Fast user switcher: Add "(Supervised)" label for supervised users
[chromium-blink-merge.git] / third_party / sqlite / sqlite-src-3070603 / src / date.c
blobb81049aa6531de3158c3f6656024b36011f419c4
1 /*
2 ** 2003 October 31
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains the C functions that implement date and time
13 ** functions for SQLite.
15 ** There is only one exported symbol in this file - the function
16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
17 ** All other code has file scope.
19 ** SQLite processes all times and dates as Julian Day numbers. The
20 ** dates and times are stored as the number of days since noon
21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian
22 ** calendar system.
24 ** 1970-01-01 00:00:00 is JD 2440587.5
25 ** 2000-01-01 00:00:00 is JD 2451544.5
27 ** This implemention requires years to be expressed as a 4-digit number
28 ** which means that only dates between 0000-01-01 and 9999-12-31 can
29 ** be represented, even though julian day numbers allow a much wider
30 ** range of dates.
32 ** The Gregorian calendar system is used for all dates and times,
33 ** even those that predate the Gregorian calendar. Historians usually
34 ** use the Julian calendar for dates prior to 1582-10-15 and for some
35 ** dates afterwards, depending on locale. Beware of this difference.
37 ** The conversion algorithms are implemented based on descriptions
38 ** in the following text:
40 ** Jean Meeus
41 ** Astronomical Algorithms, 2nd Edition, 1998
42 ** ISBM 0-943396-61-1
43 ** Willmann-Bell, Inc
44 ** Richmond, Virginia (USA)
46 #include "sqliteInt.h"
47 #include <stdlib.h>
48 #include <assert.h>
49 #include <time.h>
51 #ifndef SQLITE_OMIT_DATETIME_FUNCS
54 ** On recent Windows platforms, the localtime_s() function is available
55 ** as part of the "Secure CRT". It is essentially equivalent to
56 ** localtime_r() available under most POSIX platforms, except that the
57 ** order of the parameters is reversed.
59 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
61 ** If the user has not indicated to use localtime_r() or localtime_s()
62 ** already, check for an MSVC build environment that provides
63 ** localtime_s().
65 #if !defined(HAVE_LOCALTIME_R) && !defined(HAVE_LOCALTIME_S) && \
66 defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
67 #define HAVE_LOCALTIME_S 1
68 #endif
71 ** A structure for holding a single date and time.
73 typedef struct DateTime DateTime;
74 struct DateTime {
75 sqlite3_int64 iJD; /* The julian day number times 86400000 */
76 int Y, M, D; /* Year, month, and day */
77 int h, m; /* Hour and minutes */
78 int tz; /* Timezone offset in minutes */
79 double s; /* Seconds */
80 char validYMD; /* True (1) if Y,M,D are valid */
81 char validHMS; /* True (1) if h,m,s are valid */
82 char validJD; /* True (1) if iJD is valid */
83 char validTZ; /* True (1) if tz is valid */
88 ** Convert zDate into one or more integers. Additional arguments
89 ** come in groups of 5 as follows:
91 ** N number of digits in the integer
92 ** min minimum allowed value of the integer
93 ** max maximum allowed value of the integer
94 ** nextC first character after the integer
95 ** pVal where to write the integers value.
97 ** Conversions continue until one with nextC==0 is encountered.
98 ** The function returns the number of successful conversions.
100 static int getDigits(const char *zDate, ...){
101 va_list ap;
102 int val;
103 int N;
104 int min;
105 int max;
106 int nextC;
107 int *pVal;
108 int cnt = 0;
109 va_start(ap, zDate);
111 N = va_arg(ap, int);
112 min = va_arg(ap, int);
113 max = va_arg(ap, int);
114 nextC = va_arg(ap, int);
115 pVal = va_arg(ap, int*);
116 val = 0;
117 while( N-- ){
118 if( !sqlite3Isdigit(*zDate) ){
119 goto end_getDigits;
121 val = val*10 + *zDate - '0';
122 zDate++;
124 if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){
125 goto end_getDigits;
127 *pVal = val;
128 zDate++;
129 cnt++;
130 }while( nextC );
131 end_getDigits:
132 va_end(ap);
133 return cnt;
137 ** Parse a timezone extension on the end of a date-time.
138 ** The extension is of the form:
140 ** (+/-)HH:MM
142 ** Or the "zulu" notation:
144 ** Z
146 ** If the parse is successful, write the number of minutes
147 ** of change in p->tz and return 0. If a parser error occurs,
148 ** return non-zero.
