1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // StorageMonitorLinux unit tests.
7 #include "components/storage_monitor/storage_monitor_linux.h"
14 #include "base/files/file_util.h"
15 #include "base/files/scoped_temp_dir.h"
16 #include "base/logging.h"
17 #include "base/memory/scoped_ptr.h"
18 #include "base/run_loop.h"
19 #include "base/strings/utf_string_conversions.h"
20 #include "base/thread_task_runner_handle.h"
21 #include "components/storage_monitor/mock_removable_storage_observer.h"
22 #include "components/storage_monitor/removable_device_constants.h"
23 #include "components/storage_monitor/storage_info.h"
24 #include "components/storage_monitor/storage_monitor.h"
25 #include "components/storage_monitor/test_media_transfer_protocol_manager_linux.h"
26 #include "components/storage_monitor/test_storage_monitor.h"
27 #include "content/public/test/test_browser_thread_bundle.h"
28 #include "testing/gtest/include/gtest/gtest.h"
30 namespace storage_monitor
{
34 const char kValidFS
[] = "vfat";
35 const char kInvalidFS
[] = "invalidfs";
37 const char kInvalidPath
[] = "invalid path does not exist";
39 const char kDeviceDCIM1
[] = "d1";
40 const char kDeviceDCIM2
[] = "d2";
41 const char kDeviceDCIM3
[] = "d3";
42 const char kDeviceNoDCIM
[] = "d4";
43 const char kDeviceFixed
[] = "d5";
45 const char kInvalidDevice
[] = "invalid_device";
47 const char kMountPointA
[] = "mnt_a";
48 const char kMountPointB
[] = "mnt_b";
49 const char kMountPointC
[] = "mnt_c";
51 struct TestDeviceData
{
52 const char* device_path
;
53 const char* unique_id
;
54 StorageInfo::Type type
;
55 uint64 partition_size_in_bytes
;
58 const TestDeviceData kTestDeviceData
[] = {
59 { kDeviceDCIM1
, "UUID:FFF0-000F",
60 StorageInfo::REMOVABLE_MASS_STORAGE_WITH_DCIM
, 88788 },
61 { kDeviceDCIM2
, "VendorModelSerial:ComName:Model2010:8989",
62 StorageInfo::REMOVABLE_MASS_STORAGE_WITH_DCIM
,
64 { kDeviceDCIM3
, "VendorModelSerial:::WEM319X792",
65 StorageInfo::REMOVABLE_MASS_STORAGE_WITH_DCIM
, 22837 },
66 { kDeviceNoDCIM
, "UUID:ABCD-1234",
67 StorageInfo::REMOVABLE_MASS_STORAGE_NO_DCIM
, 512 },
68 { kDeviceFixed
, "UUID:743A-2349",
69 StorageInfo::FIXED_MASS_STORAGE
, 17282 },
72 scoped_ptr
<StorageInfo
> GetDeviceInfo(const base::FilePath
& device_path
,
73 const base::FilePath
& mount_point
) {
74 bool device_found
= false;
76 for (; i
< arraysize(kTestDeviceData
); i
++) {
77 if (device_path
.value() == kTestDeviceData
[i
].device_path
) {
83 scoped_ptr
<StorageInfo
> storage_info
;
86 return storage_info
.Pass();
89 StorageInfo::Type type
= kTestDeviceData
[i
].type
;
90 storage_info
.reset(new StorageInfo(
91 StorageInfo::MakeDeviceId(type
, kTestDeviceData
[i
].unique_id
),
93 base::ASCIIToUTF16("volume label"),
94 base::ASCIIToUTF16("vendor name"),
95 base::ASCIIToUTF16("model name"),
96 kTestDeviceData
[i
].partition_size_in_bytes
));
97 return storage_info
.Pass();
100 uint64
GetDevicePartitionSize(const std::string
& device
) {
101 for (size_t i
= 0; i
< arraysize(kTestDeviceData
); ++i
) {
102 if (device
== kTestDeviceData
[i
].device_path
)
103 return kTestDeviceData
[i
].partition_size_in_bytes
;
108 std::string
GetDeviceId(const std::string
& device
) {
109 for (size_t i
= 0; i
< arraysize(kTestDeviceData
); ++i
) {
110 if (device
