4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** The code in this file implements execution method of the
13 ** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
14 ** handles housekeeping details such as creating and deleting
15 ** VDBE instances. This file is solely interested in executing
18 ** In the external interface, an "sqlite3_stmt*" is an opaque pointer
21 ** The SQL parser generates a program which is then executed by
22 ** the VDBE to do the work of the SQL statement. VDBE programs are
23 ** similar in form to assembly language. The program consists of
24 ** a linear sequence of operations. Each operation has an opcode
25 ** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
26 ** is a null-terminated string. Operand P5 is an unsigned character.
27 ** Few opcodes use all 5 operands.
29 ** Computation results are stored on a set of registers numbered beginning
30 ** with 1 and going up to Vdbe.nMem. Each register can store
31 ** either an integer, a null-terminated string, a floating point
32 ** number, or the SQL "NULL" value. An implicit conversion from one
33 ** type to the other occurs as necessary.
35 ** Most of the code in this file is taken up by the sqlite3VdbeExec()
36 ** function which does the work of interpreting a VDBE program.
37 ** But other routines are also provided to help in building up
38 ** a program instruction by instruction.
40 ** Various scripts scan this source file in order to generate HTML
41 ** documentation, headers files, or other derived files. The formatting
42 ** of the code in this file is, therefore, important. See other comments
43 ** in this file for details. If in doubt, do not deviate from existing
44 ** commenting and indentation practices when changing or adding code.
46 #include "sqliteInt.h"
50 ** Invoke this macro on memory cells just prior to changing the
51 ** value of the cell. This macro verifies that shallow copies are
55 # define memAboutToChange(P,M) sqlite3VdbeMemPrepareToChange(P,M)
57 # define memAboutToChange(P,M)
61 ** The following global variable is incremented every time a cursor
62 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
63 ** procedures use this information to make sure that indices are
64 ** working correctly. This variable has no function other than to
65 ** help verify the correct operation of the library.
68 int sqlite3_search_count
= 0;
72 ** When this global variable is positive, it gets decremented once before
73 ** each instruction in the VDBE. When reaches zero, the u1.isInterrupted
74 ** field of the sqlite3 structure is set in order to simulate and interrupt.
76 ** This facility is used for testing purposes only. It does not function
77 ** in an ordinary build.
80 int sqlite3_interrupt_count
= 0;
84 ** The next global variable is incremented each type the OP_Sort opcode
85 ** is executed. The test procedures use this information to make sure that
86 ** sorting is occurring or not occurring at appropriate times. This variable
87 ** has no function other than to help verify the correct operation of the
91 int sqlite3_sort_count
= 0;
95 ** The next global variable records the size of the largest MEM_Blob
96 ** or MEM_Str that has been used by a VDBE opcode. The test procedures
97 ** use this information to make sure that the zero-blob functionality
98 ** is working correctly. This variable has no function other than to
99 ** help verify the correct operation of the library.
102 int sqlite3_max_blobsize
= 0;
103 static void updateMaxBlobsize(Mem
*p
){
104 if( (p
->flags
& (MEM_Str
|MEM_Blob
))!=0 && p
->n
>sqlite3_max_blobsize
){
105 sqlite3_max_blobsize
= p
->n
;
111 ** The next global variable is incremented each type the OP_Found opcode
112 ** is executed. This is used to test whether or not the foreign key
113 ** operation implemented using OP_FkIsZero is working. This variable
114 ** has no function other than to help verify the correct operation of the
118 int sqlite3_found_count
= 0;
122 ** Test a register to see if it exceeds the current maximum blob size.
123 ** If it does, record the new maximum blob size.
125 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
126 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
128 # define UPDATE_MAX_BLOBSIZE(P)
132 ** Convert the given register into a string if it isn't one
133 ** already. Return non-zero if a malloc() fails.
135 #define Stringify(P, enc) \
136 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
140 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
141 ** a pointer to a dynamically allocated string where some other entity
142 ** is responsible for deallocating that string. Because the register
143 ** does not control the string, it might be deleted without the register
146 ** This routine converts an ephemeral string into a dynamically allocated
147 ** string that the register itself controls. In other words, it
148 ** converts an MEM_Ephem string into an MEM_Dyn string.
150 #define Deephemeralize(P) \
151 if( ((P)->flags&MEM_Ephem)!=0 \
152 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
155 ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
158 #define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
161 ** Argument pMem points at a register that will be passed to a
162 ** user-defined function or returned to the user as the result of a query.
163 ** This routine sets the pMem->type variable used by the sqlite3_value_*()
166 void sqlite3VdbeMemStoreType(Mem
*pMem
){
167 int flags
= pMem
->flags
;
168 if( flags
& MEM_Null
){
169 pMem
->type
= SQLITE_NULL
;
171 else if( flags
& MEM_Int
){
172 pMem
->type
= SQLITE_INTEGER
;
174 else if( flags
& MEM_Real
){
175 pMem
->type
= SQLITE_FLOAT
;
177 else if( flags
& MEM_Str
){
178 pMem
->type
= SQLITE_TEXT
;
180 pMem
->type
= SQLITE_BLOB
;
185 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
186 ** if we run out of memory.
188 static VdbeCursor
*allocateCursor(
189 Vdbe
*p
, /* The virtual machine */
190 int iCur
, /* Index of the new VdbeCursor */
191 int nField
, /* Number of fields in the table or index */
192 int iDb
, /* When database the cursor belongs to, or -1 */
193 int isBtreeCursor
/* True for B-Tree. False for pseudo-table or vtab */
195 /* Find the memory cell that will be used to store the blob of memory
196 ** required for this VdbeCursor structure. It is convenient to use a
197 ** vdbe memory cell to manage the memory allocation required for a
198 ** VdbeCursor structure for the following reasons:
200 ** * Sometimes cursor numbers are used for a couple of different
201 ** purposes in a vdbe program. The different uses might require
202 ** different sized allocations. Memory cells provide growable
205 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
206 ** be freed lazily via the sqlite3_release_memory() API. This
207 ** minimizes the number of malloc calls made by the system.
209 ** Memory cells for cursors are allocated at the top of the address
210 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
211 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
213 Mem
*pMem
= &p
->aMem
[p
->nMem
-iCur
];
218 ROUND8(sizeof(VdbeCursor
)) +
219 (isBtreeCursor
?sqlite3BtreeCursorSize():0) +
220 2*nField
*sizeof(u32
);
222 assert( iCur
<p
->nCursor
);
223 if( p
->apCsr
[iCur
] ){
224 sqlite3VdbeFreeCursor(p
, p
->apCsr
[iCur
]);
227 if( SQLITE_OK
==sqlite3VdbeMemGrow(pMem
, nByte
, 0) ){
228 p
->apCsr
[iCur
] = pCx
= (VdbeCursor
*)pMem
->z
;
229 memset(pCx
, 0, sizeof(VdbeCursor
));
231 pCx
->nField
= nField
;
233 pCx
->aType
= (u32
*)&pMem
->z
[ROUND8(sizeof(VdbeCursor
))];
236 pCx
->pCursor
= (BtCursor
*)
237 &pMem
->z
[ROUND8(sizeof(VdbeCursor
))+2*nField
*sizeof(u32
)];
238 sqlite3BtreeCursorZero(pCx
->pCursor
);
245 ** Try to convert a value into a numeric representation if we can
246 ** do so without loss of information. In other words, if the string
247 ** looks like a number, convert it into a number. If it does not
248 ** look like a number, leave it alone.
250 static void applyNumericAffinity(Mem
*pRec
){
251 if( (pRec
->flags
& (MEM_Real
|MEM_Int
))==0 ){
255 if( (pRec
->flags
&MEM_Str
)==0 ) return;
256 if( sqlite3AtoF(pRec
->z
, &rValue
, pRec
->n
, enc
)==0 ) return;
257 if( 0==sqlite3Atoi64(pRec
->z
, &iValue
, pRec
->n
, enc
) ){
259 pRec
->flags
|= MEM_Int
;
262 pRec
->flags
|= MEM_Real
;
268 ** Processing is determine by the affinity parameter:
270 ** SQLITE_AFF_INTEGER:
272 ** SQLITE_AFF_NUMERIC:
273 ** Try to convert pRec to an integer representation or a
274 ** floating-point representation if an integer representation
275 ** is not possible. Note that the integer representation is
276 ** always preferred, even if the affinity is REAL, because
277 ** an integer representation is more space efficient on disk.
280 ** Convert pRec to a text representation.
283 ** No-op. pRec is unchanged.
285 static void applyAffinity(
286 Mem
*pRec
, /* The value to apply affinity to */
287 char affinity
, /* The affinity to be applied */
288 u8 enc
/* Use this text encoding */
290 if( affinity
==SQLITE_AFF_TEXT
){
291 /* Only attempt the conversion to TEXT if there is an integer or real
292 ** representation (blob and NULL do not get converted) but no string
295 if( 0==(pRec
->flags
&MEM_Str
) && (pRec
->flags
&(MEM_Real
|MEM_Int
)) ){
296 sqlite3VdbeMemStringify(pRec
, enc
);
298 pRec
->flags
&= ~(MEM_Real
|MEM_Int
);
299 }else if( affinity
!=SQLITE_AFF_NONE
){
300 assert( affinity
==SQLITE_AFF_INTEGER
|| affinity
==SQLITE_AFF_REAL
301 || affinity
==SQLITE_AFF_NUMERIC
);
302 applyNumericAffinity(pRec
);
303 if( pRec
->flags
& MEM_Real
){
304 sqlite3VdbeIntegerAffinity(pRec
);
310 ** Try to convert the type of a function argument or a result column
311 ** into a numeric representation. Use either INTEGER or REAL whichever
312 ** is appropriate. But only do the conversion if it is possible without
313 ** loss of information and return the revised type of the argument.
315 int sqlite3_value_numeric_type(sqlite3_value
*pVal
){
316 Mem
*pMem
= (Mem
*)pVal
;
317 if( pMem
->type
==SQLITE_TEXT
){
318 applyNumericAffinity(pMem
);
319 sqlite3VdbeMemStoreType(pMem
);
325 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
326 ** not the internal Mem* type.
328 void sqlite3ValueApplyAffinity(
333 applyAffinity((Mem
*)pVal
, affinity
, enc
);
338 ** Write a nice string representation of the contents of cell pMem
339 ** into buffer zBuf, length nBuf.
341 void sqlite3VdbeMemPrettyPrint(Mem
*pMem
, char *zBuf
){
345 static const char *const encnames
[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
352 assert( (f
& (MEM_Static
|MEM_Ephem
))==0 );
353 }else if( f
& MEM_Static
){
355 assert( (f
& (MEM_Dyn
|MEM_Ephem
))==0 );
356 }else if( f
& MEM_Ephem
){
358 assert( (f
& (MEM_Static
|MEM_Dyn
))==0 );
363 sqlite3_snprintf(100, zCsr
, "%c", c
);
364 zCsr
+= sqlite3Strlen30(zCsr
);
365 sqlite3_snprintf(100, zCsr
, "%d[", pMem
->n
);
366 zCsr
+= sqlite3Strlen30(zCsr
);
367 for(i
=0; i
<16 && i
<pMem
->n
; i
++){
368 sqlite3_snprintf(100, zCsr
, "%02X", ((int)pMem
->z
[i
] & 0xFF));
369 zCsr
+= sqlite3Strlen30(zCsr
);
371 for(i
=0; i
<16 && i
<pMem
->n
; i
++){
373 if( z
<32 || z
>126 ) *zCsr
++ = '.';
377 sqlite3_snprintf(100, zCsr
, "]%s", encnames
[pMem
->enc
]);
378 zCsr
+= sqlite3Strlen30(zCsr
);
380 sqlite3_snprintf(100, zCsr
,"+%dz",pMem
->u
.nZero
);
381 zCsr
+= sqlite3Strlen30(zCsr
);
384 }else if( f
& MEM_Str
){
389 assert( (f
& (MEM_Static
|MEM_Ephem
))==0 );
390 }else if( f
& MEM_Static
){
392 assert( (f
& (MEM_Dyn
|MEM_Ephem
))==0 );
393 }else if( f
& MEM_Ephem
){
395 assert( (f
& (MEM_Static
|MEM_Dyn
))==0 );
400 sqlite3_snprintf(100, &zBuf
[k
], "%d", pMem
->n
);
401 k
+= sqlite3Strlen30(&zBuf
[k
]);
403 for(j
=0; j
<15 && j
<pMem
->n
; j
++){
405 if( c
>=0x20 && c
<0x7f ){
412 sqlite3_snprintf(100,&zBuf
[k
], encnames
[pMem
->enc
]);
413 k
+= sqlite3Strlen30(&zBuf
[k
]);
421 ** Print the value of a register for tracing purposes:
423 static void memTracePrint(FILE *out
, Mem
*p
){
424 if( p
->flags
& MEM_Null
){
425 fprintf(out
, " NULL");
426 }else if( (p
->flags
& (MEM_Int
|MEM_Str
))==(MEM_Int
|MEM_Str
) ){
427 fprintf(out
, " si:%lld", p
->u
.i
);
428 }else if( p
->flags
& MEM_Int
){
429 fprintf(out
, " i:%lld", p
->u
.i
);
430 #ifndef SQLITE_OMIT_FLOATING_POINT
431 }else if( p
->flags
& MEM_Real
){
432 fprintf(out
, " r:%g", p
->r
);
434 }else if( p
->flags
& MEM_RowSet
){
435 fprintf(out
, " (rowset)");
438 sqlite3VdbeMemPrettyPrint(p
, zBuf
);
440 fprintf(out
, "%s", zBuf
);
443 static void registerTrace(FILE *out
, int iReg
, Mem
*p
){
444 fprintf(out
, "REG[%d] = ", iReg
);
445 memTracePrint(out
, p
);
451 # define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
453 # define REGISTER_TRACE(R,M)
460 ** hwtime.h contains inline assembler code for implementing
461 ** high-performance timing routines.
