Fast user switcher: Add "(Supervised)" label for supervised users
[chromium-blink-merge.git] / third_party / sqlite / sqlite-src-3070603 / src / btmutex.c
blobd87d4d5feeb6307aecdc9a83111489ab30c678c3
1 /*
2 ** 2007 August 27
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code used to implement mutexes on Btree objects.
14 ** This code really belongs in btree.c. But btree.c is getting too
15 ** big and we want to break it down some. This packaged seemed like
16 ** a good breakout.
18 #include "btreeInt.h"
19 #ifndef SQLITE_OMIT_SHARED_CACHE
20 #if SQLITE_THREADSAFE
23 ** Obtain the BtShared mutex associated with B-Tree handle p. Also,
24 ** set BtShared.db to the database handle associated with p and the
25 ** p->locked boolean to true.
27 static void lockBtreeMutex(Btree *p){
28 assert( p->locked==0 );
29 assert( sqlite3_mutex_notheld(p->pBt->mutex) );
30 assert( sqlite3_mutex_held(p->db->mutex) );
32 sqlite3_mutex_enter(p->pBt->mutex);
33 p->pBt->db = p->db;
34 p->locked = 1;
38 ** Release the BtShared mutex associated with B-Tree handle p and
39 ** clear the p->locked boolean.
41 static void unlockBtreeMutex(Btree *p){
42 BtShared *pBt = p->pBt;
43 assert( p->locked==1 );
44 assert( sqlite3_mutex_held(pBt->mutex) );
45 assert( sqlite3_mutex_held(p->db->mutex) );
46 assert( p->db==pBt->db );
48 sqlite3_mutex_leave(pBt->mutex);
49 p->locked = 0;
53 ** Enter a mutex on the given BTree object.
55 ** If the object is not sharable, then no mutex is ever required
56 ** and this routine is a no-op. The underlying mutex is non-recursive.
57 ** But we keep a reference count in Btree.wantToLock so the behavior
58 ** of this interface is recursive.
60 ** To avoid deadlocks, multiple Btrees are locked in the same order
61 ** by all database connections. The p->pNext is a list of other
62 ** Btrees belonging to the same database connection as the p Btree
63 ** which need to be locked after p. If we cannot get a lock on
64 ** p, then first unlock all of the others on p->pNext, then wait
65 ** for the lock to become available on p, then relock all of the
66 ** subsequent Btrees that desire a lock.
68 void sqlite3BtreeEnter(Btree *p){
69 Btree *pLater;
71 /* Some basic sanity checking on the Btree. The list of Btrees
72 ** connected by pNext and pPrev should be in sorted order by
73 ** Btree.pBt value. All elements of the list should belong to
74 ** the same connection. Only shared Btrees are on the list. */
75 assert( p->pNext==0 || p->pNext->pBt>p->pBt );
76 assert( p->pPrev==0 || p->pPrev->pBt<p->pBt );
77 assert( p->pNext==0 || p->pNext->db==p->db );
78 assert( p->pPrev==0 || p->pPrev->db==p->db );
79 assert( p->sharable || (p->pNext==0 && p->pPrev==0) );
81 /* Check for locking consistency */
82 assert( !p->locked || p->wantToLock>0 );
83 assert( p->sharable || p->wantToLock==0 );
85 /* We should already hold a lock on the database connection */
86 assert( sqlite3_mutex_held(p->db->mutex) );
88 /* Unless the database is sharable and unlocked, then BtShared.db
89 ** should already be set correctly. */
90 assert( (p->locked==0 && p->sharable) || p->pBt->db==p->db );
92 if( !p->sharable ) return;
93 p->wantToLock++;
94 if( p->locked ) return;
96 /* In most cases, we should be able to acquire the lock we
97 ** want without having to go throught the ascending lock
98 ** procedure that follows. Just be sure not to block.
100 if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){
101 p->pBt->db = p->db;
102 p->locked = 1;
103 return;
106 /* To avoid deadlock, first release all locks with a larger
107 ** BtShared address. Then acquire our lock. Then reacquire
108 ** the other BtShared locks that we used to hold in ascending
109 ** order.
111 for(pLater=p->pNext; pLater; pLater=pLater->pNext){
112 assert( pLater->sharable );
113 assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt );
114 assert( !pLater->locked || pLater->wantToLock>0 );
115 if( pLater->locked ){
116 unlockBtreeMutex(pLater);
119 lockBtreeMutex(p);
120 for(pLater=p->pNext; pLater; pLater=pLater->pNext){
121 if( pLater->wantToLock ){
122 lockBtreeMutex(pLater);
128 ** Exit the recursive mutex on a Btree.
130 void sqlite3BtreeLeave(Btree *p){
131 if( p->sharable ){
132 assert( p->wantToLock>0 );
133 p->wantToLock--;
134 if( p->wantToLock==0 ){
135 unlockBtreeMutex(p);
140 #ifndef NDEBUG
142 ** Return true if the BtShared mutex is held on the btree, or if the
143 ** B-Tree is not marked as sharable.
