Added unit test for DevTools' ephemeral port support.
[chromium-blink-merge.git] / base / numerics / safe_math_impl.h
blob8eaf6e3476a4feda93c6f2173b367ac7ee4d55a5
1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef SAFE_MATH_IMPL_H_
6 #define SAFE_MATH_IMPL_H_
8 #include <stdint.h>
10 #include <cmath>
11 #include <cstdlib>
12 #include <limits>
14 #include "base/compiler_specific.h"
15 #include "base/macros.h"
16 #include "base/numerics/safe_conversions.h"
17 #include "base/template_util.h"
19 namespace base {
20 namespace internal {
22 // Everything from here up to the floating point operations is portable C++,
23 // but it may not be fast. This code could be split based on
24 // platform/architecture and replaced with potentially faster implementations.
26 // Integer promotion templates used by the portable checked integer arithmetic.
27 template <size_t Size, bool IsSigned>
28 struct IntegerForSizeAndSign;
29 template <>
30 struct IntegerForSizeAndSign<1, true> {
31 typedef int8_t type;
33 template <>
34 struct IntegerForSizeAndSign<1, false> {
35 typedef uint8_t type;
37 template <>
38 struct IntegerForSizeAndSign<2, true> {
39 typedef int16_t type;
41 template <>
42 struct IntegerForSizeAndSign<2, false> {
43 typedef uint16_t type;
45 template <>
46 struct IntegerForSizeAndSign<4, true> {
47 typedef int32_t type;
49 template <>
50 struct IntegerForSizeAndSign<4, false> {
51 typedef uint32_t type;
53 template <>
54 struct IntegerForSizeAndSign<8, true> {
55 typedef int64_t type;
57 template <>
58 struct IntegerForSizeAndSign<8, false> {
59 typedef uint64_t type;
62 // WARNING: We have no IntegerForSizeAndSign<16, *>. If we ever add one to
63 // support 128-bit math, then the ArithmeticPromotion template below will need
64 // to be updated (or more likely replaced with a decltype expression).
66 template <typename Integer>
67 struct UnsignedIntegerForSize {
68 typedef typename enable_if<
69 std::numeric_limits<Integer>::is_integer,
70 typename IntegerForSizeAndSign<sizeof(Integer), false>::type>::type type;
73 template <typename Integer>
74 struct SignedIntegerForSize {
75 typedef typename enable_if<
76 std::numeric_limits<Integer>::is_integer,
77 typename IntegerForSizeAndSign<sizeof(Integer), true>::type>::type type;
80 template <typename Integer>
81 struct TwiceWiderInteger {
82 typedef typename enable_if<
83 std::numeric_limits<Integer>::is_integer,
84 typename IntegerForSizeAndSign<
85 sizeof(Integer) * 2,
86 std::numeric_limits<Integer>::is_signed>::type>::type type;
89 template <typename Integer>
90 struct PositionOfSignBit {
91 static const typename enable_if<std::numeric_limits<Integer>::is_integer,
92 size_t>::type value = 8 * sizeof(Integer) - 1;
95 // Helper templates for integer manipulations.
97 template <typename T>
98 bool HasSignBit(T x) {
99 // Cast to unsigned since right shift on signed is undefined.
100 return !!(static_cast<typename UnsignedIntegerForSize<T>::type>(x) >>
101 PositionOfSignBit<T>::value);
104 // This wrapper undoes the standard integer promotions.
105 template <typename T>
106 T BinaryComplement(T x) {
107 return ~x;
110 // Here are the actual portable checked integer math implementations.
111 // TODO(jschuh): Break this code out from the enable_if pattern and find a clean
112 // way to coalesce things into the CheckedNumericState specializations below.
114 template <typename T>
115 typename enable_if<std::numeric_limits<T>::is_integer, T>::type
116 CheckedAdd(T x, T y, RangeConstraint* validity) {
117 // Since the value of x+y is undefined if we have a signed type, we compute
118 // it using the unsigned type of the same size.
119 typedef typename UnsignedIntegerForSize<T>::type UnsignedDst;
120 UnsignedDst ux = static_cast<UnsignedDst>(x);
121 UnsignedDst uy = static_cast<UnsignedDst>(y);
122 UnsignedDst uresult = ux + uy;
123 // Addition is valid if the sign of (x + y) is equal to either that of x or
124 // that of y.
125 if (std::numeric_limits<T>::is_signed) {
126 if (HasSignBit(BinaryComplement((uresult ^ ux) & (uresult ^ uy))))
127 *validity = RANGE_VALID;
128 else // Direction of wrap is inverse of result sign.
129 *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW;
131 } else { // Unsigned is either valid or overflow.