== kTestDeviceData
[i
].device_path
) {
111 return StorageInfo::MakeDeviceId(kTestDeviceData
[i
].type
,
112 kTestDeviceData
[i
].unique_id
);
115 if (device
== kInvalidDevice
) {
116 return StorageInfo::MakeDeviceId(StorageInfo::FIXED_MASS_STORAGE
,
119 return std::string();
122 class TestStorageMonitorLinux
: public StorageMonitorLinux
{
124 explicit TestStorageMonitorLinux(const base::FilePath
& path
)
125 : StorageMonitorLinux(path
) {
126 SetMediaTransferProtocolManagerForTest(
127 new TestMediaTransferProtocolManagerLinux());
128 SetGetDeviceInfoCallbackForTest(base::Bind(&GetDeviceInfo
));
130 ~TestStorageMonitorLinux() override
{}
134 const MtabWatcherLinux::MountPointDeviceMap
& new_mtab
) override
{
135 StorageMonitorLinux::UpdateMtab(new_mtab
);
136 base::ThreadTaskRunnerHandle::Get()->PostTask(
137 FROM_HERE
, base::MessageLoop::QuitClosure());
140 DISALLOW_COPY_AND_ASSIGN(TestStorageMonitorLinux
);
143 class StorageMonitorLinuxTest
: public testing::Test
{
145 struct MtabTestData
{
146 MtabTestData(const std::string
& mount_device
,
147 const std::string
& mount_point
,
148 const std::string
& mount_type
)
149 : mount_device(mount_device
),
150 mount_point(mount_point
),
151 mount_type(mount_type
) {
154 const std::string mount_device
;
155 const std::string mount_point
;
156 const std::string mount_type
;
159 StorageMonitorLinuxTest()
160 : thread_bundle_(content::TestBrowserThreadBundle::IO_MAINLOOP
) {}
161 ~StorageMonitorLinuxTest() override
{}
164 void SetUp() override
{
165 // Create and set up a temp dir with files for the test.
166 ASSERT_TRUE(scoped_temp_dir_
.CreateUniqueTempDir());
167 base::FilePath test_dir
= scoped_temp_dir_
.path().AppendASCII("test_etc");
168 ASSERT_TRUE(base::CreateDirectory(test_dir
));
169 mtab_file_
= test_dir
.AppendASCII("test_mtab");
170 MtabTestData initial_test_data
[] = {
171 MtabTestData("dummydevice", "dummydir", kInvalidFS
),
173 WriteToMtab(initial_test_data
,
174 arraysize(initial_test_data
),
175 true /* overwrite */);
177 monitor_
.reset(new TestStorageMonitorLinux(mtab_file_
));
179 mock_storage_observer_
.reset(new MockRemovableStorageObserver
);
180 monitor_
->AddObserver(mock_storage_observer_
.get());
183 base::RunLoop().RunUntilIdle();
186 void TearDown() override
{
187 base::RunLoop().RunUntilIdle();
188 monitor_
->RemoveObserver(mock_storage_observer_
.get());
189 base::RunLoop().RunUntilIdle();
191 // Linux storage monitor must be destroyed on the UI thread, so do it here.
195 // Append mtab entries from the |data| array of size |data_size| to the mtab
196 // file, and run the message loop.
197 void AppendToMtabAndRunLoop(const MtabTestData
* data
, size_t data_size
) {
198 WriteToMtab(data
, data_size
, false /* do not overwrite */);
199 base::RunLoop().Run();
202 // Overwrite the mtab file with mtab entries from the |data| array of size
203 // |data_size|, and run the message loop.
204 void OverwriteMtabAndRunLoop(const MtabTestData
* data
, size_t data_size
) {
205 WriteToMtab(data
, data_size
, true /* overwrite */);
206 base::RunLoop().Run();
209 // Simplied version of OverwriteMtabAndRunLoop() that just deletes all the
210 // entries in the mtab file.
211 void WriteEmptyMtabAndRunLoop() {
212 OverwriteMtabAndRunLoop(NULL
, // No data.
