1 // Copyright 2014 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
8 #include "base/logging.h"
9 #include "cc/base/math_util.h"
10 #include "cc/trees/property_tree.h"
15 PropertyTree
<T
>::PropertyTree()
16 : needs_update_(false) {
17 nodes_
.push_back(T());
19 back()->parent_id
= -1;
23 PropertyTree
<T
>::~PropertyTree() {
27 int PropertyTree
<T
>::Insert(const T
& tree_node
, int parent_id
) {
28 DCHECK_GT(nodes_
.size(), 0u);
29 nodes_
.push_back(tree_node
);
30 T
& node
= nodes_
.back();
31 node
.parent_id
= parent_id
;
32 node
.id
= static_cast<int>(nodes_
.size()) - 1;
37 void PropertyTree
<T
>::clear() {
39 nodes_
.push_back(T());
41 back()->parent_id
= -1;
44 template class PropertyTree
<TransformNode
>;
45 template class PropertyTree
<ClipNode
>;
46 template class PropertyTree
<OpacityNode
>;
48 TransformNodeData::TransformNodeData()
50 content_target_id(-1),
52 needs_local_transform_update(true),
54 ancestors_are_invertible(true),
56 to_screen_is_animated(false),
57 flattens_inherited_transform(false),
58 node_and_ancestors_are_flat(true),
60 needs_sublayer_scale(false),
61 layer_scale_factor(1.0f
) {
64 TransformNodeData::~TransformNodeData() {
67 void TransformNodeData::update_pre_local_transform(
68 const gfx::Point3F
& transform_origin
) {
69 pre_local
.MakeIdentity();
70 pre_local
.Translate3d(-transform_origin
.x(), -transform_origin
.y(),
71 -transform_origin
.z());
74 void TransformNodeData::update_post_local_transform(
75 const gfx::PointF
& position
,
76 const gfx::Point3F
& transform_origin
) {
77 post_local
.MakeIdentity();
78 post_local
.Scale(post_local_scale_factor
, post_local_scale_factor
);
79 post_local
.Translate3d(
80 position
.x() + source_offset
.x() + transform_origin
.x(),
81 position
.y() + source_offset
.y() + transform_origin
.y(),
82 transform_origin
.z());
85 ClipNodeData::ClipNodeData() : transform_id(-1), target_id(-1) {
88 bool TransformTree::ComputeTransform(int source_id
,
90 gfx::Transform
* transform
) const {
91 transform
->MakeIdentity();
93 if (source_id
== dest_id
)
96 if (source_id
> dest_id
) {
97 return CombineTransformsBetween(source_id
, dest_id
, transform
);
100 return CombineInversesBetween(source_id
, dest_id
, transform
);
103 bool TransformTree::ComputeTransformWithDestinationSublayerScale(
106 gfx::Transform
* transform
) const {
107 bool success
= ComputeTransform(source_id
, dest_id
, transform
);
109 const TransformNode
* dest_node
= Node(dest_id
);
110 if (!dest_node
->data
.needs_sublayer_scale
)
113 transform
->matrix().postScale(dest_node
->data
.sublayer_scale
.x(),
114 dest_node
->data
.sublayer_scale
.y(), 1.f
);
118 bool TransformTree::ComputeTransformWithSourceSublayerScale(
121 gfx::Transform
* transform
) const {
122 bool success
= ComputeTransform(source_id
, dest_id
, transform
);
124 const TransformNode
* source_node
= Node(source_id
);
125 if (!source_node
->data
.needs_sublayer_scale
)
128 transform
->Scale(1.f
/ source_node
->data
.sublayer_scale
.x(),
129 1.f
/ source_node
->data
.sublayer_scale
.y());
133 bool TransformTree::Are2DAxisAligned(int source_id
, int dest_id
) const {
134 gfx::Transform transform
;
135 return ComputeTransform(source_id
, dest_id
, &transform
) &&
136 transform
.Preserves2dAxisAlignment();
139 void TransformTree::UpdateTransforms(int id
) {
140 TransformNode
* node
= Node(id
);
141 TransformNode
* parent_node
= parent(node
);
142 TransformNode
* target_node
= Node(node
->data
.target_id
);
143 if (node
->data
.needs_local_transform_update
||
144 node
->parent_id
!= node
->data
.source_node_id
)
145 UpdateLocalTransform(node
);
146 UpdateScreenSpaceTransform(node
, parent_node
, target_node
);
147 UpdateSublayerScale(node
);
148 UpdateTargetSpaceTransform(node
, target_node
);
149 UpdateIsAnimated(node
, parent_node
);
150 UpdateSnapping(node
);
153 bool TransformTree::IsDescendant(int desc_id
, int source_id
) const {
154 while (desc_id
!= source_id
) {
157 desc_id
= Node(desc_id
)->parent_id
;
162 bool TransformTree::CombineTransformsBetween(int source_id
,
164 gfx::Transform
* transform
) const {
165 DCHECK(source_id
> dest_id
);
166 const TransformNode
* current
= Node(source_id
);
167 const TransformNode
* dest
= Node(dest_id
);
168 // Combine transforms to and from the screen when possible. Since flattening
169 // is a non-linear operation, we cannot use this approach when there is
170 // non-trivial flattening between the source and destination nodes. For
171 // example, consider the tree R->A->B->C, where B flattens its inherited
172 // transform, and A has a non-flat transform. Suppose C is the source and A is
173 // the destination. The expected result is C * B. But C's to_screen
174 // transform is C * B * flattened(A * R), and A's from_screen transform is
175 // R^{-1} * A^{-1}. If at least one of A and R isn't flat, the inverse of
176 // flattened(A * R) won't be R^{-1} * A{-1}, so multiplying C's to_screen and
177 // A's from_screen will not produce the correct result.
