1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/http/transport_security_state.h"
7 #if defined(USE_OPENSSL)
8 #include <openssl/ecdsa.h>
9 #include <openssl/ssl.h>
10 #else // !defined(USE_OPENSSL)
20 #include "base/base64.h"
21 #include "base/build_time.h"
22 #include "base/json/json_writer.h"
23 #include "base/logging.h"
24 #include "base/memory/scoped_ptr.h"
25 #include "base/metrics/histogram_macros.h"
26 #include "base/metrics/sparse_histogram.h"
27 #include "base/sha1.h"
28 #include "base/strings/string_number_conversions.h"
29 #include "base/strings/string_util.h"
30 #include "base/strings/stringprintf.h"
31 #include "base/strings/utf_string_conversions.h"
32 #include "base/time/time.h"
33 #include "base/values.h"
34 #include "crypto/sha2.h"
35 #include "net/base/dns_util.h"
36 #include "net/base/host_port_pair.h"
37 #include "net/cert/x509_cert_types.h"
38 #include "net/cert/x509_certificate.h"
39 #include "net/http/http_security_headers.h"
40 #include "net/ssl/ssl_info.h"
43 #if defined(USE_OPENSSL)
44 #include "crypto/openssl_util.h"
51 #include "net/http/transport_security_state_static.h"
53 std::string
TimeToISO8601(const base::Time
& t
) {
54 base::Time::Exploded exploded
;
55 t
.UTCExplode(&exploded
);
56 return base::StringPrintf(
57 "%04d-%02d-%02dT%02d:%02d:%02d.%03dZ", exploded
.year
, exploded
.month
,
58 exploded
.day_of_month
, exploded
.hour
, exploded
.minute
, exploded
.second
,
59 exploded
.millisecond
);
62 scoped_ptr
<base::ListValue
> GetPEMEncodedChainAsList(
63 const net::X509Certificate
* cert_chain
) {
65 return make_scoped_ptr(new base::ListValue());
67 scoped_ptr
<base::ListValue
> result(new base::ListValue());
68 std::vector
<std::string
> pem_encoded_chain
;
69 cert_chain
->GetPEMEncodedChain(&pem_encoded_chain
);
70 for (const std::string
& cert
: pem_encoded_chain
)
71 result
->Append(make_scoped_ptr(new base::StringValue(cert
)));
76 bool GetHPKPReport(const HostPortPair
& host_port_pair
,
77 const TransportSecurityState::PKPState
& pkp_state
,
78 const X509Certificate
* served_certificate_chain
,
79 const X509Certificate
* validated_certificate_chain
,
80 std::string
* serialized_report
) {
81 // TODO(estark): keep track of reports already sent and rate-limit,
83 if (pkp_state
.report_uri
.is_empty())
86 base::DictionaryValue report
;
87 base::Time now
= base::Time::Now();
88 report
.SetString("date-time", TimeToISO8601(now
));
89 report
.SetString("hostname", host_port_pair
.host());
90 report
.SetInteger("port", host_port_pair
.port());
91 report
.SetString("effective-expiration-date",
92 TimeToISO8601(pkp_state
.expiry
));
93 report
.SetBoolean("include-subdomains", pkp_state
.include_subdomains
);
94 report
.SetString("noted-hostname", pkp_state
.domain
);
96 scoped_ptr
<base::ListValue
> served_certificate_chain_list
=
97 GetPEMEncodedChainAsList(served_certificate_chain
);
98 scoped_ptr
<base::ListValue
> validated_certificate_chain_list
=
99 GetPEMEncodedChainAsList(validated_certificate_chain
);
100 report
.Set("served-certificate-chain", served_certificate_chain_list
.Pass());
101 report
.Set("validated-certificate-chain",
102 validated_certificate_chain_list
.Pass());
104 scoped_ptr
<base::ListValue
> known_pin_list(new base::ListValue());
105 for (const auto& hash_value
: pkp_state
.spki_hashes
) {
106 std::string known_pin
;
108 switch (hash_value
.tag
) {
109 case HASH_VALUE_SHA1
:
110 known_pin
+= "pin-sha1=";
112 case HASH_VALUE_SHA256
:
113 known_pin
+= "pin-sha256=";
117 std::string base64_value
;
119 base::StringPiece(reinterpret_cast<const char*>(hash_value
.data()),
122 known_pin
+= "\"" + base64_value
+ "\"";
124 known_pin_list
->Append(
125 scoped_ptr
<base::Value
>(new base::StringValue(known_pin
)));
128 report
.Set("known-pins", known_pin_list
.Pass());
130 if (!base::JSONWriter::Write(report
, serialized_report
)) {
131 LOG(ERROR
) << "Failed to serialize HPKP violation report.";
138 std::string
HashesToBase64String(const HashValueVector
& hashes
) {
140 for (size_t i
= 0; i
!= hashes
.size(); ++i
) {
143 str
+= hashes
[i
].ToString();
148 std::string
HashHost(const std::string
& canonicalized_host
) {
149 char hashed
[crypto::kSHA256Length
];
150 crypto::SHA256HashString(canonicalized_host
, hashed
, sizeof(hashed
));
151 return std::string(hashed
, sizeof(hashed
));
154 // Returns true if the intersection of |a| and |b| is not empty. If either
155 // |a| or |b| is empty, returns false.