213 0); // No data length.
216 // Create a directory named |dir| relative to the test directory.
217 // It has a DCIM directory, so StorageMonitorLinux recognizes it as a media
219 base::FilePath
CreateMountPointWithDCIMDir(const std::string
& dir
) {
220 return CreateMountPoint(dir
, true /* create DCIM dir */);
223 // Create a directory named |dir| relative to the test directory.
224 // It does not have a DCIM directory, so StorageMonitorLinux does not
225 // recognize it as a media directory.
226 base::FilePath
CreateMountPointWithoutDCIMDir(const std::string
& dir
) {
227 return CreateMountPoint(dir
, false /* do not create DCIM dir */);
230 void RemoveDCIMDirFromMountPoint(const std::string
& dir
) {
231 base::FilePath dcim
=
232 scoped_temp_dir_
.path().AppendASCII(dir
).Append(kDCIMDirectoryName
);
233 base::DeleteFile(dcim
, false);
236 MockRemovableStorageObserver
& observer() {
237 return *mock_storage_observer_
;
240 StorageMonitor
* notifier() {
241 return monitor_
.get();
244 uint64
GetStorageSize(const base::FilePath
& path
) {
246 if (!notifier()->GetStorageInfoForPath(path
, &info
))
249 return info
.total_size_in_bytes();
253 // Create a directory named |dir| relative to the test directory.
254 // Set |with_dcim_dir| to true if the created directory will have a "DCIM"
256 // Returns the full path to the created directory on success, or an empty
258 base::FilePath
CreateMountPoint(const std::string
& dir
, bool with_dcim_dir
) {
259 base::FilePath
return_path(scoped_temp_dir_
.path());
260 return_path
= return_path
.AppendASCII(dir
);
261 base::FilePath
path(return_path
);
263 path
= path
.Append(kDCIMDirectoryName
);
264 if (!base::CreateDirectory(path
))
265 return base::FilePath();
269 // Write the test mtab data to |mtab_file_|.
270 // |data| is an array of mtab entries.
271 // |data_size| is the array size of |data|.
272 // |overwrite| specifies whether to overwrite |mtab_file_|.
273 void WriteToMtab(const MtabTestData
* data
,
276 FILE* file
= setmntent(mtab_file_
.value().c_str(), overwrite
? "w" : "a");
279 // Due to the glibc *mntent() interface design, which is out of our
280 // control, the mtnent struct has several char* fields, even though
281 // addmntent() does not write to them in the calls below. To make the
282 // compiler happy while avoiding making additional copies of strings,
283 // we just const_cast() the strings' c_str()s.
284 // Assuming addmntent() does not write to the char* fields, this is safe.
285 // It is unlikely the platforms this test suite runs on will have an
286 // addmntent() implementation that does change the char* fields. If that
287 // was ever the case, the test suite will start crashing or failing.
289 static const char kMountOpts
[] = "rw";
290 entry
.mnt_opts
= const_cast<char*>(kMountOpts
);
292 entry
.mnt_passno
= 0;
293 for (size_t i
= 0; i
< data_size
; ++i
) {
294 entry
.mnt_fsname
= const_cast<char*>(data
[i
].mount_device
.c_str());
295 entry
.mnt_dir
= const_cast<char*>(data
[i
].mount_point
.c_str());
296 entry
.mnt_type
= const_cast<char*>(data
[i
].mount_type
.c_str());
297 ASSERT_EQ(0, addmntent(file
, &entry
));
299 ASSERT_EQ(1, endmntent(file
));
302 content::TestBrowserThreadBundle thread_bundle_
;
304 scoped_ptr
<MockRemovableStorageObserver
> mock_storage_observer_
;
306 // Temporary directory for created test data.
307 base::ScopedTempDir scoped_temp_dir_
;
308 // Path to the test mtab file.
309 base::FilePath mtab_file_
;
311 scoped_ptr
<TestStorageMonitorLinux
> monitor_
;
313 DISALLOW_COPY_AND_ASSIGN(StorageMonitorLinuxTest
);
316 // Simple test case where we attach and detach a media device.
