Revert "Revert "Revert 198403 "Move WrappedTexImage functionality to ui/gl"""
[chromium-blink-merge.git] / base / message_loop.cc
blob0d8a8ef0d769875f386e244b69932779e9ed2271
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/message_loop.h"
7 #include <algorithm>
9 #include "base/bind.h"
10 #include "base/compiler_specific.h"
11 #include "base/debug/alias.h"
12 #include "base/debug/trace_event.h"
13 #include "base/lazy_instance.h"
14 #include "base/logging.h"
15 #include "base/memory/scoped_ptr.h"
16 #include "base/message_loop/message_loop_proxy_impl.h"
17 #include "base/message_pump_default.h"
18 #include "base/metrics/histogram.h"
19 #include "base/metrics/statistics_recorder.h"
20 #include "base/run_loop.h"
21 #include "base/third_party/dynamic_annotations/dynamic_annotations.h"
22 #include "base/thread_task_runner_handle.h"
23 #include "base/threading/thread_local.h"
24 #include "base/time.h"
25 #include "base/tracked_objects.h"
27 #if defined(OS_MACOSX)
28 #include "base/message_pump_mac.h"
29 #endif
30 #if defined(OS_POSIX) && !defined(OS_IOS)
31 #include "base/message_pump_libevent.h"
32 #endif
33 #if defined(OS_ANDROID)
34 #include "base/message_pump_android.h"
35 #endif
37 #if defined(TOOLKIT_GTK)
38 #include <gdk/gdk.h>
39 #include <gdk/gdkx.h>
40 #endif
42 namespace base {
44 namespace {
46 // A lazily created thread local storage for quick access to a thread's message
47 // loop, if one exists. This should be safe and free of static constructors.
48 LazyInstance<base::ThreadLocalPointer<MessageLoop> > lazy_tls_ptr =
49 LAZY_INSTANCE_INITIALIZER;
51 // Logical events for Histogram profiling. Run with -message-loop-histogrammer
52 // to get an accounting of messages and actions taken on each thread.
53 const int kTaskRunEvent = 0x1;
54 const int kTimerEvent = 0x2;
56 // Provide range of message IDs for use in histogramming and debug display.
57 const int kLeastNonZeroMessageId = 1;
58 const int kMaxMessageId = 1099;
59 const int kNumberOfDistinctMessagesDisplayed = 1100;
61 // Provide a macro that takes an expression (such as a constant, or macro
62 // constant) and creates a pair to initalize an array of pairs. In this case,
63 // our pair consists of the expressions value, and the "stringized" version
64 // of the expression (i.e., the exrpression put in quotes). For example, if
65 // we have:
66 // #define FOO 2
67 // #define BAR 5
68 // then the following:
69 // VALUE_TO_NUMBER_AND_NAME(FOO + BAR)
70 // will expand to:
71 // {7, "FOO + BAR"}
72 // We use the resulting array as an argument to our histogram, which reads the
73 // number as a bucket identifier, and proceeds to use the corresponding name
74 // in the pair (i.e., the quoted string) when printing out a histogram.
75 #define VALUE_TO_NUMBER_AND_NAME(name) {name, #name},
77 const LinearHistogram::DescriptionPair event_descriptions_[] = {
78 // Provide some pretty print capability in our histogram for our internal
79 // messages.
81 // A few events we handle (kindred to messages), and used to profile actions.
82 VALUE_TO_NUMBER_AND_NAME(kTaskRunEvent)
83 VALUE_TO_NUMBER_AND_NAME(kTimerEvent)
85 {-1, NULL} // The list must be null terminated, per API to histogram.
88 bool enable_histogrammer_ = false;
90 MessageLoop::MessagePumpFactory* message_pump_for_ui_factory_ = NULL;
92 // Create a process-wide unique ID to represent this task in trace events. This
93 // will be mangled with a Process ID hash to reduce the likelyhood of colliding
94 // with MessageLoop pointers on other processes.
95 uint64 GetTaskTraceID(const PendingTask& task, MessageLoop* loop) {
96 return (static_cast<uint64>(task.sequence_num) << 32) |
97 static_cast<uint64>(reinterpret_cast<intptr_t>(loop));
100 } // namespace
102 //------------------------------------------------------------------------------
104 #if defined(OS_WIN)
106 // Upon a SEH exception in this thread, it restores the original unhandled
107 // exception filter.
