Clean up check for dependency_info.
[chromium-blink-merge.git] / base / tracked_objects.cc
blobc7a6a3f3c95f1e22f6761f77ba9b5854815ae4b1
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/tracked_objects.h"
7 #include <limits.h>
8 #include <stdlib.h>
10 #include "base/atomicops.h"
11 #include "base/base_switches.h"
12 #include "base/command_line.h"
13 #include "base/compiler_specific.h"
14 #include "base/debug/leak_annotations.h"
15 #include "base/logging.h"
16 #include "base/process/process_handle.h"
17 #include "base/profiler/alternate_timer.h"
18 #include "base/strings/stringprintf.h"
19 #include "base/third_party/valgrind/memcheck.h"
20 #include "base/tracking_info.h"
22 using base::TimeDelta;
24 namespace base {
25 class TimeDelta;
28 namespace tracked_objects {
30 namespace {
31 // When ThreadData is first initialized, should we start in an ACTIVE state to
32 // record all of the startup-time tasks, or should we start up DEACTIVATED, so
33 // that we only record after parsing the command line flag --enable-tracking.
34 // Note that the flag may force either state, so this really controls only the
35 // period of time up until that flag is parsed. If there is no flag seen, then
36 // this state may prevail for much or all of the process lifetime.
37 const ThreadData::Status kInitialStartupState = ThreadData::PROFILING_ACTIVE;
39 // Control whether an alternate time source (Now() function) is supported by
40 // the ThreadData class. This compile time flag should be set to true if we
41 // want other modules (such as a memory allocator, or a thread-specific CPU time
42 // clock) to be able to provide a thread-specific Now() function. Without this
43 // compile-time flag, the code will only support the wall-clock time. This flag
44 // can be flipped to efficiently disable this path (if there is a performance
45 // problem with its presence).
46 static const bool kAllowAlternateTimeSourceHandling = true;
48 // Possible states of the profiler timing enabledness.
49 enum {
50 UNDEFINED_TIMING,
51 ENABLED_TIMING,
52 DISABLED_TIMING,
55 // State of the profiler timing enabledness.
56 base::subtle::Atomic32 g_profiler_timing_enabled = UNDEFINED_TIMING;
58 // Returns whether profiler timing is enabled. The default is true, but this
59 // may be overridden by a command-line flag. Some platforms may
60 // programmatically set this command-line flag to the "off" value if it's not
61 // specified.
62 // This in turn can be overridden by explicitly calling
63 // ThreadData::EnableProfilerTiming, say, based on a field trial.
64 inline bool IsProfilerTimingEnabled() {
65 // Reading |g_profiler_timing_enabled| is done without barrier because
66 // multiple initialization is not an issue while the barrier can be relatively
67 // costly given that this method is sometimes called in a tight loop.
68 base::subtle::Atomic32 current_timing_enabled =
69 base::subtle::NoBarrier_Load(&g_profiler_timing_enabled);
70 if (current_timing_enabled == UNDEFINED_TIMING) {
71 if (!base::CommandLine::InitializedForCurrentProcess())
72 return true;
73 current_timing_enabled =
74 (base::CommandLine::ForCurrentProcess()->GetSwitchValueASCII(
75 switches::kProfilerTiming) ==
76 switches::kProfilerTimingDisabledValue)
77 ? DISABLED_TIMING
78 : ENABLED_TIMING;
79 base::subtle::NoBarrier_Store(&g_profiler_timing_enabled,
80 current_timing_enabled);
82 return current_timing_enabled == ENABLED_TIMING;
85 } // namespace
87 //------------------------------------------------------------------------------
88 // DeathData tallies durations when a death takes place.
90 DeathData::DeathData()
91 : count_(0),
92 sample_probability_count_(0),
93 run_duration_sum_(0),
94 queue_duration_sum_(0),
95 run_duration_max_(0),
96 queue_duration_max_(0),
97 run_duration_sample_(0),
98 queue_duration_sample_(0),
99 last_phase_snapshot_(nullptr) {
102 DeathData::DeathData(const DeathData& other)
103 : count_(other.count_),
104 sample_probability_count_(other.sample_probability_count_),
105 run_duration_sum_(other.run_duration_sum_),
106 queue_duration_sum_(other.queue_duration_sum_),
107 run_duration_max_(other.run_duration_max_),
108 queue_duration_max_(other.queue_duration_max_),
109 run_duration_sample_(other.run_duration_sample_),
110 queue_duration_sample_(other.queue_duration_sample_),
111 last_phase_snapshot_(nullptr) {
112 // This constructor will be used by std::map when adding new DeathData values
113 // to the map. At that point, last_phase_snapshot_ is still NULL, so we don't
114 // need to worry about ownership transfer.