468 ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
469 ** sqlite3_interrupt() routine has been called. If it has been, then
470 ** processing of the VDBE program is interrupted.
472 ** This macro added to every instruction that does a jump in order to
473 ** implement a loop. This test used to be on every single instruction,
474 ** but that meant we more testing that we needed. By only testing the
475 ** flag on jump instructions, we get a (small) speed improvement.
477 #define CHECK_FOR_INTERRUPT \
478 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
483 ** This function is only called from within an assert() expression. It
484 ** checks that the sqlite3.nTransaction variable is correctly set to
485 ** the number of non-transaction savepoints currently in the
486 ** linked list starting at sqlite3.pSavepoint.
490 ** assert( checkSavepointCount(db) );
492 static int checkSavepointCount(sqlite3
*db
){
495 for(p
=db
->pSavepoint
; p
; p
=p
->pNext
) n
++;
496 assert( n
==(db
->nSavepoint
+ db
->isTransactionSavepoint
) );
502 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
503 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
504 ** in memory obtained from sqlite3DbMalloc).
506 static void importVtabErrMsg(Vdbe
*p
, sqlite3_vtab
*pVtab
){
508 sqlite3DbFree(db
, p
->zErrMsg
);
509 p
->zErrMsg
= sqlite3DbStrDup(db
, pVtab
->zErrMsg
);
510 sqlite3_free(pVtab
->zErrMsg
);
516 ** Execute as much of a VDBE program as we can then return.
518 ** sqlite3VdbeMakeReady() must be called before this routine in order to
519 ** close the program with a final OP_Halt and to set up the callbacks
520 ** and the error message pointer.
522 ** Whenever a row or result data is available, this routine will either
523 ** invoke the result callback (if there is one) or return with
526 ** If an attempt is made to open a locked database, then this routine
527 ** will either invoke the busy callback (if there is one) or it will
528 ** return SQLITE_BUSY.
530 ** If an error occurs, an error message is written to memory obtained
531 ** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
532 ** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
534 ** If the callback ever returns non-zero, then the program exits
535 ** immediately. There will be no error message but the p->rc field is
536 ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
538 ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
539 ** routine to return SQLITE_ERROR.
541 ** Other fatal errors return SQLITE_ERROR.
543 ** After this routine has finished, sqlite3VdbeFinalize() should be
544 ** used to clean up the mess that was left behind.
547 Vdbe
*p
/* The VDBE */
549 int pc
=0; /* The program counter */
550 Op
*aOp
= p
->aOp
; /* Copy of p->aOp */
551 Op
*pOp
; /* Current operation */
552 int rc
= SQLITE_OK
; /* Value to return */
553 sqlite3
*db
= p
->db
; /* The database */
554 u8 resetSchemaOnFault
= 0; /* Reset schema after an error if positive */
555 u8 encoding
= ENC(db
); /* The database encoding */
556 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
557 int checkProgress
; /* True if progress callbacks are enabled */
558 int nProgressOps
= 0; /* Opcodes executed since progress callback. */
560 Mem
*aMem
= p
->aMem
; /* Copy of p->aMem */
561 Mem
*pIn1
= 0; /* 1st input operand */
562 Mem
*pIn2
= 0; /* 2nd input operand */
563 Mem
*pIn3
= 0; /* 3rd input operand */
564 Mem
*pOut
= 0; /* Output operand */
565 int iCompare
= 0; /* Result of last OP_Compare operation */
566 int *aPermute
= 0; /* Permutation of columns for OP_Compare */
568 u64 start
; /* CPU clock count at start of opcode */
569 int origPc
; /* Program counter at start of opcode */
571 /*** INSERT STACK UNION HERE ***/
573 assert( p
->magic
==VDBE_MAGIC_RUN
); /* sqlite3_step() verifies this */
575 if( p
->rc
==SQLITE_NOMEM
){
576 /* This happens if a malloc() inside a call to sqlite3_column_text() or
577 ** sqlite3_column_text16() failed. */
580 assert( p
->rc
==SQLITE_OK
|| p
->rc
==SQLITE_BUSY
);
582 assert( p
->explain
==0 );
584 db
->busyHandler
.nBusy
= 0;
586 sqlite3VdbeIOTraceSql(p
);
587 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
588 checkProgress
= db
->xProgress
!=0;
591 sqlite3BeginBenignMalloc();
592 if( p
->pc
==0 && (p
->db
->flags
& SQLITE_VdbeListing
)!=0 ){
594 printf("VDBE Program Listing:\n");
595 sqlite3VdbePrintSql(p
);
596 for(i
=0; i
<p
->nOp
; i
++){
597 sqlite3VdbePrintOp(stdout
, i
, &aOp
[i
]);
600 sqlite3EndBenignMalloc();
602 for(pc
=p
->pc
; rc
==SQLITE_OK
; pc
++){
603 assert( pc
>=0 && pc
<p
->nOp
);
604 if( db
->mallocFailed
) goto no_mem
;
607 start
= sqlite3Hwtime();
611 /* Only allow tracing if SQLITE_DEBUG is defined.
616 printf("VDBE Execution Trace:\n");
617 sqlite3VdbePrintSql(p
);
619 sqlite3VdbePrintOp(p
->trace
, pc
, pOp
);
624 /* Check to see if we need to simulate an interrupt. This only happens
625 ** if we have a special test build.
628 if( sqlite3_interrupt_count
>0 ){
629 sqlite3_interrupt_count
--;
630 if( sqlite3_interrupt_count
==0 ){
631 sqlite3_interrupt(db
);
636 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
637 /* Call the progress callback if it is configured and the required number
638 ** of VDBE ops have been executed (either since this invocation of
639 ** sqlite3VdbeExec() or since last time the progress callback was called).
640 ** If the progress callback returns non-zero, exit the virtual machine with
641 ** a return code SQLITE_ABORT.
644 if( db
->nProgressOps
==nProgressOps
){
646 prc
= db
->xProgress(db
->pProgressArg
);
648 rc
= SQLITE_INTERRUPT
;
649 goto vdbe_error_halt
;
657 /* On any opcode with the "out2-prerelase" tag, free any
658 ** external allocations out of mem[p2] and set mem[p2] to be
659 ** an undefined integer. Opcodes will either fill in the integer
660 ** value or convert mem[p2] to a different type.
662 assert( pOp
->opflags
==sqlite3OpcodeProperty
[pOp
->opcode
] );
663 if( pOp
->opflags
& OPFLG_OUT2_PRERELEASE
){
665 assert( pOp
->p2
<=p
->nMem
);
666 pOut
= &aMem
[pOp
->p2
];
667 memAboutToChange(p
, pOut
);
668 sqlite3VdbeMemReleaseExternal(pOut
);
669 pOut
->flags
= MEM_Int
;
672 /* Sanity checking on other operands */
674 if( (pOp
->opflags
& OPFLG_IN1
)!=0 ){
676 assert( pOp
->p1
<=p
->nMem
);
677 assert( memIsValid(&aMem
[pOp
->p1
]) );
678 REGISTER_TRACE(pOp
->p1
, &aMem
[pOp
->p1
]);
680 if( (pOp
->opflags
& OPFLG_IN2
)!=0 ){
682 assert( pOp
->p2
<=p
->nMem
);
683 assert( memIsValid(&aMem
[pOp
->p2
]) );
684 REGISTER_TRACE(pOp
->p2
, &aMem
[pOp
->p2
]);
686 if( (pOp
->opflags
& OPFLG_IN3
)!=0 ){
688 assert( pOp
->p3
<=p
->nMem
);
689 assert( memIsValid(&aMem
[pOp
->p3
]) );
690 REGISTER_TRACE(pOp
->p3
, &aMem
[pOp
->p3
]);
692 if( (pOp
->opflags
& OPFLG_OUT2
)!=0 ){
694 assert( pOp
->p2
<=p
->nMem
);
695 memAboutToChange(p
, &aMem
[pOp
->p2
]);
697 if( (pOp
->opflags
& OPFLG_OUT3
)!=0 ){
699 assert( pOp
->p3
<=p
->nMem
);
700 memAboutToChange(p
, &aMem
[pOp
->p3
]);
704 switch( pOp
->opcode
){
706 /*****************************************************************************
707 ** What follows is a massive switch statement where each case implements a
708 ** separate instruction in the virtual machine. If we follow the usual
709 ** indentation conventions, each case should be indented by 6 spaces. But
710 ** that is a lot of wasted space on the left margin. So the code within
711 ** the switch statement will break with convention and be flush-left. Another
712 ** big comment (similar to this one) will mark the point in the code where
713 ** we transition back to normal indentation.
715 ** The formatting of each case is important. The makefile for SQLite
716 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
717 ** file looking for lines that begin with "case OP_". The opcodes.h files
718 ** will be filled with #defines that give unique integer values to each
719 ** opcode and the opcodes.c file is filled with an array of strings where
720 ** each string is the symbolic name for the corresponding opcode. If the
721 ** case statement is followed by a comment of the form "/# same as ... #/"
722 ** that comment is used to determine the particular value of the opcode.
724 ** Other keywords in the comment that follows each case are used to
725 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
726 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
727 ** the mkopcodeh.awk script for additional information.
729 ** Documentation about VDBE opcodes is generated by scanning this file
730 ** for lines of that contain "Opcode:". That line and all subsequent
731 ** comment lines are used in the generation of the opcode.html documentation
736 ** Formatting is important to scripts that scan this file.
737 ** Do not deviate from the formatting style currently in use.
739 *****************************************************************************/
741 /* Opcode: Goto * P2 * * *
743 ** An unconditional jump to address P2.
744 ** The next instruction executed will be
745 ** the one at index P2 from the beginning of
748 case OP_Goto
: { /* jump */
754 /* Opcode: Gosub P1 P2 * * *
756 ** Write the current address onto register P1
757 ** and then jump to address P2.
759 case OP_Gosub
: { /* jump, in1 */
760 pIn1
= &aMem
[pOp
->p1
];
761 assert( (pIn1
->flags
& MEM_Dyn
)==0 );
762 memAboutToChange(p
, pIn1
);
763 pIn1
->flags
= MEM_Int
;
765 REGISTER_TRACE(pOp
->p1
, pIn1
);
770 /* Opcode: Return P1 * * * *
772 ** Jump to the next instruction after the address in register P1.
774 case OP_Return
: { /* in1 */
775 pIn1
= &aMem
[pOp
->p1
];
776 assert( pIn1
->flags
& MEM_Int
);
781 /* Opcode: Yield P1 * * * *
783 ** Swap the program counter with the value in register P1.