156 bool HashesIntersect(const HashValueVector
& a
,
157 const HashValueVector
& b
) {
158 for (HashValueVector::const_iterator i
= a
.begin(); i
!= a
.end(); ++i
) {
159 HashValueVector::const_iterator j
=
160 std::find_if(b
.begin(), b
.end(), HashValuesEqual(*i
));
167 bool AddHash(const char* sha1_hash
,
168 HashValueVector
* out
) {
169 HashValue
hash(HASH_VALUE_SHA1
);
170 memcpy(hash
.data(), sha1_hash
, hash
.size());
171 out
->push_back(hash
);
175 // Converts |hostname| from dotted form ("www.google.com") to the form
176 // used in DNS: "\x03www\x06google\x03com", lowercases that, and returns
178 std::string
CanonicalizeHost(const std::string
& host
) {
179 // We cannot perform the operations as detailed in the spec here as |host|
180 // has already undergone IDN processing before it reached us. Thus, we check
181 // that there are no invalid characters in the host and lowercase the result.
182 std::string new_host
;
183 if (!DNSDomainFromDot(host
, &new_host
)) {
184 // DNSDomainFromDot can fail if any label is > 63 bytes or if the whole
185 // name is >255 bytes. However, search terms can have those properties.
186 return std::string();
189 for (size_t i
= 0; new_host
[i
]; i
+= new_host
[i
] + 1) {
190 const unsigned label_length
= static_cast<unsigned>(new_host
[i
]);
194 for (size_t j
= 0; j
< label_length
; ++j
) {
195 new_host
[i
+ 1 + j
] = static_cast<char>(tolower(new_host
[i
+ 1 + j
]));
202 // BitReader is a class that allows a bytestring to be read bit-by-bit.
205 BitReader(const uint8
* bytes
, size_t num_bits
)
208 num_bytes_((num_bits
+ 7) / 8),
209 current_byte_index_(0),
212 // Next sets |*out| to the next bit from the input. It returns false if no
213 // more bits are available or true otherwise.
214 bool Next(bool* out
) {
215 if (num_bits_used_
== 8) {
216 if (current_byte_index_
>= num_bytes_
) {
219 current_byte_
= bytes_
[current_byte_index_
++];
223 *out
= 1 & (current_byte_
>> (7 - num_bits_used_
));
228 // Read sets the |num_bits| least-significant bits of |*out| to the value of
229 // the next |num_bits| bits from the input. It returns false if there are
230 // insufficient bits in the input or true otherwise.
231 bool Read(unsigned num_bits
, uint32
* out
) {
232 DCHECK_LE(num_bits
, 32u);
235 for (unsigned i
= 0; i
< num_bits
; ++i
) {
240 ret
|= static_cast<uint32
>(bit
) << (num_bits
- 1 - i
);
247 // Unary sets |*out| to the result of decoding a unary value from the input.
248 // It returns false if there were insufficient bits in the input and true
250 bool Unary(size_t* out
) {
268 // Seek sets the current offest in the input to bit number |offset|. It
269 // returns true if |offset| is within the range of the input and false
271 bool Seek(size_t offset
) {
272 if (offset
>= num_bits_
) {
275 current_byte_index_
= offset
/ 8;
276 current_byte_
= bytes_
[current_byte_index_
++];
277 num_bits_used_
= offset
% 8;
282 const uint8
* const bytes_
;
283 const size_t num_bits_
;
284 const size_t num_bytes_
;
285 // current_byte_index_ contains the current byte offset in |bytes_|.
286 size_t current_byte_index_
;
287 // current_byte_ contains the current byte of the input.
289 // num_bits_used_ contains the number of bits of |current_byte_| that have
291 unsigned num_bits_used_
;
294 // HuffmanDecoder is a very simple Huffman reader. The input Huffman tree is
295 // simply encoded as a series of two-byte structures. The first byte determines
296 // the "0" pointer for that node and the second the "1" pointer. Each byte
297 // either has the MSB set, in which case the bottom 7 bits are the value for
298 // that position, or else the bottom seven bits contain the index of a node.
300 // The tree is decoded by walking rather than a table-driven approach.