115 DCHECK(other.last_phase_snapshot_ == nullptr);
118 DeathData::~DeathData() {
119 while (last_phase_snapshot_) {
120 const DeathDataPhaseSnapshot* snapshot = last_phase_snapshot_;
121 last_phase_snapshot_ = snapshot->prev;
122 delete snapshot;
126 // TODO(jar): I need to see if this macro to optimize branching is worth using.
128 // This macro has no branching, so it is surely fast, and is equivalent to:
129 // if (assign_it)
130 // target = source;
131 // We use a macro rather than a template to force this to inline.
132 // Related code for calculating max is discussed on the web.
133 #define CONDITIONAL_ASSIGN(assign_it, target, source) \
134 ((target) ^= ((target) ^ (source)) & -static_cast<int32>(assign_it))
136 void DeathData::RecordDeath(const int32 queue_duration,
137 const int32 run_duration,
138 const uint32 random_number) {
139 // We'll just clamp at INT_MAX, but we should note this in the UI as such.
140 if (count_ < INT_MAX)
141 ++count_;
143 int sample_probability_count = sample_probability_count_;
144 if (sample_probability_count < INT_MAX)
145 ++sample_probability_count;
146 sample_probability_count_ = sample_probability_count;
148 queue_duration_sum_ += queue_duration;
149 run_duration_sum_ += run_duration;
151 if (queue_duration_max_ < queue_duration)
152 queue_duration_max_ = queue_duration;
153 if (run_duration_max_ < run_duration)
154 run_duration_max_ = run_duration;
156 // Take a uniformly distributed sample over all durations ever supplied during
157 // the current profiling phase.
158 // The probability that we (instead) use this new sample is
159 // 1/sample_probability_count_. This results in a completely uniform selection
160 // of the sample (at least when we don't clamp sample_probability_count_...
161 // but that should be inconsequentially likely). We ignore the fact that we
162 // correlated our selection of a sample to the run and queue times (i.e., we
163 // used them to generate random_number).
164 CHECK_GT(sample_probability_count, 0);
165 if (0 == (random_number % sample_probability_count)) {
166 queue_duration_sample_ = queue_duration;
167 run_duration_sample_ = run_duration;
171 void DeathData::OnProfilingPhaseCompleted(int profiling_phase) {
172 // Snapshotting and storing current state.
173 last_phase_snapshot_ = new DeathDataPhaseSnapshot(
174 profiling_phase, count_, run_duration_sum_, run_duration_max_,
175 run_duration_sample_, queue_duration_sum_, queue_duration_max_,
176 queue_duration_sample_, last_phase_snapshot_);
178 // Not touching fields for which a delta can be computed by comparing with a
179 // snapshot from the previous phase. Resetting other fields. Sample values
180 // will be reset upon next death recording because sample_probability_count_
181 // is set to 0.
182 // We avoid resetting to 0 in favor of deltas whenever possible. The reason
183 // is that for incrementable fields, resetting to 0 from the snapshot thread
184 // potentially in parallel with incrementing in the death thread may result in
185 // significant data corruption that has a potential to grow with time. Not
186 // resetting incrementable fields and using deltas will cause any
187 // off-by-little corruptions to be likely fixed at the next snapshot.
188 // The max values are not incrementable, and cannot be deduced using deltas
189 // for a given phase. Hence, we have to reset them to 0. But the potential
190 // damage is limited to getting the previous phase's max to apply for the next
191 // phase, and the error doesn't have a potential to keep growing with new
192 // resets.
193 // sample_probability_count_ is incrementable, but must be reset to 0 at the
194 // phase end, so that we start a new uniformly randomized sample selection
195 // after the reset. Corruptions due to race conditions are possible, but the
196 // damage is limited to selecting a wrong sample, which is not something that
197 // can cause accumulating or cascading effects.
198 // If there were no corruptions caused by race conditions, we never send a
199 // sample for the previous phase in the next phase's snapshot because
200 // ThreadData::SnapshotExecutedTasks doesn't send deltas with 0 count.