785 case OP_Yield
: { /* in1 */
787 pIn1
= &aMem
[pOp
->p1
];
788 assert( (pIn1
->flags
& MEM_Dyn
)==0 );
789 pIn1
->flags
= MEM_Int
;
790 pcDest
= (int)pIn1
->u
.i
;
792 REGISTER_TRACE(pOp
->p1
, pIn1
);
797 /* Opcode: HaltIfNull P1 P2 P3 P4 *
799 ** Check the value in register P3. If is is NULL then Halt using
800 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the
801 ** value in register P3 is not NULL, then this routine is a no-op.
803 case OP_HaltIfNull
: { /* in3 */
804 pIn3
= &aMem
[pOp
->p3
];
805 if( (pIn3
->flags
& MEM_Null
)==0 ) break;
806 /* Fall through into OP_Halt */
809 /* Opcode: Halt P1 P2 * P4 *
811 ** Exit immediately. All open cursors, etc are closed
814 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
815 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
816 ** For errors, it can be some other value. If P1!=0 then P2 will determine
817 ** whether or not to rollback the current transaction. Do not rollback
818 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
819 ** then back out all changes that have occurred during this execution of the
820 ** VDBE, but do not rollback the transaction.
822 ** If P4 is not null then it is an error message string.
824 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
825 ** every program. So a jump past the last instruction of the program
826 ** is the same as executing Halt.
829 if( pOp
->p1
==SQLITE_OK
&& p
->pFrame
){
830 /* Halt the sub-program. Return control to the parent frame. */
831 VdbeFrame
*pFrame
= p
->pFrame
;
832 p
->pFrame
= pFrame
->pParent
;
834 sqlite3VdbeSetChanges(db
, p
->nChange
);
835 pc
= sqlite3VdbeFrameRestore(pFrame
);
836 if( pOp
->p2
==OE_Ignore
){
837 /* Instruction pc is the OP_Program that invoked the sub-program
838 ** currently being halted. If the p2 instruction of this OP_Halt
839 ** instruction is set to OE_Ignore, then the sub-program is throwing
840 ** an IGNORE exception. In this case jump to the address specified
841 ** as the p2 of the calling OP_Program. */
842 pc
= p
->aOp
[pc
].p2
-1;
850 p
->errorAction
= (u8
)pOp
->p2
;
853 assert( p
->rc
!=SQLITE_OK
);
854 sqlite3SetString(&p
->zErrMsg
, db
, "%s", pOp
->p4
.z
);
855 testcase( sqlite3GlobalConfig
.xLog
!=0 );
856 sqlite3_log(pOp
->p1
, "abort at %d in [%s]: %s", pc
, p
->zSql
, pOp
->p4
.z
);
858 testcase( sqlite3GlobalConfig
.xLog
!=0 );
859 sqlite3_log(pOp
->p1
, "constraint failed at %d in [%s]", pc
, p
->zSql
);
861 rc
= sqlite3VdbeHalt(p
);
862 assert( rc
==SQLITE_BUSY
|| rc
==SQLITE_OK
|| rc
==SQLITE_ERROR
);
863 if( rc
==SQLITE_BUSY
){
864 p
->rc
= rc
= SQLITE_BUSY
;
866 assert( rc
==SQLITE_OK
|| p
->rc
==SQLITE_CONSTRAINT
);
867 assert( rc
==SQLITE_OK
|| db
->nDeferredCons
>0 );
868 rc
= p
->rc
? SQLITE_ERROR
: SQLITE_DONE
;
873 /* Opcode: Integer P1 P2 * * *
875 ** The 32-bit integer value P1 is written into register P2.
877 case OP_Integer
: { /* out2-prerelease */
882 /* Opcode: Int64 * P2 * P4 *
884 ** P4 is a pointer to a 64-bit integer value.
885 ** Write that value into register P2.
887 case OP_Int64
: { /* out2-prerelease */
888 assert( pOp
->p4
.pI64
!=0 );
889 pOut
->u
.i
= *pOp
->p4
.pI64
;
893 #ifndef SQLITE_OMIT_FLOATING_POINT
894 /* Opcode: Real * P2 * P4 *
896 ** P4 is a pointer to a 64-bit floating point value.
897 ** Write that value into register P2.
899 case OP_Real
: { /* same as TK_FLOAT, out2-prerelease */
900 pOut
->flags
= MEM_Real
;
901 assert( !sqlite3IsNaN(*pOp
->p4
.pReal
) );
902 pOut
->r
= *pOp
->p4
.pReal
;
907 /* Opcode: String8 * P2 * P4 *
909 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
910 ** into an OP_String before it is executed for the first time.
912 case OP_String8
: { /* same as TK_STRING, out2-prerelease */
913 assert( pOp
->p4
.z
!=0 );
914 pOp
->opcode
= OP_String
;
915 pOp
->p1
= sqlite3Strlen30(pOp
->p4
.z
);
917 #ifndef SQLITE_OMIT_UTF16
918 if( encoding
!=SQLITE_UTF8
){
919 rc
= sqlite3VdbeMemSetStr(pOut
, pOp
->p4
.z
, -1, SQLITE_UTF8
, SQLITE_STATIC
);
920 if( rc
==SQLITE_TOOBIG
) goto too_big
;
921 if( SQLITE_OK
!=sqlite3VdbeChangeEncoding(pOut
, encoding
) ) goto no_mem
;
922 assert( pOut
->zMalloc
==pOut
->z
);
923 assert( pOut
->flags
& MEM_Dyn
);
925 pOut
->flags
|= MEM_Static
;
926 pOut
->flags
&= ~MEM_Dyn
;
927 if( pOp
->p4type
==P4_DYNAMIC
){
928 sqlite3DbFree(db
, pOp
->p4
.z
);
930 pOp
->p4type
= P4_DYNAMIC
;
935 if( pOp
->p1
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
938 /* Fall through to the next case, OP_String */
941 /* Opcode: String P1 P2 * P4 *
943 ** The string value P4 of length P1 (bytes) is stored in register P2.
945 case OP_String
: { /* out2-prerelease */
946 assert( pOp
->p4
.z
!=0 );
947 pOut
->flags
= MEM_Str
|MEM_Static
|MEM_Term
;
950 pOut
->enc
= encoding
;
951 UPDATE_MAX_BLOBSIZE(pOut
);
955 /* Opcode: Null * P2 * * *
957 ** Write a NULL into register P2.
959 case OP_Null
: { /* out2-prerelease */
960 pOut
->flags
= MEM_Null
;
965 /* Opcode: Blob P1 P2 * P4
967 ** P4 points to a blob of data P1 bytes long. Store this
968 ** blob in register P2.
970 case OP_Blob
: { /* out2-prerelease */
971 assert( pOp
->p1
<= SQLITE_MAX_LENGTH
);
972 sqlite3VdbeMemSetStr(pOut
, pOp
->p4
.z
, pOp
->p1
, 0, 0);
973 pOut
->enc
= encoding
;
974 UPDATE_MAX_BLOBSIZE(pOut
);
978 /* Opcode: Variable P1 P2 * P4 *
980 ** Transfer the values of bound parameter P1 into register P2
982 ** If the parameter is named, then its name appears in P4 and P3==1.
983 ** The P4 value is used by sqlite3_bind_parameter_name().
985 case OP_Variable
: { /* out2-prerelease */
986 Mem
*pVar
; /* Value being transferred */
988 assert( pOp
->p1
>0 && pOp
->p1
<=p
->nVar
);
989 pVar
= &p
->aVar
[pOp
->p1
- 1];
990 if( sqlite3VdbeMemTooBig(pVar
) ){
993 sqlite3VdbeMemShallowCopy(pOut
, pVar
, MEM_Static
);
994 UPDATE_MAX_BLOBSIZE(pOut
);
998 /* Opcode: Move P1 P2 P3 * *
1000 ** Move the values in register P1..P1+P3-1 over into
1001 ** registers P2..P2+P3-1. Registers P1..P1+P1-1 are
1002 ** left holding a NULL. It is an error for register ranges
1003 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.
1006 char *zMalloc
; /* Holding variable for allocated memory */
1007 int n
; /* Number of registers left to copy */
1008 int p1
; /* Register to copy from */
1009 int p2
; /* Register to copy to */
1014 assert( n
>0 && p1
>0 && p2
>0 );
1015 assert( p1
+n
<=p2
|| p2
+n
<=p1
);
1020 assert( pOut
<=&aMem
[p
->nMem
] );
1021 assert( pIn1
<=&aMem
[p
->nMem
] );
1022 assert( memIsValid(pIn1
) );
1023 memAboutToChange(p
, pOut
);
1024 zMalloc
= pOut
->zMalloc
;
1026 sqlite3VdbeMemMove(pOut
, pIn1
);
1027 pIn1
->zMalloc
= zMalloc
;
1028 REGISTER_TRACE(p2
++, pOut
);
1035 /* Opcode: Copy P1 P2 * * *
1037 ** Make a copy of register P1 into register P2.
1039 ** This instruction makes a deep copy of the value. A duplicate
1040 ** is made of any string or blob constant. See also OP_SCopy.
1042 case OP_Copy
: { /* in1, out2 */
1043 pIn1
= &aMem
[pOp
->p1
];
1044 pOut
= &aMem
[pOp
->p2
];
1045 assert( pOut
!=pIn1
);
1046 sqlite3VdbeMemShallowCopy(pOut
, pIn1
, MEM_Ephem
);
1047 Deephemeralize(pOut
);
1048 REGISTER_TRACE(pOp
->p2
, pOut
);
1052 /* Opcode: SCopy P1 P2 * * *
1054 ** Make a shallow copy of register P1 into register P2.
1056 ** This instruction makes a shallow copy of the value. If the value
1057 ** is a string or blob, then the copy is only a pointer to the
1058 ** original and hence if the original changes so will the copy.
1059 ** Worse, if the original is deallocated, the copy becomes invalid.
1060 ** Thus the program must guarantee that the original will not change
1061 ** during the lifetime of the copy. Use OP_Copy to make a complete
1064 case OP_SCopy
: { /* in1, out2 */
1065 pIn1
= &aMem
[pOp
->p1
];
1066 pOut
= &aMem
[pOp
->p2
];
1067 assert( pOut
!=pIn1
);
1068 sqlite3VdbeMemShallowCopy(pOut
, pIn1
, MEM_Ephem
);
1070 if( pOut
->pScopyFrom
==0 ) pOut
->pScopyFrom
= pIn1
;
1072 REGISTER_TRACE(pOp
->p2
, pOut
);
1076 /* Opcode: ResultRow P1 P2 * * *
1078 ** The registers P1 through P1+P2-1 contain a single row of
1079 ** results. This opcode causes the sqlite3_step() call to terminate
1080 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1081 ** structure to provide access to the top P1 values as the result
1084 case OP_ResultRow
: {
1087 assert( p
->nResColumn
==pOp
->p2
);
1088 assert( pOp
->p1
>0 );
1089 assert( pOp
->p1
+pOp
->p2
<=p
->nMem
+1 );
1091 /* If this statement has violated immediate foreign key constraints, do
1092 ** not return the number of rows modified. And do not RELEASE the statement
1093 ** transaction. It needs to be rolled back. */
1094 if( SQLITE_OK
!=(rc
= sqlite3VdbeCheckFk(p
, 0)) ){
1095 assert( db
->flags
&SQLITE_CountRows
);
1096 assert( p
->usesStmtJournal
);
1100 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1101 ** DML statements invoke this opcode to return the number of rows
1102 ** modified to the user. This is the only way that a VM that
1103 ** opens a statement transaction may invoke this opcode.
1105 ** In case this is such a statement, close any statement transaction
1106 ** opened by this VM before returning control to the user. This is to
1107 ** ensure that statement-transactions are always nested, not overlapping.
1108 ** If the open statement-transaction is not closed here, then the user
1109 ** may step another VM that opens its own statement transaction. This
1110 ** may lead to overlapping statement transactions.
1112 ** The statement transaction is never a top-level transaction. Hence
1113 ** the RELEASE call below can never fail.