317 TEST_F(StorageMonitorLinuxTest
, BasicAttachDetach
) {
318 base::FilePath test_path
= CreateMountPointWithDCIMDir(kMountPointA
);
319 ASSERT_FALSE(test_path
.empty());
320 MtabTestData test_data
[] = {
321 MtabTestData(kDeviceDCIM2
, test_path
.value(), kValidFS
),
322 MtabTestData(kDeviceFixed
, kInvalidPath
, kValidFS
),
324 // Only |kDeviceDCIM2| should be attached, since |kDeviceFixed| has a bad
326 AppendToMtabAndRunLoop(test_data
, arraysize(test_data
));
328 EXPECT_EQ(1, observer().attach_calls());
329 EXPECT_EQ(0, observer().detach_calls());
330 EXPECT_EQ(GetDeviceId(kDeviceDCIM2
), observer().last_attached().device_id());
331 EXPECT_EQ(test_path
.value(), observer().last_attached().location());
333 // |kDeviceDCIM2| should be detached here.
334 WriteEmptyMtabAndRunLoop();
335 EXPECT_EQ(1, observer().attach_calls());
336 EXPECT_EQ(1, observer().detach_calls());
337 EXPECT_EQ(GetDeviceId(kDeviceDCIM2
), observer().last_detached().device_id());
340 // Only removable devices are recognized.
341 TEST_F(StorageMonitorLinuxTest
, Removable
) {
342 base::FilePath test_path_a
= CreateMountPointWithDCIMDir(kMountPointA
);
343 ASSERT_FALSE(test_path_a
.empty());
344 MtabTestData test_data1
[] = {
345 MtabTestData(kDeviceDCIM1
, test_path_a
.value(), kValidFS
),
347 // |kDeviceDCIM1| should be attached as expected.
348 AppendToMtabAndRunLoop(test_data1
, arraysize(test_data1
));
350 EXPECT_EQ(1, observer().attach_calls());
351 EXPECT_EQ(0, observer().detach_calls());
352 EXPECT_EQ(GetDeviceId(kDeviceDCIM1
), observer().last_attached().device_id());
353 EXPECT_EQ(test_path_a
.value(), observer().last_attached().location());
355 // This should do nothing, since |kDeviceFixed| is not removable.
356 base::FilePath test_path_b
= CreateMountPointWithoutDCIMDir(kMountPointB
);
357 ASSERT_FALSE(test_path_b
.empty());
358 MtabTestData test_data2
[] = {
359 MtabTestData(kDeviceFixed
, test_path_b
.value(), kValidFS
),
361 AppendToMtabAndRunLoop(test_data2
, arraysize(test_data2
));
362 EXPECT_EQ(1, observer().attach_calls());
363 EXPECT_EQ(0, observer().detach_calls());
365 // |kDeviceDCIM1| should be detached as expected.
366 WriteEmptyMtabAndRunLoop();
367 EXPECT_EQ(1, observer().attach_calls());
368 EXPECT_EQ(1, observer().detach_calls());
369 EXPECT_EQ(GetDeviceId(kDeviceDCIM1
), observer().last_detached().device_id());
371 // |kDeviceNoDCIM| should be attached as expected.
372 MtabTestData test_data3
[] = {
373 MtabTestData(kDeviceNoDCIM
, test_path_b
.value(), kValidFS
),
375 AppendToMtabAndRunLoop(test_data3
, arraysize(test_data3
));
376 EXPECT_EQ(2, observer().attach_calls());
377 EXPECT_EQ(1, observer().detach_calls());
378 EXPECT_EQ(GetDeviceId(kDeviceNoDCIM
), observer().last_attached().device_id());
379 EXPECT_EQ(test_path_b
.value(), observer().last_attached().location());
381 // |kDeviceNoDCIM| should be detached as expected.
382 WriteEmptyMtabAndRunLoop();
383 EXPECT_EQ(2, observer().attach_calls());
384 EXPECT_EQ(2, observer().detach_calls());
385 EXPECT_EQ(GetDeviceId(kDeviceNoDCIM
), observer().last_detached().device_id());
388 // More complicated test case with multiple devices on multiple mount points.
