Don't add an aura tooltip to bubble close buttons on Windows.
[chromium-blink-merge.git] / net / quic / congestion_control / tcp_cubic_bytes_sender_test.cc
blobd9483c6907d9415b394ff46fc97641465a8c92de
1 // Copyright (c) 2015 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/quic/congestion_control/tcp_cubic_bytes_sender.h"
7 #include <algorithm>
9 #include "base/logging.h"
10 #include "base/memory/scoped_ptr.h"
11 #include "net/quic/congestion_control/rtt_stats.h"
12 #include "net/quic/crypto/crypto_protocol.h"
13 #include "net/quic/proto/cached_network_parameters.pb.h"
14 #include "net/quic/quic_protocol.h"
15 #include "net/quic/quic_utils.h"
16 #include "net/quic/test_tools/mock_clock.h"
17 #include "net/quic/test_tools/quic_config_peer.h"
18 #include "testing/gtest/include/gtest/gtest.h"
20 namespace net {
21 namespace test {
23 // TODO(ianswett): A number of theses tests were written with the assumption of
24 // an initial CWND of 10. They have carefully calculated values which should be
25 // updated to be based on kInitialCongestionWindowInsecure.
26 const uint32 kInitialCongestionWindowPackets = 10;
27 const uint32 kDefaultWindowTCP =
28 kInitialCongestionWindowPackets * kDefaultTCPMSS;
29 const float kRenoBeta = 0.7f; // Reno backoff factor.
31 class TcpCubicBytesSenderPeer : public TcpCubicBytesSender {
32 public:
33 TcpCubicBytesSenderPeer(const QuicClock* clock, bool reno)
34 : TcpCubicBytesSender(clock,
35 &rtt_stats_,
36 reno,
37 kInitialCongestionWindowPackets,
38 kMaxTcpCongestionWindow,
39 &stats_) {}
41 const HybridSlowStart& hybrid_slow_start() const {
42 return hybrid_slow_start_;
45 float GetRenoBeta() const { return RenoBeta(); }
47 RttStats rtt_stats_;
48 QuicConnectionStats stats_;
51 class TcpCubicBytesSenderTest : public ::testing::Test {
52 protected:
53 TcpCubicBytesSenderTest()
54 : one_ms_(QuicTime::Delta::FromMilliseconds(1)),
55 sender_(new TcpCubicBytesSenderPeer(&clock_, true)),
56 sequence_number_(1),
57 acked_sequence_number_(0),
58 bytes_in_flight_(0) {
59 standard_packet_.bytes_sent = kDefaultTCPMSS;
62 int SendAvailableSendWindow() {
63 // Send as long as TimeUntilSend returns Zero.
64 int packets_sent = 0;
65 bool can_send = sender_->TimeUntilSend(clock_.Now(), bytes_in_flight_,
66 HAS_RETRANSMITTABLE_DATA).IsZero();
67 while (can_send) {
68 sender_->OnPacketSent(clock_.Now(), bytes_in_flight_, sequence_number_++,
69 kDefaultTCPMSS, HAS_RETRANSMITTABLE_DATA);
70 ++packets_sent;
71 bytes_in_flight_ += kDefaultTCPMSS;
72 can_send = sender_->TimeUntilSend(clock_.Now(), bytes_in_flight_,
73 HAS_RETRANSMITTABLE_DATA).IsZero();
75 return packets_sent;
78 // Normal is that TCP acks every other segment.
79 void AckNPackets(int n) {
80 sender_->rtt_stats_.UpdateRtt(QuicTime::Delta::FromMilliseconds(60),
81 QuicTime::Delta::Zero(), clock_.Now());
82 SendAlgorithmInterface::CongestionVector acked_packets;
83 SendAlgorithmInterface::CongestionVector lost_packets;
84 for (int i = 0; i < n; ++i) {
85 ++acked_sequence_number_;
86 acked_packets.push_back(
87 std::make_pair(acked_sequence_number_, standard_packet_));
89 sender_->OnCongestionEvent(true, bytes_in_flight_, acked_packets,
90 lost_packets);
91 bytes_in_flight_ -= n * kDefaultTCPMSS;
92 clock_.AdvanceTime(one_ms_);
95 void LoseNPackets(int n) {
96 SendAlgorithmInterface::CongestionVector acked_packets;
97 SendAlgorithmInterface::CongestionVector lost_packets;
98 for (int i = 0; i < n; ++i) {
99 ++acked_sequence_number_;
100 lost_packets.push_back(
101 std::make_pair(acked_sequence_number_, standard_packet_));
103 sender_->OnCongestionEvent(false, bytes_in_flight_, acked_packets,
104 lost_packets);
105 bytes_in_flight_ -= n * kDefaultTCPMSS;
108 // Does not increment acked_sequence_number_.