301 class HuffmanDecoder
{
303 HuffmanDecoder(const uint8
* tree
, size_t tree_bytes
)
304 : tree_(tree
), tree_bytes_(tree_bytes
) {}
306 bool Decode(BitReader
* reader
, char* out
) {
307 const uint8
* current
= &tree_
[tree_bytes_
- 2];
311 if (!reader
->Next(&bit
)) {
315 uint8 b
= current
[bit
];
317 *out
= static_cast<char>(b
& 0x7f);
321 unsigned offset
= static_cast<unsigned>(b
) * 2;
322 DCHECK_LT(offset
, tree_bytes_
);
323 if (offset
>= tree_bytes_
) {
327 current
= &tree_
[offset
];
332 const uint8
* const tree_
;
333 const size_t tree_bytes_
;
336 // PreloadResult is the result of resolving a specific name in the preloaded
338 struct PreloadResult
{
341 // hostname_offset contains the number of bytes from the start of the given
342 // hostname where the name of the matching entry starts.
343 size_t hostname_offset
;
344 bool sts_include_subdomains
;
345 bool pkp_include_subdomains
;
350 // DecodeHSTSPreloadRaw resolves |hostname| in the preloaded data. It returns
351 // false on internal error and true otherwise. After a successful return,
352 // |*out_found| is true iff a relevant entry has been found. If so, |*out|
353 // contains the details.
355 // Don't call this function, call DecodeHSTSPreload, below.
357 // Although this code should be robust, it never processes attacker-controlled
358 // data -- it only operates on the preloaded data built into the binary.
360 // The preloaded data is represented as a trie and matches the hostname
361 // backwards. Each node in the trie starts with a number of characters, which
362 // must match exactly. After that is a dispatch table which maps the next
363 // character in the hostname to another node in the trie.
365 // In the dispatch table, the zero character represents the "end of string"
366 // (which is the *beginning* of a hostname since we process it backwards). The
367 // value in that case is special -- rather than an offset to another trie node,
368 // it contains the HSTS information: whether subdomains are included, pinsets
369 // etc. If an "end of string" matches a period in the hostname then the
370 // information is remembered because, if no more specific node is found, then
371 // that information applies to the hostname.
373 // Dispatch tables are always given in order, but the "end of string" (zero)
374 // value always comes before an entry for '.'.
375 bool DecodeHSTSPreloadRaw(const std::string
& search_hostname
,
377 PreloadResult
* out
) {
378 HuffmanDecoder
huffman(kHSTSHuffmanTree
, sizeof(kHSTSHuffmanTree
));
379 BitReader
reader(kPreloadedHSTSData
, kPreloadedHSTSBits
);
380 size_t bit_offset
= kHSTSRootPosition
;
381 static const char kEndOfString
= 0;
382 static const char kEndOfTable
= 127;
386 // Ensure that |search_hostname| is a valid hostname before
388 if (CanonicalizeHost(search_hostname
).empty()) {
392 // Normalize any trailing '.' used for DNS suffix searches.
393 std::string hostname
= search_hostname
;
394 size_t found
= hostname
.find_last_not_of('.');
395 if (found
!= std::string::npos
) {
396 hostname
.erase(found
+ 1);
401 // |hostname| has already undergone IDN conversion, so should be
402 // entirely A-Labels. The preload data is entirely normalized to
404 base::StringToLowerASCII(&hostname
);
406 if (hostname
.empty()) {
410 // hostname_offset contains one more than the index of the current character
411 // in the hostname that is being considered. It's one greater so that we can
412 // represent the position just before the beginning (with zero).
413 size_t hostname_offset
= hostname
.size();
416 // Seek to the desired location.
417 if (!reader
.Seek(bit_offset
)) {
421 // Decode the unary length of the common prefix.
422 size_t prefix_length
;
423 if (!reader
.Unary(&prefix_length
)) {
427 // Match each character in the prefix.
428 for (size_t i
= 0; i
< prefix_length
; ++i
) {
429 if (hostname_offset
== 0) {
430 // We can't match the terminator with a prefix string.
435 if (!huffman
.Decode(&reader
, &c
)) {
438 if (hostname
[hostname_offset
- 1] != c
) {
444 bool is_first_offset
= true;
445 size_t current_offset
= 0;
447 // Next is the dispatch table.
