1 // Copyright (c) 2013 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/quic/crypto/strike_register.h"
9 #include "base/logging.h"
21 uint32
GetInitialHorizon(uint32 current_time_internal
,
23 StrikeRegister::StartupType startup
) {
24 if (startup
== StrikeRegister::DENY_REQUESTS_AT_STARTUP
) {
25 // The horizon is initially set |window_secs| into the future because, if
26 // we just crashed, then we may have accepted nonces in the span
27 // [current_time...current_time+window_secs] and so we conservatively
28 // reject the whole timespan unless |startup| tells us otherwise.
29 return current_time_internal
+ window_secs
+ 1;
30 } else { // startup == StrikeRegister::NO_STARTUP_PERIOD_NEEDED
31 // The orbit can be assumed to be globally unique. Use a horizon
40 const uint32
StrikeRegister::kExternalNodeSize
= 24;
42 const uint32
StrikeRegister::kNil
= (1u << 31) | 1;
44 const uint32
StrikeRegister::kExternalFlag
= 1 << 23;
46 // InternalNode represents a non-leaf node in the critbit tree. See the comment
47 // in the .h file for details.
48 class StrikeRegister::InternalNode
{
50 void SetChild(unsigned direction
, uint32 child
) {
51 data_
[direction
] = (data_
[direction
] & 0xff) | (child
<< 8);
54 void SetCritByte(uint8 critbyte
) {
55 data_
[0] = (data_
[0] & 0xffffff00) | critbyte
;
58 void SetOtherBits(uint8 otherbits
) {
59 data_
[1] = (data_
[1] & 0xffffff00) | otherbits
;
62 void SetNextPtr(uint32 next
) { data_
[0] = next
; }
64 uint32
next() const { return data_
[0]; }
66 uint32
child(unsigned n
) const { return data_
[n
] >> 8; }
68 uint8
critbyte() const { return static_cast<uint8
>(data_
[0]); }
70 uint8
otherbits() const { return static_cast<uint8
>(data_
[1]); }
72 // These bytes are organised thus:
73 // <24 bits> left child
75 // <24 bits> right child
76 // <8 bits> other-bits
80 // kCreationTimeFromInternalEpoch contains the number of seconds between the
81 // start of the internal epoch and the creation time. This allows us
82 // to consider times that are before the creation time.
83 static const uint32 kCreationTimeFromInternalEpoch
= 63115200; // 2 years.
85 void StrikeRegister::ValidateStrikeRegisterConfig(unsigned max_entries
) {
86 // We only have 23 bits of index available.
87 CHECK_LT(max_entries
, 1u << 23);
88 CHECK_GT(max_entries
, 1u); // There must be at least two entries.
89 CHECK_EQ(sizeof(InternalNode
), 8u); // in case of compiler changes.
92 StrikeRegister::StrikeRegister(unsigned max_entries
,
97 : max_entries_(max_entries
),
98 window_secs_(window_secs
),
99 internal_epoch_(current_time
> kCreationTimeFromInternalEpoch
100 ? current_time
- kCreationTimeFromInternalEpoch
102 horizon_(GetInitialHorizon(
103 ExternalTimeToInternal(current_time
), window_secs
, startup
)) {
104 memcpy(orbit_
, orbit
, sizeof(orbit_
));
106 ValidateStrikeRegisterConfig(max_entries
);
107 internal_nodes_
= new InternalNode
[max_entries
];
108 external_nodes_
.reset(new uint8
[kExternalNodeSize
* max_entries
]);
113 StrikeRegister::~StrikeRegister() { delete[] internal_nodes_
; }
115 void StrikeRegister::Reset() {
116 // Thread a free list through all of the internal nodes.
117 internal_node_free_head_
= 0;
118 for (unsigned i
= 0; i
< max_entries_
- 1; i
++) {
119 internal_nodes_
[i
].SetNextPtr(i
+ 1);
121 internal_nodes_
[max_entries_
- 1].SetNextPtr(kNil
);
123 // Also thread a free list through the external nodes.
124 external_node_free_head_
= 0;
125 for (unsigned i
= 0; i
< max_entries_
- 1; i
++) {
126 external_node_next_ptr(i
) = i
+ 1;
128 external_node_next_ptr(max_entries_
- 1) = kNil
;
130 // This is the root of the tree.
131 internal_node_head_
= kNil
;
134 InsertStatus
StrikeRegister::Insert(const uint8 nonce
[32],
135 uint32 current_time_external
) {
136 // Make space for the insertion if the strike register is full.
137 while (external_node_free_head_
== kNil
||
138 internal_node_free_head_
== kNil
) {
142 const uint32 current_time
= ExternalTimeToInternal(current_time_external
);
144 // Check to see if the orbit is correct.