1115 assert( p
->iStatement
==0 || db
->flags
&SQLITE_CountRows
);
1116 rc
= sqlite3VdbeCloseStatement(p
, SAVEPOINT_RELEASE
);
1117 if( NEVER(rc
!=SQLITE_OK
) ){
1121 /* Invalidate all ephemeral cursor row caches */
1122 p
->cacheCtr
= (p
->cacheCtr
+ 2)|1;
1124 /* Make sure the results of the current row are \000 terminated
1125 ** and have an assigned type. The results are de-ephemeralized as
1128 pMem
= p
->pResultSet
= &aMem
[pOp
->p1
];
1129 for(i
=0; i
<pOp
->p2
; i
++){
1130 assert( memIsValid(&pMem
[i
]) );
1131 Deephemeralize(&pMem
[i
]);
1132 assert( (pMem
[i
].flags
& MEM_Ephem
)==0
1133 || (pMem
[i
].flags
& (MEM_Str
|MEM_Blob
))==0 );
1134 sqlite3VdbeMemNulTerminate(&pMem
[i
]);
1135 sqlite3VdbeMemStoreType(&pMem
[i
]);
1136 REGISTER_TRACE(pOp
->p1
+i
, &pMem
[i
]);
1138 if( db
->mallocFailed
) goto no_mem
;
1140 /* Return SQLITE_ROW
1147 /* Opcode: Concat P1 P2 P3 * *
1149 ** Add the text in register P1 onto the end of the text in
1150 ** register P2 and store the result in register P3.
1151 ** If either the P1 or P2 text are NULL then store NULL in P3.
1155 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1156 ** if P3 is the same register as P2, the implementation is able
1157 ** to avoid a memcpy().
1159 case OP_Concat
: { /* same as TK_CONCAT, in1, in2, out3 */
1162 pIn1
= &aMem
[pOp
->p1
];
1163 pIn2
= &aMem
[pOp
->p2
];
1164 pOut
= &aMem
[pOp
->p3
];
1165 assert( pIn1
!=pOut
);
1166 if( (pIn1
->flags
| pIn2
->flags
) & MEM_Null
){
1167 sqlite3VdbeMemSetNull(pOut
);
1170 if( ExpandBlob(pIn1
) || ExpandBlob(pIn2
) ) goto no_mem
;
1171 Stringify(pIn1
, encoding
);
1172 Stringify(pIn2
, encoding
);
1173 nByte
= pIn1
->n
+ pIn2
->n
;
1174 if( nByte
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
1177 MemSetTypeFlag(pOut
, MEM_Str
);
1178 if( sqlite3VdbeMemGrow(pOut
, (int)nByte
+2, pOut
==pIn2
) ){
1182 memcpy(pOut
->z
, pIn2
->z
, pIn2
->n
);
1184 memcpy(&pOut
->z
[pIn2
->n
], pIn1
->z
, pIn1
->n
);
1186 pOut
->z
[nByte
+1] = 0;
1187 pOut
->flags
|= MEM_Term
;
1188 pOut
->n
= (int)nByte
;
1189 pOut
->enc
= encoding
;
1190 UPDATE_MAX_BLOBSIZE(pOut
);
1194 /* Opcode: Add P1 P2 P3 * *
1196 ** Add the value in register P1 to the value in register P2
1197 ** and store the result in register P3.
1198 ** If either input is NULL, the result is NULL.
1200 /* Opcode: Multiply P1 P2 P3 * *
1203 ** Multiply the value in register P1 by the value in register P2
1204 ** and store the result in register P3.
1205 ** If either input is NULL, the result is NULL.
1207 /* Opcode: Subtract P1 P2 P3 * *
1209 ** Subtract the value in register P1 from the value in register P2
1210 ** and store the result in register P3.
1211 ** If either input is NULL, the result is NULL.
1213 /* Opcode: Divide P1 P2 P3 * *
1215 ** Divide the value in register P1 by the value in register P2
1216 ** and store the result in register P3 (P3=P2/P1). If the value in
1217 ** register P1 is zero, then the result is NULL. If either input is
1218 ** NULL, the result is NULL.
1220 /* Opcode: Remainder P1 P2 P3 * *
1222 ** Compute the remainder after integer division of the value in
1223 ** register P1 by the value in register P2 and store the result in P3.
1224 ** If the value in register P2 is zero the result is NULL.
1225 ** If either operand is NULL, the result is NULL.
1227 case OP_Add
: /* same as TK_PLUS, in1, in2, out3 */
1228 case OP_Subtract
: /* same as TK_MINUS, in1, in2, out3 */
1229 case OP_Multiply
: /* same as TK_STAR, in1, in2, out3 */
1230 case OP_Divide
: /* same as TK_SLASH, in1, in2, out3 */
1231 case OP_Remainder
: { /* same as TK_REM, in1, in2, out3 */
1232 int flags
; /* Combined MEM_* flags from both inputs */
1233 i64 iA
; /* Integer value of left operand */
1234 i64 iB
; /* Integer value of right operand */
1235 double rA
; /* Real value of left operand */
1236 double rB
; /* Real value of right operand */
1238 pIn1
= &aMem
[pOp
->p1
];
1239 applyNumericAffinity(pIn1
);
1240 pIn2
= &aMem
[pOp
->p2
];
1241 applyNumericAffinity(pIn2
);
1242 pOut
= &aMem
[pOp
->p3
];
1243 flags
= pIn1
->flags
| pIn2
->flags
;
1244 if( (flags
& MEM_Null
)!=0 ) goto arithmetic_result_is_null
;
1245 if( (pIn1
->flags
& pIn2
->flags
& MEM_Int
)==MEM_Int
){
1248 switch( pOp
->opcode
){
1249 case OP_Add
: if( sqlite3AddInt64(&iB
,iA
) ) goto fp_math
; break;
1250 case OP_Subtract
: if( sqlite3SubInt64(&iB
,iA
) ) goto fp_math
; break;
1251 case OP_Multiply
: if( sqlite3MulInt64(&iB
,iA
) ) goto fp_math
; break;
1253 if( iA
==0 ) goto arithmetic_result_is_null
;
1254 if( iA
==-1 && iB
==SMALLEST_INT64
) goto fp_math
;
1259 if( iA
==0 ) goto arithmetic_result_is_null
;
1260 if( iA
==-1 ) iA
= 1;
1266 MemSetTypeFlag(pOut
, MEM_Int
);
1269 rA
= sqlite3VdbeRealValue(pIn1
);
1270 rB
= sqlite3VdbeRealValue(pIn2
);
1271 switch( pOp
->opcode
){
1272 case OP_Add
: rB
+= rA
; break;
1273 case OP_Subtract
: rB
-= rA
; break;
1274 case OP_Multiply
: rB
*= rA
; break;
1276 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1277 if( rA
==(double)0 ) goto arithmetic_result_is_null
;
1284 if( iA
==0 ) goto arithmetic_result_is_null
;
1285 if( iA
==-1 ) iA
= 1;
1286 rB
= (double)(iB
% iA
);
1290 #ifdef SQLITE_OMIT_FLOATING_POINT
1292 MemSetTypeFlag(pOut
, MEM_Int
);
1294 if( sqlite3IsNaN(rB
) ){
1295 goto arithmetic_result_is_null
;
1298 MemSetTypeFlag(pOut
, MEM_Real
);
1299 if( (flags
& MEM_Real
)==0 ){
1300 sqlite3VdbeIntegerAffinity(pOut
);
1306 arithmetic_result_is_null
:
1307 sqlite3VdbeMemSetNull(pOut
);
1311 /* Opcode: CollSeq * * P4
1313 ** P4 is a pointer to a CollSeq struct. If the next call to a user function
1314 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1315 ** be returned. This is used by the built-in min(), max() and nullif()
1318 ** The interface used by the implementation of the aforementioned functions
1319 ** to retrieve the collation sequence set by this opcode is not available
1320 ** publicly, only to user functions defined in func.c.
1323 assert( pOp
->p4type
==P4_COLLSEQ
);
1327 /* Opcode: Function P1 P2 P3 P4 P5
1329 ** Invoke a user function (P4 is a pointer to a Function structure that
1330 ** defines the function) with P5 arguments taken from register P2 and
1331 ** successors. The result of the function is stored in register P3.
1332 ** Register P3 must not be one of the function inputs.
1334 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1335 ** function was determined to be constant at compile time. If the first
1336 ** argument was constant then bit 0 of P1 is set. This is used to determine
1337 ** whether meta data associated with a user function argument using the
1338 ** sqlite3_set_auxdata() API may be safely retained until the next
1339 ** invocation of this opcode.
1341 ** See also: AggStep and AggFinal
1346 sqlite3_context ctx
;
1347 sqlite3_value
**apVal
;
1352 assert( apVal
|| n
==0 );
1353 assert( pOp
->p3
>0 && pOp
->p3
<=p
->nMem
);
1354 pOut
= &aMem
[pOp
->p3
];
1355 memAboutToChange(p
, pOut
);
1357 assert( n
==0 || (pOp
->p2
>0 && pOp
->p2
+n
<=p
->nMem
+1) );
1358 assert( pOp
->p3
<pOp
->p2
|| pOp
->p3
>=pOp
->p2
+n
);
1359 pArg
= &aMem
[pOp
->p2
];
1360 for(i
=0; i
<n
; i
++, pArg
++){
1361 assert( memIsValid(pArg
) );
1363 Deephemeralize(pArg
);
1364 sqlite3VdbeMemStoreType(pArg
);
1365 REGISTER_TRACE(pOp
->p2
+i
, pArg
);
1368 assert( pOp
->p4type
==P4_FUNCDEF
|| pOp
->p4type
==P4_VDBEFUNC
);
1369 if( pOp
->p4type
==P4_FUNCDEF
){
1370 ctx
.pFunc
= pOp
->p4
.pFunc
;
1373 ctx
.pVdbeFunc
= (VdbeFunc
*)pOp
->p4
.pVdbeFunc
;
1374 ctx
.pFunc
= ctx
.pVdbeFunc
->pFunc
;
1377 ctx
.s
.flags
= MEM_Null
;
1382 /* The output cell may already have a buffer allocated. Move
1383 ** the pointer to ctx.s so in case the user-function can use
1384 ** the already allocated buffer instead of allocating a new one.
1386 sqlite3VdbeMemMove(&ctx
.s
, pOut
);
1387 MemSetTypeFlag(&ctx
.s
, MEM_Null
);
1390 if( ctx
.pFunc
->flags
& SQLITE_FUNC_NEEDCOLL
){
1392 assert( pOp
[-1].p4type
==P4_COLLSEQ
);
1393 assert( pOp
[-1].opcode
==OP_CollSeq
);
1394 ctx
.pColl
= pOp
[-1].p4
.pColl
;
1396 (*ctx
.pFunc
->xFunc
)(&ctx
, n
, apVal
); /* IMP: R-24505-23230 */
1397 if( db
->mallocFailed
){
1398 /* Even though a malloc() has failed, the implementation of the
1399 ** user function may have called an sqlite3_result_XXX() function
1400 ** to return a value. The following call releases any resources
1401 ** associated with such a value.
1403 sqlite3VdbeMemRelease(&ctx
.s
);
1407 /* If any auxiliary data functions have been called by this user function,
1408 ** immediately call the destructor for any non-static values.
1410 if( ctx
.pVdbeFunc
){
1411 sqlite3VdbeDeleteAuxData(ctx
.pVdbeFunc
, pOp
->p1
);
1412 pOp
->p4
.pVdbeFunc
= ctx
.pVdbeFunc
;
1413 pOp
->p4type
= P4_VDBEFUNC
;
1416 /* If the function returned an error, throw an exception */
1418 sqlite3SetString(&p
->zErrMsg
, db
, "%s", sqlite3_value_text(&ctx
.s
));
1422 /* Copy the result of the function into register P3 */
1423 sqlite3VdbeChangeEncoding(&ctx
.s
, encoding
);
1424 sqlite3VdbeMemMove(pOut
, &ctx
.s
);
1425 if( sqlite3VdbeMemTooBig(pOut
) ){
1430 /* The app-defined function has done something that as caused this
1431 ** statement to expire. (Perhaps the function called sqlite3_exec()
1432 ** with a CREATE TABLE statement.)
1434 if( p
->expired
) rc
= SQLITE_ABORT
;
1437 REGISTER_TRACE(pOp
->p3
, pOut
);
1438 UPDATE_MAX_BLOBSIZE(pOut
);
1442 /* Opcode: BitAnd P1 P2 P3 * *
1444 ** Take the bit-wise AND of the values in register P1 and P2 and
1445 ** store the result in register P3.