389 TEST_F(StorageMonitorLinuxTest
, SwapMountPoints
) {
390 base::FilePath test_path_a
= CreateMountPointWithDCIMDir(kMountPointA
);
391 base::FilePath test_path_b
= CreateMountPointWithDCIMDir(kMountPointB
);
392 ASSERT_FALSE(test_path_a
.empty());
393 ASSERT_FALSE(test_path_b
.empty());
395 // Attach two devices.
396 // (*'d mounts are those StorageMonitor knows about.)
397 // kDeviceDCIM1 -> kMountPointA *
398 // kDeviceDCIM2 -> kMountPointB *
399 MtabTestData test_data1
[] = {
400 MtabTestData(kDeviceDCIM1
, test_path_a
.value(), kValidFS
),
401 MtabTestData(kDeviceDCIM2
, test_path_b
.value(), kValidFS
),
403 AppendToMtabAndRunLoop(test_data1
, arraysize(test_data1
));
404 EXPECT_EQ(2, observer().attach_calls());
405 EXPECT_EQ(0, observer().detach_calls());
407 // Detach two devices from old mount points and attach the devices at new
409 // kDeviceDCIM1 -> kMountPointB *
410 // kDeviceDCIM2 -> kMountPointA *
411 MtabTestData test_data2
[] = {
412 MtabTestData(kDeviceDCIM1
, test_path_b
.value(), kValidFS
),
413 MtabTestData(kDeviceDCIM2
, test_path_a
.value(), kValidFS
),
415 OverwriteMtabAndRunLoop(test_data2
, arraysize(test_data2
));
416 EXPECT_EQ(4, observer().attach_calls());
417 EXPECT_EQ(2, observer().detach_calls());
419 // Detach all devices.
420 WriteEmptyMtabAndRunLoop();
421 EXPECT_EQ(4, observer().attach_calls());
422 EXPECT_EQ(4, observer().detach_calls());
425 // More complicated test case with multiple devices on multiple mount points.
426 TEST_F(StorageMonitorLinuxTest
, MultiDevicesMultiMountPoints
) {
427 base::FilePath test_path_a
= CreateMountPointWithDCIMDir(kMountPointA
);
428 base::FilePath test_path_b
= CreateMountPointWithDCIMDir(kMountPointB
);
429 ASSERT_FALSE(test_path_a
.empty());
430 ASSERT_FALSE(test_path_b
.empty());
432 // Attach two devices.
433 // (*'d mounts are those StorageMonitor knows about.)
434 // kDeviceDCIM1 -> kMountPointA *
435 // kDeviceDCIM2 -> kMountPointB *
436 MtabTestData test_data1
[] = {
437 MtabTestData(kDeviceDCIM1
, test_path_a
.value(), kValidFS
),
438 MtabTestData(kDeviceDCIM2
, test_path_b
.value(), kValidFS
),
440 AppendToMtabAndRunLoop(test_data1
, arraysize(test_data1
));
441 EXPECT_EQ(2, observer().attach_calls());
442 EXPECT_EQ(0, observer().detach_calls());
444 // Attach |kDeviceDCIM1| to |kMountPointB|.
445 // |kDeviceDCIM2| is inaccessible, so it is detached. |kDeviceDCIM1| has been
446 // attached at |kMountPointB|, but is still accessible from |kMountPointA|.
447 // kDeviceDCIM1 -> kMountPointA *
448 // kDeviceDCIM2 -> kMountPointB
449 // kDeviceDCIM1 -> kMountPointB
450 MtabTestData test_data2
[] = {
451 MtabTestData(kDeviceDCIM1
, test_path_b
.value(), kValidFS
),
453 AppendToMtabAndRunLoop(test_data2
, arraysize(test_data2
));
454 EXPECT_EQ(2, observer().attach_calls());
455 EXPECT_EQ(1, observer().detach_calls());
457 // Detach |kDeviceDCIM1| from |kMountPointA|, causing a detach and attach
459 // kDeviceDCIM2 -> kMountPointB
460 // kDeviceDCIM1 -> kMountPointB *
461 MtabTestData test_data3
[] = {
462 MtabTestData(kDeviceDCIM2
, test_path_b
.value(), kValidFS
),
463 MtabTestData(kDeviceDCIM1
, test_path_b
.value(), kValidFS
),
465 OverwriteMtabAndRunLoop(test_data3
, arraysize(test_data3
));
466 EXPECT_EQ(3, observer().attach_calls());
467 EXPECT_EQ(2, observer().detach_calls());
469 // Attach |kDeviceDCIM1| to |kMountPointA|.
