Add long running gmail memory benchmark for background tab.
[chromium-blink-merge.git] / tools / perf / metrics / timeline.py
blob56a64ae30871a609768ea4801f27dbae6204a66b
1 # Copyright 2014 The Chromium Authors. All rights reserved.
2 # Use of this source code is governed by a BSD-style license that can be
3 # found in the LICENSE file.
4 import collections
6 from telemetry.util.statistics import DivideIfPossibleOrZero
7 from telemetry.value import scalar
8 from telemetry.web_perf.metrics import timeline_based_metric
11 class LoadTimesTimelineMetric(timeline_based_metric.TimelineBasedMetric):
12 def __init__(self):
13 super(LoadTimesTimelineMetric, self).__init__()
14 self.report_main_thread_only = True
16 def AddResults(self, model, renderer_thread, interaction_records, results):
17 assert model
18 assert len(interaction_records) == 1, (
19 'LoadTimesTimelineMetric cannot compute metrics for more than 1 time '
20 'range.')
21 interaction_record = interaction_records[0]
22 if self.report_main_thread_only:
23 thread_filter = 'CrRendererMain'
24 else:
25 thread_filter = None
27 events_by_name = collections.defaultdict(list)
28 renderer_process = renderer_thread.parent
30 for thread in renderer_process.threads.itervalues():
32 if thread_filter and not thread.name in thread_filter:
33 continue
35 thread_name = thread.name.replace('/','_')
36 for e in thread.IterAllSlicesInRange(interaction_record.start,
37 interaction_record.end):
38 events_by_name[e.name].append(e)
40 for event_name, event_group in events_by_name.iteritems():
41 times = [event.self_time for event in event_group]
42 total = sum(times)
43 biggest_jank = max(times)
45 # Results objects cannot contain the '.' character, so remove that here.
46 sanitized_event_name = event_name.replace('.', '_')
48 full_name = thread_name + '|' + sanitized_event_name
49 results.AddValue(scalar.ScalarValue(
50 results.current_page, full_name, 'ms', total))
51 results.AddValue(scalar.ScalarValue(
52 results.current_page, full_name + '_max', 'ms', biggest_jank))
53 results.AddValue(scalar.ScalarValue(
54 results.current_page, full_name + '_avg', 'ms', total / len(times)))
56 for counter_name, counter in renderer_process.counters.iteritems():
57 total = sum(counter.totals)
59 # Results objects cannot contain the '.' character, so remove that here.
60 sanitized_counter_name = counter_name.replace('.', '_')
62 results.AddValue(scalar.ScalarValue(
63 results.current_page, sanitized_counter_name, 'count', total))
64 results.AddValue(scalar.ScalarValue(
65 results.current_page, sanitized_counter_name + '_avg', 'count',
66 total / float(len(counter.totals))))
68 # We want to generate a consistant picture of our thread usage, despite
69 # having several process configurations (in-proc-gpu/single-proc).
70 # Since we can't isolate renderer threads in single-process mode, we
71 # always sum renderer-process threads' times. We also sum all io-threads
72 # for simplicity.
73 TimelineThreadCategories = {
74 "Chrome_InProcGpuThread": "GPU",
75 "CrGpuMain" : "GPU",
76 "AsyncTransferThread" : "GPU_transfer",
77 "CrBrowserMain" : "browser",
78 "Browser Compositor" : "browser",
79 "CrRendererMain" : "renderer_main",
80 "Compositor" : "renderer_compositor",
81 "IOThread" : "IO",
82 "CompositorTileWorker" : "raster",
83 "DummyThreadName1" : "other",
84 "DummyThreadName2" : "total_fast_path",
85 "DummyThreadName3" : "total_all"
88 _MatchBySubString = ["IOThread", "CompositorTileWorker"]
90 AllThreads = TimelineThreadCategories.values()
91 NoThreads = []
92 FastPathThreads = ["GPU", "renderer_compositor", "browser", "IO"]
94 ReportMainThreadOnly = ["renderer_main"]
95 ReportSilkDetails = ["renderer_main"]
97 # TODO(epenner): Thread names above are likely fairly stable but trace names
98 # could change. We should formalize these traces to keep this robust.