1446 ** If either input is NULL, the result is NULL.
1448 /* Opcode: BitOr P1 P2 P3 * *
1450 ** Take the bit-wise OR of the values in register P1 and P2 and
1451 ** store the result in register P3.
1452 ** If either input is NULL, the result is NULL.
1454 /* Opcode: ShiftLeft P1 P2 P3 * *
1456 ** Shift the integer value in register P2 to the left by the
1457 ** number of bits specified by the integer in register P1.
1458 ** Store the result in register P3.
1459 ** If either input is NULL, the result is NULL.
1461 /* Opcode: ShiftRight P1 P2 P3 * *
1463 ** Shift the integer value in register P2 to the right by the
1464 ** number of bits specified by the integer in register P1.
1465 ** Store the result in register P3.
1466 ** If either input is NULL, the result is NULL.
1468 case OP_BitAnd
: /* same as TK_BITAND, in1, in2, out3 */
1469 case OP_BitOr
: /* same as TK_BITOR, in1, in2, out3 */
1470 case OP_ShiftLeft
: /* same as TK_LSHIFT, in1, in2, out3 */
1471 case OP_ShiftRight
: { /* same as TK_RSHIFT, in1, in2, out3 */
1477 pIn1
= &aMem
[pOp
->p1
];
1478 pIn2
= &aMem
[pOp
->p2
];
1479 pOut
= &aMem
[pOp
->p3
];
1480 if( (pIn1
->flags
| pIn2
->flags
) & MEM_Null
){
1481 sqlite3VdbeMemSetNull(pOut
);
1484 iA
= sqlite3VdbeIntValue(pIn2
);
1485 iB
= sqlite3VdbeIntValue(pIn1
);
1487 if( op
==OP_BitAnd
){
1489 }else if( op
==OP_BitOr
){
1492 assert( op
==OP_ShiftRight
|| op
==OP_ShiftLeft
);
1494 /* If shifting by a negative amount, shift in the other direction */
1496 assert( OP_ShiftRight
==OP_ShiftLeft
+1 );
1497 op
= 2*OP_ShiftLeft
+ 1 - op
;
1498 iB
= iB
>(-64) ? -iB
: 64;
1502 iA
= (iA
>=0 || op
==OP_ShiftLeft
) ? 0 : -1;
1504 memcpy(&uA
, &iA
, sizeof(uA
));
1505 if( op
==OP_ShiftLeft
){
1509 /* Sign-extend on a right shift of a negative number */
1510 if( iA
<0 ) uA
|= ((((u64
)0xffffffff)<<32)|0xffffffff) << (64-iB
);
1512 memcpy(&iA
, &uA
, sizeof(iA
));
1516 MemSetTypeFlag(pOut
, MEM_Int
);
1520 /* Opcode: AddImm P1 P2 * * *
1522 ** Add the constant P2 to the value in register P1.
1523 ** The result is always an integer.
1525 ** To force any register to be an integer, just add 0.
1527 case OP_AddImm
: { /* in1 */
1528 pIn1
= &aMem
[pOp
->p1
];
1529 memAboutToChange(p
, pIn1
);
1530 sqlite3VdbeMemIntegerify(pIn1
);
1531 pIn1
->u
.i
+= pOp
->p2
;
1535 /* Opcode: MustBeInt P1 P2 * * *
1537 ** Force the value in register P1 to be an integer. If the value
1538 ** in P1 is not an integer and cannot be converted into an integer
1539 ** without data loss, then jump immediately to P2, or if P2==0
1540 ** raise an SQLITE_MISMATCH exception.
1542 case OP_MustBeInt
: { /* jump, in1 */
1543 pIn1
= &aMem
[pOp
->p1
];
1544 applyAffinity(pIn1
, SQLITE_AFF_NUMERIC
, encoding
);
1545 if( (pIn1
->flags
& MEM_Int
)==0 ){
1547 rc
= SQLITE_MISMATCH
;
1548 goto abort_due_to_error
;
1553 MemSetTypeFlag(pIn1
, MEM_Int
);
1558 #ifndef SQLITE_OMIT_FLOATING_POINT
1559 /* Opcode: RealAffinity P1 * * * *
1561 ** If register P1 holds an integer convert it to a real value.
1563 ** This opcode is used when extracting information from a column that
1564 ** has REAL affinity. Such column values may still be stored as
1565 ** integers, for space efficiency, but after extraction we want them
1566 ** to have only a real value.
1568 case OP_RealAffinity
: { /* in1 */
1569 pIn1
= &aMem
[pOp
->p1
];
1570 if( pIn1
->flags
& MEM_Int
){
1571 sqlite3VdbeMemRealify(pIn1
);
1577 #ifndef SQLITE_OMIT_CAST
1578 /* Opcode: ToText P1 * * * *
1580 ** Force the value in register P1 to be text.
1581 ** If the value is numeric, convert it to a string using the
1582 ** equivalent of printf(). Blob values are unchanged and
1583 ** are afterwards simply interpreted as text.
1585 ** A NULL value is not changed by this routine. It remains NULL.
1587 case OP_ToText
: { /* same as TK_TO_TEXT, in1 */
1588 pIn1
= &aMem
[pOp
->p1
];
1589 memAboutToChange(p
, pIn1
);
1590 if( pIn1
->flags
& MEM_Null
) break;
1591 assert( MEM_Str
==(MEM_Blob
>>3) );
1592 pIn1
->flags
|= (pIn1
->flags
&MEM_Blob
)>>3;
1593 applyAffinity(pIn1
, SQLITE_AFF_TEXT
, encoding
);
1594 rc
= ExpandBlob(pIn1
);
1595 assert( pIn1
->flags
& MEM_Str
|| db
->mallocFailed
);
1596 pIn1
->flags
&= ~(MEM_Int
|MEM_Real
|MEM_Blob
|MEM_Zero
);
1597 UPDATE_MAX_BLOBSIZE(pIn1
);
1601 /* Opcode: ToBlob P1 * * * *
1603 ** Force the value in register P1 to be a BLOB.
1604 ** If the value is numeric, convert it to a string first.
1605 ** Strings are simply reinterpreted as blobs with no change
1606 ** to the underlying data.
1608 ** A NULL value is not changed by this routine. It remains NULL.
1610 case OP_ToBlob
: { /* same as TK_TO_BLOB, in1 */
1611 pIn1
= &aMem
[pOp
->p1
];
1612 if( pIn1
->flags
& MEM_Null
) break;
1613 if( (pIn1
->flags
& MEM_Blob
)==0 ){
1614 applyAffinity(pIn1
, SQLITE_AFF_TEXT
, encoding
);
1615 assert( pIn1
->flags
& MEM_Str
|| db
->mallocFailed
);
1616 MemSetTypeFlag(pIn1
, MEM_Blob
);
1618 pIn1
->flags
&= ~(MEM_TypeMask
&~MEM_Blob
);
1620 UPDATE_MAX_BLOBSIZE(pIn1
);
1624 /* Opcode: ToNumeric P1 * * * *
1626 ** Force the value in register P1 to be numeric (either an
1627 ** integer or a floating-point number.)
1628 ** If the value is text or blob, try to convert it to an using the
1629 ** equivalent of atoi() or atof() and store 0 if no such conversion
1632 ** A NULL value is not changed by this routine. It remains NULL.
1634 case OP_ToNumeric
: { /* same as TK_TO_NUMERIC, in1 */
1635 pIn1
= &aMem
[pOp
->p1
];
1636 sqlite3VdbeMemNumerify(pIn1
);
1639 #endif /* SQLITE_OMIT_CAST */
1641 /* Opcode: ToInt P1 * * * *
1643 ** Force the value in register P1 to be an integer. If
1644 ** The value is currently a real number, drop its fractional part.
1645 ** If the value is text or blob, try to convert it to an integer using the
1646 ** equivalent of atoi() and store 0 if no such conversion is possible.
1648 ** A NULL value is not changed by this routine. It remains NULL.
1650 case OP_ToInt
: { /* same as TK_TO_INT, in1 */
1651 pIn1
= &aMem
[pOp
->p1
];
1652 if( (pIn1
->flags
& MEM_Null
)==0 ){
1653 sqlite3VdbeMemIntegerify(pIn1
);
1658 #if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT)
1659 /* Opcode: ToReal P1 * * * *
1661 ** Force the value in register P1 to be a floating point number.
1662 ** If The value is currently an integer, convert it.
1663 ** If the value is text or blob, try to convert it to an integer using the
1664 ** equivalent of atoi() and store 0.0 if no such conversion is possible.
1666 ** A NULL value is not changed by this routine. It remains NULL.
1668 case OP_ToReal
: { /* same as TK_TO_REAL, in1 */
1669 pIn1
= &aMem
[pOp
->p1
];
1670 memAboutToChange(p
, pIn1
);
1671 if( (pIn1
->flags
& MEM_Null
)==0 ){
1672 sqlite3VdbeMemRealify(pIn1
);
1676 #endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
1678 /* Opcode: Lt P1 P2 P3 P4 P5
1680 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1681 ** jump to address P2.
1683 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1684 ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
1685 ** bit is clear then fall through if either operand is NULL.
1687 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1688 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1689 ** to coerce both inputs according to this affinity before the
1690 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1691 ** affinity is used. Note that the affinity conversions are stored
1692 ** back into the input registers P1 and P3. So this opcode can cause
1693 ** persistent changes to registers P1 and P3.
1695 ** Once any conversions have taken place, and neither value is NULL,
1696 ** the values are compared. If both values are blobs then memcmp() is
1697 ** used to determine the results of the comparison. If both values
1698 ** are text, then the appropriate collating function specified in
1699 ** P4 is used to do the comparison. If P4 is not specified then
1700 ** memcmp() is used to compare text string. If both values are
1701 ** numeric, then a numeric comparison is used. If the two values
1702 ** are of different types, then numbers are considered less than
1703 ** strings and strings are considered less than blobs.
1705 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1706 ** store a boolean result (either 0, or 1, or NULL) in register P2.
1708 /* Opcode: Ne P1 P2 P3 P4 P5
1710 ** This works just like the Lt opcode except that the jump is taken if
1711 ** the operands in registers P1 and P3 are not equal. See the Lt opcode for
1712 ** additional information.
1714 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1715 ** true or false and is never NULL. If both operands are NULL then the result
1716 ** of comparison is false. If either operand is NULL then the result is true.
1717 ** If neither operand is NULL the the result is the same as it would be if
1718 ** the SQLITE_NULLEQ flag were omitted from P5.
1720 /* Opcode: Eq P1 P2 P3 P4 P5
1722 ** This works just like the Lt opcode except that the jump is taken if
1723 ** the operands in registers P1 and P3 are equal.
1724 ** See the Lt opcode for additional information.
1726 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1727 ** true or false and is never NULL. If both operands are NULL then the result
1728 ** of comparison is true. If either operand is NULL then the result is false.
1729 ** If neither operand is NULL the the result is the same as it would be if
1730 ** the SQLITE_NULLEQ flag were omitted from P5.
1732 /* Opcode: Le P1 P2 P3 P4 P5
1734 ** This works just like the Lt opcode except that the jump is taken if
1735 ** the content of register P3 is less than or equal to the content of
1736 ** register P1. See the Lt opcode for additional information.
1738 /* Opcode: Gt P1 P2 P3 P4 P5
1740 ** This works just like the Lt opcode except that the jump is taken if
1741 ** the content of register P3 is greater than the content of
1742 ** register P1. See the Lt opcode for additional information.
1744 /* Opcode: Ge P1 P2 P3 P4 P5
1746 ** This works just like the Lt opcode except that the jump is taken if
1747 ** the content of register P3 is greater than or equal to the content of
1748 ** register P1. See the Lt opcode for additional information.
