1 // Copyright 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/scheduler/delay_based_time_source.h"
11 #include "base/bind.h"
12 #include "base/debug/trace_event.h"
13 #include "base/location.h"
14 #include "base/logging.h"
15 #include "base/single_thread_task_runner.h"
21 // kDoubleTickDivisor prevents ticks from running within the specified
22 // fraction of an interval. This helps account for jitter in the timebase as
23 // well as quick timer reactivation.
24 static const int kDoubleTickDivisor
= 2;
26 // kIntervalChangeThreshold is the fraction of the interval that will trigger an
27 // immediate interval change. kPhaseChangeThreshold is the fraction of the
28 // interval that will trigger an immediate phase change. If the changes are
29 // within the thresholds, the change will take place on the next tick. If
30 // either change is outside the thresholds, the next tick will be canceled and
31 // reissued immediately.
32 static const double kIntervalChangeThreshold
= 0.25;
33 static const double kPhaseChangeThreshold
= 0.25;
37 // The following methods correspond to the DelayBasedTimeSource that uses
38 // the base::TimeTicks::HighResNow as the timebase.
39 scoped_refptr
<DelayBasedTimeSourceHighRes
> DelayBasedTimeSourceHighRes::Create(
40 base::TimeDelta interval
,
41 base::SingleThreadTaskRunner
* task_runner
) {
42 return make_scoped_refptr(
43 new DelayBasedTimeSourceHighRes(interval
, task_runner
));
46 DelayBasedTimeSourceHighRes::DelayBasedTimeSourceHighRes(
47 base::TimeDelta interval
,
48 base::SingleThreadTaskRunner
* task_runner
)
49 : DelayBasedTimeSource(interval
, task_runner
) {
52 DelayBasedTimeSourceHighRes::~DelayBasedTimeSourceHighRes() {}
54 base::TimeTicks
DelayBasedTimeSourceHighRes::Now() const {
55 return base::TimeTicks::HighResNow();
58 // The following methods correspond to the DelayBasedTimeSource that uses
59 // the base::TimeTicks::Now as the timebase.
60 scoped_refptr
<DelayBasedTimeSource
> DelayBasedTimeSource::Create(
61 base::TimeDelta interval
,
62 base::SingleThreadTaskRunner
* task_runner
) {
63 return make_scoped_refptr(new DelayBasedTimeSource(interval
, task_runner
));
66 DelayBasedTimeSource::DelayBasedTimeSource(
67 base::TimeDelta interval
,
68 base::SingleThreadTaskRunner
* task_runner
)
70 last_tick_time_(base::TimeTicks() - interval
),
71 current_parameters_(interval
, base::TimeTicks()),
72 next_parameters_(interval
, base::TimeTicks()),
74 task_runner_(task_runner
),
76 DCHECK_GT(interval
.ToInternalValue(), 0);
79 DelayBasedTimeSource::~DelayBasedTimeSource() {}
81 base::TimeTicks
DelayBasedTimeSource::SetActive(bool active
) {
82 TRACE_EVENT1("cc", "DelayBasedTimeSource::SetActive", "active", active
);
83 if (active
== active_
)
84 return base::TimeTicks();
88 weak_factory_
.InvalidateWeakPtrs();
89 return base::TimeTicks();
92 PostNextTickTask(Now());
94 // Determine if there was a tick that was missed while not active.
95 base::TimeTicks last_tick_time_if_always_active
=
96 current_parameters_
.tick_target
- current_parameters_
.interval
;
97 base::TimeTicks new_tick_time_threshold
=
98 last_tick_time_
+ current_parameters_
.interval
/ kDoubleTickDivisor
;
99 if (last_tick_time_if_always_active
> new_tick_time_threshold
) {
100 last_tick_time_
= last_tick_time_if_always_active
;
101 return last_tick_time_
;
104 return base::TimeTicks();
107 bool DelayBasedTimeSource::Active() const { return active_
; }
109 base::TimeTicks
DelayBasedTimeSource::LastTickTime() const {
110 return last_tick_time_
;
113 base::TimeTicks
DelayBasedTimeSource::NextTickTime() const {
114 return Active() ? current_parameters_
.tick_target
: base::TimeTicks();
117 void DelayBasedTimeSource::OnTimerFired() {
120 last_tick_time_
= current_parameters_
.tick_target
;
122 PostNextTickTask(Now());
126 client_
->OnTimerTick();
129 void DelayBasedTimeSource::SetClient(TimeSourceClient
* client
) {
133 void DelayBasedTimeSource::SetTimebaseAndInterval(base::TimeTicks timebase
,
134 base::TimeDelta interval
) {
135 DCHECK_GT(interval
.ToInternalValue(), 0);
136 next_parameters_
.interval
= interval
;
137 next_parameters_
.tick_target
= timebase
;
140 // If we aren't active, there's no need to reset the timer.