132 *validity = BinaryComplement(x) >= y ? RANGE_VALID : RANGE_OVERFLOW;
134 return static_cast<T>(uresult);
137 template <typename T>
138 typename enable_if<std::numeric_limits<T>::is_integer, T>::type
139 CheckedSub(T x, T y, RangeConstraint* validity) {
140 // Since the value of x+y is undefined if we have a signed type, we compute
141 // it using the unsigned type of the same size.
142 typedef typename UnsignedIntegerForSize<T>::type UnsignedDst;
143 UnsignedDst ux = static_cast<UnsignedDst>(x);
144 UnsignedDst uy = static_cast<UnsignedDst>(y);
145 UnsignedDst uresult = ux - uy;
146 // Subtraction is valid if either x and y have same sign, or (x-y) and x have
147 // the same sign.
148 if (std::numeric_limits<T>::is_signed) {
149 if (HasSignBit(BinaryComplement((uresult ^ ux) & (ux ^ uy))))
150 *validity = RANGE_VALID;
151 else // Direction of wrap is inverse of result sign.
152 *validity = HasSignBit(uresult) ? RANGE_OVERFLOW : RANGE_UNDERFLOW;
154 } else { // Unsigned is either valid or underflow.
155 *validity = x >= y ? RANGE_VALID : RANGE_UNDERFLOW;
157 return static_cast<T>(uresult);
160 // Integer multiplication is a bit complicated. In the fast case we just
161 // we just promote to a twice wider type, and range check the result. In the
162 // slow case we need to manually check that the result won't be truncated by
163 // checking with division against the appropriate bound.
164 template <typename T>
165 typename enable_if<
166 std::numeric_limits<T>::is_integer && sizeof(T) * 2 <= sizeof(uintmax_t),
167 T>::type
168 CheckedMul(T x, T y, RangeConstraint* validity) {
169 typedef typename TwiceWiderInteger<T>::type IntermediateType;
170 IntermediateType tmp =
171 static_cast<IntermediateType>(x) * static_cast<IntermediateType>(y);
172 *validity = DstRangeRelationToSrcRange<T>(tmp);
173 return static_cast<T>(tmp);
176 template <typename T>
177 typename enable_if<std::numeric_limits<T>::is_integer&& std::numeric_limits<
178 T>::is_signed&&(sizeof(T) * 2 > sizeof(uintmax_t)),
179 T>::type
180 CheckedMul(T x, T y, RangeConstraint* validity) {
181 // if either side is zero then the result will be zero.
182 if (!(x || y)) {
183 return RANGE_VALID;
185 } else if (x > 0) {
186 if (y > 0)
187 *validity =
188 x <= std::numeric_limits<T>::max() / y ? RANGE_VALID : RANGE_OVERFLOW;
189 else
190 *validity = y >= std::numeric_limits<T>::min() / x ? RANGE_VALID
191 : RANGE_UNDERFLOW;
193 } else {
194 if (y > 0)
195 *validity = x >= std::numeric_limits<T>::min() / y ? RANGE_VALID
196 : RANGE_UNDERFLOW;
197 else
198 *validity =
199 y >= std::numeric_limits<T>::max() / x ? RANGE_VALID : RANGE_OVERFLOW;
202 return x * y;
205 template <typename T>
206 typename enable_if<std::numeric_limits<T>::is_integer &&
207 !std::numeric_limits<T>::is_signed &&
208 (sizeof(T) * 2 > sizeof(uintmax_t)),
209 T>::type
210 CheckedMul(T x, T y, RangeConstraint* validity) {
211 *validity = (y == 0 || x <= std::numeric_limits<T>::max() / y)
212 ? RANGE_VALID
213 : RANGE_OVERFLOW;
214 return x * y;
217 // Division just requires a check for an invalid negation on signed min/-1.
218 template <typename T>
219 T CheckedDiv(
220 T x,
221 T y,
222 RangeConstraint* validity,
223 typename enable_if<std::numeric_limits<T>::is_integer, int>::type = 0) {
224 if (std::numeric_limits<T>::is_signed && x == std::numeric_limits<T>::min() &&
225 y == static_cast<T>(-1)) {
226 *validity = RANGE_OVERFLOW;
227 return std::numeric_limits<T>::min();
230 *validity = RANGE_VALID;
231 return x / y;
234 template <typename T>
235 typename enable_if<
236 std::numeric_limits<T>::is_integer&& std::numeric_limits<T>::is_signed,
237 T>::type
238 CheckedMod(T x, T y, RangeConstraint* validity) {
239 *validity = y > 0 ? RANGE_VALID : RANGE_INVALID;
240 return x % y;
243 template <typename T>
244 typename enable_if<
245 std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
246 T>::type
247 CheckedMod(T x, T y, RangeConstraint* validity) {
248 *validity = RANGE_VALID;
249 return x % y;
252 template <typename T>
253 typename enable_if<
254 std::numeric_limits<T>::is_integer&& std::numeric_limits<T>::is_signed,
255 T>::type
256 CheckedNeg(T value, RangeConstraint* validity) {
257 *validity =
258 value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW;
259 // The negation of signed min is min, so catch that one.