450 if (!huffman
.Decode(&reader
, &c
)) {
453 if (c
== kEndOfTable
) {
458 if (c
== kEndOfString
) {
460 if (!reader
.Next(&tmp
.sts_include_subdomains
) ||
461 !reader
.Next(&tmp
.force_https
) || !reader
.Next(&tmp
.has_pins
)) {
465 tmp
.pkp_include_subdomains
= tmp
.sts_include_subdomains
;
468 if (!reader
.Read(4, &tmp
.pinset_id
) ||
469 !reader
.Read(9, &tmp
.domain_id
) ||
470 (!tmp
.sts_include_subdomains
&&
471 !reader
.Next(&tmp
.pkp_include_subdomains
))) {
476 tmp
.hostname_offset
= hostname_offset
;
478 if (hostname_offset
== 0 || hostname
[hostname_offset
- 1] == '.') {
479 *out_found
= tmp
.sts_include_subdomains
|| tmp
.pkp_include_subdomains
;
482 if (hostname_offset
> 0) {
483 out
->force_https
&= tmp
.sts_include_subdomains
;
493 // The entries in a dispatch table are in order thus we can tell if there
494 // will be no match if the current character past the one that we want.
495 if (hostname_offset
== 0 || hostname
[hostname_offset
- 1] < c
) {
499 if (is_first_offset
) {
500 // The first offset is backwards from the current position.
501 uint32 jump_delta_bits
;
503 if (!reader
.Read(5, &jump_delta_bits
) ||
504 !reader
.Read(jump_delta_bits
, &jump_delta
)) {
508 if (bit_offset
< jump_delta
) {
512 current_offset
= bit_offset
- jump_delta
;
513 is_first_offset
= false;
515 // Subsequent offsets are forward from the target of the first offset.
517 if (!reader
.Read(1, &is_long_jump
)) {
523 if (!reader
.Read(7, &jump_delta
)) {
527 uint32 jump_delta_bits
;
528 if (!reader
.Read(4, &jump_delta_bits
) ||
529 !reader
.Read(jump_delta_bits
+ 8, &jump_delta
)) {
534 current_offset
+= jump_delta
;
535 if (current_offset
>= bit_offset
) {
540 DCHECK_LT(0u, hostname_offset
);
541 if (hostname
[hostname_offset
- 1] == c
) {
542 bit_offset
= current_offset
;
550 bool DecodeHSTSPreload(const std::string
& hostname
, PreloadResult
* out
) {
552 if (!DecodeHSTSPreloadRaw(hostname
, &found
, out
)) {
553 DCHECK(false) << "Internal error in DecodeHSTSPreloadRaw for hostname "
563 TransportSecurityState::TransportSecurityState()
564 : delegate_(nullptr), report_sender_(nullptr), enable_static_pins_(true) {
565 // Static pinning is only enabled for official builds to make sure that
566 // others don't end up with pins that cannot be easily updated.
567 #if !defined(OFFICIAL_BUILD) || defined(OS_ANDROID) || defined(OS_IOS)
568 enable_static_pins_
= false;
570 DCHECK(CalledOnValidThread());
573 // Both HSTS and HPKP cause fatal SSL errors, so return true if a
575 bool TransportSecurityState::ShouldSSLErrorsBeFatal(const std::string
& host
) {
578 if (GetStaticDomainState(host
, &sts_state
, &pkp_state
))
580 if (GetDynamicSTSState(host
, &sts_state
))
582 return GetDynamicPKPState(host
, &pkp_state
);
585 bool TransportSecurityState::ShouldUpgradeToSSL(const std::string
& host
) {
586 STSState dynamic_sts_state
;
587 if (GetDynamicSTSState(host
, &dynamic_sts_state
))
588 return dynamic_sts_state
.ShouldUpgradeToSSL();
590 STSState static_sts_state
;
592 if (GetStaticDomainState(host
, &static_sts_state
, &unused
) &&
593 static_sts_state
.ShouldUpgradeToSSL()) {
600 bool TransportSecurityState::CheckPublicKeyPins(
601 const HostPortPair
& host_port_pair
,
602 bool is_issued_by_known_root
,
603 const HashValueVector
& public_key_hashes
,
604 const X509Certificate
* served_certificate_chain
,
605 const X509Certificate
* validated_certificate_chain
,
606 const PublicKeyPinReportStatus report_status
,
607 std::string
* pinning_failure_log
) {
608 // Perform pin validation if, and only if, all these conditions obtain:
610 // * the server's certificate chain chains up to a known root (i.e. not a
611 // user-installed trust anchor); and
612 // * the server actually has public key pins.