150 ** A missing specifier is not considered an error.
152 static int parseTimezone(const char *zDate, DateTime *p){
153 int sgn = 0;
154 int nHr, nMn;
155 int c;
156 while( sqlite3Isspace(*zDate) ){ zDate++; }
157 p->tz = 0;
158 c = *zDate;
159 if( c=='-' ){
160 sgn = -1;
161 }else if( c=='+' ){
162 sgn = +1;
163 }else if( c=='Z' || c=='z' ){
164 zDate++;
165 goto zulu_time;
166 }else{
167 return c!=0;
169 zDate++;
170 if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
171 return 1;
173 zDate += 5;
174 p->tz = sgn*(nMn + nHr*60);
175 zulu_time:
176 while( sqlite3Isspace(*zDate) ){ zDate++; }
177 return *zDate!=0;
181 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
182 ** The HH, MM, and SS must each be exactly 2 digits. The
183 ** fractional seconds FFFF can be one or more digits.
185 ** Return 1 if there is a parsing error and 0 on success.
187 static int parseHhMmSs(const char *zDate, DateTime *p){
188 int h, m, s;
189 double ms = 0.0;
190 if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
191 return 1;
193 zDate += 5;
194 if( *zDate==':' ){
195 zDate++;
196 if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
197 return 1;
199 zDate += 2;
200 if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){
201 double rScale = 1.0;
202 zDate++;
203 while( sqlite3Isdigit(*zDate) ){
204 ms = ms*10.0 + *zDate - '0';
205 rScale *= 10.0;
206 zDate++;
208 ms /= rScale;
210 }else{
211 s = 0;
213 p->validJD = 0;
214 p->validHMS = 1;
215 p->h = h;
216 p->m = m;
217 p->s = s + ms;
218 if( parseTimezone(zDate, p) ) return 1;
219 p->validTZ = (p->tz!=0)?1:0;
220 return 0;
224 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
225 ** that the YYYY-MM-DD is according to the Gregorian calendar.
227 ** Reference: Meeus page 61
229 static void computeJD(DateTime *p){
230 int Y, M, D, A, B, X1, X2;
232 if( p->validJD ) return;
233 if( p->validYMD ){
234 Y = p->Y;
235 M = p->M;
236 D = p->D;
237 }else{
238 Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */
239 M = 1;
240 D = 1;
242 if( M<=2 ){
243 Y--;
244 M += 12;
246 A = Y/100;
247 B = 2 - A + (A/4);
248 X1 = 36525*(Y+4716)/100;
249 X2 = 306001*(M+1)/10000;
250 p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000);
251 p->validJD = 1;
252 if( p->validHMS ){
253 p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000);
254 if( p->validTZ ){
255 p->iJD -= p->tz*60000;
256 p->validYMD = 0;
257 p->validHMS = 0;
258 p->validTZ = 0;
264 ** Parse dates of the form
266 ** YYYY-MM-DD HH:MM:SS.FFF
267 ** YYYY-MM-DD HH:MM:SS
268 ** YYYY-MM-DD HH:MM
269 ** YYYY-MM-DD
271 ** Write the result into the DateTime structure and return 0
272 ** on success and 1 if the input string is not a well-formed
273 ** date.
275 static int parseYyyyMmDd(const char *zDate, DateTime *p){
276 int Y, M, D, neg;
278 if( zDate[0]=='-' ){
279 zDate++;
280 neg = 1;
281 }else{
282 neg = 0;
284 if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
285 return 1;
287 zDate += 10;
288 while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; }
289 if( parseHhMmSs(zDate, p)==0 ){
290 /* We got the time */
291 }else if( *zDate==0 ){
292 p->validHMS = 0;
293 }else{
294 return 1;
296 p->validJD = 0;
297 p->validYMD = 1;
298 p->Y = neg ? -Y : Y;
299 p->M = M;
300 p->D = D;
301 if( p->validTZ ){
302 computeJD(p);
304 return 0;
308 ** Set the time to the current time reported by the VFS
310 static void setDateTimeToCurrent(sqlite3_context *context, DateTime *p){
311 sqlite3 *db = sqlite3_context_db_handle(context);
312 sqlite3OsCurrentTimeInt64(db->pVfs, &p->iJD);
313 p->validJD = 1;
317 ** Attempt to parse the given string into a Julian Day Number. Return
318 ** the number of errors.
