1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/message_loop/message_pump_win.h"
10 #include "base/message_loop/message_loop.h"
11 #include "base/metrics/histogram.h"
12 #include "base/process/memory.h"
13 #include "base/profiler/scoped_tracker.h"
14 #include "base/strings/stringprintf.h"
15 #include "base/trace_event/trace_event.h"
16 #include "base/win/wrapped_window_proc.h"
22 enum MessageLoopProblems
{
24 COMPLETION_POST_ERROR
,
26 MESSAGE_LOOP_PROBLEM_MAX
,
31 static const wchar_t kWndClassFormat
[] = L
"Chrome_MessagePumpWindow_%p";
33 // Message sent to get an additional time slice for pumping (processing) another
34 // task (a series of such messages creates a continuous task pump).
35 static const int kMsgHaveWork
= WM_USER
+ 1;
37 //-----------------------------------------------------------------------------
38 // MessagePumpWin public:
40 void MessagePumpWin::RunWithDispatcher(
41 Delegate
* delegate
, MessagePumpDispatcher
* dispatcher
) {
43 s
.delegate
= delegate
;
44 s
.dispatcher
= dispatcher
;
45 s
.should_quit
= false;
46 s
.run_depth
= state_
? state_
->run_depth
+ 1 : 1;
48 RunState
* previous_state
= state_
;
53 state_
= previous_state
;
56 void MessagePumpWin::Run(Delegate
* delegate
) {
57 RunWithDispatcher(delegate
, NULL
);
60 void MessagePumpWin::Quit() {
62 state_
->should_quit
= true;
65 //-----------------------------------------------------------------------------
66 // MessagePumpWin protected:
68 int MessagePumpWin::GetCurrentDelay() const {
69 if (delayed_work_time_
.is_null())
72 // Be careful here. TimeDelta has a precision of microseconds, but we want a
73 // value in milliseconds. If there are 5.5ms left, should the delay be 5 or
74 // 6? It should be 6 to avoid executing delayed work too early.
76 ceil((delayed_work_time_
- TimeTicks::Now()).InMillisecondsF());
78 // Range check the |timeout| while converting to an integer. If the |timeout|
79 // is negative, then we need to run delayed work soon. If the |timeout| is
80 // "overflowingly" large, that means a delayed task was posted with a
82 return timeout
< 0 ? 0 :
83 (timeout
> std::numeric_limits
<int>::max() ?
84 std::numeric_limits
<int>::max() : static_cast<int>(timeout
));
87 //-----------------------------------------------------------------------------
88 // MessagePumpForUI public:
90 MessagePumpForUI::MessagePumpForUI()
95 MessagePumpForUI::~MessagePumpForUI() {
96 DestroyWindow(message_hwnd_
);
97 UnregisterClass(MAKEINTATOM(atom_
),
98 GetModuleFromAddress(&WndProcThunk
));
101 void MessagePumpForUI::ScheduleWork() {
102 if (InterlockedExchange(&have_work_
, 1))
103 return; // Someone else continued the pumping.
105 // Make sure the MessagePump does some work for us.
106 BOOL ret
= PostMessage(message_hwnd_
, kMsgHaveWork
,
107 reinterpret_cast<WPARAM
>(this), 0);
109 return; // There was room in the Window Message queue.
111 // We have failed to insert a have-work message, so there is a chance that we
112 // will starve tasks/timers while sitting in a nested message loop. Nested
113 // loops only look at Windows Message queues, and don't look at *our* task
114 // queues, etc., so we might not get a time slice in such. :-(
115 // We could abort here, but the fear is that this failure mode is plausibly
116 // common (queue is full, of about 2000 messages), so we'll do a near-graceful
117 // recovery. Nested loops are pretty transient (we think), so this will
118 // probably be recoverable.
119 InterlockedExchange(&have_work_
, 0); // Clarify that we didn't really insert.
120 UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", MESSAGE_POST_ERROR
,
121 MESSAGE_LOOP_PROBLEM_MAX
);
124 void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks
& delayed_work_time
) {
125 delayed_work_time_
= delayed_work_time
;
129 //-----------------------------------------------------------------------------
130 // MessagePumpForUI private:
133 LRESULT CALLBACK
MessagePumpForUI::WndProcThunk(
134 HWND hwnd
, UINT message
, WPARAM wparam
, LPARAM lparam
) {
135 // TODO(vadimt): Remove ScopedTracker below once crbug.com/440919 is fixed.