613 if (!is_issued_by_known_root
|| !HasPublicKeyPins(host_port_pair
.host())) {
617 bool pins_are_valid
= CheckPublicKeyPinsImpl(
618 host_port_pair
, public_key_hashes
, served_certificate_chain
,
619 validated_certificate_chain
, report_status
, pinning_failure_log
);
620 if (!pins_are_valid
) {
621 LOG(ERROR
) << *pinning_failure_log
;
622 ReportUMAOnPinFailure(host_port_pair
.host());
625 UMA_HISTOGRAM_BOOLEAN("Net.PublicKeyPinSuccess", pins_are_valid
);
626 return pins_are_valid
;
629 bool TransportSecurityState::HasPublicKeyPins(const std::string
& host
) {
630 PKPState dynamic_state
;
631 if (GetDynamicPKPState(host
, &dynamic_state
))
632 return dynamic_state
.HasPublicKeyPins();
635 PKPState static_pkp_state
;
636 if (GetStaticDomainState(host
, &unused
, &static_pkp_state
)) {
637 if (static_pkp_state
.HasPublicKeyPins())
644 void TransportSecurityState::SetDelegate(
645 TransportSecurityState::Delegate
* delegate
) {
646 DCHECK(CalledOnValidThread());
647 delegate_
= delegate
;
650 void TransportSecurityState::SetReportSender(
651 TransportSecurityState::ReportSender
* report_sender
) {
652 DCHECK(CalledOnValidThread());
653 report_sender_
= report_sender
;
656 void TransportSecurityState::AddHSTSInternal(
657 const std::string
& host
,
658 TransportSecurityState::STSState::UpgradeMode upgrade_mode
,
659 const base::Time
& expiry
,
660 bool include_subdomains
) {
661 DCHECK(CalledOnValidThread());
664 sts_state
.last_observed
= base::Time::Now();
665 sts_state
.include_subdomains
= include_subdomains
;
666 sts_state
.expiry
= expiry
;
667 sts_state
.upgrade_mode
= upgrade_mode
;
669 EnableSTSHost(host
, sts_state
);
672 void TransportSecurityState::AddHPKPInternal(const std::string
& host
,
673 const base::Time
& last_observed
,
674 const base::Time
& expiry
,
675 bool include_subdomains
,
676 const HashValueVector
& hashes
,
677 const GURL
& report_uri
) {
678 DCHECK(CalledOnValidThread());
681 pkp_state
.last_observed
= last_observed
;
682 pkp_state
.expiry
= expiry
;
683 pkp_state
.include_subdomains
= include_subdomains
;
684 pkp_state
.spki_hashes
= hashes
;
685 pkp_state
.report_uri
= report_uri
;
687 EnablePKPHost(host
, pkp_state
);
690 void TransportSecurityState::EnableSTSHost(const std::string
& host
,
691 const STSState
& state
) {
692 DCHECK(CalledOnValidThread());
694 const std::string canonicalized_host
= CanonicalizeHost(host
);
695 if (canonicalized_host
.empty())
698 // Only store new state when HSTS is explicitly enabled. If it is
699 // disabled, remove the state from the enabled hosts.
700 if (state
.ShouldUpgradeToSSL()) {
701 STSState
sts_state(state
);
702 // No need to store this value since it is redundant. (|canonicalized_host|
704 sts_state
.domain
.clear();
706 enabled_sts_hosts_
[HashHost(canonicalized_host
)] = sts_state
;
708 const std::string hashed_host
= HashHost(canonicalized_host
);
709 enabled_sts_hosts_
.erase(hashed_host
);
715 void TransportSecurityState::EnablePKPHost(const std::string
& host
,
716 const PKPState
& state
) {
717 DCHECK(CalledOnValidThread());
719 const std::string canonicalized_host
= CanonicalizeHost(host
);
720 if (canonicalized_host
.empty())
723 // Only store new state when HPKP is explicitly enabled. If it is
724 // disabled, remove the state from the enabled hosts.