145 ** This routine is used only from within assert() statements.
147 int sqlite3BtreeHoldsMutex(Btree *p){
148 assert( p->sharable==0 || p->locked==0 || p->wantToLock>0 );
149 assert( p->sharable==0 || p->locked==0 || p->db==p->pBt->db );
150 assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->pBt->mutex) );
151 assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->db->mutex) );
153 return (p->sharable==0 || p->locked);
155 #endif
158 #ifndef SQLITE_OMIT_INCRBLOB
160 ** Enter and leave a mutex on a Btree given a cursor owned by that
161 ** Btree. These entry points are used by incremental I/O and can be
162 ** omitted if that module is not used.
164 void sqlite3BtreeEnterCursor(BtCursor *pCur){
165 sqlite3BtreeEnter(pCur->pBtree);
167 void sqlite3BtreeLeaveCursor(BtCursor *pCur){
168 sqlite3BtreeLeave(pCur->pBtree);
170 #endif /* SQLITE_OMIT_INCRBLOB */
174 ** Enter the mutex on every Btree associated with a database
175 ** connection. This is needed (for example) prior to parsing
176 ** a statement since we will be comparing table and column names
177 ** against all schemas and we do not want those schemas being
178 ** reset out from under us.
180 ** There is a corresponding leave-all procedures.
182 ** Enter the mutexes in accending order by BtShared pointer address
183 ** to avoid the possibility of deadlock when two threads with
184 ** two or more btrees in common both try to lock all their btrees
185 ** at the same instant.
187 void sqlite3BtreeEnterAll(sqlite3 *db){
188 int i;
189 Btree *p;
190 assert( sqlite3_mutex_held(db->mutex) );
191 for(i=0; i<db->nDb; i++){
192 p = db->aDb[i].pBt;
193 if( p ) sqlite3BtreeEnter(p);
196 void sqlite3BtreeLeaveAll(sqlite3 *db){
197 int i;
198 Btree *p;
199 assert( sqlite3_mutex_held(db->mutex) );
200 for(i=0; i<db->nDb; i++){
201 p = db->aDb[i].pBt;
202 if( p ) sqlite3BtreeLeave(p);
207 ** Return true if a particular Btree requires a lock. Return FALSE if
208 ** no lock is ever required since it is not sharable.
210 int sqlite3BtreeSharable(Btree *p){
211 return p->sharable;
214 #ifndef NDEBUG
216 ** Return true if the current thread holds the database connection
217 ** mutex and all required BtShared mutexes.
219 ** This routine is used inside assert() statements only.
221 int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){
222 int i;
223 if( !sqlite3_mutex_held(db->mutex) ){
224 return 0;
226 for(i=0; i<db->nDb; i++){
227 Btree *p;
228 p = db->aDb[i].pBt;
229 if( p && p->sharable &&
230 (p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){
231 return 0;
234 return 1;
236 #endif /* NDEBUG */
238 #ifndef NDEBUG
240 ** Return true if the correct mutexes are held for accessing the
241 ** db->aDb[iDb].pSchema structure. The mutexes required for schema
242 ** access are:
244 ** (1) The mutex on db
245 ** (2) if iDb!=1, then the mutex on db->aDb[iDb].pBt.
247 ** If pSchema is not NULL, then iDb is computed from pSchema and
248 ** db using sqlite3SchemaToIndex().
250 int sqlite3SchemaMutexHeld(sqlite3 *db, int iDb, Schema *pSchema){
251 Btree *p;
252 assert( db!=0 );
253 if( pSchema ) iDb = sqlite3SchemaToIndex(db, pSchema);
254 assert( iDb>=0 && iDb<db->nDb );
255 if( !sqlite3_mutex_held(db->mutex) ) return 0;
256 if( iDb==1 ) return 1;
257 p = db->aDb[iDb].pBt;
258 assert( p!=0 );
259 return p->sharable==0 || p->locked==1;
261 #endif /* NDEBUG */
263 #else /* SQLITE_THREADSAFE>0 above. SQLITE_THREADSAFE==0 below */
265 ** The following are special cases for mutex enter routines for use
266 ** in single threaded applications that use shared cache. Except for
267 ** these two routines, all mutex operations are no-ops in that case and
268 ** are null #defines in btree.h.
270 ** If shared cache is disabled, then all btree mutex routines, including
271 ** the ones below, are no-ops and are null #defines in btree.h.
274 void sqlite3BtreeEnter(Btree *p){
275 p->pBt->db = p->db;
277 void sqlite3BtreeEnterAll(sqlite3 *db){
278 int i;
279 for(i=0; i<db->nDb; i++){
280 Btree *p = db->aDb[i].pBt;
281 if( p ){
282 p->pBt->db = p->db;
286 #endif /* if SQLITE_THREADSAFE */
287 #endif /* ifndef SQLITE_OMIT_SHARED_CACHE */