136 tracked_objects::ScopedTracker
tracking_profile1(
137 FROM_HERE_WITH_EXPLICIT_FUNCTION(
138 "440919 MessagePumpForUI::WndProcThunk1"));
142 reinterpret_cast<MessagePumpForUI
*>(wparam
)->HandleWorkMessage();
145 reinterpret_cast<MessagePumpForUI
*>(wparam
)->HandleTimerMessage();
149 // TODO(vadimt): Remove ScopedTracker below once crbug.com/440919 is fixed.
150 tracked_objects::ScopedTracker
tracking_profile2(
151 FROM_HERE_WITH_EXPLICIT_FUNCTION(
152 "440919 MessagePumpForUI::WndProcThunk2"));
154 return DefWindowProc(hwnd
, message
, wparam
, lparam
);
157 void MessagePumpForUI::DoRunLoop() {
158 // IF this was just a simple PeekMessage() loop (servicing all possible work
159 // queues), then Windows would try to achieve the following order according
160 // to MSDN documentation about PeekMessage with no filter):
163 // * Sent messages (again)
164 // * WM_PAINT messages
165 // * WM_TIMER messages
167 // Summary: none of the above classes is starved, and sent messages has twice
168 // the chance of being processed (i.e., reduced service time).
171 // If we do any work, we may create more messages etc., and more work may
172 // possibly be waiting in another task group. When we (for example)
173 // ProcessNextWindowsMessage(), there is a good chance there are still more
174 // messages waiting. On the other hand, when any of these methods return
175 // having done no work, then it is pretty unlikely that calling them again
176 // quickly will find any work to do. Finally, if they all say they had no
177 // work, then it is a good time to consider sleeping (waiting) for more
180 bool more_work_is_plausible
= ProcessNextWindowsMessage();
181 if (state_
->should_quit
)
184 more_work_is_plausible
|= state_
->delegate
->DoWork();
185 if (state_
->should_quit
)
188 more_work_is_plausible
|=
189 state_
->delegate
->DoDelayedWork(&delayed_work_time_
);
190 // If we did not process any delayed work, then we can assume that our
191 // existing WM_TIMER if any will fire when delayed work should run. We
192 // don't want to disturb that timer if it is already in flight. However,
193 // if we did do all remaining delayed work, then lets kill the WM_TIMER.
194 if (more_work_is_plausible
&& delayed_work_time_
.is_null())
195 KillTimer(message_hwnd_
, reinterpret_cast<UINT_PTR
>(this));
196 if (state_
->should_quit
)
199 if (more_work_is_plausible
)
202 more_work_is_plausible
= state_
->delegate
->DoIdleWork();
203 if (state_
->should_quit
)
206 if (more_work_is_plausible
)
209 WaitForWork(); // Wait (sleep) until we have work to do again.
213 void MessagePumpForUI::InitMessageWnd() {
214 // Generate a unique window class name.
215 string16 class_name
= StringPrintf(kWndClassFormat
, this);
217 HINSTANCE instance
= GetModuleFromAddress(&WndProcThunk
);
219 wc
.cbSize
= sizeof(wc
);
220 wc
.lpfnWndProc
= base::win::WrappedWindowProc
<WndProcThunk
>;
221 wc
.hInstance
= instance
;
222 wc
.lpszClassName
= class_name
.c_str();
223 atom_
= RegisterClassEx(&wc
);
226 message_hwnd_
= CreateWindow(MAKEINTATOM(atom_
), 0, 0, 0, 0, 0, 0,
227 HWND_MESSAGE
, 0, instance
, 0);
228 DCHECK(message_hwnd_
);
231 void MessagePumpForUI::WaitForWork() {
232 // Wait until a message is available, up to the time needed by the timer
233 // manager to fire the next set of timers.
234 int delay
= GetCurrentDelay();
235 if (delay
< 0) // Negative value means no timers waiting.
239 result
= MsgWaitForMultipleObjectsEx(0, NULL
, delay
, QS_ALLINPUT
,
240 MWMO_INPUTAVAILABLE
);
242 if (WAIT_OBJECT_0
== result
) {
243 // A WM_* message is available.