201 sample_probability_count_ = 0;
202 run_duration_max_ = 0;
203 queue_duration_max_ = 0;
206 //------------------------------------------------------------------------------
207 DeathDataSnapshot::DeathDataSnapshot()
208 : count(-1),
209 run_duration_sum(-1),
210 run_duration_max(-1),
211 run_duration_sample(-1),
212 queue_duration_sum(-1),
213 queue_duration_max(-1),
214 queue_duration_sample(-1) {
217 DeathDataSnapshot::DeathDataSnapshot(int count,
218 int32 run_duration_sum,
219 int32 run_duration_max,
220 int32 run_duration_sample,
221 int32 queue_duration_sum,
222 int32 queue_duration_max,
223 int32 queue_duration_sample)
224 : count(count),
225 run_duration_sum(run_duration_sum),
226 run_duration_max(run_duration_max),
227 run_duration_sample(run_duration_sample),
228 queue_duration_sum(queue_duration_sum),
229 queue_duration_max(queue_duration_max),
230 queue_duration_sample(queue_duration_sample) {
233 DeathDataSnapshot::~DeathDataSnapshot() {
236 DeathDataSnapshot DeathDataSnapshot::Delta(
237 const DeathDataSnapshot& older) const {
238 return DeathDataSnapshot(count - older.count,
239 run_duration_sum - older.run_duration_sum,
240 run_duration_max, run_duration_sample,
241 queue_duration_sum - older.queue_duration_sum,
242 queue_duration_max, queue_duration_sample);
245 //------------------------------------------------------------------------------
246 BirthOnThread::BirthOnThread(const Location& location,
247 const ThreadData& current)
248 : location_(location),
249 birth_thread_(&current) {
252 //------------------------------------------------------------------------------
253 BirthOnThreadSnapshot::BirthOnThreadSnapshot() {
256 BirthOnThreadSnapshot::BirthOnThreadSnapshot(const BirthOnThread& birth)
257 : location(birth.location()),
258 thread_name(birth.birth_thread()->thread_name()) {
261 BirthOnThreadSnapshot::~BirthOnThreadSnapshot() {
264 //------------------------------------------------------------------------------
265 Births::Births(const Location& location, const ThreadData& current)
266 : BirthOnThread(location, current),
267 birth_count_(1) { }
269 int Births::birth_count() const { return birth_count_; }
271 void Births::RecordBirth() { ++birth_count_; }
273 //------------------------------------------------------------------------------
274 // ThreadData maintains the central data for all births and deaths on a single
275 // thread.
277 // TODO(jar): We should pull all these static vars together, into a struct, and
278 // optimize layout so that we benefit from locality of reference during accesses
279 // to them.
281 // static
282 NowFunction* ThreadData::now_function_ = NULL;
284 // static
285 bool ThreadData::now_function_is_time_ = false;
287 // A TLS slot which points to the ThreadData instance for the current thread.
288 // We do a fake initialization here (zeroing out data), and then the real
289 // in-place construction happens when we call tls_index_.Initialize().
290 // static
291 base::ThreadLocalStorage::StaticSlot ThreadData::tls_index_ = TLS_INITIALIZER;
293 // static
294 int ThreadData::worker_thread_data_creation_count_ = 0;
296 // static
297 int ThreadData::cleanup_count_ = 0;
299 // static
300 int ThreadData::incarnation_counter_ = 0;
302 // static
303 ThreadData* ThreadData::all_thread_data_list_head_ = NULL;
305 // static
306 ThreadData* ThreadData::first_retired_worker_ = NULL;
308 // static
309 base::LazyInstance<base::Lock>::Leaky
310 ThreadData::list_lock_ = LAZY_INSTANCE_INITIALIZER;
312 // static
313 base::subtle::Atomic32 ThreadData::status_ = ThreadData::UNINITIALIZED;
315 ThreadData::ThreadData(const std::string& suggested_name)
316 : next_(NULL),
317 next_retired_worker_(NULL),
318 worker_thread_number_(0),
319 incarnation_count_for_pool_(-1),
320 current_stopwatch_(NULL) {
321 DCHECK_GE(suggested_name.size(), 0u);
322 thread_name_ = suggested_name;
323 PushToHeadOfList(); // Which sets real incarnation_count_for_pool_.
326 ThreadData::ThreadData(int thread_number)
327 : next_(NULL),
328 next_retired_worker_(NULL),
329 worker_thread_number_(thread_number),
330 incarnation_count_for_pool_(-1),
331 current_stopwatch_(NULL) {
332 CHECK_GT(thread_number, 0);
333 base::StringAppendF(&thread_name_, "WorkerThread-%d", thread_number);
334 PushToHeadOfList(); // Which sets real incarnation_count_for_pool_.
337 ThreadData::~ThreadData() {
340 void ThreadData::PushToHeadOfList() {
341 // Toss in a hint of randomness (atop the uniniitalized value).
342 (void)VALGRIND_MAKE_MEM_DEFINED_IF_ADDRESSABLE(&random_number_,
343 sizeof(random_number_));
344 MSAN_UNPOISON(&random_number_, sizeof(random_number_));
345 random_number_ += static_cast<uint32>(this - static_cast<ThreadData*>(0));
346 random_number_ ^= (Now() - TrackedTime()).InMilliseconds();
348 DCHECK(!next_);
349 base::AutoLock lock(*list_lock_.Pointer());
350 incarnation_count_for_pool_ = incarnation_counter_;
351 next_ = all_thread_data_list_head_;
352 all_thread_data_list_head_ = this;
355 // static
356 ThreadData* ThreadData::first() {
357 base::AutoLock lock(*list_lock_.Pointer());
358 return all_thread_data_list_head_;
361 ThreadData* ThreadData::next() const { return next_; }
363 // static
364 void ThreadData::InitializeThreadContext(const std::string& suggested_name) {
365 Initialize();
366 ThreadData* current_thread_data =
367 reinterpret_cast<ThreadData*>(tls_index_.Get());
368 if (current_thread_data)
369 return; // Browser tests instigate this.
