163 if (!Load()) {
1164 LOG(ERROR) << "Failed to load as ELF";
1165 return false;
1168 // Retrieve the current packed android relocations section data.
1169 Elf_Data* data = GetSectionData(android_relocations_section_);
1171 // Convert data to a vector of bytes.
1172 const uint8_t* packed_base = reinterpret_cast<uint8_t*>(data->d_buf);
1173 std::vector<uint8_t> packed(
1174 packed_base,
1175 packed_base + data->d_size / sizeof(packed[0]));
1177 if (packed.size() > 3 &&
1178 packed[0] == 'A' &&
1179 packed[1] == 'P' &&
1180 packed[2] == 'R' &&
1181 packed[3] == '1') {
1182 // Signature is APR1, unpack relocations.
1183 CHECK(relocations_type_ == REL);
1184 LOG(INFO) << "Relocations : REL";
1185 return UnpackTypedRelocations<ELF::Rel>(packed);
1188 if (packed.size() > 3 &&
1189 packed[0] == 'A' &&
1190 packed[1] == 'P' &&
1191 packed[2] == 'A' &&
1192 packed[3] == '1') {
1193 // Signature is APA1, unpack relocations with addends.
1194 CHECK(relocations_type_ == RELA);
1195 LOG(INFO) << "Relocations : RELA";
1196 return UnpackTypedRelocations<ELF::Rela>(packed);
1199 LOG(ERROR) << "Packed relative relocations not found (not packed?)";
1200 return false;
1203 // Helper for UnpackRelocations(). Rel type is one of ELF::Rel or ELF::Rela.
1204 template <typename Rel>
1205 bool ElfFile::UnpackTypedRelocations(const std::vector<uint8_t>& packed) {
1206 // Unpack the data to re-materialize the relative relocations.
1207 const size_t packed_bytes = packed.size() * sizeof(packed[0]);
1208 LOG(INFO) << "Packed relative: " << packed_bytes << " bytes";
1209 std::vector<Rel> relative_relocations;
1210 RelocationPacker packer;
1211 packer.UnpackRelativeRelocations(packed, &relative_relocations);
1212 const size_t unpacked_bytes =
1213 relative_relocations.size() * sizeof(relative_relocations[0]);
1214 LOG(INFO) << "Unpacked relative: " << unpacked_bytes << " bytes";
1216 // Retrieve the current dynamic relocations section data.
1217 Elf_Data* data = GetSectionData(relocations_section_);
1219 // Interpret data as relocations.
1220 const Rel* relocations_base = reinterpret_cast<Rel*>(data->d_buf);
1221 std::vector<Rel> relocations(
1222 relocations_base,
1223 relocations_base + data->d_size / sizeof(relocations[0]));
1225 std::vector<Rel> other_relocations;
1226 size_t padding = 0;
1228 // Filter relocations to locate any that are NONE-type. These will occur
1229 // if padding was turned on for packing.
1230 for (size_t i = 0; i < relocations.size(); ++i) {
1231 const Rel& relocation = relocations[i];
1232 if (ELF_R_TYPE(relocation.r_info) != ELF::kNoRelocationCode) {
1233 other_relocations.push_back(relocation);
1234 } else {
1235 ++padding;
1238 LOG(INFO) << "Relative : " << relative_relocations.size() << " entries";
1239 LOG(INFO) << "Other : " << other_relocations.size() << " entries";
1241 // If we found the same number of null relocation entries in the dynamic
1242 // relocations section as we hold as unpacked relative relocations, then
1243 // this is a padded file.
1244 const bool is_padded = padding == relative_relocations.size();
1246 // Unless padded, report by how much we expand the file.
1247 if (!is_padded) {
1248 // Calculate the size of the hole we will open up when we rewrite
1249 // dynamic relocations.
1250 ssize_t hole_size =
1251 relative_relocations.size() * sizeof(relative_relocations[0]);
1253 // Adjust the hole size for the padding added to preserve alignment.
1254 hole_size -= padding * sizeof(other_relocations[0]);
1255 LOG(INFO) << "Expansion : " << hole_size << " bytes";
1258 // Rewrite the current dynamic relocations section to be the relative
1259 // relocations followed by other relocations. This is the usual order in
1260 // which we find them after linking, so this action will normally put the
1261 // entire dynamic relocations section back to its pre-split-and-packed state.
1262 relocations.assign(relative_relocations.begin(), relative_relocations.end());
1263 relocations.insert(relocations.end(),
1264 other_relocations.begin(), other_relocations.end());
1265 const void* section_data = &relocations[0];
1266 const size_t bytes = relocations.size() * sizeof(relocations[0]);
1267 LOG(INFO) << "Total : " << relocations.size() << " entries";
1268 ResizeSection<Rel>(elf_, relocations_section_, bytes);
1269 RewriteSectionData(relocations_section_, section_data, bytes);
1271 // Nearly empty the current packed android relocations section. Leaves a
1272 // four-byte stub so that some data remains allocated to the section.
1273 // This is a convenience which allows us to re-pack this file again without
1274 // having to remove the section and then add a new small one with objcopy.
1275 // The way we resize sections relies on there being some data in a section.
1276 ResizeSection<Rel>(
1277 elf_, android_relocations_section_, sizeof(kStubIdentifier));
1278 RewriteSectionData(
1279 android_relocations_section_, &kStubIdentifier, sizeof(kStubIdentifier));
1281 // Rewrite .dynamic to remove two tags describing packed android relocations.
1282 data = GetSectionData(dynamic_section_);
1283 const ELF::Dyn* dynamic_base = reinterpret_cast<ELF::Dyn*>(data->d_buf);
1284 std::vector<ELF::Dyn> dynamics(
1285 dynamic_base,
1286 dynamic_base + data->d_size / sizeof(dynamics[0]));
1287 RemoveDynamicEntry(DT_ANDROID_REL_OFFSET, &dynamics);
1288 RemoveDynamicEntry(DT_ANDROID_REL_SIZE, &dynamics);
1289 const void* dynamics_data = &dynamics[0];
1290 const size_t dynamics_bytes = dynamics.size() * sizeof(dynamics[0]);
1291 RewriteSectionData(dynamic_section_, dynamics_data, dynamics_bytes);
1293 Flush();
1294 return true;
1297 // Flush rewritten shared object file data.
1298 void ElfFile::Flush() {
1299 // Flag all ELF data held in memory as needing to be written back to the
1300 // file, and tell libelf that we have controlled the file layout.
1301 elf_flagelf(elf_, ELF_C_SET, ELF_F_DIRTY);
1302 elf_flagelf(elf_, ELF_C_SET, ELF_F_LAYOUT);
1304 // Write ELF data back to disk.
1305 const off_t file_bytes = elf_update(elf_, ELF_C_WRITE);
1306 CHECK(file_bytes > 0);
1307 VLOG(1) << "elf_update returned: " << file_bytes;
1309 // Clean up libelf, and truncate the output file to the number of bytes
1310 // written by elf_update().
1311 elf_end(elf_);
1312 elf_ = NULL;
1313 const int truncate = ftruncate(fd_, file_bytes);
1314 CHECK(truncate == 0);
1317 } // namespace relocation_packer