244 // If a parent child relationship exists between windows across threads
245 // then their thread inputs are implicitly attached.
246 // This causes the MsgWaitForMultipleObjectsEx API to return indicating
247 // that messages are ready for processing (Specifically, mouse messages
248 // intended for the child window may appear if the child window has
250 // The subsequent PeekMessages call may fail to return any messages thus
251 // causing us to enter a tight loop at times.
252 // The WaitMessage call below is a workaround to give the child window
253 // some time to process its input messages.
255 DWORD queue_status
= GetQueueStatus(QS_MOUSE
);
256 if (HIWORD(queue_status
) & QS_MOUSE
&&
257 !PeekMessage(&msg
, NULL
, WM_MOUSEFIRST
, WM_MOUSELAST
, PM_NOREMOVE
)) {
263 DCHECK_NE(WAIT_FAILED
, result
) << GetLastError();
266 void MessagePumpForUI::HandleWorkMessage() {
267 // If we are being called outside of the context of Run, then don't try to do
268 // any work. This could correspond to a MessageBox call or something of that
271 // Since we handled a kMsgHaveWork message, we must still update this flag.
272 InterlockedExchange(&have_work_
, 0);
276 // Let whatever would have run had we not been putting messages in the queue
277 // run now. This is an attempt to make our dummy message not starve other
278 // messages that may be in the Windows message queue.
279 ProcessPumpReplacementMessage();
281 // Now give the delegate a chance to do some work. He'll let us know if he
282 // needs to do more work.
283 if (state_
->delegate
->DoWork())
285 state_
->delegate
->DoDelayedWork(&delayed_work_time_
);
289 void MessagePumpForUI::HandleTimerMessage() {
290 KillTimer(message_hwnd_
, reinterpret_cast<UINT_PTR
>(this));
292 // If we are being called outside of the context of Run, then don't do
293 // anything. This could correspond to a MessageBox call or something of
298 state_
->delegate
->DoDelayedWork(&delayed_work_time_
);
302 void MessagePumpForUI::RescheduleTimer() {
303 if (delayed_work_time_
.is_null())
306 // We would *like* to provide high resolution timers. Windows timers using
307 // SetTimer() have a 10ms granularity. We have to use WM_TIMER as a wakeup
308 // mechanism because the application can enter modal windows loops where it
309 // is not running our MessageLoop; the only way to have our timers fire in
310 // these cases is to post messages there.
312 // To provide sub-10ms timers, we process timers directly from our run loop.
313 // For the common case, timers will be processed there as the run loop does
314 // its normal work. However, we *also* set the system timer so that WM_TIMER
315 // events fire. This mops up the case of timers not being able to work in
316 // modal message loops. It is possible for the SetTimer to pop and have no
317 // pending timers, because they could have already been processed by the
320 // We use a single SetTimer corresponding to the timer that will expire
321 // soonest. As new timers are created and destroyed, we update SetTimer.
322 // Getting a spurrious SetTimer event firing is benign, as we'll just be
323 // processing an empty timer queue.
325 int delay_msec
= GetCurrentDelay();
326 DCHECK_GE(delay_msec
, 0);
327 if (delay_msec
== 0) {
330 if (delay_msec
< USER_TIMER_MINIMUM
)
331 delay_msec
= USER_TIMER_MINIMUM
;
333 // Create a WM_TIMER event that will wake us up to check for any pending
334 // timers (in case we are running within a nested, external sub-pump).
335 BOOL ret
= SetTimer(message_hwnd_
, reinterpret_cast<UINT_PTR
>(this),
339 // If we can't set timers, we are in big trouble... but cross our fingers
341 // TODO(jar): If we don't see this error, use a CHECK() here instead.
342 UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", SET_TIMER_ERROR
,
343 MESSAGE_LOOP_PROBLEM_MAX
);
347 bool MessagePumpForUI::ProcessNextWindowsMessage() {
348 // TODO(vadimt): Remove ScopedTracker below once crbug.com/440919 is fixed.
349 tracked_objects::ScopedTracker
tracking_profile1(
350 FROM_HERE_WITH_EXPLICIT_FUNCTION(
351 "440919 MessagePumpForUI::ProcessNextWindowsMessage1"));
353 // If there are sent messages in the queue then PeekMessage internally
354 // dispatches the message and returns false. We return true in this
355 // case to ensure that the message loop peeks again instead of calling
356 // MsgWaitForMultipleObjectsEx again.