260 return -value;
263 template <typename T>
264 typename enable_if<
265 std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
266 T>::type
267 CheckedNeg(T value, RangeConstraint* validity) {
268 // The only legal unsigned negation is zero.
269 *validity = value ? RANGE_UNDERFLOW : RANGE_VALID;
270 return static_cast<T>(
271 -static_cast<typename SignedIntegerForSize<T>::type>(value));
274 template <typename T>
275 typename enable_if<
276 std::numeric_limits<T>::is_integer&& std::numeric_limits<T>::is_signed,
277 T>::type
278 CheckedAbs(T value, RangeConstraint* validity) {
279 *validity =
280 value != std::numeric_limits<T>::min() ? RANGE_VALID : RANGE_OVERFLOW;
281 return std::abs(value);
284 template <typename T>
285 typename enable_if<
286 std::numeric_limits<T>::is_integer && !std::numeric_limits<T>::is_signed,
287 T>::type
288 CheckedAbs(T value, RangeConstraint* validity) {
289 // Absolute value of a positive is just its identiy.
290 *validity = RANGE_VALID;
291 return value;
294 // These are the floating point stubs that the compiler needs to see. Only the
295 // negation operation is ever called.
296 #define BASE_FLOAT_ARITHMETIC_STUBS(NAME) \
297 template <typename T> \
298 typename enable_if<std::numeric_limits<T>::is_iec559, T>::type \
299 Checked##NAME(T, T, RangeConstraint*) { \
300 NOTREACHED(); \
301 return 0; \
304 BASE_FLOAT_ARITHMETIC_STUBS(Add)
305 BASE_FLOAT_ARITHMETIC_STUBS(Sub)
306 BASE_FLOAT_ARITHMETIC_STUBS(Mul)
307 BASE_FLOAT_ARITHMETIC_STUBS(Div)
308 BASE_FLOAT_ARITHMETIC_STUBS(Mod)
310 #undef BASE_FLOAT_ARITHMETIC_STUBS
312 template <typename T>
313 typename enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedNeg(
314 T value,
315 RangeConstraint*) {
316 return -value;
319 template <typename T>
320 typename enable_if<std::numeric_limits<T>::is_iec559, T>::type CheckedAbs(
321 T value,
322 RangeConstraint*) {
323 return std::abs(value);
326 // Floats carry around their validity state with them, but integers do not. So,
327 // we wrap the underlying value in a specialization in order to hide that detail
328 // and expose an interface via accessors.
329 enum NumericRepresentation {
330 NUMERIC_INTEGER,
331 NUMERIC_FLOATING,
332 NUMERIC_UNKNOWN
335 template <typename NumericType>
336 struct GetNumericRepresentation {
337 static const NumericRepresentation value =
338 std::numeric_limits<NumericType>::is_integer
339 ? NUMERIC_INTEGER
340 : (std::numeric_limits<NumericType>::is_iec559 ? NUMERIC_FLOATING
341 : NUMERIC_UNKNOWN);
344 template <typename T, NumericRepresentation type =
345 GetNumericRepresentation<T>::value>
346 class CheckedNumericState {};
348 // Integrals require quite a bit of additional housekeeping to manage state.
349 template <typename T>
350 class CheckedNumericState<T, NUMERIC_INTEGER> {
351 private:
352 T value_;
353 RangeConstraint validity_;
355 public:
356 template <typename Src, NumericRepresentation type>
357 friend class CheckedNumericState;
359 CheckedNumericState() : value_(0), validity_(RANGE_VALID) {}
361 template <typename Src>
362 CheckedNumericState(Src value, RangeConstraint validity)
363 : value_(value),
364 validity_(GetRangeConstraint(validity |
365 DstRangeRelationToSrcRange<T>(value))) {
366 COMPILE_ASSERT(std::numeric_limits<Src>::is_specialized,
367 argument_must_be_numeric);
370 // Copy constructor.