370 current_thread_data = new ThreadData(suggested_name);
371 tls_index_.Set(current_thread_data);
374 // static
375 ThreadData* ThreadData::Get() {
376 if (!tls_index_.initialized())
377 return NULL; // For unittests only.
378 ThreadData* registered = reinterpret_cast<ThreadData*>(tls_index_.Get());
379 if (registered)
380 return registered;
382 // We must be a worker thread, since we didn't pre-register.
383 ThreadData* worker_thread_data = NULL;
384 int worker_thread_number = 0;
386 base::AutoLock lock(*list_lock_.Pointer());
387 if (first_retired_worker_) {
388 worker_thread_data = first_retired_worker_;
389 first_retired_worker_ = first_retired_worker_->next_retired_worker_;
390 worker_thread_data->next_retired_worker_ = NULL;
391 } else {
392 worker_thread_number = ++worker_thread_data_creation_count_;
396 // If we can't find a previously used instance, then we have to create one.
397 if (!worker_thread_data) {
398 DCHECK_GT(worker_thread_number, 0);
399 worker_thread_data = new ThreadData(worker_thread_number);
401 DCHECK_GT(worker_thread_data->worker_thread_number_, 0);
403 tls_index_.Set(worker_thread_data);
404 return worker_thread_data;
407 // static
408 void ThreadData::OnThreadTermination(void* thread_data) {
409 DCHECK(thread_data); // TLS should *never* call us with a NULL.
410 // We must NOT do any allocations during this callback. There is a chance
411 // that the allocator is no longer active on this thread.
412 reinterpret_cast<ThreadData*>(thread_data)->OnThreadTerminationCleanup();
415 void ThreadData::OnThreadTerminationCleanup() {
416 // The list_lock_ was created when we registered the callback, so it won't be
417 // allocated here despite the lazy reference.
418 base::AutoLock lock(*list_lock_.Pointer());
419 if (incarnation_counter_ != incarnation_count_for_pool_)
420 return; // ThreadData was constructed in an earlier unit test.
421 ++cleanup_count_;
422 // Only worker threads need to be retired and reused.
423 if (!worker_thread_number_) {
424 return;
426 // We must NOT do any allocations during this callback.
427 // Using the simple linked lists avoids all allocations.
428 DCHECK_EQ(this->next_retired_worker_, reinterpret_cast<ThreadData*>(NULL));
429 this->next_retired_worker_ = first_retired_worker_;
430 first_retired_worker_ = this;
433 // static
434 void ThreadData::Snapshot(int current_profiling_phase,
435 ProcessDataSnapshot* process_data_snapshot) {
436 // Get an unchanging copy of a ThreadData list.
437 ThreadData* my_list = ThreadData::first();
439 // Gather data serially.
440 // This hackish approach *can* get some slightly corrupt tallies, as we are
441 // grabbing values without the protection of a lock, but it has the advantage
442 // of working even with threads that don't have message loops. If a user
443 // sees any strangeness, they can always just run their stats gathering a
444 // second time.
445 BirthCountMap birth_counts;
446 for (ThreadData* thread_data = my_list; thread_data;
447 thread_data = thread_data->next()) {
448 thread_data->SnapshotExecutedTasks(current_profiling_phase,
449 &process_data_snapshot->phased_snapshots,
450 &birth_counts);
453 // Add births that are still active -- i.e. objects that have tallied a birth,
454 // but have not yet tallied a matching death, and hence must be either
455 // running, queued up, or being held in limbo for future posting.
456 auto* current_phase_tasks =
457 &process_data_snapshot->phased_snapshots[current_profiling_phase].tasks;
458 for (const auto& birth_count : birth_counts) {
459 if (birth_count.second > 0) {
460 current_phase_tasks->push_back(
461 TaskSnapshot(BirthOnThreadSnapshot(*birth_count.first),
462 DeathDataSnapshot(birth_count.second, 0, 0, 0, 0, 0, 0),
463 "Still_Alive"));
468 // static
469 void ThreadData::OnProfilingPhaseCompleted(int profiling_phase) {
470 // Get an unchanging copy of a ThreadData list.
471 ThreadData* my_list = ThreadData::first();
473 // Add snapshots for all instances of death data in all threads serially.
474 // This hackish approach *can* get some slightly corrupt tallies, as we are
475 // grabbing values without the protection of a lock, but it has the advantage
476 // of working even with threads that don't have message loops. Any corruption
477 // shouldn't cause "cascading damage" to anything else (in later phases).