109 void LosePacket(QuicPacketSequenceNumber sequence_number) {
110 SendAlgorithmInterface::CongestionVector acked_packets;
111 SendAlgorithmInterface::CongestionVector lost_packets;
112 lost_packets.push_back(std::make_pair(sequence_number, standard_packet_));
113 sender_->OnCongestionEvent(false, bytes_in_flight_, acked_packets,
114 lost_packets);
115 bytes_in_flight_ -= kDefaultTCPMSS;
118 const QuicTime::Delta one_ms_;
119 MockClock clock_;
120 scoped_ptr<TcpCubicBytesSenderPeer> sender_;
121 QuicPacketSequenceNumber sequence_number_;
122 QuicPacketSequenceNumber acked_sequence_number_;
123 QuicByteCount bytes_in_flight_;
124 TransmissionInfo standard_packet_;
127 TEST_F(TcpCubicBytesSenderTest, SimpleSender) {
128 // At startup make sure we are at the default.
129 EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow());
130 // At startup make sure we can send.
131 EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(), 0,
132 HAS_RETRANSMITTABLE_DATA).IsZero());
133 // Make sure we can send.
134 EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(), 0,
135 HAS_RETRANSMITTABLE_DATA).IsZero());
136 // And that window is un-affected.
137 EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow());
139 // Fill the send window with data, then verify that we can't send.
140 SendAvailableSendWindow();
141 EXPECT_FALSE(sender_->TimeUntilSend(clock_.Now(),
142 sender_->GetCongestionWindow(),
143 HAS_RETRANSMITTABLE_DATA).IsZero());
146 TEST_F(TcpCubicBytesSenderTest, ApplicationLimitedSlowStart) {
147 // Send exactly 10 packets and ensure the CWND ends at 14 packets.
148 const int kNumberOfAcks = 5;
149 // At startup make sure we can send.
150 EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(), 0,
151 HAS_RETRANSMITTABLE_DATA).IsZero());
152 // Make sure we can send.
153 EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(), 0,
154 HAS_RETRANSMITTABLE_DATA).IsZero());
156 SendAvailableSendWindow();
157 for (int i = 0; i < kNumberOfAcks; ++i) {
158 AckNPackets(2);
160 QuicByteCount bytes_to_send = sender_->GetCongestionWindow();
161 // It's expected 2 acks will arrive when the bytes_in_flight are greater than
162 // half the CWND.
163 EXPECT_EQ(kDefaultWindowTCP + kDefaultTCPMSS * 2 * 2, bytes_to_send);
166 TEST_F(TcpCubicBytesSenderTest, ExponentialSlowStart) {
167 const int kNumberOfAcks = 20;
168 // At startup make sure we can send.
169 EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(), 0,
170 HAS_RETRANSMITTABLE_DATA).IsZero());
171 EXPECT_FALSE(sender_->HasReliableBandwidthEstimate());
172 EXPECT_EQ(QuicBandwidth::Zero(), sender_->BandwidthEstimate());
173 // Make sure we can send.
174 EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(), 0,
175 HAS_RETRANSMITTABLE_DATA).IsZero());
177 for (int i = 0; i < kNumberOfAcks; ++i) {
178 // Send our full send window.
179 SendAvailableSendWindow();
180 AckNPackets(2);
182 const QuicByteCount cwnd = sender_->GetCongestionWindow();
183 EXPECT_EQ(kDefaultWindowTCP + kDefaultTCPMSS * 2 * kNumberOfAcks, cwnd);
184 EXPECT_FALSE(sender_->HasReliableBandwidthEstimate());
185 EXPECT_EQ(QuicBandwidth::FromBytesAndTimeDelta(
186 cwnd, sender_->rtt_stats_.smoothed_rtt()),
187 sender_->BandwidthEstimate());
190 TEST_F(TcpCubicBytesSenderTest, SlowStartPacketLoss) {
191 sender_->SetNumEmulatedConnections(1);
192 const int kNumberOfAcks = 10;
193 for (int i = 0; i < kNumberOfAcks; ++i) {
194 // Send our full send window.