144 // If the change in interval is larger than the change threshold,
145 // request an immediate reset.
146 double interval_delta
=
147 std::abs((interval
- current_parameters_
.interval
).InSecondsF());
148 double interval_change
= interval_delta
/ interval
.InSecondsF();
149 if (interval_change
> kIntervalChangeThreshold
) {
150 TRACE_EVENT_INSTANT0("cc", "DelayBasedTimeSource::IntervalChanged",
151 TRACE_EVENT_SCOPE_THREAD
);
157 // If the change in phase is greater than the change threshold in either
158 // direction, request an immediate reset. This logic might result in a false
159 // negative if there is a simultaneous small change in the interval and the
160 // fmod just happens to return something near zero. Assuming the timebase
161 // is very recent though, which it should be, we'll still be ok because the
162 // old clock and new clock just happen to line up.
163 double target_delta
=
164 std::abs((timebase
- current_parameters_
.tick_target
).InSecondsF());
165 double phase_change
=
166 fmod(target_delta
, interval
.InSecondsF()) / interval
.InSecondsF();
167 if (phase_change
> kPhaseChangeThreshold
&&
168 phase_change
< (1.0 - kPhaseChangeThreshold
)) {
169 TRACE_EVENT_INSTANT0("cc", "DelayBasedTimeSource::PhaseChanged",
170 TRACE_EVENT_SCOPE_THREAD
);
177 base::TimeTicks
DelayBasedTimeSource::Now() const {
178 return base::TimeTicks::Now();
181 // This code tries to achieve an average tick rate as close to interval_ as
182 // possible. To do this, it has to deal with a few basic issues:
183 // 1. PostDelayedTask can delay only at a millisecond granularity. So, 16.666
184 // has to posted as 16 or 17.
185 // 2. A delayed task may come back a bit late (a few ms), or really late
188 // The basic idea with this scheduler here is to keep track of where we *want*
189 // to run in tick_target_. We update this with the exact interval.
191 // Then, when we post our task, we take the floor of (tick_target_ and Now()).
192 // If we started at now=0, and 60FPs (all times in milliseconds):
193 // now=0 target=16.667 PostDelayedTask(16)
195 // When our callback runs, we figure out how far off we were from that goal.
196 // Because of the flooring operation, and assuming our timer runs exactly when
197 // it should, this yields:
198 // now=16 target=16.667
200 // Since we can't post a 0.667 ms task to get to now=16, we just treat this as a
201 // tick. Then, we update target to be 33.333. We now post another task based on
202 // the difference between our target and now:
203 // now=16 tick_target=16.667 new_target=33.333 -->
204 // PostDelayedTask(floor(33.333 - 16)) --> PostDelayedTask(17)
206 // Over time, with no late tasks, this leads to us posting tasks like this:
207 // now=0 tick_target=0 new_target=16.667 -->
208 // tick(), PostDelayedTask(16)
209 // now=16 tick_target=16.667 new_target=33.333 -->
210 // tick(), PostDelayedTask(17)
211 // now=33 tick_target=33.333 new_target=50.000 -->
212 // tick(), PostDelayedTask(17)
213 // now=50 tick_target=50.000 new_target=66.667 -->
214 // tick(), PostDelayedTask(16)
216 // We treat delays in tasks differently depending on the amount of delay we
217 // encounter. Suppose we posted a task with a target=16.667:
218 // Case 1: late but not unrecoverably-so
219 // now=18 tick_target=16.667
221 // Case 2: so late we obviously missed the tick
222 // now=25.0 tick_target=16.667
224 // We treat the first case as a tick anyway, and assume the delay was unusual.
225 // Thus, we compute the new_target based on the old timebase:
226 // now=18 tick_target=16.667 new_target=33.333 -->
227 // tick(), PostDelayedTask(floor(33.333-18)) --> PostDelayedTask(15)
228 // This brings us back to 18+15 = 33, which was where we would have been if the
229 // task hadn't been late.