478 for (ThreadData* thread_data = my_list; thread_data;
479 thread_data = thread_data->next()) {
480 thread_data->OnProfilingPhaseCompletedOnThread(profiling_phase);
484 Births* ThreadData::TallyABirth(const Location& location) {
485 BirthMap::iterator it = birth_map_.find(location);
486 Births* child;
487 if (it != birth_map_.end()) {
488 child = it->second;
489 child->RecordBirth();
490 } else {
491 child = new Births(location, *this); // Leak this.
492 // Lock since the map may get relocated now, and other threads sometimes
493 // snapshot it (but they lock before copying it).
494 base::AutoLock lock(map_lock_);
495 birth_map_[location] = child;
498 return child;
501 void ThreadData::TallyADeath(const Births& births,
502 int32 queue_duration,
503 const TaskStopwatch& stopwatch) {
504 int32 run_duration = stopwatch.RunDurationMs();
506 // Stir in some randomness, plus add constant in case durations are zero.
507 const uint32 kSomePrimeNumber = 2147483647;
508 random_number_ += queue_duration + run_duration + kSomePrimeNumber;
509 // An address is going to have some randomness to it as well ;-).
510 random_number_ ^= static_cast<uint32>(&births - reinterpret_cast<Births*>(0));
512 // We don't have queue durations without OS timer. OS timer is automatically
513 // used for task-post-timing, so the use of an alternate timer implies all
514 // queue times are invalid, unless it was explicitly said that we can trust
515 // the alternate timer.
516 if (kAllowAlternateTimeSourceHandling &&
517 now_function_ &&
518 !now_function_is_time_) {
519 queue_duration = 0;
522 DeathMap::iterator it = death_map_.find(&births);
523 DeathData* death_data;
524 if (it != death_map_.end()) {
525 death_data = &it->second;
526 } else {
527 base::AutoLock lock(map_lock_); // Lock as the map may get relocated now.
528 death_data = &death_map_[&births];
529 } // Release lock ASAP.
530 death_data->RecordDeath(queue_duration, run_duration, random_number_);
533 // static
534 Births* ThreadData::TallyABirthIfActive(const Location& location) {
535 if (!TrackingStatus())
536 return NULL;
537 ThreadData* current_thread_data = Get();
538 if (!current_thread_data)
539 return NULL;
540 return current_thread_data->TallyABirth(location);
543 // static
544 void ThreadData::TallyRunOnNamedThreadIfTracking(
545 const base::TrackingInfo& completed_task,
546 const TaskStopwatch& stopwatch) {
547 // Even if we have been DEACTIVATED, we will process any pending births so
548 // that our data structures (which counted the outstanding births) remain
549 // consistent.
550 const Births* births = completed_task.birth_tally;
551 if (!births)
552 return;
553 ThreadData* current_thread_data = stopwatch.GetThreadData();
554 if (!current_thread_data)
555 return;
557 // Watch out for a race where status_ is changing, and hence one or both
558 // of start_of_run or end_of_run is zero. In that case, we didn't bother to
559 // get a time value since we "weren't tracking" and we were trying to be
560 // efficient by not calling for a genuine time value. For simplicity, we'll
561 // use a default zero duration when we can't calculate a true value.
562 TrackedTime start_of_run = stopwatch.StartTime();
563 int32 queue_duration = 0;
564 if (!start_of_run.is_null()) {
565 queue_duration = (start_of_run - completed_task.EffectiveTimePosted())
566 .InMilliseconds();
568 current_thread_data->TallyADeath(*births, queue_duration, stopwatch);
571 // static
572 void ThreadData::TallyRunOnWorkerThreadIfTracking(
573 const Births* births,
574 const TrackedTime& time_posted,
575 const TaskStopwatch& stopwatch) {
576 // Even if we have been DEACTIVATED, we will process any pending births so
577 // that our data structures (which counted the outstanding births) remain
578 // consistent.
579 if (!births)
580 return;
582 // TODO(jar): Support the option to coalesce all worker-thread activity under
583 // one ThreadData instance that uses locks to protect *all* access. This will
584 // reduce memory (making it provably bounded), but run incrementally slower
585 // (since we'll use locks on TallyABirth and TallyADeath). The good news is
586 // that the locks on TallyADeath will be *after* the worker thread has run,
587 // and hence nothing will be waiting for the completion (... besides some
588 // other thread that might like to run). Also, the worker threads tasks are
589 // generally longer, and hence the cost of the lock may perchance be amortized
590 // over the long task's lifetime.