178 if (!dest
|| (dest
->data
.ancestors_are_invertible
&&
179 dest
->data
.node_and_ancestors_are_flat
)) {
180 transform
->ConcatTransform(current
->data
.to_screen
);
182 transform
->ConcatTransform(dest
->data
.from_screen
);
186 // Flattening is defined in a way that requires it to be applied while
187 // traversing downward in the tree. We first identify nodes that are on the
188 // path from the source to the destination (this is traversing upward), and
189 // then we visit these nodes in reverse order, flattening as needed. We
190 // early-out if we get to a node whose target node is the destination, since
191 // we can then re-use the target space transform stored at that node.
192 std::vector
<int> source_to_destination
;
193 source_to_destination
.push_back(current
->id
);
194 current
= parent(current
);
195 for (; current
&& current
->id
> dest_id
; current
= parent(current
)) {
196 if (current
->data
.target_id
== dest_id
&&
197 current
->data
.content_target_id
== dest_id
)
199 source_to_destination
.push_back(current
->id
);
202 gfx::Transform combined_transform
;
203 if (current
->id
> dest_id
) {
204 combined_transform
= current
->data
.to_target
;
205 // The stored target space transform has sublayer scale baked in, but we
206 // need the unscaled transform.
207 combined_transform
.Scale(1.0f
/ dest
->data
.sublayer_scale
.x(),
208 1.0f
/ dest
->data
.sublayer_scale
.y());
209 } else if (current
->id
< dest_id
) {
210 // We have reached the lowest common ancestor of the source and destination
211 // nodes. This case can occur when we are transforming between a node
212 // corresponding to a fixed-position layer (or its descendant) and the node
213 // corresponding to the layer's render target. For example, consider the
214 // layer tree R->T->S->F where F is fixed-position, S owns a render surface,
215 // and T has a significant transform. This will yield the following
222 // In this example, T will have id 2, S will have id 3, and F will have id
223 // 4. When walking up the ancestor chain from F, the first node with a
224 // smaller id than S will be T, the lowest common ancestor of these nodes.
225 // We compute the transform from T to S here, and then from F to T in the
227 DCHECK(IsDescendant(dest_id
, current
->id
));
228 CombineInversesBetween(current
->id
, dest_id
, &combined_transform
);
229 DCHECK(combined_transform
.IsApproximatelyIdentityOrTranslation(
230 SkDoubleToMScalar(1e-4)));
233 for (int i
= source_to_destination
.size() - 1; i
>= 0; i
--) {
234 const TransformNode
* node
= Node(source_to_destination
[i
]);
235 if (node
->data
.flattens_inherited_transform
)
236 combined_transform
.FlattenTo2d();
237 combined_transform
.PreconcatTransform(node
->data
.to_parent
);
240 transform
->ConcatTransform(combined_transform
);
244 bool TransformTree::CombineInversesBetween(int source_id
,
246 gfx::Transform
* transform
) const {
247 DCHECK(source_id
< dest_id
);
248 const TransformNode
* current
= Node(dest_id
);
249 const TransformNode
* dest
= Node(source_id
);
250 // Just as in CombineTransformsBetween, we can use screen space transforms in
251 // this computation only when there isn't any non-trivial flattening
253 if (current
->data
.ancestors_are_invertible
&&
254 current
->data
.node_and_ancestors_are_flat
) {
255 transform
->PreconcatTransform(current
->data
.from_screen
);
257 transform
->PreconcatTransform(dest
->data
.to_screen
);
261 // Inverting a flattening is not equivalent to flattening an inverse. This
262 // means we cannot, for example, use the inverse of each node's to_parent
263 // transform, flattening where needed. Instead, we must compute the transform
264 // from the destination to the source, with flattening, and then invert the
266 gfx::Transform dest_to_source
;
267 CombineTransformsBetween(dest_id
, source_id
, &dest_to_source
);
268 gfx::Transform source_to_dest
;
269 bool all_are_invertible
= dest_to_source
.GetInverse(&source_to_dest
);
270 transform
->PreconcatTransform(source_to_dest
);
271 return all_are_invertible
;
274 void TransformTree::UpdateLocalTransform(TransformNode
* node
) {
275 gfx::Transform transform
= node
->data
.post_local
;
276 gfx::Vector2dF source_to_parent
;
277 if (node
->parent_id
!= node
->data
.source_node_id
) {
278 gfx::Transform to_parent
;
279 ComputeTransform(node
->data
.source_node_id
, node
->parent_id