99 OverheadTraceCategory = "trace_event_overhead"
100 OverheadTraceName = "overhead"
101 FrameTraceName = "::SwapBuffers"
102 FrameTraceThreadName = "renderer_compositor"
104 IntervalNames = ["frame", "second"]
106 def Rate(numerator, denominator):
107 return DivideIfPossibleOrZero(numerator, denominator)
109 def ClockOverheadForEvent(event):
110 if (event.category == OverheadTraceCategory and
111 event.name == OverheadTraceName):
112 return event.duration
113 else:
114 return 0
116 def CpuOverheadForEvent(event):
117 if (event.category == OverheadTraceCategory and
118 event.thread_duration):
119 return event.thread_duration
120 else:
121 return 0
123 def ThreadCategoryName(thread_name):
124 thread_category = "other"
125 for substring, category in TimelineThreadCategories.iteritems():
126 if substring in _MatchBySubString and substring in thread_name:
127 thread_category = category
128 if thread_name in TimelineThreadCategories:
129 thread_category = TimelineThreadCategories[thread_name]
130 return thread_category
132 def ThreadCpuTimeResultName(thread_category, interval_name):
133 # This isn't a good name, but I don't want to change it and lose continuity.
134 return "thread_" + thread_category + "_cpu_time_per_" + interval_name
136 def ThreadTasksResultName(thread_category, interval_name):
137 return "tasks_per_" + interval_name + "_" + thread_category
139 def ThreadMeanFrameTimeResultName(thread_category):
140 return "mean_frame_time_" + thread_category
142 def ThreadDetailResultName(thread_category, interval_name, detail):
143 detail_sanitized = detail.replace('.','_')
144 interval_sanitized = ""
145 # Special-case per-frame detail names to preserve continuity.
146 if interval_name == "frame":
147 interval_sanitized = ""
148 else:
149 interval_sanitized = "_per_" + interval_name
150 return (
151 "thread_" + thread_category + interval_sanitized + "|" + detail_sanitized)
153 def ThreadCpuTimeUnits(interval_name):
154 if interval_name == "second":
155 return "%"
156 return "ms"
158 def ThreadCpuTimeValue(ms_cpu_time_per_interval, interval_name):
159 # When measuring seconds of CPU time per second of system time, report a %.
160 if interval_name == "second":
161 return (ms_cpu_time_per_interval / 1000.0) * 100.0
162 return ms_cpu_time_per_interval
165 class ResultsForThread(object):
166 def __init__(self, model, record_ranges, name):
167 self.model = model
168 self.toplevel_slices = []
169 self.all_slices = []
170 self.name = name
171 self.record_ranges = record_ranges
172 self.all_action_time = \
173 sum([record_range.bounds for record_range in self.record_ranges])
175 @property
176 def clock_time(self):
177 clock_duration = sum([x.duration for x in self.toplevel_slices])
178 clock_overhead = sum([ClockOverheadForEvent(x) for x in self.all_slices])
179 return clock_duration - clock_overhead
181 @property
182 def cpu_time(self):
183 cpu_duration = 0
184 cpu_overhead = sum([CpuOverheadForEvent(x) for x in self.all_slices])
185 for x in self.toplevel_slices:
186 # Only report thread-duration if we have it for all events.
188 # A thread_duration of 0 is valid, so this only returns 0 if it is None.
189 if x.thread_duration == None:
190 if not x.duration:
191 continue
192 else:
193 return 0
194 else:
195 cpu_duration += x.thread_duration
196 return cpu_duration - cpu_overhead
198 def SlicesInActions(self, slices):
199 slices_in_actions = []
200 for event in slices:
201 for record_range in self.record_ranges:
202 if record_range.ContainsInterval(event.start, event.end):
203 slices_in_actions.append(event)
204 break
205 return slices_in_actions
207 def AppendThreadSlices(self, thread):
208 self.all_slices.extend(self.SlicesInActions(thread.all_slices))
209 self.toplevel_slices.extend(self.SlicesInActions(thread.toplevel_slices))
211 # Reports cpu-time per interval and tasks per interval.