725 if (state
.HasPublicKeyPins()) {
726 PKPState
pkp_state(state
);
727 // No need to store this value since it is redundant. (|canonicalized_host|
729 pkp_state
.domain
.clear();
731 enabled_pkp_hosts_
[HashHost(canonicalized_host
)] = pkp_state
;
733 const std::string hashed_host
= HashHost(canonicalized_host
);
734 enabled_pkp_hosts_
.erase(hashed_host
);
740 bool TransportSecurityState::DeleteDynamicDataForHost(const std::string
& host
) {
741 DCHECK(CalledOnValidThread());
743 const std::string canonicalized_host
= CanonicalizeHost(host
);
744 if (canonicalized_host
.empty())
747 const std::string hashed_host
= HashHost(canonicalized_host
);
748 bool deleted
= false;
749 STSStateMap::iterator sts_interator
= enabled_sts_hosts_
.find(hashed_host
);
750 if (sts_interator
!= enabled_sts_hosts_
.end()) {
751 enabled_sts_hosts_
.erase(sts_interator
);
755 PKPStateMap::iterator pkp_iterator
= enabled_pkp_hosts_
.find(hashed_host
);
756 if (pkp_iterator
!= enabled_pkp_hosts_
.end()) {
757 enabled_pkp_hosts_
.erase(pkp_iterator
);
766 void TransportSecurityState::ClearDynamicData() {
767 DCHECK(CalledOnValidThread());
768 enabled_sts_hosts_
.clear();
769 enabled_pkp_hosts_
.clear();
772 void TransportSecurityState::DeleteAllDynamicDataSince(const base::Time
& time
) {
773 DCHECK(CalledOnValidThread());
775 bool dirtied
= false;
776 STSStateMap::iterator sts_iterator
= enabled_sts_hosts_
.begin();
777 while (sts_iterator
!= enabled_sts_hosts_
.end()) {
778 if (sts_iterator
->second
.last_observed
>= time
) {
780 enabled_sts_hosts_
.erase(sts_iterator
++);
787 PKPStateMap::iterator pkp_iterator
= enabled_pkp_hosts_
.begin();
788 while (pkp_iterator
!= enabled_pkp_hosts_
.end()) {
789 if (pkp_iterator
->second
.last_observed
>= time
) {
791 enabled_pkp_hosts_
.erase(pkp_iterator
++);
802 TransportSecurityState::~TransportSecurityState() {
803 DCHECK(CalledOnValidThread());
806 void TransportSecurityState::DirtyNotify() {
807 DCHECK(CalledOnValidThread());
810 delegate_
->StateIsDirty(this);
813 bool TransportSecurityState::AddHSTSHeader(const std::string
& host
,
814 const std::string
& value
) {
815 DCHECK(CalledOnValidThread());
817 base::Time now
= base::Time::Now();
818 base::TimeDelta max_age
;
819 bool include_subdomains
;
820 if (!ParseHSTSHeader(value
, &max_age
, &include_subdomains
)) {
824 // Handle max-age == 0.
825 STSState::UpgradeMode upgrade_mode
;
826 if (max_age
.InSeconds() == 0) {
827 upgrade_mode
= STSState::MODE_DEFAULT
;
829 upgrade_mode
= STSState::MODE_FORCE_HTTPS
;
832 AddHSTSInternal(host
, upgrade_mode
, now
+ max_age
, include_subdomains
);
836 bool TransportSecurityState::AddHPKPHeader(const std::string
& host
,
837 const std::string
& value
,
838 const SSLInfo
& ssl_info
) {
839 DCHECK(CalledOnValidThread());
841 base::Time now
= base::Time::Now();
842 base::TimeDelta max_age
;
843 bool include_subdomains
;
844 HashValueVector spki_hashes
;
847 if (!ParseHPKPHeader(value
, ssl_info
.public_key_hashes
, &max_age
,
848 &include_subdomains
, &spki_hashes
, &report_uri
)) {
851 // Handle max-age == 0.
852 if (max_age
.InSeconds() == 0)
854 AddHPKPInternal(host
, now
, now
+ max_age
, include_subdomains
, spki_hashes
,
859 void TransportSecurityState::AddHSTS(const std::string
& host
,
860 const base::Time
& expiry
,
861 bool include_subdomains
) {
862 DCHECK(CalledOnValidThread());
863 AddHSTSInternal(host
, STSState::MODE_FORCE_HTTPS
, expiry
, include_subdomains
);
866 void TransportSecurityState::AddHPKP(const std::string
& host
,
867 const base::Time
& expiry
,
868 bool include_subdomains
,
869 const HashValueVector
& hashes
,
870 const GURL
& report_uri
) {
871 DCHECK(CalledOnValidThread());
872 AddHPKPInternal(host
, base::Time::Now(), expiry
, include_subdomains
, hashes
,
877 bool TransportSecurityState::IsGooglePinnedProperty(const std::string
& host
) {
878 PreloadResult result
;
879 return DecodeHSTSPreload(host
, &result
) && result
.has_pins
&&
880 kPinsets
[result
.pinset_id
].accepted_pins
== kGoogleAcceptableCerts
;
884 void TransportSecurityState::ReportUMAOnPinFailure(const std::string
& host
) {
885 PreloadResult result
;
886 if (!DecodeHSTSPreload(host
, &result
) ||
891 DCHECK(result
.domain_id
!= DOMAIN_NOT_PINNED
);
893 UMA_HISTOGRAM_SPARSE_SLOWLY(
894 "Net.PublicKeyPinFailureDomain", result
.domain_id
);
898 bool TransportSecurityState::IsBuildTimely() {
899 // If the build metadata aren't embedded in the binary then we can't use the
900 // build time to determine if the build is timely, return true by default. If
901 // we're building an official build then keep using the build time, even if
902 // it's invalid it'd be a date in the past and this function will return
904 #if defined(DONT_EMBED_BUILD_METADATA) && !defined(OFFICIAL_BUILD)
907 const base::Time build_time
= base::GetBuildTime();
908 // We consider built-in information to be timely for 10 weeks.