470 // kDeviceDCIM2 -> kMountPointB
471 // kDeviceDCIM1 -> kMountPointB *
472 // kDeviceDCIM1 -> kMountPointA
473 MtabTestData test_data4
[] = {
474 MtabTestData(kDeviceDCIM1
, test_path_a
.value(), kValidFS
),
476 AppendToMtabAndRunLoop(test_data4
, arraysize(test_data4
));
477 EXPECT_EQ(3, observer().attach_calls());
478 EXPECT_EQ(2, observer().detach_calls());
480 // Detach |kDeviceDCIM1| from |kMountPointB|.
481 // kDeviceDCIM1 -> kMountPointA *
482 // kDeviceDCIM2 -> kMountPointB *
483 OverwriteMtabAndRunLoop(test_data1
, arraysize(test_data1
));
484 EXPECT_EQ(5, observer().attach_calls());
485 EXPECT_EQ(3, observer().detach_calls());
487 // Detach all devices.
488 WriteEmptyMtabAndRunLoop();
489 EXPECT_EQ(5, observer().attach_calls());
490 EXPECT_EQ(5, observer().detach_calls());
493 TEST_F(StorageMonitorLinuxTest
, MultipleMountPointsWithNonDCIMDevices
) {
494 base::FilePath test_path_a
= CreateMountPointWithDCIMDir(kMountPointA
);
495 base::FilePath test_path_b
= CreateMountPointWithDCIMDir(kMountPointB
);
496 ASSERT_FALSE(test_path_a
.empty());
497 ASSERT_FALSE(test_path_b
.empty());
499 // Attach to one first.
500 // (*'d mounts are those StorageMonitor knows about.)
501 // kDeviceDCIM1 -> kMountPointA *
502 MtabTestData test_data1
[] = {
503 MtabTestData(kDeviceDCIM1
, test_path_a
.value(), kValidFS
),
505 AppendToMtabAndRunLoop(test_data1
, arraysize(test_data1
));
506 EXPECT_EQ(1, observer().attach_calls());
507 EXPECT_EQ(0, observer().detach_calls());
509 // Attach |kDeviceDCIM1| to |kMountPointB|.
510 // kDeviceDCIM1 -> kMountPointA *
511 // kDeviceDCIM1 -> kMountPointB
512 MtabTestData test_data2
[] = {
513 MtabTestData(kDeviceDCIM1
, test_path_b
.value(), kValidFS
),
515 AppendToMtabAndRunLoop(test_data2
, arraysize(test_data2
));
516 EXPECT_EQ(1, observer().attach_calls());
517 EXPECT_EQ(0, observer().detach_calls());
519 // Attach |kDeviceFixed| (a non-removable device) to |kMountPointA|.
520 // kDeviceDCIM1 -> kMountPointA
521 // kDeviceDCIM1 -> kMountPointB *
522 // kDeviceFixed -> kMountPointA
523 MtabTestData test_data3
[] = {
524 MtabTestData(kDeviceFixed
, test_path_a
.value(), kValidFS
),
526 RemoveDCIMDirFromMountPoint(kMountPointA
);
527 AppendToMtabAndRunLoop(test_data3
, arraysize(test_data3
));
528 EXPECT_EQ(2, observer().attach_calls());
529 EXPECT_EQ(1, observer().detach_calls());
531 // Detach |kDeviceFixed|.