108 static int SEHFilter(LPTOP_LEVEL_EXCEPTION_FILTER old_filter) {
109 ::SetUnhandledExceptionFilter(old_filter);
110 return EXCEPTION_CONTINUE_SEARCH;
113 // Retrieves a pointer to the current unhandled exception filter. There
114 // is no standalone getter method.
115 static LPTOP_LEVEL_EXCEPTION_FILTER GetTopSEHFilter() {
116 LPTOP_LEVEL_EXCEPTION_FILTER top_filter = NULL;
117 top_filter = ::SetUnhandledExceptionFilter(0);
118 ::SetUnhandledExceptionFilter(top_filter);
119 return top_filter;
122 #endif // defined(OS_WIN)
124 //------------------------------------------------------------------------------
126 MessageLoop::TaskObserver::TaskObserver() {
129 MessageLoop::TaskObserver::~TaskObserver() {
132 MessageLoop::DestructionObserver::~DestructionObserver() {
135 //------------------------------------------------------------------------------
137 MessageLoop::MessageLoop(Type type)
138 : type_(type),
139 nestable_tasks_allowed_(true),
140 exception_restoration_(false),
141 message_histogram_(NULL),
142 run_loop_(NULL),
143 #if defined(OS_WIN)
144 os_modal_loop_(false),
145 #endif // OS_WIN
146 next_sequence_num_(0) {
147 DCHECK(!current()) << "should only have one message loop per thread";
148 lazy_tls_ptr.Pointer()->Set(this);
150 message_loop_proxy_ = new MessageLoopProxyImpl();
151 thread_task_runner_handle_.reset(
152 new ThreadTaskRunnerHandle(message_loop_proxy_));
154 // TODO(rvargas): Get rid of the OS guards.
155 #if defined(OS_WIN)
156 #define MESSAGE_PUMP_UI new MessagePumpForUI()
157 #define MESSAGE_PUMP_IO new MessagePumpForIO()
158 #elif defined(OS_IOS)
159 #define MESSAGE_PUMP_UI MessagePumpMac::Create()
160 #define MESSAGE_PUMP_IO new MessagePumpIOSForIO()
161 #elif defined(OS_MACOSX)
162 #define MESSAGE_PUMP_UI MessagePumpMac::Create()
163 #define MESSAGE_PUMP_IO new MessagePumpLibevent()
164 #elif defined(OS_NACL)
165 // Currently NaCl doesn't have a UI MessageLoop.
166 // TODO(abarth): Figure out if we need this.
167 #define MESSAGE_PUMP_UI NULL
168 // ipc_channel_nacl.cc uses a worker thread to do socket reads currently, and
169 // doesn't require extra support for watching file descriptors.
170 #define MESSAGE_PUMP_IO new MessagePumpDefault();
171 #elif defined(OS_POSIX) // POSIX but not MACOSX.
172 #define MESSAGE_PUMP_UI new MessagePumpForUI()
173 #define MESSAGE_PUMP_IO new MessagePumpLibevent()
174 #else
175 #error Not implemented
176 #endif
178 if (type_ == TYPE_UI) {
179 if (message_pump_for_ui_factory_)
180 pump_ = message_pump_for_ui_factory_();
181 else
182 pump_ = MESSAGE_PUMP_UI;
183 } else if (type_ == TYPE_IO) {
184 pump_ = MESSAGE_PUMP_IO;
185 } else {
186 DCHECK_EQ(TYPE_DEFAULT, type_);
187 pump_ = new MessagePumpDefault();
191 MessageLoop::~MessageLoop() {
192 DCHECK_EQ(this, current());
194 DCHECK(!run_loop_);
196 // Clean up any unprocessed tasks, but take care: deleting a task could
197 // result in the addition of more tasks (e.g., via DeleteSoon). We set a
198 // limit on the number of times we will allow a deleted task to generate more
199 // tasks. Normally, we should only pass through this loop once or twice. If
200 // we end up hitting the loop limit, then it is probably due to one task that
201 // is being stubborn. Inspect the queues to see who is left.
202 bool did_work;
203 for (int i = 0; i < 100; ++i) {
204 DeletePendingTasks();
205 ReloadWorkQueue();
206 // If we end up with empty queues, then break out of the loop.
207 did_work = DeletePendingTasks();
208 if (!did_work)
209 break;
211 DCHECK(!did_work);
213 // Let interested parties have one last shot at accessing this.