591 ThreadData* current_thread_data = stopwatch.GetThreadData();
592 if (!current_thread_data)
593 return;
595 TrackedTime start_of_run = stopwatch.StartTime();
596 int32 queue_duration = 0;
597 if (!start_of_run.is_null()) {
598 queue_duration = (start_of_run - time_posted).InMilliseconds();
600 current_thread_data->TallyADeath(*births, queue_duration, stopwatch);
603 // static
604 void ThreadData::TallyRunInAScopedRegionIfTracking(
605 const Births* births,
606 const TaskStopwatch& stopwatch) {
607 // Even if we have been DEACTIVATED, we will process any pending births so
608 // that our data structures (which counted the outstanding births) remain
609 // consistent.
610 if (!births)
611 return;
613 ThreadData* current_thread_data = stopwatch.GetThreadData();
614 if (!current_thread_data)
615 return;
617 int32 queue_duration = 0;
618 current_thread_data->TallyADeath(*births, queue_duration, stopwatch);
621 void ThreadData::SnapshotExecutedTasks(
622 int current_profiling_phase,
623 PhasedProcessDataSnapshotMap* phased_snapshots,
624 BirthCountMap* birth_counts) {
625 // Get copy of data, so that the data will not change during the iterations
626 // and processing.
627 BirthMap birth_map;
628 DeathsSnapshot deaths;
629 SnapshotMaps(current_profiling_phase, &birth_map, &deaths);
631 for (const auto& birth : birth_map) {
632 (*birth_counts)[birth.second] += birth.second->birth_count();
635 for (const auto& death : deaths) {
636 (*birth_counts)[death.first] -= death.first->birth_count();
638 // For the current death data, walk through all its snapshots, starting from
639 // the current one, then from the previous profiling phase etc., and for
640 // each snapshot calculate the delta between the snapshot and the previous
641 // phase, if any. Store the deltas in the result.
642 for (const DeathDataPhaseSnapshot* phase = &death.second; phase;
643 phase = phase->prev) {
644 const DeathDataSnapshot& death_data =
645 phase->prev ? phase->death_data.Delta(phase->prev->death_data)
646 : phase->death_data;
648 if (death_data.count > 0) {
649 (*phased_snapshots)[phase->profiling_phase].tasks.push_back(
650 TaskSnapshot(BirthOnThreadSnapshot(*death.first), death_data,
651 thread_name()));
657 // This may be called from another thread.
658 void ThreadData::SnapshotMaps(int profiling_phase,
659 BirthMap* birth_map,
660 DeathsSnapshot* deaths) {
661 base::AutoLock lock(map_lock_);
663 for (const auto& birth : birth_map_)
664 (*birth_map)[birth.first] = birth.second;
666 for (const auto& death : death_map_) {
667 deaths->push_back(std::make_pair(
668 death.first,
669 DeathDataPhaseSnapshot(profiling_phase, death.second.count(),
670 death.second.run_duration_sum(),
671 death.second.run_duration_max(),
672 death.second.run_duration_sample(),
673 death.second.queue_duration_sum(),
674 death.second.queue_duration_max(),
675 death.second.queue_duration_sample(),
676 death.second.last_phase_snapshot())));
680 void ThreadData::OnProfilingPhaseCompletedOnThread(int profiling_phase) {
681 base::AutoLock lock(map_lock_);
683 for (auto& death : death_map_) {
684 death.second.OnProfilingPhaseCompleted(profiling_phase);
688 static void OptionallyInitializeAlternateTimer() {
689 NowFunction* alternate_time_source = GetAlternateTimeSource();
690 if (alternate_time_source)
691 ThreadData::SetAlternateTimeSource(alternate_time_source);
694 void ThreadData::Initialize() {
695 if (base::subtle::Acquire_Load(&status_) >= DEACTIVATED)
696 return; // Someone else did the initialization.
697 // Due to racy lazy initialization in tests, we'll need to recheck status_
698 // after we acquire the lock.
700 // Ensure that we don't double initialize tls. We are called when single
701 // threaded in the product, but some tests may be racy and lazy about our
702 // initialization.
703 base::AutoLock lock(*list_lock_.Pointer());
704 if (base::subtle::Acquire_Load(&status_) >= DEACTIVATED)
705 return; // Someone raced in here and beat us.
707 // Put an alternate timer in place if the environment calls for it, such as
708 // for tracking TCMalloc allocations. This insertion is idempotent, so we
709 // don't mind if there is a race, and we'd prefer not to be in a lock while
710 // doing this work.
711 if (kAllowAlternateTimeSourceHandling)
712 OptionallyInitializeAlternateTimer();
714 // Perform the "real" TLS initialization now, and leave it intact through
715 // process termination.
716 if (!tls_index_.initialized()) { // Testing may have initialized this.
717 DCHECK_EQ(base::subtle::NoBarrier_Load(&status_), UNINITIALIZED);
718 tls_index_.Initialize(&ThreadData::OnThreadTermination);
719 DCHECK(tls_index_.initialized());
720 } else {
721 // TLS was initialzed for us earlier.
