We started redesigning GpuMemoryBuffer interface to handle multiple buffers [0].
[chromium-blink-merge.git] / net / quic / congestion_control / cubic_bytes.cc
blob77e90f46c3b2564bee6f6ffc44bff6ce27bd1340
1 // Copyright (c) 2015 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/quic/congestion_control/cubic_bytes.h"
7 #include <algorithm>
8 #include <cmath>
10 #include "base/basictypes.h"
11 #include "base/logging.h"
12 #include "net/quic/quic_protocol.h"
14 using std::max;
16 namespace net {
18 namespace {
20 // Constants based on TCP defaults.
21 // The following constants are in 2^10 fractions of a second instead of ms to
22 // allow a 10 shift right to divide.
23 const int kCubeScale = 40; // 1024*1024^3 (first 1024 is from 0.100^3)
24 // where 0.100 is 100 ms which is the scaling
25 // round trip time.
26 const int kCubeCongestionWindowScale = 410;
27 // The cube factor for packets in bytes.
28 const uint64 kCubeFactor = (GG_UINT64_C(1) << kCubeScale) /
29 kCubeCongestionWindowScale / kDefaultTCPMSS;
31 const uint32 kDefaultNumConnections = 2;
32 const float kBeta = 0.7f; // Default Cubic backoff factor.
33 // Additional backoff factor when loss occurs in the concave part of the Cubic
34 // curve. This additional backoff factor is expected to give up bandwidth to
35 // new concurrent flows and speed up convergence.
36 const float kBetaLastMax = 0.85f;
38 } // namespace
40 CubicBytes::CubicBytes(const QuicClock* clock)
41 : clock_(clock),
42 num_connections_(kDefaultNumConnections),
43 epoch_(QuicTime::Zero()),
44 last_update_time_(QuicTime::Zero()) {
45 Reset();
48 void CubicBytes::SetNumConnections(int num_connections) {
49 num_connections_ = num_connections;
52 float CubicBytes::Alpha() const {
53 // TCPFriendly alpha is described in Section 3.3 of the CUBIC paper. Note that
54 // beta here is a cwnd multiplier, and is equal to 1-beta from the paper.
55 // We derive the equivalent alpha for an N-connection emulation as:
56 const float beta = Beta();
57 return 3 * num_connections_ * num_connections_ * (1 - beta) / (1 + beta);
60 float CubicBytes::Beta() const {
61 // kNConnectionBeta is the backoff factor after loss for our N-connection
62 // emulation, which emulates the effective backoff of an ensemble of N
63 // TCP-Reno connections on a single loss event. The effective multiplier is
64 // computed as:
65 return (num_connections_ - 1 + kBeta) / num_connections_;
68 void CubicBytes::Reset() {
69 epoch_ = QuicTime::Zero(); // Reset time.
70 last_update_time_ = QuicTime::Zero(); // Reset time.
71 last_congestion_window_ = 0;
72 last_max_congestion_window_ = 0;
73 acked_bytes_count_ = 0;
74 estimated_tcp_congestion_window_ = 0;
75 origin_point_congestion_window_ = 0;
76 time_to_origin_point_ = 0;
77 last_target_congestion_window_ = 0;
80 QuicByteCount CubicBytes::CongestionWindowAfterPacketLoss(
81 QuicByteCount current_congestion_window) {
82 if (current_congestion_window < last_max_congestion_window_) {
83 // We never reached the old max, so assume we are competing with another
84 // flow. Use our extra back off factor to allow the other flow to go up.
85 last_max_congestion_window_ =
86 static_cast<int>(kBetaLastMax * current_congestion_window);
87 } else {
88 last_max_congestion_window_ = current_congestion_window;
90 epoch_ = QuicTime::Zero(); // Reset time.
91 return static_cast<int>(current_congestion_window * Beta());
94 QuicByteCount CubicBytes::CongestionWindowAfterAck(
95 QuicByteCount acked_bytes,
96 QuicByteCount current_congestion_window,
97 QuicTime::Delta delay_min) {
98 acked_bytes_count_ += acked_bytes;
99 QuicTime current_time = clock_->ApproximateNow();
101 // Cubic is "independent" of RTT, the update is limited by the time elapsed.
102 if (last_congestion_window_ == current_congestion_window &&
103 (current_time.Subtract(last_update_time_) <= MaxCubicTimeInterval())) {
104 return max(last_target_congestion_window_,
105 estimated_tcp_congestion_window_);
107 last_congestion_window_ = current_congestion_window;
108 last_update_time_ = current_time;
110 if (!epoch_.IsInitialized()) {
111 // First ACK after a loss event.
112 DVLOG(1) << "Start of epoch";
113 epoch_ = current_time; // Start of epoch.
114 acked_bytes_count_ = acked_bytes; // Reset count.
115 // Reset estimated_tcp_congestion_window_ to be in sync with cubic.
116 estimated_tcp_congestion_window_ = current_congestion_window;
117 if (last_max_congestion_window_ <= current_congestion_window) {
118 time_to_origin_point_ = 0;
119 origin_point_congestion_window_ = current_congestion_window;
120 } else {
121 time_to_origin_point_ =
122 static_cast<uint32>(cbrt(kCubeFactor * (last_max_congestion_window_ -
123 current_congestion_window)));
124 origin_point_congestion_window_ = last_max_congestion_window_;
127 // Change the time unit from microseconds to 2^10 fractions per second. Take
128 // the round trip time in account. This is done to allow us to use shift as a
129 // divide operator.
130 int64 elapsed_time =
131 (current_time.Add(delay_min).Subtract(epoch_).ToMicroseconds() << 10) /
132 kNumMicrosPerSecond;
134 int64 offset = time_to_origin_point_ - elapsed_time;
135 QuicByteCount delta_congestion_window =
136 ((kCubeCongestionWindowScale * offset * offset * offset) >> kCubeScale) *
137 kDefaultTCPMSS;
139 QuicByteCount target_congestion_window =
140 origin_point_congestion_window_ - delta_congestion_window;
142 DCHECK_LT(0u, estimated_tcp_congestion_window_);
143 // Increase the window by Alpha * 1 MSS of bytes every time we ack an
144 // estimated tcp window of bytes.
145 estimated_tcp_congestion_window_ += acked_bytes_count_ *
146 (Alpha() * kDefaultTCPMSS) /
147 estimated_tcp_congestion_window_;
148 acked_bytes_count_ = 0;
150 // We have a new cubic congestion window.
151 last_target_congestion_window_ = target_congestion_window;
153 // Compute target congestion_window based on cubic target and estimated TCP
154 // congestion_window, use highest (fastest).
155 if (target_congestion_window < estimated_tcp_congestion_window_) {
156 target_congestion_window = estimated_tcp_congestion_window_;
159 DVLOG(1) << "Target congestion_window: " << target_congestion_window;
160 return target_congestion_window;
163 } // namespace net