371 template <typename Src>
372 CheckedNumericState(const CheckedNumericState<Src>& rhs)
373 : value_(static_cast<T>(rhs.value())),
374 validity_(GetRangeConstraint(
375 rhs.validity() | DstRangeRelationToSrcRange<T>(rhs.value()))) {}
377 template <typename Src>
378 explicit CheckedNumericState(
379 Src value,
380 typename enable_if<std::numeric_limits<Src>::is_specialized, int>::type =
382 : value_(static_cast<T>(value)),
383 validity_(DstRangeRelationToSrcRange<T>(value)) {}
385 RangeConstraint validity() const { return validity_; }
386 T value() const { return value_; }
389 // Floating points maintain their own validity, but need translation wrappers.
390 template <typename T>
391 class CheckedNumericState<T, NUMERIC_FLOATING> {
392 private:
393 T value_;
395 public:
396 template <typename Src, NumericRepresentation type>
397 friend class CheckedNumericState;
399 CheckedNumericState() : value_(0.0) {}
401 template <typename Src>
402 CheckedNumericState(
403 Src value,
404 RangeConstraint validity,
405 typename enable_if<std::numeric_limits<Src>::is_integer, int>::type = 0) {
406 switch (DstRangeRelationToSrcRange<T>(value)) {
407 case RANGE_VALID:
408 value_ = static_cast<T>(value);
409 break;
411 case RANGE_UNDERFLOW:
412 value_ = -std::numeric_limits<T>::infinity();
413 break;
415 case RANGE_OVERFLOW:
416 value_ = std::numeric_limits<T>::infinity();
417 break;
419 case RANGE_INVALID:
420 value_ = std::numeric_limits<T>::quiet_NaN();
421 break;
423 default:
424 NOTREACHED();
428 template <typename Src>
429 explicit CheckedNumericState(
430 Src value,
431 typename enable_if<std::numeric_limits<Src>::is_specialized, int>::type =
433 : value_(static_cast<T>(value)) {}
435 // Copy constructor.
436 template <typename Src>
437 CheckedNumericState(const CheckedNumericState<Src>& rhs)
438 : value_(static_cast<T>(rhs.value())) {}
440 RangeConstraint validity() const {
441 return GetRangeConstraint(value_ <= std::numeric_limits<T>::max(),
442 value_ >= -std::numeric_limits<T>::max());
444 T value() const { return value_; }
447 // For integers less than 128-bit and floats 32-bit or larger, we can distil
448 // C/C++ arithmetic promotions down to two simple rules:
449 // 1. The type with the larger maximum exponent always takes precedence.
450 // 2. The resulting type must be promoted to at least an int.
451 // The following template specializations implement that promotion logic.
452 enum ArithmeticPromotionCategory {
453 LEFT_PROMOTION,
454 RIGHT_PROMOTION,
455 DEFAULT_PROMOTION
458 template <typename Lhs,
459 typename Rhs = Lhs,
460 ArithmeticPromotionCategory Promotion =
461 (MaxExponent<Lhs>::value > MaxExponent<Rhs>::value)
462 ? (MaxExponent<Lhs>::value > MaxExponent<int>::value
463 ? LEFT_PROMOTION
464 : DEFAULT_PROMOTION)
465 : (MaxExponent<Rhs>::value > MaxExponent<int>::value
466 ? RIGHT_PROMOTION
467 : DEFAULT_PROMOTION) >
468 struct ArithmeticPromotion;
470 template <typename Lhs, typename Rhs>
471 struct ArithmeticPromotion<Lhs, Rhs, LEFT_PROMOTION> {
472 typedef Lhs type;
475 template <typename Lhs, typename Rhs>
476 struct ArithmeticPromotion<Lhs, Rhs, RIGHT_PROMOTION> {
477 typedef Rhs type;
480 template <typename Lhs, typename Rhs>
481 struct ArithmeticPromotion<Lhs, Rhs, DEFAULT_PROMOTION> {
482 typedef int type;
485 // We can statically check if operations on the provided types can wrap, so we
486 // can skip the checked operations if they're not needed. So, for an integer we
487 // care if the destination type preserves the sign and is twice the width of
488 // the source.
489 template <typename T, typename Lhs, typename Rhs>
490 struct IsIntegerArithmeticSafe {
491 static const bool value = !std::numeric_limits<T>::is_iec559 &&
492 StaticDstRangeRelationToSrcRange<T, Lhs>::value ==
493 NUMERIC_RANGE_CONTAINED &&
494 sizeof(T) >= (2 * sizeof(Lhs)) &&
495 StaticDstRangeRelationToSrcRange<T, Rhs>::value !=
496 NUMERIC_RANGE_CONTAINED &&
497 sizeof(T) >= (2 * sizeof(Rhs));
500 } // namespace internal
501 } // namespace base
503 #endif // SAFE_MATH_IMPL_H_