722 DCHECK_EQ(base::subtle::NoBarrier_Load(&status_), DORMANT_DURING_TESTS);
725 // Incarnation counter is only significant to testing, as it otherwise will
726 // never again change in this process.
727 ++incarnation_counter_;
729 // The lock is not critical for setting status_, but it doesn't hurt. It also
730 // ensures that if we have a racy initialization, that we'll bail as soon as
731 // we get the lock earlier in this method.
732 base::subtle::Release_Store(&status_, kInitialStartupState);
733 DCHECK(base::subtle::NoBarrier_Load(&status_) != UNINITIALIZED);
736 // static
737 void ThreadData::InitializeAndSetTrackingStatus(Status status) {
738 DCHECK_GE(status, DEACTIVATED);
739 DCHECK_LE(status, PROFILING_ACTIVE);
741 Initialize(); // No-op if already initialized.
743 if (status > DEACTIVATED)
744 status = PROFILING_ACTIVE;
745 base::subtle::Release_Store(&status_, status);
748 // static
749 ThreadData::Status ThreadData::status() {
750 return static_cast<ThreadData::Status>(base::subtle::Acquire_Load(&status_));
753 // static
754 bool ThreadData::TrackingStatus() {
755 return base::subtle::Acquire_Load(&status_) > DEACTIVATED;
758 // static
759 void ThreadData::SetAlternateTimeSource(NowFunction* now_function) {
760 DCHECK(now_function);
761 if (kAllowAlternateTimeSourceHandling)
762 now_function_ = now_function;
765 // static
766 void ThreadData::EnableProfilerTiming() {
767 base::subtle::NoBarrier_Store(&g_profiler_timing_enabled, ENABLED_TIMING);
770 // static
771 TrackedTime ThreadData::Now() {
772 if (kAllowAlternateTimeSourceHandling && now_function_)
773 return TrackedTime::FromMilliseconds((*now_function_)());
774 if (IsProfilerTimingEnabled() && TrackingStatus())
775 return TrackedTime::Now();
776 return TrackedTime(); // Super fast when disabled, or not compiled.
779 // static
780 void ThreadData::EnsureCleanupWasCalled(int major_threads_shutdown_count) {
781 base::AutoLock lock(*list_lock_.Pointer());
782 if (worker_thread_data_creation_count_ == 0)
783 return; // We haven't really run much, and couldn't have leaked.
785 // TODO(jar): until this is working on XP, don't run the real test.
786 #if 0
787 // Verify that we've at least shutdown/cleanup the major namesd threads. The
788 // caller should tell us how many thread shutdowns should have taken place by
789 // now.
790 CHECK_GT(cleanup_count_, major_threads_shutdown_count);
791 #endif
794 // static
795 void ThreadData::ShutdownSingleThreadedCleanup(bool leak) {
796 // This is only called from test code, where we need to cleanup so that
797 // additional tests can be run.
798 // We must be single threaded... but be careful anyway.
799 InitializeAndSetTrackingStatus(DEACTIVATED);
801 ThreadData* thread_data_list;
803 base::AutoLock lock(*list_lock_.Pointer());
804 thread_data_list = all_thread_data_list_head_;
805 all_thread_data_list_head_ = NULL;
806 ++incarnation_counter_;
807 // To be clean, break apart the retired worker list (though we leak them).
808 while (first_retired_worker_) {
809 ThreadData* worker = first_retired_worker_;
810 CHECK_GT(worker->worker_thread_number_, 0);
811 first_retired_worker_ = worker->next_retired_worker_;
812 worker->next_retired_worker_ = NULL;
816 // Put most global static back in pristine shape.
817 worker_thread_data_creation_count_ = 0;
818 cleanup_count_ = 0;
819 tls_index_.Set(NULL);
820 // Almost UNINITIALIZED.
821 base::subtle::Release_Store(&status_, DORMANT_DURING_TESTS);
823 // To avoid any chance of racing in unit tests, which is the only place we
824 // call this function, we may sometimes leak all the data structures we
825 // recovered, as they may still be in use on threads from prior tests!
826 if (leak) {
827 ThreadData* thread_data = thread_data_list;
828 while (thread_data) {
829 ANNOTATE_LEAKING_OBJECT_PTR(thread_data);
830 thread_data = thread_data->next();
832 return;
835 // When we want to cleanup (on a single thread), here is what we do.
837 // Do actual recursive delete in all ThreadData instances.
838 while (thread_data_list) {
839 ThreadData* next_thread_data = thread_data_list;
840 thread_data_list = thread_data_list->next();
842 for (BirthMap::iterator it = next_thread_data->birth_map_.begin();
843 next_thread_data->birth_map_.end() != it; ++it)
844 delete it->second; // Delete the Birth Records.