1750 case OP_Eq
: /* same as TK_EQ, jump, in1, in3 */
1751 case OP_Ne
: /* same as TK_NE, jump, in1, in3 */
1752 case OP_Lt
: /* same as TK_LT, jump, in1, in3 */
1753 case OP_Le
: /* same as TK_LE, jump, in1, in3 */
1754 case OP_Gt
: /* same as TK_GT, jump, in1, in3 */
1755 case OP_Ge
: { /* same as TK_GE, jump, in1, in3 */
1756 int res
; /* Result of the comparison of pIn1 against pIn3 */
1757 char affinity
; /* Affinity to use for comparison */
1758 u16 flags1
; /* Copy of initial value of pIn1->flags */
1759 u16 flags3
; /* Copy of initial value of pIn3->flags */
1761 pIn1
= &aMem
[pOp
->p1
];
1762 pIn3
= &aMem
[pOp
->p3
];
1763 flags1
= pIn1
->flags
;
1764 flags3
= pIn3
->flags
;
1765 if( (pIn1
->flags
| pIn3
->flags
)&MEM_Null
){
1766 /* One or both operands are NULL */
1767 if( pOp
->p5
& SQLITE_NULLEQ
){
1768 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1769 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1770 ** or not both operands are null.
1772 assert( pOp
->opcode
==OP_Eq
|| pOp
->opcode
==OP_Ne
);
1773 res
= (pIn1
->flags
& pIn3
->flags
& MEM_Null
)==0;
1775 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1776 ** then the result is always NULL.
1777 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1779 if( pOp
->p5
& SQLITE_STOREP2
){
1780 pOut
= &aMem
[pOp
->p2
];
1781 MemSetTypeFlag(pOut
, MEM_Null
);
1782 REGISTER_TRACE(pOp
->p2
, pOut
);
1783 }else if( pOp
->p5
& SQLITE_JUMPIFNULL
){
1789 /* Neither operand is NULL. Do a comparison. */
1790 affinity
= pOp
->p5
& SQLITE_AFF_MASK
;
1792 applyAffinity(pIn1
, affinity
, encoding
);
1793 applyAffinity(pIn3
, affinity
, encoding
);
1794 if( db
->mallocFailed
) goto no_mem
;
1797 assert( pOp
->p4type
==P4_COLLSEQ
|| pOp
->p4
.pColl
==0 );
1800 res
= sqlite3MemCompare(pIn3
, pIn1
, pOp
->p4
.pColl
);
1802 switch( pOp
->opcode
){
1803 case OP_Eq
: res
= res
==0; break;
1804 case OP_Ne
: res
= res
!=0; break;
1805 case OP_Lt
: res
= res
<0; break;
1806 case OP_Le
: res
= res
<=0; break;
1807 case OP_Gt
: res
= res
>0; break;
1808 default: res
= res
>=0; break;
1811 if( pOp
->p5
& SQLITE_STOREP2
){
1812 pOut
= &aMem
[pOp
->p2
];
1813 memAboutToChange(p
, pOut
);
1814 MemSetTypeFlag(pOut
, MEM_Int
);
1816 REGISTER_TRACE(pOp
->p2
, pOut
);
1821 /* Undo any changes made by applyAffinity() to the input registers. */
1822 pIn1
->flags
= (pIn1
->flags
&~MEM_TypeMask
) | (flags1
&MEM_TypeMask
);
1823 pIn3
->flags
= (pIn3
->flags
&~MEM_TypeMask
) | (flags3
&MEM_TypeMask
);
1827 /* Opcode: Permutation * * * P4 *
1829 ** Set the permutation used by the OP_Compare operator to be the array
1830 ** of integers in P4.
1832 ** The permutation is only valid until the next OP_Permutation, OP_Compare,
1833 ** OP_Halt, or OP_ResultRow. Typically the OP_Permutation should occur
1834 ** immediately prior to the OP_Compare.
1836 case OP_Permutation
: {
1837 assert( pOp
->p4type
==P4_INTARRAY
);
1838 assert( pOp
->p4
.ai
);
1839 aPermute
= pOp
->p4
.ai
;
1843 /* Opcode: Compare P1 P2 P3 P4 *
1845 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
1846 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
1847 ** the comparison for use by the next OP_Jump instruct.
1849 ** P4 is a KeyInfo structure that defines collating sequences and sort
1850 ** orders for the comparison. The permutation applies to registers
1851 ** only. The KeyInfo elements are used sequentially.
1853 ** The comparison is a sort comparison, so NULLs compare equal,
1854 ** NULLs are less than numbers, numbers are less than strings,
1855 ** and strings are less than blobs.
1862 const KeyInfo
*pKeyInfo
;
1864 CollSeq
*pColl
; /* Collating sequence to use on this term */
1865 int bRev
; /* True for DESCENDING sort order */
1868 pKeyInfo
= pOp
->p4
.pKeyInfo
;
1870 assert( pKeyInfo
!=0 );
1876 for(k
=0; k
<n
; k
++) if( aPermute
[k
]>mx
) mx
= aPermute
[k
];
1877 assert( p1
>0 && p1
+mx
<=p
->nMem
+1 );
1878 assert( p2
>0 && p2
+mx
<=p
->nMem
+1 );
1880 assert( p1
>0 && p1
+n
<=p
->nMem
+1 );
1881 assert( p2
>0 && p2
+n
<=p
->nMem
+1 );
1883 #endif /* SQLITE_DEBUG */
1885 idx
= aPermute
? aPermute
[i
] : i
;
1886 assert( memIsValid(&aMem
[p1
+idx
]) );
1887 assert( memIsValid(&aMem
[p2
+idx
]) );
1888 REGISTER_TRACE(p1
+idx
, &aMem
[p1
+idx
]);
1889 REGISTER_TRACE(p2
+idx
, &aMem
[p2
+idx
]);
1890 assert( i
<pKeyInfo
->nField
);
1891 pColl
= pKeyInfo
->aColl
[i
];
1892 bRev
= pKeyInfo
->aSortOrder
[i
];
1893 iCompare
= sqlite3MemCompare(&aMem
[p1
+idx
], &aMem
[p2
+idx
], pColl
);
1895 if( bRev
) iCompare
= -iCompare
;
1903 /* Opcode: Jump P1 P2 P3 * *
1905 ** Jump to the instruction at address P1, P2, or P3 depending on whether
1906 ** in the most recent OP_Compare instruction the P1 vector was less than
1907 ** equal to, or greater than the P2 vector, respectively.
1909 case OP_Jump
: { /* jump */
1912 }else if( iCompare
==0 ){
1920 /* Opcode: And P1 P2 P3 * *
1922 ** Take the logical AND of the values in registers P1 and P2 and
1923 ** write the result into register P3.
1925 ** If either P1 or P2 is 0 (false) then the result is 0 even if
1926 ** the other input is NULL. A NULL and true or two NULLs give
1929 /* Opcode: Or P1 P2 P3 * *
1931 ** Take the logical OR of the values in register P1 and P2 and
1932 ** store the answer in register P3.
1934 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
1935 ** even if the other input is NULL. A NULL and false or two NULLs
1936 ** give a NULL output.
1938 case OP_And
: /* same as TK_AND, in1, in2, out3 */
1939 case OP_Or
: { /* same as TK_OR, in1, in2, out3 */
1940 int v1
; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
1941 int v2
; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
1943 pIn1
= &aMem
[pOp
->p1
];
1944 if( pIn1
->flags
& MEM_Null
){
1947 v1
= sqlite3VdbeIntValue(pIn1
)!=0;
1949 pIn2
= &aMem
[pOp
->p2
];
1950 if( pIn2
->flags
& MEM_Null
){
1953 v2
= sqlite3VdbeIntValue(pIn2
)!=0;
1955 if( pOp
->opcode
==OP_And
){
1956 static const unsigned char and_logic
[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
1957 v1
= and_logic
[v1
*3+v2
];
1959 static const unsigned char or_logic
[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
1960 v1
= or_logic
[v1
*3+v2
];
1962 pOut
= &aMem
[pOp
->p3
];
1964 MemSetTypeFlag(pOut
, MEM_Null
);
1967 MemSetTypeFlag(pOut
, MEM_Int
);
1972 /* Opcode: Not P1 P2 * * *
1974 ** Interpret the value in register P1 as a boolean value. Store the
1975 ** boolean complement in register P2. If the value in register P1 is
1976 ** NULL, then a NULL is stored in P2.
1978 case OP_Not
: { /* same as TK_NOT, in1, out2 */
1979 pIn1
= &aMem
[pOp
->p1
];
1980 pOut
= &aMem
[pOp
->p2
];
1981 if( pIn1
->flags
& MEM_Null
){
1982 sqlite3VdbeMemSetNull(pOut
);
1984 sqlite3VdbeMemSetInt64(pOut
, !sqlite3VdbeIntValue(pIn1
));
1989 /* Opcode: BitNot P1 P2 * * *
1991 ** Interpret the content of register P1 as an integer. Store the
1992 ** ones-complement of the P1 value into register P2. If P1 holds
1993 ** a NULL then store a NULL in P2.
1995 case OP_BitNot
: { /* same as TK_BITNOT, in1, out2 */
1996 pIn1
= &aMem
[pOp
->p1
];
1997 pOut
= &aMem
[pOp
->p2
];
1998 if( pIn1
->flags
& MEM_Null
){
1999 sqlite3VdbeMemSetNull(pOut
);
2001 sqlite3VdbeMemSetInt64(pOut
, ~sqlite3VdbeIntValue(pIn1
));
2006 /* Opcode: If P1 P2 P3 * *
2008 ** Jump to P2 if the value in register P1 is true. The value is
2009 ** is considered true if it is numeric and non-zero. If the value
2010 ** in P1 is NULL then take the jump if P3 is true.
2012 /* Opcode: IfNot P1 P2 P3 * *
2014 ** Jump to P2 if the value in register P1 is False. The value is
2015 ** is considered true if it has a numeric value of zero. If the value
2016 ** in P1 is NULL then take the jump if P3 is true.
2018 case OP_If
: /* jump, in1 */
2019 case OP_IfNot
: { /* jump, in1 */
2021 pIn1
= &aMem
[pOp
->p1
];
2022 if( pIn1
->flags
& MEM_Null
){
2025 #ifdef SQLITE_OMIT_FLOATING_POINT
2026 c
= sqlite3VdbeIntValue(pIn1
)!=0;
2028 c
= sqlite3VdbeRealValue(pIn1
)!=0.0;
2030 if( pOp
->opcode
==OP_IfNot
) c
= !c
;
2038 /* Opcode: IsNull P1 P2 * * *
2040 ** Jump to P2 if the value in register P1 is NULL.
2042 case OP_IsNull
: { /* same as TK_ISNULL, jump, in1 */
2043 pIn1
= &aMem
[pOp
->p1
];
2044 if( (pIn1
->flags
& MEM_Null
)!=0 ){
2050 /* Opcode: NotNull P1 P2 * * *
2052 ** Jump to P2 if the value in register P1 is not NULL.
2054 case OP_NotNull
: { /* same as TK_NOTNULL, jump, in1 */
2055 pIn1
= &aMem
[pOp
->p1
];
2056 if( (pIn1
->flags
& MEM_Null
)==0 ){
2062 /* Opcode: Column P1 P2 P3 P4 P5
2064 ** Interpret the data that cursor P1 points to as a structure built using
2065 ** the MakeRecord instruction. (See the MakeRecord opcode for additional
2066 ** information about the format of the data.) Extract the P2-th column
2067 ** from this record. If there are less that (P2+1)
2068 ** values in the record, extract a NULL.
2070 ** The value extracted is stored in register P3.
2072 ** If the column contains fewer than P2 fields, then extract a NULL. Or,
2073 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2076 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2077 ** then the cache of the cursor is reset prior to extracting the column.
2078 ** The first OP_Column against a pseudo-table after the value of the content
2079 ** register has changed should have this bit set.