532 // kDeviceDCIM1 -> kMountPointA
533 // kDeviceDCIM1 -> kMountPointB *
534 MtabTestData test_data4
[] = {
535 MtabTestData(kDeviceDCIM1
, test_path_a
.value(), kValidFS
),
536 MtabTestData(kDeviceDCIM1
, test_path_b
.value(), kValidFS
),
538 CreateMountPointWithDCIMDir(kMountPointA
);
539 OverwriteMtabAndRunLoop(test_data4
, arraysize(test_data4
));
540 EXPECT_EQ(2, observer().attach_calls());
541 EXPECT_EQ(1, observer().detach_calls());
543 // Attach |kDeviceNoDCIM| (a non-DCIM device) to |kMountPointB|.
544 // kDeviceDCIM1 -> kMountPointA *
545 // kDeviceDCIM1 -> kMountPointB
546 // kDeviceNoDCIM -> kMountPointB *
547 MtabTestData test_data5
[] = {
548 MtabTestData(kDeviceNoDCIM
, test_path_b
.value(), kValidFS
),
550 base::DeleteFile(test_path_b
.Append(kDCIMDirectoryName
), false);
551 AppendToMtabAndRunLoop(test_data5
, arraysize(test_data5
));
552 EXPECT_EQ(4, observer().attach_calls());
553 EXPECT_EQ(2, observer().detach_calls());
555 // Detach |kDeviceNoDCIM|.
556 // kDeviceDCIM1 -> kMountPointA *
557 // kDeviceDCIM1 -> kMountPointB
558 MtabTestData test_data6
[] = {
559 MtabTestData(kDeviceDCIM1
, test_path_a
.value(), kValidFS
),
560 MtabTestData(kDeviceDCIM1
, test_path_b
.value(), kValidFS
),
562 CreateMountPointWithDCIMDir(kMountPointB
);
563 OverwriteMtabAndRunLoop(test_data6
, arraysize(test_data6
));
564 EXPECT_EQ(4, observer().attach_calls());
565 EXPECT_EQ(3, observer().detach_calls());
567 // Detach |kDeviceDCIM1| from |kMountPointB|.
568 // kDeviceDCIM1 -> kMountPointA *
569 OverwriteMtabAndRunLoop(test_data1
, arraysize(test_data1
));
570 EXPECT_EQ(4, observer().attach_calls());
571 EXPECT_EQ(3, observer().detach_calls());
573 // Detach all devices.
574 WriteEmptyMtabAndRunLoop();
575 EXPECT_EQ(4, observer().attach_calls());
576 EXPECT_EQ(4, observer().detach_calls());
579 TEST_F(StorageMonitorLinuxTest
, DeviceLookUp
) {
580 base::FilePath test_path_a
= CreateMountPointWithDCIMDir(kMountPointA
);
581 base::FilePath test_path_b
= CreateMountPointWithoutDCIMDir(kMountPointB
);
582 base::FilePath test_path_c
= CreateMountPointWithoutDCIMDir(kMountPointC
);
583 ASSERT_FALSE(test_path_a
.empty());
584 ASSERT_FALSE(test_path_b
.empty());
585 ASSERT_FALSE(test_path_c
.empty());
587 // Attach to one first.
588 // (starred mounts are those StorageMonitor knows about.)
589 // kDeviceDCIM1 -> kMountPointA *
590 // kDeviceNoDCIM -> kMountPointB *
591 // kDeviceFixed -> kMountPointC
592 MtabTestData test_data1
[] = {
593 MtabTestData(kDeviceDCIM1
, test_path_a
.value(), kValidFS
),
594 MtabTestData(kDeviceNoDCIM
, test_path_b
.value(), kValidFS
),
595 MtabTestData(kDeviceFixed
, test_path_c
.value(), kValidFS
),
597 AppendToMtabAndRunLoop(test_data1
, arraysize(test_data1
));
598 EXPECT_EQ(2, observer().attach_calls());
599 EXPECT_EQ(0, observer().detach_calls());
601 StorageInfo device_info
;
602 EXPECT_TRUE(notifier()->GetStorageInfoForPath(test_path_a
, &device_info
));
603 EXPECT_EQ(GetDeviceId(kDeviceDCIM1
), device_info
.device_id());
604 EXPECT_EQ(test_path_a
.value(), device_info
.location());
605 EXPECT_EQ(88788ULL, device_info
.total_size_in_bytes());
606 EXPECT_EQ(base::ASCIIToUTF16("volume label"), device_info
.storage_label());
607 EXPECT_EQ(base::ASCIIToUTF16("vendor name"), device_info
.vendor_name());
608 EXPECT_EQ(base::ASCIIToUTF16("model name"), device_info
.model_name());
610 EXPECT_TRUE(notifier()->GetStorageInfoForPath(test_path_b
, &device_info
));
611 EXPECT_EQ(GetDeviceId(kDeviceNoDCIM
), device_info
.device_id());
612 EXPECT_EQ(test_path_b
.value(), device_info
.location());
614 EXPECT_TRUE(notifier()->GetStorageInfoForPath(test_path_c
, &device_info
));
615 EXPECT_EQ(GetDeviceId(kDeviceFixed
), device_info
.device_id());
616 EXPECT_EQ(test_path_c
.value(), device_info
.location());
619 EXPECT_FALSE(notifier()->GetStorageInfoForPath(base::FilePath(kInvalidPath
),
622 // Test filling in of the mount point.