357 bool sent_messages_in_queue
= false;
358 DWORD queue_status
= GetQueueStatus(QS_SENDMESSAGE
);
359 if (HIWORD(queue_status
) & QS_SENDMESSAGE
)
360 sent_messages_in_queue
= true;
362 // TODO(vadimt): Remove ScopedTracker below once crbug.com/440919 is fixed.
363 tracked_objects::ScopedTracker
tracking_profile2(
364 FROM_HERE_WITH_EXPLICIT_FUNCTION(
365 "440919 MessagePumpForUI::ProcessNextWindowsMessage2"));
368 if (PeekMessage(&msg
, NULL
, 0, 0, PM_REMOVE
) != FALSE
)
369 return ProcessMessageHelper(msg
);
371 return sent_messages_in_queue
;
374 bool MessagePumpForUI::ProcessMessageHelper(const MSG
& msg
) {
375 TRACE_EVENT1("base", "MessagePumpForUI::ProcessMessageHelper",
376 "message", msg
.message
);
377 if (WM_QUIT
== msg
.message
) {
378 // Repost the QUIT message so that it will be retrieved by the primary
379 // GetMessage() loop.
380 state_
->should_quit
= true;
381 PostQuitMessage(static_cast<int>(msg
.wParam
));
385 // While running our main message pump, we discard kMsgHaveWork messages.
386 if (msg
.message
== kMsgHaveWork
&& msg
.hwnd
== message_hwnd_
)
387 return ProcessPumpReplacementMessage();
389 if (CallMsgFilter(const_cast<MSG
*>(&msg
), kMessageFilterCode
))
392 uint32_t action
= MessagePumpDispatcher::POST_DISPATCH_PERFORM_DEFAULT
;
393 if (state_
->dispatcher
) {
394 // TODO(vadimt): Remove ScopedTracker below once crbug.com/440919 is fixed.
395 tracked_objects::ScopedTracker
tracking_profile4(
396 FROM_HERE_WITH_EXPLICIT_FUNCTION(
397 "440919 MessagePumpForUI::ProcessMessageHelper4"));
399 action
= state_
->dispatcher
->Dispatch(msg
);
401 if (action
& MessagePumpDispatcher::POST_DISPATCH_QUIT_LOOP
)
402 state_
->should_quit
= true;
403 if (action
& MessagePumpDispatcher::POST_DISPATCH_PERFORM_DEFAULT
) {
404 TranslateMessage(&msg
);
405 DispatchMessage(&msg
);
411 bool MessagePumpForUI::ProcessPumpReplacementMessage() {
412 // When we encounter a kMsgHaveWork message, this method is called to peek
413 // and process a replacement message, such as a WM_PAINT or WM_TIMER. The
414 // goal is to make the kMsgHaveWork as non-intrusive as possible, even though
415 // a continuous stream of such messages are posted. This method carefully
416 // peeks a message while there is no chance for a kMsgHaveWork to be pending,
417 // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to
418 // possibly be posted), and finally dispatches that peeked replacement. Note
419 // that the re-post of kMsgHaveWork may be asynchronous to this thread!!
421 bool have_message
= false;
423 // We should not process all window messages if we are in the context of an
424 // OS modal loop, i.e. in the context of a windows API call like MessageBox.
425 // This is to ensure that these messages are peeked out by the OS modal loop.
426 if (MessageLoop::current()->os_modal_loop()) {
427 // We only peek out WM_PAINT and WM_TIMER here for reasons mentioned above.
428 have_message
= PeekMessage(&msg
, NULL
, WM_PAINT
, WM_PAINT
, PM_REMOVE
) ||
429 PeekMessage(&msg
, NULL
, WM_TIMER
, WM_TIMER
, PM_REMOVE
);
431 have_message
= PeekMessage(&msg
, NULL
, 0, 0, PM_REMOVE
) != FALSE
;
434 DCHECK(!have_message
|| kMsgHaveWork
!= msg
.message
||
435 msg
.hwnd
!= message_hwnd_
);
437 // Since we discarded a kMsgHaveWork message, we must update the flag.
438 int old_have_work
= InterlockedExchange(&have_work_
, 0);
439 DCHECK(old_have_work
);
441 // We don't need a special time slice if we didn't have_message to process.