231 // For the really late delay, we we move to the next logical tick. The timebase
233 // now=37 tick_target=16.667 new_target=50.000 -->
234 // tick(), PostDelayedTask(floor(50.000-37)) --> PostDelayedTask(13)
235 base::TimeTicks
DelayBasedTimeSource::NextTickTarget(base::TimeTicks now
) {
236 base::TimeDelta new_interval
= next_parameters_
.interval
;
238 // |interval_offset| is the offset from |now| to the next multiple of
239 // |interval| after |tick_target|, possibly negative if in the past.
240 base::TimeDelta interval_offset
= base::TimeDelta::FromInternalValue(
241 (next_parameters_
.tick_target
- now
).ToInternalValue() %
242 new_interval
.ToInternalValue());
243 // If |now| is exactly on the interval (i.e. offset==0), don't adjust.
244 // Otherwise, if |tick_target| was in the past, adjust forward to the next
246 if (interval_offset
.ToInternalValue() != 0 &&
247 next_parameters_
.tick_target
< now
) {
248 interval_offset
+= new_interval
;
251 base::TimeTicks new_tick_target
= now
+ interval_offset
;
252 DCHECK(now
<= new_tick_target
)
253 << "now = " << now
.ToInternalValue()
254 << "; new_tick_target = " << new_tick_target
.ToInternalValue()
255 << "; new_interval = " << new_interval
.InMicroseconds()
256 << "; tick_target = " << next_parameters_
.tick_target
.ToInternalValue()
257 << "; interval_offset = " << interval_offset
.ToInternalValue();
259 // Avoid double ticks when:
260 // 1) Turning off the timer and turning it right back on.
261 // 2) Jittery data is passed to SetTimebaseAndInterval().
262 if (new_tick_target
- last_tick_time_
<= new_interval
/ kDoubleTickDivisor
)
263 new_tick_target
+= new_interval
;
265 return new_tick_target
;
268 void DelayBasedTimeSource::PostNextTickTask(base::TimeTicks now
) {
269 base::TimeTicks new_tick_target
= NextTickTarget(now
);
271 // Post another task *before* the tick and update state
272 base::TimeDelta delay
;
273 if (now
<= new_tick_target
)
274 delay
= new_tick_target
- now
;
275 task_runner_
->PostDelayedTask(FROM_HERE
,
276 base::Bind(&DelayBasedTimeSource::OnTimerFired
,
277 weak_factory_
.GetWeakPtr()),
280 next_parameters_
.tick_target
= new_tick_target
;
281 current_parameters_
= next_parameters_
;
284 std::string
DelayBasedTimeSource::TypeString() const {
285 return "DelayBasedTimeSource";
288 std::string
DelayBasedTimeSourceHighRes::TypeString() const {
289 return "DelayBasedTimeSourceHighRes";
292 scoped_ptr
<base::Value
> DelayBasedTimeSource::AsValue() const {
293 scoped_ptr
<base::DictionaryValue
> state(new base::DictionaryValue
);
294 state
->SetString("type", TypeString());
295 state
->SetDouble("last_tick_time_us", LastTickTime().ToInternalValue());
296 state
->SetDouble("next_tick_time_us", NextTickTime().ToInternalValue());
298 scoped_ptr
<base::DictionaryValue
> state_current_parameters(
299 new base::DictionaryValue
);
300 state_current_parameters
->SetDouble(
301 "interval_us", current_parameters_
.interval
.InMicroseconds());
302 state_current_parameters
->SetDouble(
303 "tick_target_us", current_parameters_
.tick_target
.ToInternalValue());
304 state
->Set("current_parameters", state_current_parameters
.release());
306 scoped_ptr
<base::DictionaryValue
> state_next_parameters(
307 new base::DictionaryValue
);
308 state_next_parameters
->SetDouble("interval_us",
309 next_parameters_
.interval
.InMicroseconds());
310 state_next_parameters
->SetDouble(
311 "tick_target_us", next_parameters_
.tick_target
.ToInternalValue());
312 state
->Set("next_parameters", state_next_parameters
.release());
314 state
->SetBoolean("active", active_
);
316 return state
.PassAs
<base::Value
>();