, &to_parent
);
280 source_to_parent
= to_parent
.To2dTranslation();
282 transform
.Translate(source_to_parent
.x() - node
->data
.scroll_offset
.x(),
283 source_to_parent
.y() - node
->data
.scroll_offset
.y());
284 transform
.PreconcatTransform(node
->data
.local
);
285 transform
.PreconcatTransform(node
->data
.pre_local
);
286 node
->data
.set_to_parent(transform
);
287 node
->data
.needs_local_transform_update
= false;
290 void TransformTree::UpdateScreenSpaceTransform(TransformNode
* node
,
291 TransformNode
* parent_node
,
292 TransformNode
* target_node
) {
294 node
->data
.to_screen
= node
->data
.to_parent
;
295 node
->data
.ancestors_are_invertible
= true;
296 node
->data
.to_screen_is_animated
= false;
297 node
->data
.node_and_ancestors_are_flat
= node
->data
.to_parent
.IsFlat();
299 node
->data
.to_screen
= parent_node
->data
.to_screen
;
300 if (node
->data
.flattens_inherited_transform
)
301 node
->data
.to_screen
.FlattenTo2d();
302 node
->data
.to_screen
.PreconcatTransform(node
->data
.to_parent
);
303 node
->data
.ancestors_are_invertible
=
304 parent_node
->data
.ancestors_are_invertible
;
305 node
->data
.node_and_ancestors_are_flat
=
306 parent_node
->data
.node_and_ancestors_are_flat
&&
307 node
->data
.to_parent
.IsFlat();
310 if (!node
->data
.to_screen
.GetInverse(&node
->data
.from_screen
))
311 node
->data
.ancestors_are_invertible
= false;
314 void TransformTree::UpdateSublayerScale(TransformNode
* node
) {
315 // The sublayer scale depends on the screen space transform, so update it too.
316 node
->data
.sublayer_scale
=
317 node
->data
.needs_sublayer_scale
318 ? MathUtil::ComputeTransform2dScaleComponents(
319 node
->data
.to_screen
, node
->data
.layer_scale_factor
)
320 : gfx::Vector2dF(1.0f
, 1.0f
);
323 void TransformTree::UpdateTargetSpaceTransform(TransformNode
* node
,
324 TransformNode
* target_node
) {
325 if (node
->data
.needs_sublayer_scale
) {
326 node
->data
.to_target
.MakeIdentity();
327 node
->data
.to_target
.Scale(node
->data
.sublayer_scale
.x(),
328 node
->data
.sublayer_scale
.y());
330 const bool target_is_root_surface
= target_node
->id
== 1;
331 // In order to include the root transform for the root surface, we walk up
332 // to the root of the transform tree in ComputeTransform.
333 int target_id
= target_is_root_surface
? 0 : target_node
->id
;
334 ComputeTransformWithDestinationSublayerScale(node
->id
, target_id
,
335 &node
->data
.to_target
);
338 if (!node
->data
.to_target
.GetInverse(&node
->data
.from_target
))
339 node
->data
.ancestors_are_invertible
= false;
342 void TransformTree::UpdateIsAnimated(TransformNode
* node
,
343 TransformNode
* parent_node
) {
345 node
->data
.to_screen_is_animated
=
346 node
->data
.is_animated
|| parent_node
->data
.to_screen_is_animated
;
350 void TransformTree::UpdateSnapping(TransformNode
* node
) {
351 if (!node
->data
.scrolls
|| node
->data
.to_screen_is_animated
||
352 !node
->data
.to_target
.IsScaleOrTranslation()) {
356 // Scroll snapping must be done in target space (the pixels we care about).
357 // This means we effectively snap the target space transform. If TT is the
358 // target space transform and TT' is TT with its translation components
359 // rounded, then what we're after is the scroll delta X, where TT * X = TT'.
360 // I.e., we want a transform that will realize our scroll snap. It follows
361 // that X = TT^-1 * TT'. We cache TT and TT^-1 to make this more efficient.
362 gfx::Transform rounded
= node
->data
.to_target
;
363 rounded
.RoundTranslationComponents();
364 gfx::Transform delta
= node
->data
.from_target
;
367 DCHECK(delta
.IsApproximatelyIdentityOrTranslation(SkDoubleToMScalar(1e-4)))
370 gfx::Vector2dF translation
= delta
.To2dTranslation();
372 // Now that we have our scroll delta, we must apply it to each of our
373 // combined, to/from matrices.
374 node
->data
.to_parent
.Translate(translation
.x(), translation
.y());
375 node
->data
.to_target
.Translate(translation
.x(), translation
.y());
376 node
->data
.from_target
.matrix().postTranslate(-translation
.x(),
377 -translation
.y(), 0);
378 node
->data
.to_screen
.Translate(translation
.x(), translation
.y());
379 node
->data
.from_screen
.matrix().postTranslate(-translation
.x(),
380 -translation
.y(), 0);
382 node
->data
.scroll_snap
= translation
;
385 PropertyTrees::PropertyTrees() : needs_rebuild(true) {