445 // Guarantee we'll get another time slice in the case where we go into native
446 // windows code. This ScheduleWork() may hurt performance a tiny bit when
447 // tasks appear very infrequently, but when the event queue is busy, the
448 // kMsgHaveWork events get (percentage wise) rarer and rarer.
450 return ProcessMessageHelper(msg
);
453 //-----------------------------------------------------------------------------
454 // MessagePumpForIO public:
456 MessagePumpForIO::MessagePumpForIO() {
457 port_
.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE
, NULL
, NULL
, 1));
458 DCHECK(port_
.IsValid());
461 MessagePumpForIO::~MessagePumpForIO() {
464 void MessagePumpForIO::ScheduleWork() {
465 if (InterlockedExchange(&have_work_
, 1))
466 return; // Someone else continued the pumping.
468 // Make sure the MessagePump does some work for us.
469 BOOL ret
= PostQueuedCompletionStatus(port_
.Get(), 0,
470 reinterpret_cast<ULONG_PTR
>(this),
471 reinterpret_cast<OVERLAPPED
*>(this));
473 return; // Post worked perfectly.
475 // See comment in MessagePumpForUI::ScheduleWork() for this error recovery.
476 InterlockedExchange(&have_work_
, 0); // Clarify that we didn't succeed.
477 UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", COMPLETION_POST_ERROR
,
478 MESSAGE_LOOP_PROBLEM_MAX
);
481 void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks
& delayed_work_time
) {
482 // We know that we can't be blocked right now since this method can only be
483 // called on the same thread as Run, so we only need to update our record of
484 // how long to sleep when we do sleep.
485 delayed_work_time_
= delayed_work_time
;
488 void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle
,
489 IOHandler
* handler
) {
490 ULONG_PTR key
= HandlerToKey(handler
, true);
491 HANDLE port
= CreateIoCompletionPort(file_handle
, port_
.Get(), key
, 1);
495 bool MessagePumpForIO::RegisterJobObject(HANDLE job_handle
,
496 IOHandler
* handler
) {
497 // Job object notifications use the OVERLAPPED pointer to carry the message
498 // data. Mark the completion key correspondingly, so we will not try to
499 // convert OVERLAPPED* to IOContext*.
500 ULONG_PTR key
= HandlerToKey(handler
, false);
501 JOBOBJECT_ASSOCIATE_COMPLETION_PORT info
;
502 info
.CompletionKey
= reinterpret_cast<void*>(key
);
503 info
.CompletionPort
= port_
.Get();
504 return SetInformationJobObject(job_handle
,
505 JobObjectAssociateCompletionPortInformation
,
507 sizeof(info
)) != FALSE
;
510 //-----------------------------------------------------------------------------
511 // MessagePumpForIO private:
513 void MessagePumpForIO::DoRunLoop() {
515 // If we do any work, we may create more messages etc., and more work may
516 // possibly be waiting in another task group. When we (for example)
517 // WaitForIOCompletion(), there is a good chance there are still more
518 // messages waiting. On the other hand, when any of these methods return
519 // having done no work, then it is pretty unlikely that calling them
520 // again quickly will find any work to do. Finally, if they all say they
521 // had no work, then it is a good time to consider sleeping (waiting) for
524 bool more_work_is_plausible
= state_
->delegate
->DoWork();
525 if (state_
->should_quit
)
528 more_work_is_plausible
|= WaitForIOCompletion(0, NULL
);
529 if (state_
->should_quit
)
532 more_work_is_plausible
|=
533 state_
->delegate
->DoDelayedWork(&delayed_work_time_
);
534 if (state_
->should_quit
)
537 if (more_work_is_plausible
)
540 more_work_is_plausible
= state_
->delegate
->DoIdleWork();
541 if (state_
->should_quit
)
544 if (more_work_is_plausible
)
547 WaitForWork(); // Wait (sleep) until we have work to do again.
551 // Wait until IO completes, up to the time needed by the timer manager to fire
552 // the next set of timers.
553 void MessagePumpForIO::WaitForWork() {
554 // We do not support nested IO message loops. This is to avoid messy
555 // recursion problems.