214 FOR_EACH_OBSERVER(DestructionObserver, destruction_observers_,
215 WillDestroyCurrentMessageLoop());
217 thread_task_runner_handle_.reset();
219 // Tell the message_loop_proxy that we are dying.
220 static_cast<MessageLoopProxyImpl*>(message_loop_proxy_.get())->
221 WillDestroyCurrentMessageLoop();
222 message_loop_proxy_ = NULL;
224 // OK, now make it so that no one can find us.
225 lazy_tls_ptr.Pointer()->Set(NULL);
227 #if defined(OS_WIN)
228 // If we left the high-resolution timer activated, deactivate it now.
229 // Doing this is not-critical, it is mainly to make sure we track
230 // the high resolution timer activations properly in our unit tests.
231 if (!high_resolution_timer_expiration_.is_null()) {
232 Time::ActivateHighResolutionTimer(false);
233 high_resolution_timer_expiration_ = TimeTicks();
235 #endif
238 // static
239 MessageLoop* MessageLoop::current() {
240 // TODO(darin): sadly, we cannot enable this yet since people call us even
241 // when they have no intention of using us.
242 // DCHECK(loop) << "Ouch, did you forget to initialize me?";
243 return lazy_tls_ptr.Pointer()->Get();
246 // static
247 void MessageLoop::EnableHistogrammer(bool enable) {
248 enable_histogrammer_ = enable;
251 // static
252 bool MessageLoop::InitMessagePumpForUIFactory(MessagePumpFactory* factory) {
253 if (message_pump_for_ui_factory_)
254 return false;
256 message_pump_for_ui_factory_ = factory;
257 return true;
260 void MessageLoop::AddDestructionObserver(
261 DestructionObserver* destruction_observer) {
262 DCHECK_EQ(this, current());
263 destruction_observers_.AddObserver(destruction_observer);
266 void MessageLoop::RemoveDestructionObserver(
267 DestructionObserver* destruction_observer) {
268 DCHECK_EQ(this, current());
269 destruction_observers_.RemoveObserver(destruction_observer);
272 void MessageLoop::PostTask(
273 const tracked_objects::Location& from_here,
274 const Closure& task) {
275 DCHECK(!task.is_null()) << from_here.ToString();
276 PendingTask pending_task(
277 from_here, task, CalculateDelayedRuntime(TimeDelta()), true);
278 AddToIncomingQueue(&pending_task, false);
281 bool MessageLoop::TryPostTask(
282 const tracked_objects::Location& from_here,
283 const Closure& task) {
284 DCHECK(!task.is_null()) << from_here.ToString();
285 PendingTask pending_task(
286 from_here, task, CalculateDelayedRuntime(TimeDelta()), true);
287 return AddToIncomingQueue(&pending_task, true);
290 void MessageLoop::PostDelayedTask(
291 const tracked_objects::Location& from_here,
292 const Closure& task,
293 TimeDelta delay) {
294 DCHECK(!task.is_null()) << from_here.ToString();
295 PendingTask pending_task(
296 from_here, task, CalculateDelayedRuntime(delay), true);
297 AddToIncomingQueue(&pending_task, false);
300 void MessageLoop::PostNonNestableTask(
301 const tracked_objects::Location& from_here,
302 const Closure& task) {
303 DCHECK(!task.is_null()) << from_here.ToString();
304 PendingTask pending_task(
305 from_here, task, CalculateDelayedRuntime(TimeDelta()), false);
306 AddToIncomingQueue(&pending_task, false);
309 void MessageLoop::PostNonNestableDelayedTask(
310 const tracked_objects::Location& from_here,
311 const Closure& task,
312 TimeDelta delay) {
313 DCHECK(!task.is_null()) << from_here.ToString();
314 PendingTask pending_task(
315 from_here, task, CalculateDelayedRuntime(delay), false);
316 AddToIncomingQueue(&pending_task, false);
319 void MessageLoop::Run() {
320 RunLoop run_loop;
321 run_loop.Run();
324 void MessageLoop::RunUntilIdle() {
325 RunLoop run_loop;
326 run_loop.RunUntilIdle();
329 void MessageLoop::QuitWhenIdle() {
330 DCHECK_EQ(this, current());
331 if (run_loop_) {
332 run_loop_->quit_when_idle_received_ = true;
333 } else {
334 NOTREACHED() << "Must be inside Run to call Quit";
338 void MessageLoop::QuitNow() {
339 DCHECK_EQ(this, current());
340 if (run_loop_) {
341 pump_->Quit();
342 } else {
343 NOTREACHED() << "Must be inside Run to call Quit";
347 bool MessageLoop::IsType(Type type) const {
348 return type_ == type;
351 static void QuitCurrentWhenIdle() {
352 MessageLoop::current()->QuitWhenIdle();
355 // static
356 Closure MessageLoop::QuitWhenIdleClosure() {
357 return Bind(&QuitCurrentWhenIdle);
360 void MessageLoop::SetNestableTasksAllowed(bool allowed) {
361 if (nestable_tasks_allowed_ != allowed) {
362 nestable_tasks_allowed_ = allowed;
363 if (!nestable_tasks_allowed_)
364 return;
365 // Start the native pump if we are not already pumping.