195 SendAvailableSendWindow();
196 AckNPackets(2);
198 SendAvailableSendWindow();
199 QuicByteCount expected_send_window =
200 kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks);
201 EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
203 // Lose a packet to exit slow start.
204 LoseNPackets(1);
205 size_t packets_in_recovery_window = expected_send_window / kDefaultTCPMSS;
207 // We should now have fallen out of slow start with a reduced window.
208 expected_send_window *= kRenoBeta;
209 EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
211 // Recovery phase. We need to ack every packet in the recovery window before
212 // we exit recovery.
213 size_t number_of_packets_in_window = expected_send_window / kDefaultTCPMSS;
214 DVLOG(1) << "number_packets: " << number_of_packets_in_window;
215 AckNPackets(packets_in_recovery_window);
216 SendAvailableSendWindow();
217 EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
219 // We need to ack an entire window before we increase CWND by 1.
220 AckNPackets(number_of_packets_in_window - 2);
221 SendAvailableSendWindow();
222 EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
224 // Next ack should increase cwnd by 1.
225 AckNPackets(1);
226 expected_send_window += kDefaultTCPMSS;
227 EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
229 // Now RTO and ensure slow start gets reset.
230 EXPECT_TRUE(sender_->hybrid_slow_start().started());
231 sender_->OnRetransmissionTimeout(true);
232 EXPECT_FALSE(sender_->hybrid_slow_start().started());
235 TEST_F(TcpCubicBytesSenderTest, NoPRRWhenLessThanOnePacketInFlight) {
236 SendAvailableSendWindow();
237 LoseNPackets(kInitialCongestionWindowPackets - 1);
238 AckNPackets(1);
239 // PRR will allow 2 packets for every ack during recovery.
240 EXPECT_EQ(2, SendAvailableSendWindow());
241 // Simulate abandoning all packets by supplying a bytes_in_flight of 0.
242 // PRR should now allow a packet to be sent, even though prr's state variables
243 // believe it has sent enough packets.
244 EXPECT_EQ(QuicTime::Delta::Zero(),
245 sender_->TimeUntilSend(clock_.Now(), 0, HAS_RETRANSMITTABLE_DATA));
248 TEST_F(TcpCubicBytesSenderTest, SlowStartPacketLossPRR) {
249 sender_->SetNumEmulatedConnections(1);
250 // Test based on the first example in RFC6937.
251 // Ack 10 packets in 5 acks to raise the CWND to 20, as in the example.
252 const int kNumberOfAcks = 5;
253 for (int i = 0; i < kNumberOfAcks; ++i) {
254 // Send our full send window.
255 SendAvailableSendWindow();
256 AckNPackets(2);
258 SendAvailableSendWindow();
259 QuicByteCount expected_send_window =
260 kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks);
261 EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
263 LoseNPackets(1);
265 // We should now have fallen out of slow start with a reduced window.
266 size_t send_window_before_loss = expected_send_window;
267 expected_send_window *= kRenoBeta;
268 EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
270 // Testing TCP proportional rate reduction.
271 // We should send packets paced over the received acks for the remaining
272 // outstanding packets. The number of packets before we exit recovery is the
273 // original CWND minus the packet that has been lost and the one which
274 // triggered the loss.
275 size_t remaining_packets_in_recovery =
276 send_window_before_loss / kDefaultTCPMSS - 2;
278 for (size_t i = 0; i < remaining_packets_in_recovery; ++i) {
279 AckNPackets(1);
280 SendAvailableSendWindow();
281 EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
284 // We need to ack another window before we increase CWND by 1.
285 size_t number_of_packets_in_window = expected_send_window / kDefaultTCPMSS;
286 for (size_t i = 0; i < number_of_packets_in_window; ++i) {
287 AckNPackets(1);
288 EXPECT_EQ(1, SendAvailableSendWindow());
289 EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
292 AckNPackets(1);
293 expected_send_window += kDefaultTCPMSS;
294 EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
297 TEST_F(TcpCubicBytesSenderTest, SlowStartBurstPacketLossPRR) {
298 sender_->SetNumEmulatedConnections(1);
299 // Test based on the second example in RFC6937, though we also implement
300 // forward acknowledgements, so the first two incoming acks will trigger
301 // PRR immediately.
302 // Ack 20 packets in 10 acks to raise the CWND to 30.
303 const int kNumberOfAcks = 10;
304 for (int i = 0; i < kNumberOfAcks; ++i) {
305 // Send our full send window.