556 DCHECK_EQ(1, state_
->run_depth
) << "Cannot nest an IO message loop!";
558 int timeout
= GetCurrentDelay();
559 if (timeout
< 0) // Negative value means no timers waiting.
562 WaitForIOCompletion(timeout
, NULL
);
565 bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout
, IOHandler
* filter
) {
567 if (completed_io_
.empty() || !MatchCompletedIOItem(filter
, &item
)) {
568 // We have to ask the system for another IO completion.
569 if (!GetIOItem(timeout
, &item
))
572 if (ProcessInternalIOItem(item
))
576 // If |item.has_valid_io_context| is false then |item.context| does not point
577 // to a context structure, and so should not be dereferenced, although it may
578 // still hold valid non-pointer data.
579 if (!item
.has_valid_io_context
|| item
.context
->handler
) {
580 if (filter
&& item
.handler
!= filter
) {
581 // Save this item for later
582 completed_io_
.push_back(item
);
584 DCHECK(!item
.has_valid_io_context
||
585 (item
.context
->handler
== item
.handler
));
586 WillProcessIOEvent();
587 item
.handler
->OnIOCompleted(item
.context
, item
.bytes_transfered
,
592 // The handler must be gone by now, just cleanup the mess.
598 // Asks the OS for another IO completion result.
599 bool MessagePumpForIO::GetIOItem(DWORD timeout
, IOItem
* item
) {
600 memset(item
, 0, sizeof(*item
));
601 ULONG_PTR key
= NULL
;
602 OVERLAPPED
* overlapped
= NULL
;
603 if (!GetQueuedCompletionStatus(port_
.Get(), &item
->bytes_transfered
, &key
,
604 &overlapped
, timeout
)) {
606 return false; // Nothing in the queue.
607 item
->error
= GetLastError();
608 item
->bytes_transfered
= 0;
611 item
->handler
= KeyToHandler(key
, &item
->has_valid_io_context
);
612 item
->context
= reinterpret_cast<IOContext
*>(overlapped
);
616 bool MessagePumpForIO::ProcessInternalIOItem(const IOItem
& item
) {
617 if (this == reinterpret_cast<MessagePumpForIO
*>(item
.context
) &&
618 this == reinterpret_cast<MessagePumpForIO
*>(item
.handler
)) {
619 // This is our internal completion.
620 DCHECK(!item
.bytes_transfered
);
621 InterlockedExchange(&have_work_
, 0);
627 // Returns a completion item that was previously received.
628 bool MessagePumpForIO::MatchCompletedIOItem(IOHandler
* filter
, IOItem
* item
) {
629 DCHECK(!completed_io_
.empty());
630 for (std::list
<IOItem
>::iterator it
= completed_io_
.begin();
631 it
!= completed_io_
.end(); ++it
) {
632 if (!filter
|| it
->handler
== filter
) {
634 completed_io_
.erase(it
);
641 void MessagePumpForIO::AddIOObserver(IOObserver
*obs
) {
642 io_observers_
.AddObserver(obs
);
645 void MessagePumpForIO::RemoveIOObserver(IOObserver
*obs
) {
646 io_observers_
.RemoveObserver(obs
);
649 void MessagePumpForIO::WillProcessIOEvent() {
650 FOR_EACH_OBSERVER(IOObserver
, io_observers_
, WillProcessIOEvent());
653 void MessagePumpForIO::DidProcessIOEvent() {
654 FOR_EACH_OBSERVER(IOObserver
, io_observers_
, DidProcessIOEvent());
658 ULONG_PTR
MessagePumpForIO::HandlerToKey(IOHandler
* handler
,
659 bool has_valid_io_context
) {
660 ULONG_PTR key
= reinterpret_cast<ULONG_PTR
>(handler
);
662 // |IOHandler| is at least pointer-size aligned, so the lowest two bits are
663 // always cleared. We use the lowest bit to distinguish completion keys with
664 // and without the associated |IOContext|.
665 DCHECK_EQ(key
& 1, 0u);
667 // Mark the completion key as context-less.
668 if (!has_valid_io_context
)
674 MessagePumpForIO::IOHandler
* MessagePumpForIO::KeyToHandler(
676 bool* has_valid_io_context
) {
677 *has_valid_io_context
= ((key
& 1) == 0);
678 return reinterpret_cast<IOHandler
*>(key
& ~static_cast<ULONG_PTR
>(1));