909 return (base::Time::Now() - build_time
).InDays() < 70 /* 10 weeks */;
913 bool TransportSecurityState::CheckPublicKeyPinsImpl(
914 const HostPortPair
& host_port_pair
,
915 const HashValueVector
& hashes
,
916 const X509Certificate
* served_certificate_chain
,
917 const X509Certificate
* validated_certificate_chain
,
918 const PublicKeyPinReportStatus report_status
,
919 std::string
* failure_log
) {
923 if (!GetDynamicPKPState(host_port_pair
.host(), &pkp_state
) &&
924 !GetStaticDomainState(host_port_pair
.host(), &unused
, &pkp_state
)) {
925 // HasPublicKeyPins should have returned true in order for this method
926 // to have been called, so if we fall through to here, it's an error.
930 if (pkp_state
.CheckPublicKeyPins(hashes
, failure_log
))
933 if (!report_sender_
|| report_status
!= ENABLE_PIN_REPORTS
||
934 pkp_state
.report_uri
.is_empty()) {
938 DCHECK(pkp_state
.report_uri
.is_valid());
940 std::string serialized_report
;
942 if (!GetHPKPReport(host_port_pair
, pkp_state
, served_certificate_chain
,
943 validated_certificate_chain
, &serialized_report
)) {
947 report_sender_
->Send(pkp_state
.report_uri
, serialized_report
);
952 bool TransportSecurityState::GetStaticDomainState(const std::string
& host
,
954 PKPState
* pkp_state
) const {
955 DCHECK(CalledOnValidThread());
957 sts_state
->upgrade_mode
= STSState::MODE_FORCE_HTTPS
;
958 sts_state
->include_subdomains
= false;
959 pkp_state
->include_subdomains
= false;
961 if (!IsBuildTimely())
964 PreloadResult result
;
965 if (!DecodeHSTSPreload(host
, &result
))
968 sts_state
->domain
= host
.substr(result
.hostname_offset
);
969 pkp_state
->domain
= sts_state
->domain
;
970 sts_state
->include_subdomains
= result
.sts_include_subdomains
;
971 sts_state
->last_observed
= base::GetBuildTime();
972 sts_state
->upgrade_mode
= STSState::MODE_DEFAULT
;
973 if (result
.force_https
) {
974 sts_state
->upgrade_mode
= STSState::MODE_FORCE_HTTPS
;
977 if (enable_static_pins_
&& result
.has_pins
) {
978 pkp_state
->include_subdomains
= result
.pkp_include_subdomains
;
979 pkp_state
->last_observed
= base::GetBuildTime();
981 if (result
.pinset_id
>= arraysize(kPinsets
))
983 const Pinset
*pinset
= &kPinsets
[result
.pinset_id
];
985 if (pinset
->accepted_pins
) {
986 const char* const* sha1_hash
= pinset
->accepted_pins
;
988 AddHash(*sha1_hash
, &pkp_state
->spki_hashes
);
992 if (pinset
->rejected_pins
) {
993 const char* const* sha1_hash
= pinset
->rejected_pins
;
995 AddHash(*sha1_hash
, &pkp_state
->bad_spki_hashes
);
1004 bool TransportSecurityState::GetDynamicSTSState(const std::string
& host
,
1006 DCHECK(CalledOnValidThread());
1008 const std::string canonicalized_host
= CanonicalizeHost(host
);
1009 if (canonicalized_host
.empty())
1012 base::Time
current_time(base::Time::Now());
1014 for (size_t i
= 0; canonicalized_host
[i
]; i
+= canonicalized_host
[i
] + 1) {
1015 std::string
host_sub_chunk(&canonicalized_host
[i
],
1016 canonicalized_host
.size() - i
);
1017 STSStateMap::iterator j
= enabled_sts_hosts_
.find(HashHost(host_sub_chunk
));
1018 if (j
== enabled_sts_hosts_
.end())
1021 // If the entry is invalid, drop it.
1022 if (current_time
> j
->second
.expiry
) {
1023 enabled_sts_hosts_
.erase(j
);
1028 // If this is the most specific STS match, add it to the result. Note: a STS
1029 // entry at a more specific domain overrides a less specific domain whether
1030 // or not |include_subdomains| is set.