306 SendAvailableSendWindow();
307 AckNPackets(2);
309 SendAvailableSendWindow();
310 QuicByteCount expected_send_window =
311 kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks);
312 EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
314 // Lose one more than the congestion window reduction, so that after loss,
315 // bytes_in_flight is lesser than the congestion window.
316 size_t send_window_after_loss = kRenoBeta * expected_send_window;
317 size_t num_packets_to_lose =
318 (expected_send_window - send_window_after_loss) / kDefaultTCPMSS + 1;
319 LoseNPackets(num_packets_to_lose);
320 // Immediately after the loss, ensure at least one packet can be sent.
321 // Losses without subsequent acks can occur with timer based loss detection.
322 EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(), bytes_in_flight_,
323 HAS_RETRANSMITTABLE_DATA).IsZero());
324 AckNPackets(1);
326 // We should now have fallen out of slow start with a reduced window.
327 expected_send_window *= kRenoBeta;
328 EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
330 // Only 2 packets should be allowed to be sent, per PRR-SSRB.
331 EXPECT_EQ(2, SendAvailableSendWindow());
333 // Ack the next packet, which triggers another loss.
334 LoseNPackets(1);
335 AckNPackets(1);
337 // Send 2 packets to simulate PRR-SSRB.
338 EXPECT_EQ(2, SendAvailableSendWindow());
340 // Ack the next packet, which triggers another loss.
341 LoseNPackets(1);
342 AckNPackets(1);
344 // Send 2 packets to simulate PRR-SSRB.
345 EXPECT_EQ(2, SendAvailableSendWindow());
347 // Exit recovery and return to sending at the new rate.
348 for (int i = 0; i < kNumberOfAcks; ++i) {
349 AckNPackets(1);
350 EXPECT_EQ(1, SendAvailableSendWindow());
354 TEST_F(TcpCubicBytesSenderTest, RTOCongestionWindow) {
355 EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow());
356 // Expect the window to decrease to the minimum once the RTO fires and slow
357 // start threshold to be set to 1/2 of the CWND.
358 sender_->OnRetransmissionTimeout(true);
359 EXPECT_EQ(2 * kDefaultTCPMSS, sender_->GetCongestionWindow());
360 EXPECT_EQ(5u * kDefaultTCPMSS, sender_->GetSlowStartThreshold());
363 TEST_F(TcpCubicBytesSenderTest, RTOCongestionWindowNoRetransmission) {
364 EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow());
366 // Expect the window to remain unchanged if the RTO fires but no packets are
367 // retransmitted.
368 sender_->OnRetransmissionTimeout(false);
369 EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow());
372 TEST_F(TcpCubicBytesSenderTest, RetransmissionDelay) {
373 const int64 kRttMs = 10;
374 const int64 kDeviationMs = 3;
375 EXPECT_EQ(QuicTime::Delta::Zero(), sender_->RetransmissionDelay());
377 sender_->rtt_stats_.UpdateRtt(QuicTime::Delta::FromMilliseconds(kRttMs),
378 QuicTime::Delta::Zero(), clock_.Now());
380 // Initial value is to set the median deviation to half of the initial rtt,
381 // the median in then multiplied by a factor of 4 and finally the smoothed rtt
382 // is added which is the initial rtt.
383 QuicTime::Delta expected_delay =
384 QuicTime::Delta::FromMilliseconds(kRttMs + kRttMs / 2 * 4);
385 EXPECT_EQ(expected_delay, sender_->RetransmissionDelay());
387 for (int i = 0; i < 100; ++i) {
388 // Run to make sure that we converge.