320 ** The following are acceptable forms for the input string:
322 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
323 ** DDDD.DD
324 ** now
326 ** In the first form, the +/-HH:MM is always optional. The fractional
327 ** seconds extension (the ".FFF") is optional. The seconds portion
328 ** (":SS.FFF") is option. The year and date can be omitted as long
329 ** as there is a time string. The time string can be omitted as long
330 ** as there is a year and date.
332 static int parseDateOrTime(
333 sqlite3_context *context,
334 const char *zDate,
335 DateTime *p
337 double r;
338 if( parseYyyyMmDd(zDate,p)==0 ){
339 return 0;
340 }else if( parseHhMmSs(zDate, p)==0 ){
341 return 0;
342 }else if( sqlite3StrICmp(zDate,"now")==0){
343 setDateTimeToCurrent(context, p);
344 return 0;
345 }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){
346 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
347 p->validJD = 1;
348 return 0;
350 return 1;
354 ** Compute the Year, Month, and Day from the julian day number.
356 static void computeYMD(DateTime *p){
357 int Z, A, B, C, D, E, X1;
358 if( p->validYMD ) return;
359 if( !p->validJD ){
360 p->Y = 2000;
361 p->M = 1;
362 p->D = 1;
363 }else{
364 Z = (int)((p->iJD + 43200000)/86400000);
365 A = (int)((Z - 1867216.25)/36524.25);
366 A = Z + 1 + A - (A/4);
367 B = A + 1524;
368 C = (int)((B - 122.1)/365.25);
369 D = (36525*C)/100;
370 E = (int)((B-D)/30.6001);
371 X1 = (int)(30.6001*E);
372 p->D = B - D - X1;
373 p->M = E<14 ? E-1 : E-13;
374 p->Y = p->M>2 ? C - 4716 : C - 4715;
376 p->validYMD = 1;
380 ** Compute the Hour, Minute, and Seconds from the julian day number.
382 static void computeHMS(DateTime *p){
383 int s;
384 if( p->validHMS ) return;
385 computeJD(p);
386 s = (int)((p->iJD + 43200000) % 86400000);
387 p->s = s/1000.0;
388 s = (int)p->s;
389 p->s -= s;
390 p->h = s/3600;
391 s -= p->h*3600;
392 p->m = s/60;
393 p->s += s - p->m*60;
394 p->validHMS = 1;
398 ** Compute both YMD and HMS
400 static void computeYMD_HMS(DateTime *p){
401 computeYMD(p);
402 computeHMS(p);
406 ** Clear the YMD and HMS and the TZ
408 static void clearYMD_HMS_TZ(DateTime *p){
409 p->validYMD = 0;
410 p->validHMS = 0;
411 p->validTZ = 0;
414 #ifndef SQLITE_OMIT_LOCALTIME
416 ** Compute the difference (in milliseconds)
417 ** between localtime and UTC (a.k.a. GMT)
418 ** for the time value p where p is in UTC.
420 static sqlite3_int64 localtimeOffset(DateTime *p){
421 DateTime x, y;
422 time_t t;
423 x = *p;
424 computeYMD_HMS(&x);
425 if( x.Y<1971 || x.Y>=2038 ){
426 x.Y = 2000;
427 x.M = 1;
428 x.D = 1;
429 x.h = 0;
430 x.m = 0;
431 x.s = 0.0;
432 } else {
433 int s = (int)(x.s + 0.5);
434 x.s = s;
436 x.tz = 0;
437 x.validJD = 0;
438 computeJD(&x);
439 t = (time_t)(x.iJD/1000 - 21086676*(i64)10000);
440 #ifdef HAVE_LOCALTIME_R
442 struct tm sLocal;
443 localtime_r(&t, &sLocal);
444 y.Y = sLocal.tm_year + 1900;
445 y.M = sLocal.tm_mon + 1;
446 y.D = sLocal.tm_mday;
447 y.h = sLocal.tm_hour;
448 y.m = sLocal.tm_min;
449 y.s = sLocal.tm_sec;
451 #elif defined(HAVE_LOCALTIME_S) && HAVE_LOCALTIME_S
453 struct tm sLocal;
454 localtime_s(&sLocal, &t);
455 y.Y = sLocal.tm_year + 1900;
456 y.M = sLocal.tm_mon + 1;
457 y.D = sLocal.tm_mday;
458 y.h = sLocal.tm_hour;
459 y.m = sLocal.tm_min;
460 y.s = sLocal.tm_sec;
462 #else
464 struct tm *pTm;
465 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
466 pTm = localtime(&t);
467 y.Y = pTm->tm_year + 1900;
468 y.M = pTm->tm_mon + 1;
469 y.D = pTm->tm_mday;
470 y.h = pTm->tm_hour;
471 y.m = pTm->tm_min;
472 y.s = pTm->tm_sec;
473 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
475 #endif
476 y.validYMD = 1;
477 y.validHMS = 1;
478 y.validJD = 0;
479 y.validTZ = 0;
480 computeJD(&y);
481 return y.iJD - x.iJD;
483 #endif /* SQLITE_OMIT_LOCALTIME */
486 ** Process a modifier to a date-time stamp. The modifiers are
487 ** as follows:
489 ** NNN days
490 ** NNN hours
491 ** NNN minutes
492 ** NNN.NNNN seconds
493 ** NNN months
494 ** NNN years
495 ** start of month
496 ** start of year
497 ** start of week
498 ** start of day
499 ** weekday N
500 ** unixepoch
501 ** localtime
502 ** utc
504 ** Return 0 on success and 1 if there is any kind of error.