2082 u32 payloadSize
; /* Number of bytes in the record */
2083 i64 payloadSize64
; /* Number of bytes in the record */
2084 int p1
; /* P1 value of the opcode */
2085 int p2
; /* column number to retrieve */
2086 VdbeCursor
*pC
; /* The VDBE cursor */
2087 char *zRec
; /* Pointer to complete record-data */
2088 BtCursor
*pCrsr
; /* The BTree cursor */
2089 u32
*aType
; /* aType[i] holds the numeric type of the i-th column */
2090 u32
*aOffset
; /* aOffset[i] is offset to start of data for i-th column */
2091 int nField
; /* number of fields in the record */
2092 int len
; /* The length of the serialized data for the column */
2093 int i
; /* Loop counter */
2094 char *zData
; /* Part of the record being decoded */
2095 Mem
*pDest
; /* Where to write the extracted value */
2096 Mem sMem
; /* For storing the record being decoded */
2097 u8
*zIdx
; /* Index into header */
2098 u8
*zEndHdr
; /* Pointer to first byte after the header */
2099 u32 offset
; /* Offset into the data */
2100 u32 szField
; /* Number of bytes in the content of a field */
2101 int szHdr
; /* Size of the header size field at start of record */
2102 int avail
; /* Number of bytes of available data */
2103 Mem
*pReg
; /* PseudoTable input register */
2109 memset(&sMem
, 0, sizeof(sMem
));
2110 assert( p1
<p
->nCursor
);
2111 assert( pOp
->p3
>0 && pOp
->p3
<=p
->nMem
);
2112 pDest
= &aMem
[pOp
->p3
];
2113 memAboutToChange(p
, pDest
);
2114 MemSetTypeFlag(pDest
, MEM_Null
);
2117 /* This block sets the variable payloadSize to be the total number of
2118 ** bytes in the record.
2120 ** zRec is set to be the complete text of the record if it is available.
2121 ** The complete record text is always available for pseudo-tables
2122 ** If the record is stored in a cursor, the complete record text
2123 ** might be available in the pC->aRow cache. Or it might not be.
2124 ** If the data is unavailable, zRec is set to NULL.
2126 ** We also compute the number of columns in the record. For cursors,
2127 ** the number of columns is stored in the VdbeCursor.nField element.
2131 #ifndef SQLITE_OMIT_VIRTUALTABLE
2132 assert( pC
->pVtabCursor
==0 );
2134 pCrsr
= pC
->pCursor
;
2136 /* The record is stored in a B-Tree */
2137 rc
= sqlite3VdbeCursorMoveto(pC
);
2138 if( rc
) goto abort_due_to_error
;
2141 }else if( pC
->cacheStatus
==p
->cacheCtr
){
2142 payloadSize
= pC
->payloadSize
;
2143 zRec
= (char*)pC
->aRow
;
2144 }else if( pC
->isIndex
){
2145 assert( sqlite3BtreeCursorIsValid(pCrsr
) );
2146 rc
= sqlite3BtreeKeySize(pCrsr
, &payloadSize64
);
2147 assert( rc
==SQLITE_OK
); /* True because of CursorMoveto() call above */
2148 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2149 ** payload size, so it is impossible for payloadSize64 to be
2150 ** larger than 32 bits. */
2151 assert( (payloadSize64
& SQLITE_MAX_U32
)==(u64
)payloadSize64
);
2152 payloadSize
= (u32
)payloadSize64
;
2154 assert( sqlite3BtreeCursorIsValid(pCrsr
) );
2155 rc
= sqlite3BtreeDataSize(pCrsr
, &payloadSize
);
2156 assert( rc
==SQLITE_OK
); /* DataSize() cannot fail */
2158 }else if( pC
->pseudoTableReg
>0 ){
2159 pReg
= &aMem
[pC
->pseudoTableReg
];
2160 assert( pReg
->flags
& MEM_Blob
);
2161 assert( memIsValid(pReg
) );
2162 payloadSize
= pReg
->n
;
2164 pC
->cacheStatus
= (pOp
->p5
&OPFLAG_CLEARCACHE
) ? CACHE_STALE
: p
->cacheCtr
;
2165 assert( payloadSize
==0 || zRec
!=0 );
2167 /* Consider the row to be NULL */
2171 /* If payloadSize is 0, then just store a NULL */
2172 if( payloadSize
==0 ){
2173 assert( pDest
->flags
&MEM_Null
);
2176 assert( db
->aLimit
[SQLITE_LIMIT_LENGTH
]>=0 );
2177 if( payloadSize
> (u32
)db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
2181 nField
= pC
->nField
;
2182 assert( p2
<nField
);
2184 /* Read and parse the table header. Store the results of the parse
2185 ** into the record header cache fields of the cursor.
2188 if( pC
->cacheStatus
==p
->cacheCtr
){
2189 aOffset
= pC
->aOffset
;
2193 pC
->aOffset
= aOffset
= &aType
[nField
];
2194 pC
->payloadSize
= payloadSize
;
2195 pC
->cacheStatus
= p
->cacheCtr
;
2197 /* Figure out how many bytes are in the header */
2202 zData
= (char*)sqlite3BtreeKeyFetch(pCrsr
, &avail
);
2204 zData
= (char*)sqlite3BtreeDataFetch(pCrsr
, &avail
);
2206 /* If KeyFetch()/DataFetch() managed to get the entire payload,
2207 ** save the payload in the pC->aRow cache. That will save us from
2208 ** having to make additional calls to fetch the content portion of
2212 if( payloadSize
<= (u32
)avail
){
2214 pC
->aRow
= (u8
*)zData
;
2219 /* The following assert is true in all cases accept when
2220 ** the database file has been corrupted externally.
2221 ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
2222 szHdr
= getVarint32((u8
*)zData
, offset
);
2224 /* Make sure a corrupt database has not given us an oversize header.
2225 ** Do this now to avoid an oversize memory allocation.
2227 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2228 ** types use so much data space that there can only be 4096 and 32 of
2229 ** them, respectively. So the maximum header length results from a
2230 ** 3-byte type for each of the maximum of 32768 columns plus three
2231 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2233 if( offset
> 98307 ){
2234 rc
= SQLITE_CORRUPT_BKPT
;
2238 /* Compute in len the number of bytes of data we need to read in order
2239 ** to get nField type values. offset is an upper bound on this. But
2240 ** nField might be significantly less than the true number of columns
2241 ** in the table, and in that case, 5*nField+3 might be smaller than offset.
2242 ** We want to minimize len in order to limit the size of the memory
2243 ** allocation, especially if a corrupt database file has caused offset
2244 ** to be oversized. Offset is limited to 98307 above. But 98307 might
2245 ** still exceed Robson memory allocation limits on some configurations.
2246 ** On systems that cannot tolerate large memory allocations, nField*5+3
2247 ** will likely be much smaller since nField will likely be less than
2248 ** 20 or so. This insures that Robson memory allocation limits are
2249 ** not exceeded even for corrupt database files.
2252 if( len
> (int)offset
) len
= (int)offset
;
2254 /* The KeyFetch() or DataFetch() above are fast and will get the entire
2255 ** record header in most cases. But they will fail to get the complete
2256 ** record header if the record header does not fit on a single page
2257 ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
2258 ** acquire the complete header text.
2260 if( !zRec
&& avail
<len
){
2263 rc
= sqlite3VdbeMemFromBtree(pCrsr
, 0, len
, pC
->isIndex
, &sMem
);
2264 if( rc
!=SQLITE_OK
){
2269 zEndHdr
= (u8
*)&zData
[len
];
2270 zIdx
= (u8
*)&zData
[szHdr
];
2272 /* Scan the header and use it to fill in the aType[] and aOffset[]
2273 ** arrays. aType[i] will contain the type integer for the i-th
2274 ** column and aOffset[i] will contain the offset from the beginning
2275 ** of the record to the start of the data for the i-th column
2277 for(i
=0; i
<nField
; i
++){
2279 aOffset
[i
] = offset
;
2280 zIdx
+= getVarint32(zIdx
, aType
[i
]);
2281 szField
= sqlite3VdbeSerialTypeLen(aType
[i
]);
2283 if( offset
<szField
){ /* True if offset overflows */
2284 zIdx
= &zEndHdr
[1]; /* Forces SQLITE_CORRUPT return below */
2288 /* If i is less that nField, then there are less fields in this
2289 ** record than SetNumColumns indicated there are columns in the
2290 ** table. Set the offset for any extra columns not present in
2291 ** the record to 0. This tells code below to store a NULL
2292 ** instead of deserializing a value from the record.
2297 sqlite3VdbeMemRelease(&sMem
);
2298 sMem
.flags
= MEM_Null
;
2300 /* If we have read more header data than was contained in the header,
2301 ** or if the end of the last field appears to be past the end of the
2302 ** record, or if the end of the last field appears to be before the end
2303 ** of the record (when all fields present), then we must be dealing
2304 ** with a corrupt database.
2306 if( (zIdx
> zEndHdr
) || (offset
> payloadSize
)
2307 || (zIdx
==zEndHdr
&& offset
!=payloadSize
) ){
2308 rc
= SQLITE_CORRUPT_BKPT
;
2313 /* Get the column information. If aOffset[p2] is non-zero, then
2314 ** deserialize the value from the record. If aOffset[p2] is zero,
2315 ** then there are not enough fields in the record to satisfy the
2316 ** request. In this case, set the value NULL or to P4 if P4 is
2317 ** a pointer to a Mem object.
2320 assert( rc
==SQLITE_OK
);
2322 sqlite3VdbeMemReleaseExternal(pDest
);
2323 sqlite3VdbeSerialGet((u8
*)&zRec
[aOffset
[p2
]], aType
[p2
], pDest
);
2325 len
= sqlite3VdbeSerialTypeLen(aType
[p2
]);
2326 sqlite3VdbeMemMove(&sMem
, pDest
);
2327 rc
= sqlite3VdbeMemFromBtree(pCrsr
, aOffset
[p2
], len
, pC
->isIndex
, &sMem
);
2328 if( rc
!=SQLITE_OK
){
2332 sqlite3VdbeSerialGet((u8
*)zData
, aType
[p2
], pDest
);
2334 pDest
->enc
= encoding
;
2336 if( pOp
->p4type
==P4_MEM
){
2337 sqlite3VdbeMemShallowCopy(pDest
, pOp
->p4
.pMem
, MEM_Static
);
2339 assert( pDest
->flags
&MEM_Null
);
2343 /* If we dynamically allocated space to hold the data (in the
2344 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
2345 ** dynamically allocated space over to the pDest structure.
2346 ** This prevents a memory copy.
2349 assert( sMem
.z
==sMem
.zMalloc
);
2350 assert( !(pDest
->flags
& MEM_Dyn
) );
2351 assert( !(pDest
->flags
& (MEM_Blob
|MEM_Str
)) || pDest
->z
==sMem
.z
);
2352 pDest
->flags
&= ~(MEM_Ephem
|MEM_Static
);
2353 pDest
->flags
|= MEM_Term
;
2355 pDest
->zMalloc
= sMem
.zMalloc
;
2358 rc
= sqlite3VdbeMemMakeWriteable(pDest
);
2361 UPDATE_MAX_BLOBSIZE(pDest
);
2362 REGISTER_TRACE(pOp
->p3
, pDest
);
2366 /* Opcode: Affinity P1 P2 * P4 *
2368 ** Apply affinities to a range of P2 registers starting with P1.
2370 ** P4 is a string that is P2 characters long. The nth character of the
2371 ** string indicates the column affinity that should be used for the nth
2372 ** memory cell in the range.
2375 const char *zAffinity
; /* The affinity to be applied */
2376 char cAff
; /* A single character of affinity */
2378 zAffinity
= pOp
->p4
.z
;
2379 assert( zAffinity
!=0 );
2380 assert( zAffinity
[pOp
->p2
]==0 );
2381 pIn1
= &aMem
[pOp
->p1
];
2382 while( (cAff
= *(zAffinity
++))!=0 ){
2383 assert( pIn1
<= &p
->aMem
[p
->nMem
] );
2384 assert( memIsValid(pIn1
) );
2386 applyAffinity(pIn1
, cAff
, encoding
);
2392 /* Opcode: MakeRecord P1 P2 P3 P4 *
2394 ** Convert P2 registers beginning with P1 into the [record format]
2395 ** use as a data record in a database table or as a key
2396 ** in an index. The OP_Column opcode can decode the record later.
2398 ** P4 may be a string that is P2 characters long. The nth character of the
2399 ** string indicates the column affinity that should be used for the nth
2400 ** field of the index key.
2402 ** The mapping from character to affinity is given by the SQLITE_AFF_
2403 ** macros defined in sqliteInt.h.
2405 ** If P4 is NULL then all index fields have the affinity NONE.
