1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef BASE_MESSAGE_PUMP_WIN_H_
6 #define BASE_MESSAGE_PUMP_WIN_H_
12 #include "base/base_export.h"
13 #include "base/basictypes.h"
14 #include "base/memory/scoped_ptr.h"
15 #include "base/message_pump.h"
16 #include "base/message_pump_dispatcher.h"
17 #include "base/message_pump_observer.h"
18 #include "base/observer_list.h"
19 #include "base/time.h"
20 #include "base/win/scoped_handle.h"
24 // MessagePumpWin serves as the base for specialized versions of the MessagePump
25 // for Windows. It provides basic functionality like handling of observers and
26 // controlling the lifetime of the message pump.
27 class BASE_EXPORT MessagePumpWin
: public MessagePump
{
29 MessagePumpWin() : have_work_(0), state_(NULL
) {}
30 virtual ~MessagePumpWin() {}
32 // Add an Observer, which will start receiving notifications immediately.
33 void AddObserver(MessagePumpObserver
* observer
);
35 // Remove an Observer. It is safe to call this method while an Observer is
36 // receiving a notification callback.
37 void RemoveObserver(MessagePumpObserver
* observer
);
39 // Give a chance to code processing additional messages to notify the
40 // message loop observers that another message has been processed.
41 void WillProcessMessage(const MSG
& msg
);
42 void DidProcessMessage(const MSG
& msg
);
44 // Like MessagePump::Run, but MSG objects are routed through dispatcher.
45 void RunWithDispatcher(Delegate
* delegate
, MessagePumpDispatcher
* dispatcher
);
47 // MessagePump methods:
48 virtual void Run(Delegate
* delegate
) { RunWithDispatcher(delegate
, NULL
); }
54 MessagePumpDispatcher
* dispatcher
;
56 // Used to flag that the current Run() invocation should return ASAP.
59 // Used to count how many Run() invocations are on the stack.
63 virtual void DoRunLoop() = 0;
64 int GetCurrentDelay() const;
66 ObserverList
<MessagePumpObserver
> observers_
;
68 // The time at which delayed work should run.
69 TimeTicks delayed_work_time_
;
71 // A boolean value used to indicate if there is a kMsgDoWork message pending
72 // in the Windows Message queue. There is at most one such message, and it
73 // can drive execution of tasks when a native message pump is running.
76 // State for the current invocation of Run.
80 //-----------------------------------------------------------------------------
81 // MessagePumpForUI extends MessagePumpWin with methods that are particular to a
82 // MessageLoop instantiated with TYPE_UI.
84 // MessagePumpForUI implements a "traditional" Windows message pump. It contains
85 // a nearly infinite loop that peeks out messages, and then dispatches them.
86 // Intermixed with those peeks are callouts to DoWork for pending tasks, and
87 // DoDelayedWork for pending timers. When there are no events to be serviced,
88 // this pump goes into a wait state. In most cases, this message pump handles
91 // However, when a task, or windows event, invokes on the stack a native dialog
92 // box or such, that window typically provides a bare bones (native?) message
93 // pump. That bare-bones message pump generally supports little more than a
94 // peek of the Windows message queue, followed by a dispatch of the peeked
95 // message. MessageLoop extends that bare-bones message pump to also service
96 // Tasks, at the cost of some complexity.
98 // The basic structure of the extension (refered to as a sub-pump) is that a
99 // special message, kMsgHaveWork, is repeatedly injected into the Windows
100 // Message queue. Each time the kMsgHaveWork message is peeked, checks are
101 // made for an extended set of events, including the availability of Tasks to
104 // After running a task, the special message kMsgHaveWork is again posted to
105 // the Windows Message queue, ensuring a future time slice for processing a
106 // future event. To prevent flooding the Windows Message queue, care is taken
107 // to be sure that at most one kMsgHaveWork message is EVER pending in the
108 // Window's Message queue.
110 // There are a few additional complexities in this system where, when there are
111 // no Tasks to run, this otherwise infinite stream of messages which drives the
112 // sub-pump is halted. The pump is automatically re-started when Tasks are
115 // A second complexity is that the presence of this stream of posted tasks may
116 // prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER.
117 // Such paint and timer events always give priority to a posted message, such as
118 // kMsgHaveWork messages. As a result, care is taken to do some peeking in
119 // between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork
120 // is peeked, and before a replacement kMsgHaveWork is posted).