366 pump_->ScheduleWork();
370 bool MessageLoop::NestableTasksAllowed() const {
371 return nestable_tasks_allowed_;
374 bool MessageLoop::IsNested() {
375 return run_loop_->run_depth_ > 1;
378 void MessageLoop::AddTaskObserver(TaskObserver* task_observer) {
379 DCHECK_EQ(this, current());
380 task_observers_.AddObserver(task_observer);
383 void MessageLoop::RemoveTaskObserver(TaskObserver* task_observer) {
384 DCHECK_EQ(this, current());
385 task_observers_.RemoveObserver(task_observer);
388 void MessageLoop::AssertIdle() const {
389 // We only check |incoming_queue_|, since we don't want to lock |work_queue_|.
390 AutoLock lock(incoming_queue_lock_);
391 DCHECK(incoming_queue_.empty());
394 bool MessageLoop::is_running() const {
395 DCHECK_EQ(this, current());
396 return run_loop_ != NULL;
399 //------------------------------------------------------------------------------
401 // Runs the loop in two different SEH modes:
402 // enable_SEH_restoration_ = false : any unhandled exception goes to the last
403 // one that calls SetUnhandledExceptionFilter().
404 // enable_SEH_restoration_ = true : any unhandled exception goes to the filter
405 // that was existed before the loop was run.
406 void MessageLoop::RunHandler() {
407 #if defined(OS_WIN)
408 if (exception_restoration_) {
409 RunInternalInSEHFrame();
410 return;
412 #endif
414 RunInternal();
417 #if defined(OS_WIN)
418 __declspec(noinline) void MessageLoop::RunInternalInSEHFrame() {
419 LPTOP_LEVEL_EXCEPTION_FILTER current_filter = GetTopSEHFilter();
420 __try {
421 RunInternal();
422 } __except(SEHFilter(current_filter)) {
424 return;
426 #endif
428 void MessageLoop::RunInternal() {
429 DCHECK_EQ(this, current());
431 StartHistogrammer();
433 #if !defined(OS_MACOSX) && !defined(OS_ANDROID)
434 if (run_loop_->dispatcher_ && type() == TYPE_UI) {
435 static_cast<MessagePumpForUI*>(pump_.get())->
436 RunWithDispatcher(this, run_loop_->dispatcher_);
437 return;
439 #endif
441 pump_->Run(this);
444 bool MessageLoop::ProcessNextDelayedNonNestableTask() {
445 if (run_loop_->run_depth_ != 1)
446 return false;
448 if (deferred_non_nestable_work_queue_.empty())
449 return false;
451 PendingTask pending_task = deferred_non_nestable_work_queue_.front();
452 deferred_non_nestable_work_queue_.pop();
454 RunTask(pending_task);
455 return true;
458 void MessageLoop::RunTask(const PendingTask& pending_task) {
459 TRACE_EVENT_FLOW_END0("task", "MessageLoop::PostTask",
460 TRACE_ID_MANGLE(GetTaskTraceID(pending_task, this)));
461 TRACE_EVENT2("task", "MessageLoop::RunTask",
462 "src_file", pending_task.posted_from.file_name(),
463 "src_func", pending_task.posted_from.function_name());
464 DCHECK(nestable_tasks_allowed_);
465 // Execute the task and assume the worst: It is probably not reentrant.