506 static int parseModifier(const char *zMod, DateTime *p){
507 int rc = 1;
508 int n;
509 double r;
510 char *z, zBuf[30];
511 z = zBuf;
512 for(n=0; n<ArraySize(zBuf)-1 && zMod[n]; n++){
513 z[n] = (char)sqlite3UpperToLower[(u8)zMod[n]];
515 z[n] = 0;
516 switch( z[0] ){
517 #ifndef SQLITE_OMIT_LOCALTIME
518 case 'l': {
519 /* localtime
521 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
522 ** show local time.
524 if( strcmp(z, "localtime")==0 ){
525 computeJD(p);
526 p->iJD += localtimeOffset(p);
527 clearYMD_HMS_TZ(p);
528 rc = 0;
530 break;
532 #endif
533 case 'u': {
535 ** unixepoch
537 ** Treat the current value of p->iJD as the number of
538 ** seconds since 1970. Convert to a real julian day number.
540 if( strcmp(z, "unixepoch")==0 && p->validJD ){
541 p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000;
542 clearYMD_HMS_TZ(p);
543 rc = 0;
545 #ifndef SQLITE_OMIT_LOCALTIME
546 else if( strcmp(z, "utc")==0 ){
547 sqlite3_int64 c1;
548 computeJD(p);
549 c1 = localtimeOffset(p);
550 p->iJD -= c1;
551 clearYMD_HMS_TZ(p);
552 p->iJD += c1 - localtimeOffset(p);
553 rc = 0;
555 #endif
556 break;
558 case 'w': {
560 ** weekday N
562 ** Move the date to the same time on the next occurrence of
563 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the
564 ** date is already on the appropriate weekday, this is a no-op.
566 if( strncmp(z, "weekday ", 8)==0
567 && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)
568 && (n=(int)r)==r && n>=0 && r<7 ){
569 sqlite3_int64 Z;
570 computeYMD_HMS(p);
571 p->validTZ = 0;
572 p->validJD = 0;
573 computeJD(p);
574 Z = ((p->iJD + 129600000)/86400000) % 7;
575 if( Z>n ) Z -= 7;
576 p->iJD += (n - Z)*86400000;
577 clearYMD_HMS_TZ(p);
578 rc = 0;
580 break;
582 case 's': {
584 ** start of TTTTT
586 ** Move the date backwards to the beginning of the current day,
587 ** or month or year.
589 if( strncmp(z, "start of ", 9)!=0 ) break;
590 z += 9;
591 computeYMD(p);
592 p->validHMS = 1;
593 p->h = p->m = 0;
594 p->s = 0.0;
595 p->validTZ = 0;
596 p->validJD = 0;
597 if( strcmp(z,"month")==0 ){
598 p->D = 1;
599 rc = 0;
600 }else if( strcmp(z,"year")==0 ){
601 computeYMD(p);
602 p->M = 1;
603 p->D = 1;
604 rc = 0;
605 }else if( strcmp(z,"day")==0 ){
606 rc = 0;
608 break;
610 case '+':
611 case '-':
612 case '0':
613 case '1':
614 case '2':
615 case '3':
616 case '4':
617 case '5':
618 case '6':
619 case '7':
620 case '8':
621 case '9': {
622 double rRounder;
623 for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){}
624 if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){
625 rc = 1;
626 break;
628 if( z[n]==':' ){
629 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
630 ** specified number of hours, minutes, seconds, and fractional seconds
631 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
632 ** omitted.