122 // NOTE: Although it may seem odd that messages are used to start and stop this
123 // flow (as opposed to signaling objects, etc.), it should be understood that
124 // the native message pump will *only* respond to messages. As a result, it is
125 // an excellent choice. It is also helpful that the starter messages that are
126 // placed in the queue when new task arrive also awakens DoRunLoop.
128 class BASE_EXPORT MessagePumpForUI
: public MessagePumpWin
{
130 // A MessageFilter implements the common Peek/Translate/Dispatch code to deal
131 // with windows messages.
132 // This abstraction is used to inject TSF message peeking. See
133 // TextServicesMessageFilter.
134 class BASE_EXPORT MessageFilter
{
136 virtual ~MessageFilter() {}
137 // Implements the functionality exposed by the OS through PeekMessage.
138 virtual BOOL
DoPeekMessage(MSG
* msg
,
143 return PeekMessage(msg
, window_handle
, msg_filter_min
, msg_filter_max
,
146 // Returns true if |message| was consumed by the filter and no extra
147 // processing is required. If this method returns false, it is the
148 // responsibility of the caller to ensure that normal processing takes
150 // The priority to consume messages is the following:
151 // - Native Windows' message filter (CallMsgFilter).
152 // - MessageFilter::ProcessMessage.
153 // - MessagePumpDispatcher.
154 // - TranslateMessage / DispatchMessage.
155 virtual bool ProcessMessage(const MSG
& msg
) { return false;}
157 // The application-defined code passed to the hook procedure.
158 static const int kMessageFilterCode
= 0x5001;
161 virtual ~MessagePumpForUI();
163 // Sets a new MessageFilter. MessagePumpForUI takes ownership of
164 // |message_filter|. When SetMessageFilter is called, old MessageFilter is
166 void SetMessageFilter(scoped_ptr
<MessageFilter
> message_filter
);
168 // MessagePump methods:
169 virtual void ScheduleWork();
170 virtual void ScheduleDelayedWork(const TimeTicks
& delayed_work_time
);
172 // Applications can call this to encourage us to process all pending WM_PAINT
173 // messages. This method will process all paint messages the Windows Message
174 // queue can provide, up to some fixed number (to avoid any infinite loops).
175 void PumpOutPendingPaintMessages();
178 static LRESULT CALLBACK
WndProcThunk(HWND window_handle
,
182 virtual void DoRunLoop();
183 void InitMessageWnd();
185 void HandleWorkMessage();
186 void HandleTimerMessage();
187 bool ProcessNextWindowsMessage();
188 bool ProcessMessageHelper(const MSG
& msg
);
189 bool ProcessPumpReplacementMessage();
191 // Instance of the module containing the window procedure.
194 // A hidden message-only window.
197 scoped_ptr
<MessageFilter
> message_filter_
;
200 //-----------------------------------------------------------------------------
201 // MessagePumpForIO extends MessagePumpWin with methods that are particular to a
202 // MessageLoop instantiated with TYPE_IO. This version of MessagePump does not
203 // deal with Windows mesagges, and instead has a Run loop based on Completion
204 // Ports so it is better suited for IO operations.
206 class BASE_EXPORT MessagePumpForIO
: public MessagePumpWin
{
210 // Clients interested in receiving OS notifications when asynchronous IO
211 // operations complete should implement this interface and register themselves
212 // with the message pump.
215 // // Use only when there are no user's buffers involved on the actual IO,
216 // // so that all the cleanup can be done by the message pump.
217 // class MyFile : public IOHandler {
220 // context_ = new IOContext;
221 // context_->handler = this;
222 // message_pump->RegisterIOHandler(file_, this);
226 // // By setting the handler to NULL, we're asking for this context
227 // // to be deleted when received, without calling back to us.
228 // context_->handler = NULL;
233 // virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
239 // // The only buffer required for this operation is the overlapped
241 // ConnectNamedPipe(file_, &context_->overlapped);
245 // IOContext* context_;
250 // class MyFile : public IOHandler {
253 // message_pump->RegisterIOHandler(file_, this);
255 // // Plus some code to make sure that this destructor is not called
256 // // while there are pending IO operations.
259 // virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
266 // IOContext* context = new IOContext;
267 // // This is not used for anything. It just prevents the context from
268 // // being considered "abandoned".