624 notifier()->GetStorageInfoForPath(test_path_a
.Append("some/other/path"),
626 EXPECT_EQ(GetDeviceId(kDeviceDCIM1
), device_info
.device_id());
627 EXPECT_EQ(test_path_a
.value(), device_info
.location());
629 // One device attached at multiple points.
630 // kDeviceDCIM1 -> kMountPointA *
631 // kDeviceFixed -> kMountPointB
632 // kDeviceFixed -> kMountPointC
633 MtabTestData test_data2
[] = {
634 MtabTestData(kDeviceDCIM1
, test_path_a
.value(), kValidFS
),
635 MtabTestData(kDeviceFixed
, test_path_b
.value(), kValidFS
),
636 MtabTestData(kDeviceFixed
, test_path_c
.value(), kValidFS
),
638 AppendToMtabAndRunLoop(test_data2
, arraysize(test_data2
));
640 EXPECT_TRUE(notifier()->GetStorageInfoForPath(test_path_a
, &device_info
));
641 EXPECT_EQ(GetDeviceId(kDeviceDCIM1
), device_info
.device_id());
643 EXPECT_TRUE(notifier()->GetStorageInfoForPath(test_path_b
, &device_info
));
644 EXPECT_EQ(GetDeviceId(kDeviceFixed
), device_info
.device_id());
646 EXPECT_TRUE(notifier()->GetStorageInfoForPath(test_path_c
, &device_info
));
647 EXPECT_EQ(GetDeviceId(kDeviceFixed
), device_info
.device_id());
649 EXPECT_EQ(2, observer().attach_calls());
650 EXPECT_EQ(1, observer().detach_calls());
653 TEST_F(StorageMonitorLinuxTest
, DevicePartitionSize
) {
654 base::FilePath test_path_a
= CreateMountPointWithDCIMDir(kMountPointA
);
655 base::FilePath test_path_b
= CreateMountPointWithoutDCIMDir(kMountPointB
);
656 ASSERT_FALSE(test_path_a
.empty());
657 ASSERT_FALSE(test_path_b
.empty());
659 MtabTestData test_data1
[] = {
660 MtabTestData(kDeviceDCIM1
, test_path_a
.value(), kValidFS
),
661 MtabTestData(kDeviceNoDCIM
, test_path_b
.value(), kValidFS
),
662 MtabTestData(kDeviceFixed
, kInvalidPath
, kInvalidFS
),
664 AppendToMtabAndRunLoop(test_data1
, arraysize(test_data1
));
665 EXPECT_EQ(2, observer().attach_calls());
666 EXPECT_EQ(0, observer().detach_calls());
668 EXPECT_EQ(GetDevicePartitionSize(kDeviceDCIM1
),
669 GetStorageSize(test_path_a
));
670 EXPECT_EQ(GetDevicePartitionSize(kDeviceNoDCIM
),
671 GetStorageSize(test_path_b
));
672 EXPECT_EQ(GetDevicePartitionSize(kInvalidPath
),
673 GetStorageSize(base::FilePath(kInvalidPath
)));
678 } // namespace storage_monitor