634 const char *z2 = z;
635 DateTime tx;
636 sqlite3_int64 day;
637 if( !sqlite3Isdigit(*z2) ) z2++;
638 memset(&tx, 0, sizeof(tx));
639 if( parseHhMmSs(z2, &tx) ) break;
640 computeJD(&tx);
641 tx.iJD -= 43200000;
642 day = tx.iJD/86400000;
643 tx.iJD -= day*86400000;
644 if( z[0]=='-' ) tx.iJD = -tx.iJD;
645 computeJD(p);
646 clearYMD_HMS_TZ(p);
647 p->iJD += tx.iJD;
648 rc = 0;
649 break;
651 z += n;
652 while( sqlite3Isspace(*z) ) z++;
653 n = sqlite3Strlen30(z);
654 if( n>10 || n<3 ) break;
655 if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
656 computeJD(p);
657 rc = 0;
658 rRounder = r<0 ? -0.5 : +0.5;
659 if( n==3 && strcmp(z,"day")==0 ){
660 p->iJD += (sqlite3_int64)(r*86400000.0 + rRounder);
661 }else if( n==4 && strcmp(z,"hour")==0 ){
662 p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + rRounder);
663 }else if( n==6 && strcmp(z,"minute")==0 ){
664 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + rRounder);
665 }else if( n==6 && strcmp(z,"second")==0 ){
666 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + rRounder);
667 }else if( n==5 && strcmp(z,"month")==0 ){
668 int x, y;
669 computeYMD_HMS(p);
670 p->M += (int)r;
671 x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
672 p->Y += x;
673 p->M -= x*12;
674 p->validJD = 0;
675 computeJD(p);
676 y = (int)r;
677 if( y!=r ){
678 p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + rRounder);
680 }else if( n==4 && strcmp(z,"year")==0 ){
681 int y = (int)r;
682 computeYMD_HMS(p);
683 p->Y += y;
684 p->validJD = 0;
685 computeJD(p);
686 if( y!=r ){
687 p->iJD += (sqlite3_int64)((r - y)*365.0*86400000.0 + rRounder);
689 }else{
690 rc = 1;
692 clearYMD_HMS_TZ(p);
693 break;
695 default: {
696 break;
699 return rc;
703 ** Process time function arguments. argv[0] is a date-time stamp.
704 ** argv[1] and following are modifiers. Parse them all and write
705 ** the resulting time into the DateTime structure p. Return 0
706 ** on success and 1 if there are any errors.
708 ** If there are zero parameters (if even argv[0] is undefined)
709 ** then assume a default value of "now" for argv[0].
711 static int isDate(
712 sqlite3_context *context,
713 int argc,
714 sqlite3_value **argv,
715 DateTime *p
717 int i;
718 const unsigned char *z;
719 int eType;
720 memset(p, 0, sizeof(*p));
721 if( argc==0 ){
722 setDateTimeToCurrent(context, p);
723 }else if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT
724 || eType==SQLITE_INTEGER ){
725 p->iJD = (sqlite3_int64)(sqlite3_value_double(argv[0])*86400000.0 + 0.5);
726 p->validJD = 1;
727 }else{
728 z = sqlite3_value_text(argv[0]);
729 if( !z || parseDateOrTime(context, (char*)z, p) ){
730 return 1;
733 for(i=1; i<argc; i++){
734 if( (z = sqlite3_value_text(argv[i]))==0 || parseModifier((char*)z, p) ){
735 return 1;
738 return 0;
743 ** The following routines implement the various date and time functions
744 ** of SQLite.
748 ** julianday( TIMESTRING, MOD, MOD, ...)
750 ** Return the julian day number of the date specified in the arguments
752 static void juliandayFunc(
753 sqlite3_context *context,
754 int argc,
755 sqlite3_value **argv
757 DateTime x;
758 if( isDate(context, argc, argv, &x)==0 ){
759 computeJD(&x);
760 sqlite3_result_double(context, x.iJD/86400000.0);
765 ** datetime( TIMESTRING, MOD, MOD, ...)