145 if (memcmp(nonce
+ sizeof(current_time
), orbit_
, sizeof(orbit_
))) {
146 return NONCE_INVALID_ORBIT_FAILURE
;
149 const uint32 nonce_time
= ExternalTimeToInternal(TimeFromBytes(nonce
));
151 // Check that the timestamp is in the valid range.
152 pair
<uint32
, uint32
> valid_range
=
153 StrikeRegister::GetValidRange(current_time
);
154 if (nonce_time
< valid_range
.first
|| nonce_time
> valid_range
.second
) {
155 return NONCE_INVALID_TIME_FAILURE
;
158 // We strip the orbit out of the nonce.
160 memcpy(value
, nonce
, sizeof(nonce_time
));
161 memcpy(value
+ sizeof(nonce_time
),
162 nonce
+ sizeof(nonce_time
) + sizeof(orbit_
),
163 sizeof(value
) - sizeof(nonce_time
));
165 // Find the best match to |value| in the crit-bit tree. The best match is
166 // simply the value which /could/ match |value|, if any does, so we still
167 // need a memcmp to check.
168 uint32 best_match_index
= BestMatch(value
);
169 if (best_match_index
== kNil
) {
170 // Empty tree. Just insert the new value at the root.
171 uint32 index
= GetFreeExternalNode();
172 memcpy(external_node(index
), value
, sizeof(value
));
173 internal_node_head_
= (index
| kExternalFlag
) << 8;
174 DCHECK_LE(horizon_
, nonce_time
);
178 const uint8
* best_match
= external_node(best_match_index
);
179 if (memcmp(best_match
, value
, sizeof(value
)) == 0) {
180 // We found the value in the tree.
181 return NONCE_NOT_UNIQUE_FAILURE
;
184 // We are going to insert a new entry into the tree, so get the nodes now.
185 uint32 internal_node_index
= GetFreeInternalNode();
186 uint32 external_node_index
= GetFreeExternalNode();
188 // If we just evicted the best match, then we have to try and match again.
189 // We know that we didn't just empty the tree because we require that
190 // max_entries_ >= 2. Also, we know that it doesn't match because, if it
191 // did, it would have been returned previously.
192 if (external_node_index
== best_match_index
) {
193 best_match_index
= BestMatch(value
);
194 best_match
= external_node(best_match_index
);
197 // Now we need to find the first bit where we differ from |best_match|.
198 uint8 differing_byte
;
199 uint8 new_other_bits
;
200 for (differing_byte
= 0; differing_byte
< arraysize(value
);
202 new_other_bits
= value
[differing_byte
] ^ best_match
[differing_byte
];
203 if (new_other_bits
) {
208 // Once we have the XOR the of first differing byte in new_other_bits we need
209 // to find the most significant differing bit. We could do this with a simple
210 // for loop, testing bits 7..0. Instead we fold the bits so that we end up
211 // with a byte where all the bits below the most significant one, are set.
212 new_other_bits
|= new_other_bits
>> 1;
213 new_other_bits
|= new_other_bits
>> 2;
214 new_other_bits
|= new_other_bits
>> 4;
215 // Now this bit trick results in all the bits set, except the original
216 // most-significant one.
217 new_other_bits
= (new_other_bits
& ~(new_other_bits
>> 1)) ^ 255;
219 // Consider the effect of ORing against |new_other_bits|. If |value| did not
220 // have the critical bit set, the result is the same as |new_other_bits|. If
221 // it did, the result is all ones.