389 sender_->rtt_stats_.UpdateRtt(
390 QuicTime::Delta::FromMilliseconds(kRttMs + kDeviationMs),
391 QuicTime::Delta::Zero(), clock_.Now());
392 sender_->rtt_stats_.UpdateRtt(
393 QuicTime::Delta::FromMilliseconds(kRttMs - kDeviationMs),
394 QuicTime::Delta::Zero(), clock_.Now());
396 expected_delay = QuicTime::Delta::FromMilliseconds(kRttMs + kDeviationMs * 4);
398 EXPECT_NEAR(kRttMs, sender_->rtt_stats_.smoothed_rtt().ToMilliseconds(), 1);
399 EXPECT_NEAR(expected_delay.ToMilliseconds(),
400 sender_->RetransmissionDelay().ToMilliseconds(), 1);
401 EXPECT_EQ(
402 static_cast<int64>(sender_->GetCongestionWindow() * kNumMicrosPerSecond /
403 sender_->rtt_stats_.smoothed_rtt().ToMicroseconds()),
404 sender_->BandwidthEstimate().ToBytesPerSecond());
407 TEST_F(TcpCubicBytesSenderTest, MultipleLossesInOneWindow) {
408 SendAvailableSendWindow();
409 const QuicByteCount initial_window = sender_->GetCongestionWindow();
410 LosePacket(acked_sequence_number_ + 1);
411 const QuicByteCount post_loss_window = sender_->GetCongestionWindow();
412 EXPECT_GT(initial_window, post_loss_window);
413 LosePacket(acked_sequence_number_ + 3);
414 EXPECT_EQ(post_loss_window, sender_->GetCongestionWindow());
415 LosePacket(sequence_number_ - 1);
416 EXPECT_EQ(post_loss_window, sender_->GetCongestionWindow());
418 // Lose a later packet and ensure the window decreases.
419 LosePacket(sequence_number_);
420 EXPECT_GT(post_loss_window, sender_->GetCongestionWindow());
423 TEST_F(TcpCubicBytesSenderTest, DontTrackAckPackets) {
424 // Send a packet with no retransmittable data, and ensure it's not tracked.
425 EXPECT_FALSE(sender_->OnPacketSent(clock_.Now(), bytes_in_flight_,
426 sequence_number_++, kDefaultTCPMSS,
427 NO_RETRANSMITTABLE_DATA));
429 // Send a data packet with retransmittable data, and ensure it is tracked.
430 EXPECT_TRUE(sender_->OnPacketSent(clock_.Now(), bytes_in_flight_,
431 sequence_number_++, kDefaultTCPMSS,
432 HAS_RETRANSMITTABLE_DATA));
435 TEST_F(TcpCubicBytesSenderTest, ConfigureMaxInitialWindow) {
436 QuicConfig config;
438 // Verify that kCOPT: kIW10 forces the congestion window to the default of 10.
439 QuicTagVector options;
440 options.push_back(kIW10);
441 QuicConfigPeer::SetReceivedConnectionOptions(&config, options);
442 sender_->SetFromConfig(config, Perspective::IS_SERVER);
443 EXPECT_EQ(10u * kDefaultTCPMSS, sender_->GetCongestionWindow());
446 TEST_F(TcpCubicBytesSenderTest, 2ConnectionCongestionAvoidanceAtEndOfRecovery) {
447 sender_->SetNumEmulatedConnections(2);
448 // Ack 10 packets in 5 acks to raise the CWND to 20.
449 const int kNumberOfAcks = 5;
450 for (int i = 0; i < kNumberOfAcks; ++i) {
451 // Send our full send window.
452 SendAvailableSendWindow();
453 AckNPackets(2);
455 SendAvailableSendWindow();
456 QuicByteCount expected_send_window =
457 kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks);
458 EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
460 LoseNPackets(1);
462 // We should now have fallen out of slow start with a reduced window.
463 expected_send_window = expected_send_window * sender_->GetRenoBeta();
464 EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
466 // No congestion window growth should occur in recovery phase, i.e., until the
467 // currently outstanding 20 packets are acked.
468 for (int i = 0; i < 10; ++i) {
469 // Send our full send window.
470 SendAvailableSendWindow();
471 EXPECT_TRUE(sender_->InRecovery());
472 AckNPackets(2);
473 EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
475 EXPECT_FALSE(sender_->InRecovery());
477 // Out of recovery now. Congestion window should not grow for half an RTT.
478 size_t packets_in_send_window = expected_send_window / kDefaultTCPMSS;
479 SendAvailableSendWindow();
480 AckNPackets(packets_in_send_window / 2 - 2);
481 EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
483 // Next ack should increase congestion window by 1MSS.
484 SendAvailableSendWindow();
485 AckNPackets(2);
486 expected_send_window += kDefaultTCPMSS;
487 packets_in_send_window += 1;
488 EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
490 // Congestion window should remain steady again for half an RTT.
491 SendAvailableSendWindow();
492 AckNPackets(packets_in_send_window / 2 - 1);
493 EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
495 // Next ack should cause congestion window to grow by 1MSS.
496 SendAvailableSendWindow();
497 AckNPackets(2);
498 expected_send_window += kDefaultTCPMSS;
499 EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
502 TEST_F(TcpCubicBytesSenderTest, 1ConnectionCongestionAvoidanceAtEndOfRecovery) {
503 sender_->SetNumEmulatedConnections(1);
504 // Ack 10 packets in 5 acks to raise the CWND to 20.