767 ** Return YYYY-MM-DD HH:MM:SS
769 static void datetimeFunc(
770 sqlite3_context *context,
771 int argc,
772 sqlite3_value **argv
774 DateTime x;
775 if( isDate(context, argc, argv, &x)==0 ){
776 char zBuf[100];
777 computeYMD_HMS(&x);
778 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d",
779 x.Y, x.M, x.D, x.h, x.m, (int)(x.s));
780 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
785 ** time( TIMESTRING, MOD, MOD, ...)
787 ** Return HH:MM:SS
789 static void timeFunc(
790 sqlite3_context *context,
791 int argc,
792 sqlite3_value **argv
794 DateTime x;
795 if( isDate(context, argc, argv, &x)==0 ){
796 char zBuf[100];
797 computeHMS(&x);
798 sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
799 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
804 ** date( TIMESTRING, MOD, MOD, ...)
806 ** Return YYYY-MM-DD
808 static void dateFunc(
809 sqlite3_context *context,
810 int argc,
811 sqlite3_value **argv
813 DateTime x;
814 if( isDate(context, argc, argv, &x)==0 ){
815 char zBuf[100];
816 computeYMD(&x);
817 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
818 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
823 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
825 ** Return a string described by FORMAT. Conversions as follows:
827 ** %d day of month
828 ** %f ** fractional seconds SS.SSS
829 ** %H hour 00-24
830 ** %j day of year 000-366
831 ** %J ** Julian day number
832 ** %m month 01-12
833 ** %M minute 00-59
834 ** %s seconds since 1970-01-01
835 ** %S seconds 00-59
836 ** %w day of week 0-6 sunday==0
837 ** %W week of year 00-53
838 ** %Y year 0000-9999
839 ** %% %
841 static void strftimeFunc(
842 sqlite3_context *context,
843 int argc,
844 sqlite3_value **argv
846 DateTime x;
847 u64 n;
848 size_t i,j;
849 char *z;
850 sqlite3 *db;
851 const char *zFmt = (const char*)sqlite3_value_text(argv[0]);
852 char zBuf[100];
853 if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return;
854 db = sqlite3_context_db_handle(context);
855 for(i=0, n=1; zFmt[i]; i++, n++){
856 if( zFmt[i]=='%' ){
857 switch( zFmt[i+1] ){
858 case 'd':
859 case 'H':
860 case 'm':
861 case 'M':
862 case 'S':
863 case 'W':
864 n++;
865 /* fall thru */
866 case 'w':
867 case '%':
868 break;
869 case 'f':
870 n += 8;
871 break;
872 case 'j':
873 n += 3;
874 break;
875 case 'Y':
876 n += 8;
877 break;
878 case 's':
879 case 'J':
880 n += 50;
881 break;
882 default:
883 return; /* ERROR. return a NULL */
885 i++;
888 testcase( n==sizeof(zBuf)-1 );
889 testcase( n==sizeof(zBuf) );
890 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
891 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] );
892 if( n<sizeof(zBuf) ){
893 z = zBuf;
894 }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){
895 sqlite3_result_error_toobig(context);
896 return;
897 }else{
898 z = sqlite3DbMallocRaw(db, (int)n);
899 if( z==0 ){
900 sqlite3_result_error_nomem(context);
901 return;
904 computeJD(&x);
905 computeYMD_HMS(&x);
906 for(i=j=0; zFmt[i]; i++){
907 if( zFmt[i]!='%' ){
908 z[j++] = zFmt[i];
909 }else{
910 i++;
911 switch( zFmt[i] ){
912 case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break;
913 case 'f': {
914 double s = x.s;
915 if( s>59.999 ) s = 59.999;
916 sqlite3_snprintf(7, &z[j],"%06.3f", s);
917 j += sqlite3Strlen30(&z[j]);
918 break;
920 case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break;
921 case 'W': /* Fall thru */
922 case 'j': {
923 int nDay; /* Number of days since 1st day of year */
924 DateTime y = x;
925 y.validJD = 0;
926 y.M = 1;
927 y.D = 1;
928 computeJD(&y);
929 nDay = (int)((x.iJD-y.iJD+43200000)/86400000);
930 if( zFmt[i]=='W' ){
931 int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
932 wd = (int)(((x.iJD+43200000)/86400000)%7);
933 sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7);
934 j += 2;
935 }else{
936 sqlite3_snprintf(4, &z[j],"%03d",nDay+1);
937 j += 3;
939 break;
941 case 'J': {
942 sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0);
943 j+=sqlite3Strlen30(&z[j]);
944 break;
946 case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break;
947 case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break;
948 case 's': {
949 sqlite3_snprintf(30,&z[j],"%lld",
950 (i64)(x.iJD/1000 - 21086676*(i64)10000));
951 j += sqlite3Strlen30(&z[j]);
952 break;
954 case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break;
955 case 'w': {
956 z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0';
957 break;
959 case 'Y': {
960 sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]);
961 break;
963 default: z[j++] = '%'; break;
967 z[j] = 0;
968 sqlite3_result_text(context, z, -1,
969 z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC);
973 ** current_time()
975 ** This function returns the same value as time('now').