466 nestable_tasks_allowed_ = false;
468 // Before running the task, store the program counter where it was posted
469 // and deliberately alias it to ensure it is on the stack if the task
470 // crashes. Be careful not to assume that the variable itself will have the
471 // expected value when displayed by the optimizer in an optimized build.
472 // Look at a memory dump of the stack.
473 const void* program_counter =
474 pending_task.posted_from.program_counter();
475 debug::Alias(&program_counter);
477 HistogramEvent(kTaskRunEvent);
479 tracked_objects::TrackedTime start_time =
480 tracked_objects::ThreadData::NowForStartOfRun(pending_task.birth_tally);
482 FOR_EACH_OBSERVER(TaskObserver, task_observers_,
483 WillProcessTask(pending_task));
484 pending_task.task.Run();
485 FOR_EACH_OBSERVER(TaskObserver, task_observers_,
486 DidProcessTask(pending_task));
488 tracked_objects::ThreadData::TallyRunOnNamedThreadIfTracking(pending_task,
489 start_time, tracked_objects::ThreadData::NowForEndOfRun());
491 nestable_tasks_allowed_ = true;
494 bool MessageLoop::DeferOrRunPendingTask(const PendingTask& pending_task) {
495 if (pending_task.nestable || run_loop_->run_depth_ == 1) {
496 RunTask(pending_task);
497 // Show that we ran a task (Note: a new one might arrive as a
498 // consequence!).
499 return true;
502 // We couldn't run the task now because we're in a nested message loop
503 // and the task isn't nestable.
504 deferred_non_nestable_work_queue_.push(pending_task);
505 return false;
508 void MessageLoop::AddToDelayedWorkQueue(const PendingTask& pending_task) {
509 // Move to the delayed work queue.
510 delayed_work_queue_.push(pending_task);
513 void MessageLoop::ReloadWorkQueue() {
514 // We can improve performance of our loading tasks from incoming_queue_ to
515 // work_queue_ by waiting until the last minute (work_queue_ is empty) to
516 // load. That reduces the number of locks-per-task significantly when our
517 // queues get large.
518 if (!work_queue_.empty())
519 return; // Wait till we *really* need to lock and load.
521 // Acquire all we can from the inter-thread queue with one lock acquisition.
523 AutoLock lock(incoming_queue_lock_);
524 if (incoming_queue_.empty())
525 return;
526 incoming_queue_.Swap(&work_queue_); // Constant time
527 DCHECK(incoming_queue_.empty());
531 bool MessageLoop::DeletePendingTasks() {
532 bool did_work = !work_queue_.empty();
533 while (!work_queue_.empty()) {
534 PendingTask pending_task = work_queue_.front();
535 work_queue_.pop();
536 if (!pending_task.delayed_run_time.is_null()) {
537 // We want to delete delayed tasks in the same order in which they would
538 // normally be deleted in case of any funny dependencies between delayed
539 // tasks.
540 AddToDelayedWorkQueue(pending_task);
543 did_work |= !deferred_non_nestable_work_queue_.empty();
544 while (!deferred_non_nestable_work_queue_.empty()) {
545 deferred_non_nestable_work_queue_.pop();
547 did_work |= !delayed_work_queue_.empty();
549 // Historically, we always delete the task regardless of valgrind status. It's
550 // not completely clear why we want to leak them in the loops above. This
551 // code is replicating legacy behavior, and should not be considered
552 // absolutely "correct" behavior. See TODO above about deleting all tasks
553 // when it's safe.
554 while (!delayed_work_queue_.empty()) {
555 delayed_work_queue_.pop();
557 return did_work;
560 TimeTicks MessageLoop::CalculateDelayedRuntime(TimeDelta delay) {
561 TimeTicks delayed_run_time;
562 if (delay > TimeDelta()) {
563 delayed_run_time = TimeTicks::Now() + delay;
565 #if defined(OS_WIN)
566 if (high_resolution_timer_expiration_.is_null()) {
567 // Windows timers are granular to 15.6ms. If we only set high-res
568 // timers for those under 15.6ms, then a 18ms timer ticks at ~32ms,
569 // which as a percentage is pretty inaccurate. So enable high
570 // res timers for any timer which is within 2x of the granularity.
571 // This is a tradeoff between accuracy and power management.