223 unsigned newdirection
;
224 if ((new_other_bits
| value
[differing_byte
]) == 0xff) {
230 memcpy(external_node(external_node_index
), value
, sizeof(value
));
231 InternalNode
* inode
= &internal_nodes_
[internal_node_index
];
233 inode
->SetChild(newdirection
, external_node_index
| kExternalFlag
);
234 inode
->SetCritByte(differing_byte
);
235 inode
->SetOtherBits(new_other_bits
);
237 // |where_index| is a pointer to the uint32 which needs to be updated in
238 // order to insert the new internal node into the tree. The internal nodes
239 // store the child indexes in the top 24-bits of a 32-bit word and, to keep
240 // the code simple, we define that |internal_node_head_| is organised the
242 DCHECK_EQ(internal_node_head_
& 0xff, 0u);
243 uint32
* where_index
= &internal_node_head_
;
244 while (((*where_index
>> 8) & kExternalFlag
) == 0) {
245 InternalNode
* node
= &internal_nodes_
[*where_index
>> 8];
246 if (node
->critbyte() > differing_byte
) {
249 if (node
->critbyte() == differing_byte
&&
250 node
->otherbits() > new_other_bits
) {
253 if (node
->critbyte() == differing_byte
&&
254 node
->otherbits() == new_other_bits
) {
258 uint8 c
= value
[node
->critbyte()];
259 const int direction
=
260 (1 + static_cast<unsigned>(node
->otherbits() | c
)) >> 8;
261 where_index
= &node
->data_
[direction
];
264 inode
->SetChild(newdirection
^ 1, *where_index
>> 8);
265 *where_index
= (*where_index
& 0xff) | (internal_node_index
<< 8);
267 DCHECK_LE(horizon_
, nonce_time
);
271 const uint8
* StrikeRegister::orbit() const {
275 uint32
StrikeRegister::GetCurrentValidWindowSecs(
276 uint32 current_time_external
) const {
277 uint32 current_time
= ExternalTimeToInternal(current_time_external
);
278 pair
<uint32
, uint32
> valid_range
= StrikeRegister::GetValidRange(
280 if (valid_range
.second
>= valid_range
.first
) {
281 return valid_range
.second
- current_time
+ 1;
287 void StrikeRegister::Validate() {
288 set
<uint32
> free_internal_nodes
;
289 for (uint32 i
= internal_node_free_head_
; i
!= kNil
;
290 i
= internal_nodes_
[i
].next()) {
291 CHECK_LT(i
, max_entries_
);
292 CHECK_EQ(free_internal_nodes
.count(i
), 0u);
293 free_internal_nodes
.insert(i
);
296 set
<uint32
> free_external_nodes
;
297 for (uint32 i
= external_node_free_head_
; i
!= kNil
;
298 i
= external_node_next_ptr(i
)) {
299 CHECK_LT(i
, max_entries_
);
300 CHECK_EQ(free_external_nodes
.count(i
), 0u);
301 free_external_nodes
.insert(i
);
304 set
<uint32
> used_external_nodes
;
305 set
<uint32
> used_internal_nodes
;
307 if (internal_node_head_
!= kNil
&&
308 ((internal_node_head_
>> 8) & kExternalFlag
) == 0) {
309 vector
<pair
<unsigned, bool>> bits
;
310 ValidateTree(internal_node_head_
>> 8, -1, bits
, free_internal_nodes
,
311 free_external_nodes
, &used_internal_nodes
,
312 &used_external_nodes
);
317 uint32
StrikeRegister::TimeFromBytes(const uint8 d
[4]) {
318 return static_cast<uint32
>(d
[0]) << 24 |
319 static_cast<uint32
>(d
[1]) << 16 |
320 static_cast<uint32
>(d
[2]) << 8 |
321 static_cast<uint32
>(d
[3]);
324 pair
<uint32
, uint32
> StrikeRegister::GetValidRange(
325 uint32 current_time_internal
) const {
326 if (current_time_internal
< horizon_
) {
327 // Empty valid range.
328 return std::make_pair(std::numeric_limits
<uint32
>::max(), 0);
332 if (current_time_internal
>= window_secs_
) {
333 lower_bound
= max(horizon_
, current_time_internal
- window_secs_
);
335 lower_bound
= horizon_
;
338 // Also limit the upper range based on horizon_. This makes the
339 // strike register reject inserts that are far in the future and
340 // would consume strike register resources for a long time. This
341 // allows the strike server to degrade optimally in cases where the
342 // insert rate exceeds |max_entries_ / (2 * window_secs_)| entries
345 current_time_internal
+ min(current_time_internal
- horizon_
,
348 return std::make_pair(lower_bound
, upper_bound
);
351 uint32
StrikeRegister::ExternalTimeToInternal(uint32 external_time
) const {
352 return external_time
- internal_epoch_
;
355 uint32
StrikeRegister::BestMatch(const uint8 v
[24]) const {
356 if (internal_node_head_
== kNil
) {
360 uint32 next
= internal_node_head_
>> 8;
361 while ((next
& kExternalFlag
) == 0) {
362 InternalNode
* node
= &internal_nodes_
[next
];
363 uint8 b
= v
[node
->critbyte()];
365 (1 + static_cast<unsigned>(node
->otherbits() | b
)) >> 8;
366 next
= node
->child(direction
);
369 return next
& ~kExternalFlag
;
372 uint32
& StrikeRegister::external_node_next_ptr(unsigned i
) {
373 return *reinterpret_cast<uint32
*>(&external_nodes_
[i
* kExternalNodeSize
]);
376 uint8
* StrikeRegister::external_node(unsigned i
) {
377 return &external_nodes_
[i
* kExternalNodeSize
];
380 uint32
StrikeRegister::GetFreeExternalNode() {
381 uint32 index
= external_node_free_head_
;
382 DCHECK(index
!= kNil
);
383 external_node_free_head_
= external_node_next_ptr(index
);
387 uint32
StrikeRegister::GetFreeInternalNode() {
388 uint32 index
= internal_node_free_head_
;
389 DCHECK(index
!= kNil
);
390 internal_node_free_head_
= internal_nodes_
[index
].next();
394 void StrikeRegister::DropOldestNode() {
395 // DropOldestNode should never be called on an empty tree.