505 const int kNumberOfAcks = 5;
506 for (int i = 0; i < kNumberOfAcks; ++i) {
507 // Send our full send window.
508 SendAvailableSendWindow();
509 AckNPackets(2);
511 SendAvailableSendWindow();
512 QuicByteCount expected_send_window =
513 kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks);
514 EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
516 LoseNPackets(1);
518 // We should now have fallen out of slow start with a reduced window.
519 expected_send_window *= kRenoBeta;
520 EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
522 // No congestion window growth should occur in recovery phase, i.e., until the
523 // currently outstanding 20 packets are acked.
524 for (int i = 0; i < 10; ++i) {
525 // Send our full send window.
526 SendAvailableSendWindow();
527 EXPECT_TRUE(sender_->InRecovery());
528 AckNPackets(2);
529 EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
531 EXPECT_FALSE(sender_->InRecovery());
533 // Out of recovery now. Congestion window should not grow during RTT.
534 for (uint64 i = 0; i < expected_send_window / kDefaultTCPMSS - 2; i += 2) {
535 // Send our full send window.
536 SendAvailableSendWindow();
537 AckNPackets(2);
538 EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
541 // Next ack should cause congestion window to grow by 1MSS.
542 SendAvailableSendWindow();
543 AckNPackets(2);
544 expected_send_window += kDefaultTCPMSS;
545 EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow());
548 TEST_F(TcpCubicBytesSenderTest, BandwidthResumption) {
549 // Test that when provided with CachedNetworkParameters and opted in to the
550 // bandwidth resumption experiment, that the TcpCubicSender sets initial CWND
551 // appropriately.
553 // Set some common values.
554 CachedNetworkParameters cached_network_params;
555 const QuicPacketCount kNumberOfPackets = 123;
556 const int kBandwidthEstimateBytesPerSecond =
557 kNumberOfPackets * kDefaultTCPMSS;
558 cached_network_params.set_bandwidth_estimate_bytes_per_second(
559 kBandwidthEstimateBytesPerSecond);
560 cached_network_params.set_min_rtt_ms(1000);
562 // Ensure that an old estimate is not used for bandwidth resumption.
563 cached_network_params.set_timestamp(clock_.WallNow().ToUNIXSeconds() -
564 (kNumSecondsPerHour + 1));
565 EXPECT_FALSE(sender_->ResumeConnectionState(cached_network_params, false));
566 EXPECT_EQ(10u * kDefaultTCPMSS, sender_->GetCongestionWindow());
568 // If the estimate is new enough, make sure it is used.
569 cached_network_params.set_timestamp(clock_.WallNow().ToUNIXSeconds() -
570 (kNumSecondsPerHour - 1));
571 EXPECT_TRUE(sender_->ResumeConnectionState(cached_network_params, false));
572 EXPECT_EQ(kNumberOfPackets * kDefaultTCPMSS, sender_->GetCongestionWindow());
574 // Resumed CWND is limited to be in a sensible range.
575 cached_network_params.set_bandwidth_estimate_bytes_per_second(
576 (kMaxTcpCongestionWindow + 1) * kDefaultTCPMSS);
577 EXPECT_TRUE(sender_->ResumeConnectionState(cached_network_params, false));
578 EXPECT_EQ(kMaxTcpCongestionWindow * kDefaultTCPMSS,
579 sender_->GetCongestionWindow());
581 cached_network_params.set_bandwidth_estimate_bytes_per_second(
582 (kMinCongestionWindowForBandwidthResumption - 1) * kDefaultTCPMSS);
583 EXPECT_TRUE(sender_->ResumeConnectionState(cached_network_params, false));
584 EXPECT_EQ(kMinCongestionWindowForBandwidthResumption * kDefaultTCPMSS,
585 sender_->GetCongestionWindow());
587 // Resume to the max value.
588 cached_network_params.set_max_bandwidth_estimate_bytes_per_second(
589 (kMinCongestionWindowForBandwidthResumption + 10) * kDefaultTCPMSS);
590 EXPECT_TRUE(sender_->ResumeConnectionState(cached_network_params, true));
591 EXPECT_EQ((kMinCongestionWindowForBandwidthResumption + 10) * kDefaultTCPMSS,
592 sender_->GetCongestionWindow());
595 } // namespace test
596 } // namespace net