572 bool needs_high_res_timers = delay.InMilliseconds() <
573 (2 * Time::kMinLowResolutionThresholdMs);
574 if (needs_high_res_timers) {
575 if (Time::ActivateHighResolutionTimer(true)) {
576 high_resolution_timer_expiration_ = TimeTicks::Now() +
577 TimeDelta::FromMilliseconds(kHighResolutionTimerModeLeaseTimeMs);
581 #endif
582 } else {
583 DCHECK_EQ(delay.InMilliseconds(), 0) << "delay should not be negative";
586 #if defined(OS_WIN)
587 if (!high_resolution_timer_expiration_.is_null()) {
588 if (TimeTicks::Now() > high_resolution_timer_expiration_) {
589 Time::ActivateHighResolutionTimer(false);
590 high_resolution_timer_expiration_ = TimeTicks();
593 #endif
595 return delayed_run_time;
598 // Possibly called on a background thread!
599 bool MessageLoop::AddToIncomingQueue(PendingTask* pending_task,
600 bool use_try_lock) {
601 // Warning: Don't try to short-circuit, and handle this thread's tasks more
602 // directly, as it could starve handling of foreign threads. Put every task
603 // into this queue.
605 scoped_refptr<MessagePump> pump;
607 if (use_try_lock) {
608 if (!incoming_queue_lock_.Try()) {
609 pending_task->task.Reset();
610 return false;
612 } else {
613 incoming_queue_lock_.Acquire();
615 AutoLock locked(incoming_queue_lock_, AutoLock::AlreadyAcquired());
616 // Initialize the sequence number. The sequence number is used for delayed
617 // tasks (to faciliate FIFO sorting when two tasks have the same
618 // delayed_run_time value) and for identifying the task in about:tracing.
619 pending_task->sequence_num = next_sequence_num_++;
621 TRACE_EVENT_FLOW_BEGIN0("task", "MessageLoop::PostTask",
622 TRACE_ID_MANGLE(GetTaskTraceID(*pending_task, this)));
624 bool was_empty = incoming_queue_.empty();
625 incoming_queue_.push(*pending_task);
626 pending_task->task.Reset();
627 if (!was_empty)
628 return true; // Someone else should have started the sub-pump.
630 pump = pump_;
632 // Since the incoming_queue_ may contain a task that destroys this message
633 // loop, we cannot exit incoming_queue_lock_ until we are done with |this|.
634 // We use a stack-based reference to the message pump so that we can call
635 // ScheduleWork outside of incoming_queue_lock_.
637 pump->ScheduleWork();
638 return true;
641 //------------------------------------------------------------------------------
642 // Method and data for histogramming events and actions taken by each instance
643 // on each thread.
645 void MessageLoop::StartHistogrammer() {
646 #if !defined(OS_NACL) // NaCl build has no metrics code.
647 if (enable_histogrammer_ && !message_histogram_
648 && StatisticsRecorder::IsActive()) {
649 DCHECK(!thread_name_.empty());
650 message_histogram_ = LinearHistogram::FactoryGetWithRangeDescription(
651 "MsgLoop:" + thread_name_,
652 kLeastNonZeroMessageId, kMaxMessageId,
653 kNumberOfDistinctMessagesDisplayed,
654 message_histogram_->kHexRangePrintingFlag,
655 event_descriptions_);
657 #endif
660 void MessageLoop::HistogramEvent(int event) {
661 #if !defined(OS_NACL)
662 if (message_histogram_)
663 message_histogram_->Add(event);
664 #endif
667 bool MessageLoop::DoWork() {
668 if (!nestable_tasks_allowed_) {
669 // Task can't be executed right now.
670 return false;
673 for (;;) {
674 ReloadWorkQueue();
675 if (work_queue_.empty())
676 break;
678 // Execute oldest task.
679 do {
680 PendingTask pending_task = work_queue_.front();
681 work_queue_.pop();
682 if (!pending_task.delayed_run_time.is_null()) {
683 AddToDelayedWorkQueue(pending_task);
684 // If we changed the topmost task, then it is time to reschedule.
685 if (delayed_work_queue_.top().task.Equals(pending_task.task))
686 pump_->ScheduleDelayedWork(pending_task.delayed_run_time);
687 } else {
688 if (DeferOrRunPendingTask(pending_task))
689 return true;
691 } while (!work_queue_.empty());
694 // Nothing happened.