977 static void ctimeFunc(
978 sqlite3_context *context,
979 int NotUsed,
980 sqlite3_value **NotUsed2
982 UNUSED_PARAMETER2(NotUsed, NotUsed2);
983 timeFunc(context, 0, 0);
987 ** current_date()
989 ** This function returns the same value as date('now').
991 static void cdateFunc(
992 sqlite3_context *context,
993 int NotUsed,
994 sqlite3_value **NotUsed2
996 UNUSED_PARAMETER2(NotUsed, NotUsed2);
997 dateFunc(context, 0, 0);
1001 ** current_timestamp()
1003 ** This function returns the same value as datetime('now').
1005 static void ctimestampFunc(
1006 sqlite3_context *context,
1007 int NotUsed,
1008 sqlite3_value **NotUsed2
1010 UNUSED_PARAMETER2(NotUsed, NotUsed2);
1011 datetimeFunc(context, 0, 0);
1013 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
1015 #ifdef SQLITE_OMIT_DATETIME_FUNCS
1017 ** If the library is compiled to omit the full-scale date and time
1018 ** handling (to get a smaller binary), the following minimal version
1019 ** of the functions current_time(), current_date() and current_timestamp()
1020 ** are included instead. This is to support column declarations that
1021 ** include "DEFAULT CURRENT_TIME" etc.
1023 ** This function uses the C-library functions time(), gmtime()
1024 ** and strftime(). The format string to pass to strftime() is supplied
1025 ** as the user-data for the function.
1027 static void currentTimeFunc(
1028 sqlite3_context *context,
1029 int argc,
1030 sqlite3_value **argv
1032 time_t t;
1033 char *zFormat = (char *)sqlite3_user_data(context);
1034 sqlite3 *db;
1035 sqlite3_int64 iT;
1036 char zBuf[20];
1038 UNUSED_PARAMETER(argc);
1039 UNUSED_PARAMETER(argv);
1041 db = sqlite3_context_db_handle(context);
1042 sqlite3OsCurrentTimeInt64(db->pVfs, &iT);
1043 t = iT/1000 - 10000*(sqlite3_int64)21086676;
1044 #ifdef HAVE_GMTIME_R
1046 struct tm sNow;
1047 gmtime_r(&t, &sNow);
1048 strftime(zBuf, 20, zFormat, &sNow);
1050 #else
1052 struct tm *pTm;
1053 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
1054 pTm = gmtime(&t);
1055 strftime(zBuf, 20, zFormat, pTm);
1056 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
1058 #endif
1060 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
1062 #endif
1065 ** This function registered all of the above C functions as SQL
1066 ** functions. This should be the only routine in this file with
1067 ** external linkage.
1069 void sqlite3RegisterDateTimeFunctions(void){
1070 static SQLITE_WSD FuncDef aDateTimeFuncs[] = {
1071 #ifndef SQLITE_OMIT_DATETIME_FUNCS
1072 FUNCTION(julianday, -1, 0, 0, juliandayFunc ),
1073 FUNCTION(date, -1, 0, 0, dateFunc ),
1074 FUNCTION(time, -1, 0, 0, timeFunc ),
1075 FUNCTION(datetime, -1, 0, 0, datetimeFunc ),
1076 FUNCTION(strftime, -1, 0, 0, strftimeFunc ),
1077 FUNCTION(current_time, 0, 0, 0, ctimeFunc ),
1078 FUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc),
1079 FUNCTION(current_date, 0, 0, 0, cdateFunc ),
1080 #else
1081 STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc),
1082 STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc),
1083 STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc),
1084 #endif
1086 int i;
1087 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
1088 FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aDateTimeFuncs);
1090 for(i=0; i<ArraySize(aDateTimeFuncs); i++){
1091 sqlite3FuncDefInsert(pHash, &aFunc[i]);