1031 if (current_time
<= j
->second
.expiry
) {
1032 if (i
== 0 || j
->second
.include_subdomains
) {
1033 *result
= j
->second
;
1034 result
->domain
= DNSDomainToString(host_sub_chunk
);
1045 bool TransportSecurityState::GetDynamicPKPState(const std::string
& host
,
1047 DCHECK(CalledOnValidThread());
1049 const std::string canonicalized_host
= CanonicalizeHost(host
);
1050 if (canonicalized_host
.empty())
1053 base::Time
current_time(base::Time::Now());
1055 for (size_t i
= 0; canonicalized_host
[i
]; i
+= canonicalized_host
[i
] + 1) {
1056 std::string
host_sub_chunk(&canonicalized_host
[i
],
1057 canonicalized_host
.size() - i
);
1058 PKPStateMap::iterator j
= enabled_pkp_hosts_
.find(HashHost(host_sub_chunk
));
1059 if (j
== enabled_pkp_hosts_
.end())
1062 // If the entry is invalid, drop it.
1063 if (current_time
> j
->second
.expiry
) {
1064 enabled_pkp_hosts_
.erase(j
);
1069 // If this is the most specific PKP match, add it to the result. Note: a PKP
1070 // entry at a more specific domain overrides a less specific domain whether
1071 // or not |include_subdomains| is set.
1072 if (current_time
<= j
->second
.expiry
) {
1073 if (i
== 0 || j
->second
.include_subdomains
) {
1074 *result
= j
->second
;
1075 result
->domain
= DNSDomainToString(host_sub_chunk
);
1086 void TransportSecurityState::AddOrUpdateEnabledSTSHosts(
1087 const std::string
& hashed_host
,
1088 const STSState
& state
) {
1089 DCHECK(CalledOnValidThread());
1090 DCHECK(state
.ShouldUpgradeToSSL());
1091 enabled_sts_hosts_
[hashed_host
] = state
;
1094 void TransportSecurityState::AddOrUpdateEnabledPKPHosts(
1095 const std::string
& hashed_host
,
1096 const PKPState
& state
) {
1097 DCHECK(CalledOnValidThread());
1098 DCHECK(state
.HasPublicKeyPins());
1099 enabled_pkp_hosts_
[hashed_host
] = state
;
1102 TransportSecurityState::STSState::STSState()
1103 : upgrade_mode(MODE_DEFAULT
), include_subdomains(false) {
1106 TransportSecurityState::STSState::~STSState() {
1109 bool TransportSecurityState::STSState::ShouldUpgradeToSSL() const {
1110 return upgrade_mode
== MODE_FORCE_HTTPS
;
1113 bool TransportSecurityState::STSState::ShouldSSLErrorsBeFatal() const {
1117 TransportSecurityState::STSStateIterator::STSStateIterator(
1118 const TransportSecurityState
& state
)
1119 : iterator_(state
.enabled_sts_hosts_
.begin()),
1120 end_(state
.enabled_sts_hosts_
.end()) {
1123 TransportSecurityState::STSStateIterator::~STSStateIterator() {
1126 TransportSecurityState::PKPState::PKPState() : include_subdomains(false) {
1129 TransportSecurityState::PKPState::~PKPState() {
1132 bool TransportSecurityState::PKPState::CheckPublicKeyPins(
1133 const HashValueVector
& hashes
,
1134 std::string
* failure_log
) const {
1135 // Validate that hashes is not empty. By the time this code is called (in
1136 // production), that should never happen, but it's good to be defensive.
1137 // And, hashes *can* be empty in some test scenarios.
1138 if (hashes
.empty()) {
1139 failure_log
->append(
1140 "Rejecting empty public key chain for public-key-pinned domains: " +
1145 if (HashesIntersect(bad_spki_hashes
, hashes
)) {
1146 failure_log
->append("Rejecting public key chain for domain " + domain
+
1147 ". Validated chain: " + HashesToBase64String(hashes
) +
1148 ", matches one or more bad hashes: " +
1149 HashesToBase64String(bad_spki_hashes
));
1153 // If there are no pins, then any valid chain is acceptable.
1154 if (spki_hashes
.empty())
1157 if (HashesIntersect(spki_hashes
, hashes
)) {
1161 failure_log
->append("Rejecting public key chain for domain " + domain
+
1162 ". Validated chain: " + HashesToBase64String(hashes
) +
1163 ", expected: " + HashesToBase64String(spki_hashes
));
1167 bool TransportSecurityState::PKPState::HasPublicKeyPins() const {
1168 return spki_hashes
.size() > 0 || bad_spki_hashes
.size() > 0;
1171 bool TransportSecurityState::PKPState::ShouldSSLErrorsBeFatal() const {
1175 TransportSecurityState::PKPStateIterator::PKPStateIterator(
1176 const TransportSecurityState
& state
)
1177 : iterator_(state
.enabled_pkp_hosts_
.begin()),
1178 end_(state
.enabled_pkp_hosts_
.end()) {
1181 TransportSecurityState::PKPStateIterator::~PKPStateIterator() {