396 DCHECK(internal_node_head_
!= kNil
);
398 // An internal node in a crit-bit tree always has exactly two children.
399 // This means that, if we are removing an external node (which is one of
400 // those children), then we also need to remove an internal node. In order
401 // to do that we keep pointers to the parent (wherep) and grandparent
402 // (whereq) when walking down the tree.
404 uint32 p
= internal_node_head_
>> 8, *wherep
= &internal_node_head_
,
406 while ((p
& kExternalFlag
) == 0) {
408 InternalNode
* inode
= &internal_nodes_
[p
];
409 // We always go left, towards the smallest element, exploiting the fact
410 // that the timestamp is big-endian and at the start of the value.
411 wherep
= &inode
->data_
[0];
415 const uint32 ext_index
= p
& ~kExternalFlag
;
416 const uint8
* ext_node
= external_node(ext_index
);
417 uint32 new_horizon
= ExternalTimeToInternal(TimeFromBytes(ext_node
)) + 1;
418 DCHECK_LE(horizon_
, new_horizon
);
419 horizon_
= new_horizon
;
422 // We are removing the last element in a tree.
423 internal_node_head_
= kNil
;
424 FreeExternalNode(ext_index
);
428 // |wherep| points to the left child pointer in the parent so we can add
429 // one and dereference to get the right child.
430 const uint32 other_child
= wherep
[1];
431 FreeInternalNode((*whereq
) >> 8);
432 *whereq
= (*whereq
& 0xff) | (other_child
& 0xffffff00);
433 FreeExternalNode(ext_index
);
436 void StrikeRegister::FreeExternalNode(uint32 index
) {
437 external_node_next_ptr(index
) = external_node_free_head_
;
438 external_node_free_head_
= index
;
441 void StrikeRegister::FreeInternalNode(uint32 index
) {
442 internal_nodes_
[index
].SetNextPtr(internal_node_free_head_
);
443 internal_node_free_head_
= index
;
446 void StrikeRegister::ValidateTree(uint32 internal_node
,
448 const vector
<pair
<unsigned, bool>>& bits
,
449 const set
<uint32
>& free_internal_nodes
,
450 const set
<uint32
>& free_external_nodes
,
451 set
<uint32
>* used_internal_nodes
,
452 set
<uint32
>* used_external_nodes
) {
453 CHECK_LT(internal_node
, max_entries_
);
454 const InternalNode
* i
= &internal_nodes_
[internal_node
];
456 switch (i
->otherbits()) {
457 case 0xff & ~(1 << 7):
460 case 0xff & ~(1 << 6):
463 case 0xff & ~(1 << 5):
466 case 0xff & ~(1 << 4):
469 case 0xff & ~(1 << 3):
472 case 0xff & ~(1 << 2):
475 case 0xff & ~(1 << 1):
485 bit
+= 8 * i
->critbyte();
487 CHECK_GT(bit
, static_cast<unsigned>(last_bit
));
490 CHECK_EQ(free_internal_nodes
.count(internal_node
), 0u);
492 for (unsigned child
= 0; child
< 2; child
++) {
493 if (i
->child(child
) & kExternalFlag
) {
494 uint32 ext
= i
->child(child
) & ~kExternalFlag
;
495 CHECK_EQ(free_external_nodes
.count(ext
), 0u);
496 CHECK_EQ(used_external_nodes
->count(ext
), 0u);
497 used_external_nodes
->insert(ext
);
498 const uint8
* bytes
= external_node(ext
);
499 for (const pair
<unsigned, bool>& pair
: bits
) {
500 unsigned byte
= pair
.first
/ 8;
501 DCHECK_LE(byte
, 0xffu
);
502 unsigned bit_new
= pair
.first
% 8;
503 static const uint8 kMasks
[8] =
504 {0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01};
505 CHECK_EQ((bytes
[byte
] & kMasks
[bit_new
]) != 0, pair
.second
);
508 uint32 inter
= i
->child(child
);
509 vector
<pair
<unsigned, bool>> new_bits(bits
);
510 new_bits
.push_back(pair
<unsigned, bool>(bit
, child
!= 0));
511 CHECK_EQ(free_internal_nodes
.count(inter
), 0u);
512 CHECK_EQ(used_internal_nodes
->count(inter
), 0u);
513 used_internal_nodes
->insert(inter
);
514 ValidateTree(inter
, bit
, bits
, free_internal_nodes
, free_external_nodes
,
515 used_internal_nodes
, used_external_nodes
);