269 // context->handler = this;
270 // ReadFile(file_, buffer, num_bytes, &read, &context->overlapped);
276 // Same as the previous example, except that in order to deal with the
277 // requirement stated for the destructor, the class calls WaitForIOCompletion
278 // from the destructor to block until all IO finishes.
281 // message_pump->WaitForIOCompletion(INFINITE, this);
286 virtual ~IOHandler() {}
287 // This will be called once the pending IO operation associated with
288 // |context| completes. |error| is the Win32 error code of the IO operation
289 // (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero
291 virtual void OnIOCompleted(IOContext
* context
, DWORD bytes_transfered
,
295 // An IOObserver is an object that receives IO notifications from the
298 // NOTE: An IOObserver implementation should be extremely fast!
303 virtual void WillProcessIOEvent() = 0;
304 virtual void DidProcessIOEvent() = 0;
307 virtual ~IOObserver() {}
310 // The extended context that should be used as the base structure on every
311 // overlapped IO operation. |handler| must be set to the registered IOHandler
312 // for the given file when the operation is started, and it can be set to NULL
313 // before the operation completes to indicate that the handler should not be
314 // called anymore, and instead, the IOContext should be deleted when the OS
315 // notifies the completion of this operation. Please remember that any buffers
316 // involved with an IO operation should be around until the callback is
317 // received, so this technique can only be used for IO that do not involve
318 // additional buffers (other than the overlapped structure itself).
320 OVERLAPPED overlapped
;
325 virtual ~MessagePumpForIO() {}
327 // MessagePump methods:
328 virtual void ScheduleWork();
329 virtual void ScheduleDelayedWork(const TimeTicks
& delayed_work_time
);
331 // Register the handler to be used when asynchronous IO for the given file
332 // completes. The registration persists as long as |file_handle| is valid, so
333 // |handler| must be valid as long as there is pending IO for the given file.
334 void RegisterIOHandler(HANDLE file_handle
, IOHandler
* handler
);
336 // Register the handler to be used to process job events. The registration
337 // persists as long as the job object is live, so |handler| must be valid
338 // until the job object is destroyed. Returns true if the registration
339 // succeeded, and false otherwise.
340 bool RegisterJobObject(HANDLE job_handle
, IOHandler
* handler
);
342 // Waits for the next IO completion that should be processed by |filter|, for
343 // up to |timeout| milliseconds. Return true if any IO operation completed,
344 // regardless of the involved handler, and false if the timeout expired. If
345 // the completion port received any message and the involved IO handler
346 // matches |filter|, the callback is called before returning from this code;
347 // if the handler is not the one that we are looking for, the callback will
348 // be postponed for another time, so reentrancy problems can be avoided.
349 // External use of this method should be reserved for the rare case when the
350 // caller is willing to allow pausing regular task dispatching on this thread.
351 bool WaitForIOCompletion(DWORD timeout
, IOHandler
* filter
);
353 void AddIOObserver(IOObserver
* obs
);
354 void RemoveIOObserver(IOObserver
* obs
);
360 DWORD bytes_transfered
;
363 // In some cases |context| can be a non-pointer value casted to a pointer.
364 // |has_valid_io_context| is true if |context| is a valid IOContext
365 // pointer, and false otherwise.
366 bool has_valid_io_context
;
369 virtual void DoRunLoop();
371 bool MatchCompletedIOItem(IOHandler
* filter
, IOItem
* item
);
372 bool GetIOItem(DWORD timeout
, IOItem
* item
);
373 bool ProcessInternalIOItem(const IOItem
& item
);
374 void WillProcessIOEvent();
375 void DidProcessIOEvent();
377 // Converts an IOHandler pointer to a completion port key.
378 // |has_valid_io_context| specifies whether completion packets posted to
379 // |handler| will have valid OVERLAPPED pointers.
380 static ULONG_PTR
HandlerToKey(IOHandler
* handler
, bool has_valid_io_context
);
382 // Converts a completion port key to an IOHandler pointer.
383 static IOHandler
* KeyToHandler(ULONG_PTR key
, bool* has_valid_io_context
);
385 // The completion port associated with this thread.
386 win::ScopedHandle port_
;
387 // This list will be empty almost always. It stores IO completions that have
388 // not been delivered yet because somebody was doing cleanup.
389 std::list
<IOItem
> completed_io_
;
391 ObserverList
<IOObserver
> io_observers_
;
396 #endif // BASE_MESSAGE_PUMP_WIN_H_