695 return false;
698 bool MessageLoop::DoDelayedWork(TimeTicks* next_delayed_work_time) {
699 if (!nestable_tasks_allowed_ || delayed_work_queue_.empty()) {
700 recent_time_ = *next_delayed_work_time = TimeTicks();
701 return false;
704 // When we "fall behind," there will be a lot of tasks in the delayed work
705 // queue that are ready to run. To increase efficiency when we fall behind,
706 // we will only call Time::Now() intermittently, and then process all tasks
707 // that are ready to run before calling it again. As a result, the more we
708 // fall behind (and have a lot of ready-to-run delayed tasks), the more
709 // efficient we'll be at handling the tasks.
711 TimeTicks next_run_time = delayed_work_queue_.top().delayed_run_time;
712 if (next_run_time > recent_time_) {
713 recent_time_ = TimeTicks::Now(); // Get a better view of Now();
714 if (next_run_time > recent_time_) {
715 *next_delayed_work_time = next_run_time;
716 return false;
720 PendingTask pending_task = delayed_work_queue_.top();
721 delayed_work_queue_.pop();
723 if (!delayed_work_queue_.empty())
724 *next_delayed_work_time = delayed_work_queue_.top().delayed_run_time;
726 return DeferOrRunPendingTask(pending_task);
729 bool MessageLoop::DoIdleWork() {
730 if (ProcessNextDelayedNonNestableTask())
731 return true;
733 if (run_loop_->quit_when_idle_received_)
734 pump_->Quit();
736 return false;
739 void MessageLoop::DeleteSoonInternal(const tracked_objects::Location& from_here,
740 void(*deleter)(const void*),
741 const void* object) {
742 PostNonNestableTask(from_here, Bind(deleter, object));
745 void MessageLoop::ReleaseSoonInternal(
746 const tracked_objects::Location& from_here,
747 void(*releaser)(const void*),
748 const void* object) {
749 PostNonNestableTask(from_here, Bind(releaser, object));
752 //------------------------------------------------------------------------------
753 // MessageLoopForUI
755 #if defined(OS_WIN)
756 void MessageLoopForUI::DidProcessMessage(const MSG& message) {
757 pump_win()->DidProcessMessage(message);
759 #endif // defined(OS_WIN)
761 #if defined(OS_ANDROID)
762 void MessageLoopForUI::Start() {
763 // No Histogram support for UI message loop as it is managed by Java side
764 static_cast<MessagePumpForUI*>(pump_.get())->Start(this);
766 #endif
768 #if defined(OS_IOS)
769 void MessageLoopForUI::Attach() {
770 static_cast<MessagePumpUIApplication*>(pump_.get())->Attach(this);
772 #endif
774 #if !defined(OS_MACOSX) && !defined(OS_NACL) && !defined(OS_ANDROID)
775 void MessageLoopForUI::AddObserver(Observer* observer) {
776 pump_ui()->AddObserver(observer);
779 void MessageLoopForUI::RemoveObserver(Observer* observer) {
780 pump_ui()->RemoveObserver(observer);
783 #endif // !defined(OS_MACOSX) && !defined(OS_NACL) && !defined(OS_ANDROID)
785 //------------------------------------------------------------------------------
786 // MessageLoopForIO
788 #if defined(OS_WIN)
790 void MessageLoopForIO::RegisterIOHandler(HANDLE file, IOHandler* handler) {
791 pump_io()->RegisterIOHandler(file, handler);
794 bool MessageLoopForIO::RegisterJobObject(HANDLE job, IOHandler* handler) {
795 return pump_io()->RegisterJobObject(job, handler);
798 bool MessageLoopForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
799 return pump_io()->WaitForIOCompletion(timeout, filter);
802 #elif defined(OS_IOS)
804 bool MessageLoopForIO::WatchFileDescriptor(int fd,
805 bool persistent,
806 Mode mode,
807 FileDescriptorWatcher *controller,
808 Watcher *delegate) {
809 return pump_io()->WatchFileDescriptor(
811 persistent,
812 mode,
813 controller,
814 delegate);
817 #elif defined(OS_POSIX) && !defined(OS_NACL)
819 bool MessageLoopForIO::WatchFileDescriptor(int fd,
820 bool persistent,
821 Mode mode,
822 FileDescriptorWatcher *controller,
823 Watcher *delegate) {
824 return pump_libevent()->WatchFileDescriptor(
826 persistent,
827 mode,
828 controller,
829 delegate);
832 #endif
834 } // namespace base