845 delete next_thread_data; // Includes all Death Records.
849 //------------------------------------------------------------------------------
850 TaskStopwatch::TaskStopwatch()
851 : wallclock_duration_ms_(0),
852 current_thread_data_(NULL),
853 excluded_duration_ms_(0),
854 parent_(NULL) {
855 #if DCHECK_IS_ON()
856 state_ = CREATED;
857 child_ = NULL;
858 #endif
861 TaskStopwatch::~TaskStopwatch() {
862 #if DCHECK_IS_ON()
863 DCHECK(state_ != RUNNING);
864 DCHECK(child_ == NULL);
865 #endif
868 void TaskStopwatch::Start() {
869 #if DCHECK_IS_ON()
870 DCHECK(state_ == CREATED);
871 state_ = RUNNING;
872 #endif
874 start_time_ = ThreadData::Now();
876 current_thread_data_ = ThreadData::Get();
877 if (!current_thread_data_)
878 return;
880 parent_ = current_thread_data_->current_stopwatch_;
881 #if DCHECK_IS_ON()
882 if (parent_) {
883 DCHECK(parent_->state_ == RUNNING);
884 DCHECK(parent_->child_ == NULL);
885 parent_->child_ = this;
887 #endif
888 current_thread_data_->current_stopwatch_ = this;
891 void TaskStopwatch::Stop() {
892 const TrackedTime end_time = ThreadData::Now();
893 #if DCHECK_IS_ON()
894 DCHECK(state_ == RUNNING);
895 state_ = STOPPED;
896 DCHECK(child_ == NULL);
897 #endif
899 if (!start_time_.is_null() && !end_time.is_null()) {
900 wallclock_duration_ms_ = (end_time - start_time_).InMilliseconds();
903 if (!current_thread_data_)
904 return;
906 DCHECK(current_thread_data_->current_stopwatch_ == this);
907 current_thread_data_->current_stopwatch_ = parent_;
908 if (!parent_)
909 return;
911 #if DCHECK_IS_ON()
912 DCHECK(parent_->state_ == RUNNING);
913 DCHECK(parent_->child_ == this);
914 parent_->child_ = NULL;
915 #endif
916 parent_->excluded_duration_ms_ += wallclock_duration_ms_;
917 parent_ = NULL;
920 TrackedTime TaskStopwatch::StartTime() const {
921 #if DCHECK_IS_ON()
922 DCHECK(state_ != CREATED);
923 #endif
925 return start_time_;
928 int32 TaskStopwatch::RunDurationMs() const {
929 #if DCHECK_IS_ON()
930 DCHECK(state_ == STOPPED);
931 #endif
933 return wallclock_duration_ms_ - excluded_duration_ms_;
936 ThreadData* TaskStopwatch::GetThreadData() const {
937 #if DCHECK_IS_ON()
938 DCHECK(state_ != CREATED);
939 #endif
941 return current_thread_data_;
944 //------------------------------------------------------------------------------
945 // DeathDataPhaseSnapshot
947 DeathDataPhaseSnapshot::DeathDataPhaseSnapshot(
948 int profiling_phase,
949 int count,
950 int32 run_duration_sum,
951 int32 run_duration_max,
952 int32 run_duration_sample,
953 int32 queue_duration_sum,
954 int32 queue_duration_max,
955 int32 queue_duration_sample,
956 const DeathDataPhaseSnapshot* prev)
957 : profiling_phase(profiling_phase),
958 death_data(count,
959 run_duration_sum,
960 run_duration_max,
961 run_duration_sample,
962 queue_duration_sum,
963 queue_duration_max,
964 queue_duration_sample),
965 prev(prev) {
968 //------------------------------------------------------------------------------
969 // TaskSnapshot
971 TaskSnapshot::TaskSnapshot() {
974 TaskSnapshot::TaskSnapshot(const BirthOnThreadSnapshot& birth,
975 const DeathDataSnapshot& death_data,
976 const std::string& death_thread_name)
977 : birth(birth),
978 death_data(death_data),
979 death_thread_name(death_thread_name) {
982 TaskSnapshot::~TaskSnapshot() {
985 //------------------------------------------------------------------------------
986 // ProcessDataPhaseSnapshot
988 ProcessDataPhaseSnapshot::ProcessDataPhaseSnapshot() {
991 ProcessDataPhaseSnapshot::~ProcessDataPhaseSnapshot() {
994 //------------------------------------------------------------------------------
995 // ProcessDataPhaseSnapshot
997 ProcessDataSnapshot::ProcessDataSnapshot()
998 #if !defined(OS_NACL)
999 : process_id(base::GetCurrentProcId()) {
1000 #else
1001 : process_id(base::kNullProcessId) {
1002 #endif
1005 ProcessDataSnapshot::~ProcessDataSnapshot() {
1008 } // namespace tracked_objects