212 def AddResults(self, num_intervals, interval_name, results):
213 cpu_per_interval = Rate(self.cpu_time, num_intervals)
214 tasks_per_interval = Rate(len(self.toplevel_slices), num_intervals)
215 results.AddValue(scalar.ScalarValue(
216 results.current_page,
217 ThreadCpuTimeResultName(self.name, interval_name),
218 ThreadCpuTimeUnits(interval_name),
219 ThreadCpuTimeValue(cpu_per_interval, interval_name)))
220 results.AddValue(scalar.ScalarValue(
221 results.current_page,
222 ThreadTasksResultName(self.name, interval_name),
223 'tasks', tasks_per_interval))
225 def AddDetailedResults(self, num_intervals, interval_name, results):
226 slices_by_category = collections.defaultdict(list)
227 for s in self.all_slices:
228 slices_by_category[s.category].append(s)
229 all_self_times = []
230 for category, slices_in_category in slices_by_category.iteritems():
231 self_time = sum([x.self_time for x in slices_in_category])
232 all_self_times.append(self_time)
233 self_time_per_interval = Rate(self_time, num_intervals)
234 results.AddValue(scalar.ScalarValue(
235 results.current_page,
236 ThreadDetailResultName(self.name, interval_name, category),
237 ThreadCpuTimeUnits(interval_name),
238 ThreadCpuTimeValue(self_time_per_interval, interval_name)))
239 all_measured_time = sum(all_self_times)
240 idle_time = max(0, self.all_action_time - all_measured_time)
241 idle_time_per_interval = Rate(idle_time, num_intervals)
242 results.AddValue(scalar.ScalarValue(
243 results.current_page,
244 ThreadDetailResultName(self.name, interval_name, "idle"),
245 ThreadCpuTimeUnits(interval_name),
246 ThreadCpuTimeValue(idle_time_per_interval, interval_name)))
248 def CountTracesWithName(self, substring):
249 count = 0
250 for event in self.all_slices:
251 if substring in event.name:
252 count += 1
253 return count
256 class ThreadTimesTimelineMetric(timeline_based_metric.TimelineBasedMetric):
257 def __init__(self):
258 super(ThreadTimesTimelineMetric, self).__init__()
259 # Minimal traces, for minimum noise in CPU-time measurements.
260 self.results_to_report = AllThreads
261 self.details_to_report = NoThreads
263 def AddResults(self, model, _, interaction_records, results):
264 # Set up each thread category for consistant results.
265 thread_category_results = {}
266 for name in TimelineThreadCategories.values():
267 thread_category_results[name] = ResultsForThread(
268 model, [r.GetBounds() for r in interaction_records], name)
270 # Group the slices by their thread category.
271 for thread in model.GetAllThreads():
272 thread_category = ThreadCategoryName(thread.name)
273 thread_category_results[thread_category].AppendThreadSlices(thread)
275 # Group all threads.
276 for thread in model.GetAllThreads():
277 thread_category_results['total_all'].AppendThreadSlices(thread)
279 # Also group fast-path threads.
280 for thread in model.GetAllThreads():
281 if ThreadCategoryName(thread.name) in FastPathThreads:
282 thread_category_results['total_fast_path'].AppendThreadSlices(thread)
284 # Calculate the interaction's number of frames.
285 frame_rate_thread = thread_category_results[FrameTraceThreadName]
286 num_frames = frame_rate_thread.CountTracesWithName(FrameTraceName)
288 # Calculate the interaction's duration.
289 all_threads = thread_category_results['total_all']
290 num_seconds = all_threads.all_action_time / 1000.0
292 # Report the desired results and details for each interval type.
293 intervals = [('frame', num_frames), ('second', num_seconds)]
294 for (interval_name, num_intervals) in intervals:
295 for thread_results in thread_category_results.values():
296 if thread_results.name in self.results_to_report:
297 thread_results.AddResults(num_intervals, interval_name, results)
298 # TOOD(nduca): When generic results objects are done, this special case
299 # can be replaced with a generic UI feature.
300 if thread_results.name in self.details_to_report:
301 thread_results.AddDetailedResults(
302 num_intervals, interval_name, results)
304 # Report mean frame time for the frame rate thread. We could report other
305 # frame rates (eg. renderer_main) but this might get confusing.
306 mean_frame_time = Rate(frame_rate_thread.all_action_time, num_frames)
307 results.AddValue(scalar.ScalarValue(
308 results.current_page,
309 ThreadMeanFrameTimeResultName(FrameTraceThreadName),
310 'ms', mean_frame_time))