2407 case OP_MakeRecord
: {
2408 u8
*zNewRecord
; /* A buffer to hold the data for the new record */
2409 Mem
*pRec
; /* The new record */
2410 u64 nData
; /* Number of bytes of data space */
2411 int nHdr
; /* Number of bytes of header space */
2412 i64 nByte
; /* Data space required for this record */
2413 int nZero
; /* Number of zero bytes at the end of the record */
2414 int nVarint
; /* Number of bytes in a varint */
2415 u32 serial_type
; /* Type field */
2416 Mem
*pData0
; /* First field to be combined into the record */
2417 Mem
*pLast
; /* Last field of the record */
2418 int nField
; /* Number of fields in the record */
2419 char *zAffinity
; /* The affinity string for the record */
2420 int file_format
; /* File format to use for encoding */
2421 int i
; /* Space used in zNewRecord[] */
2422 int len
; /* Length of a field */
2424 /* Assuming the record contains N fields, the record format looks
2427 ** ------------------------------------------------------------------------
2428 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2429 ** ------------------------------------------------------------------------
2431 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
2434 ** Each type field is a varint representing the serial type of the
2435 ** corresponding data element (see sqlite3VdbeSerialType()). The
2436 ** hdr-size field is also a varint which is the offset from the beginning
2437 ** of the record to data0.
2439 nData
= 0; /* Number of bytes of data space */
2440 nHdr
= 0; /* Number of bytes of header space */
2441 nZero
= 0; /* Number of zero bytes at the end of the record */
2443 zAffinity
= pOp
->p4
.z
;
2444 assert( nField
>0 && pOp
->p2
>0 && pOp
->p2
+nField
<=p
->nMem
+1 );
2445 pData0
= &aMem
[nField
];
2447 pLast
= &pData0
[nField
-1];
2448 file_format
= p
->minWriteFileFormat
;
2450 /* Identify the output register */
2451 assert( pOp
->p3
<pOp
->p1
|| pOp
->p3
>=pOp
->p1
+pOp
->p2
);
2452 pOut
= &aMem
[pOp
->p3
];
2453 memAboutToChange(p
, pOut
);
2455 /* Loop through the elements that will make up the record to figure
2456 ** out how much space is required for the new record.
2458 for(pRec
=pData0
; pRec
<=pLast
; pRec
++){
2459 assert( memIsValid(pRec
) );
2461 applyAffinity(pRec
, zAffinity
[pRec
-pData0
], encoding
);
2463 if( pRec
->flags
&MEM_Zero
&& pRec
->n
>0 ){
2464 sqlite3VdbeMemExpandBlob(pRec
);
2466 serial_type
= sqlite3VdbeSerialType(pRec
, file_format
);
2467 len
= sqlite3VdbeSerialTypeLen(serial_type
);
2469 nHdr
+= sqlite3VarintLen(serial_type
);
2470 if( pRec
->flags
& MEM_Zero
){
2471 /* Only pure zero-filled BLOBs can be input to this Opcode.
2472 ** We do not allow blobs with a prefix and a zero-filled tail. */
2473 nZero
+= pRec
->u
.nZero
;
2479 /* Add the initial header varint and total the size */
2480 nHdr
+= nVarint
= sqlite3VarintLen(nHdr
);
2481 if( nVarint
<sqlite3VarintLen(nHdr
) ){
2484 nByte
= nHdr
+nData
-nZero
;
2485 if( nByte
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
2489 /* Make sure the output register has a buffer large enough to store
2490 ** the new record. The output register (pOp->p3) is not allowed to
2491 ** be one of the input registers (because the following call to
2492 ** sqlite3VdbeMemGrow() could clobber the value before it is used).
2494 if( sqlite3VdbeMemGrow(pOut
, (int)nByte
, 0) ){
2497 zNewRecord
= (u8
*)pOut
->z
;
2499 /* Write the record */
2500 i
= putVarint32(zNewRecord
, nHdr
);
2501 for(pRec
=pData0
; pRec
<=pLast
; pRec
++){
2502 serial_type
= sqlite3VdbeSerialType(pRec
, file_format
);
2503 i
+= putVarint32(&zNewRecord
[i
], serial_type
); /* serial type */
2505 for(pRec
=pData0
; pRec
<=pLast
; pRec
++){ /* serial data */
2506 i
+= sqlite3VdbeSerialPut(&zNewRecord
[i
], (int)(nByte
-i
), pRec
,file_format
);
2510 assert( pOp
->p3
>0 && pOp
->p3
<=p
->nMem
);
2511 pOut
->n
= (int)nByte
;
2512 pOut
->flags
= MEM_Blob
| MEM_Dyn
;
2515 pOut
->u
.nZero
= nZero
;
2516 pOut
->flags
|= MEM_Zero
;
2518 pOut
->enc
= SQLITE_UTF8
; /* In case the blob is ever converted to text */
2519 REGISTER_TRACE(pOp
->p3
, pOut
);
2520 UPDATE_MAX_BLOBSIZE(pOut
);
2524 /* Opcode: Count P1 P2 * * *
2526 ** Store the number of entries (an integer value) in the table or index
2527 ** opened by cursor P1 in register P2
2529 #ifndef SQLITE_OMIT_BTREECOUNT
2530 case OP_Count
: { /* out2-prerelease */
2534 pCrsr
= p
->apCsr
[pOp
->p1
]->pCursor
;
2536 rc
= sqlite3BtreeCount(pCrsr
, &nEntry
);
2545 /* Opcode: Savepoint P1 * * P4 *
2547 ** Open, release or rollback the savepoint named by parameter P4, depending
2548 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2549 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2551 case OP_Savepoint
: {
2552 int p1
; /* Value of P1 operand */
2553 char *zName
; /* Name of savepoint */
2556 Savepoint
*pSavepoint
;
2564 /* Assert that the p1 parameter is valid. Also that if there is no open
2565 ** transaction, then there cannot be any savepoints.
2567 assert( db
->pSavepoint
==0 || db
->autoCommit
==0 );
2568 assert( p1
==SAVEPOINT_BEGIN
||p1
==SAVEPOINT_RELEASE
||p1
==SAVEPOINT_ROLLBACK
);
2569 assert( db
->pSavepoint
|| db
->isTransactionSavepoint
==0 );
2570 assert( checkSavepointCount(db
) );
2572 if( p1
==SAVEPOINT_BEGIN
){
2573 if( db
->writeVdbeCnt
>0 ){
2574 /* A new savepoint cannot be created if there are active write
2575 ** statements (i.e. open read/write incremental blob handles).
2577 sqlite3SetString(&p
->zErrMsg
, db
, "cannot open savepoint - "
2578 "SQL statements in progress");
2581 nName
= sqlite3Strlen30(zName
);
2583 /* Create a new savepoint structure. */
2584 pNew
= sqlite3DbMallocRaw(db
, sizeof(Savepoint
)+nName
+1);
2586 pNew
->zName
= (char *)&pNew
[1];
2587 memcpy(pNew
->zName
, zName
, nName
+1);
2589 /* If there is no open transaction, then mark this as a special
2590 ** "transaction savepoint". */
2591 if( db
->autoCommit
){
2593 db
->isTransactionSavepoint
= 1;
2598 /* Link the new savepoint into the database handle's list. */
2599 pNew
->pNext
= db
->pSavepoint
;
2600 db
->pSavepoint
= pNew
;
2601 pNew
->nDeferredCons
= db
->nDeferredCons
;
2607 /* Find the named savepoint. If there is no such savepoint, then an
2608 ** an error is returned to the user. */
2610 pSavepoint
= db
->pSavepoint
;
2611 pSavepoint
&& sqlite3StrICmp(pSavepoint
->zName
, zName
);
2612 pSavepoint
= pSavepoint
->pNext
2617 sqlite3SetString(&p
->zErrMsg
, db
, "no such savepoint: %s", zName
);
2620 db
->writeVdbeCnt
>0 || (p1
==SAVEPOINT_ROLLBACK
&& db
->activeVdbeCnt
>1)
2622 /* It is not possible to release (commit) a savepoint if there are
2623 ** active write statements. It is not possible to rollback a savepoint
2624 ** if there are any active statements at all.
2626 sqlite3SetString(&p
->zErrMsg
, db
,
2627 "cannot %s savepoint - SQL statements in progress",
2628 (p1
==SAVEPOINT_ROLLBACK
? "rollback": "release")
2633 /* Determine whether or not this is a transaction savepoint. If so,
2634 ** and this is a RELEASE command, then the current transaction
2637 int isTransaction
= pSavepoint
->pNext
==0 && db
->isTransactionSavepoint
;
2638 if( isTransaction
&& p1
==SAVEPOINT_RELEASE
){
2639 if( (rc
= sqlite3VdbeCheckFk(p
, 1))!=SQLITE_OK
){
2643 if( sqlite3VdbeHalt(p
)==SQLITE_BUSY
){
2646 p
->rc
= rc
= SQLITE_BUSY
;
2649 db
->isTransactionSavepoint
= 0;
2652 iSavepoint
= db
->nSavepoint
- iSavepoint
- 1;
2653 for(ii
=0; ii
<db
->nDb
; ii
++){
2654 rc
= sqlite3BtreeSavepoint(db
->aDb
[ii
].pBt
, p1
, iSavepoint
);
2655 if( rc
!=SQLITE_OK
){
2656 goto abort_due_to_error
;
2659 if( p1
==SAVEPOINT_ROLLBACK
&& (db
->flags
&SQLITE_InternChanges
)!=0 ){
2660 sqlite3ExpirePreparedStatements(db
);
2661 sqlite3ResetInternalSchema(db
, -1);
2662 db
->flags
= (db
->flags
| SQLITE_InternChanges
);
2666 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2667 ** savepoints nested inside of the savepoint being operated on. */
2668 while( db
->pSavepoint
!=pSavepoint
){
2669 pTmp
= db
->pSavepoint
;
2670 db
->pSavepoint
= pTmp
->pNext
;
2671 sqlite3DbFree(db
, pTmp
);
2675 /* If it is a RELEASE, then destroy the savepoint being operated on
2676 ** too. If it is a ROLLBACK TO, then set the number of deferred
2677 ** constraint violations present in the database to the value stored
2678 ** when the savepoint was created. */
2679 if( p1
==SAVEPOINT_RELEASE
){
2680 assert( pSavepoint
==db
->pSavepoint
);
2681 db
->pSavepoint
= pSavepoint
->pNext
;
2682 sqlite3DbFree(db
, pSavepoint
);
2683 if( !isTransaction
){
2687 db
->nDeferredCons
= pSavepoint
->nDeferredCons
;
2695 /* Opcode: AutoCommit P1 P2 * * *
2697 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
2698 ** back any currently active btree transactions. If there are any active
2699 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
2700 ** there are active writing VMs or active VMs that use shared cache.
2702 ** This instruction causes the VM to halt.
2704 case OP_AutoCommit
: {
2705 int desiredAutoCommit
;
2709 desiredAutoCommit
= pOp
->p1
;
2710 iRollback
= pOp
->p2
;
2711 turnOnAC
= desiredAutoCommit
&& !db
->autoCommit
;
2712 assert( desiredAutoCommit
==1 || desiredAutoCommit
==0 );
2713 assert( desiredAutoCommit
==1 || iRollback
==0 );
2714 assert( db
->activeVdbeCnt
>0 ); /* At least this one VM is active */
2716 if( turnOnAC
&& iRollback
&& db
->activeVdbeCnt
>1 ){
2717 /* If this instruction implements a ROLLBACK and other VMs are
2718 ** still running, and a transaction is active, return an error indicating
2719 ** that the other VMs must complete first.
2721 sqlite3SetString(&p
->zErrMsg
, db
, "cannot rollback transaction - "
2722 "SQL statements in progress");
2724 }else if( turnOnAC
&& !iRollback
&& db
->writeVdbeCnt
>0 ){
2725 /* If this instruction implements a COMMIT and other VMs are writing
2726 ** return an error indicating that the other VMs must complete first.
2728 sqlite3SetString(&p
->zErrMsg
, db
, "cannot commit transaction - "
2729 "SQL statements in progress");
2731 }else if( desiredAutoCommit
!=db
->autoCommit
){
2733 assert( desiredAutoCommit
==1 );
2734 sqlite3RollbackAll(db
);
2736 }else if( (rc
= sqlite3VdbeCheckFk(p
, 1))!=SQLITE_OK
){
2739 db
->autoCommit
= (u8
)desiredAutoCommit
;
2740 if( sqlite3VdbeHalt(p
)==SQLITE_BUSY
){
2742 db
->autoCommit
= (u8
)(1-desiredAutoCommit
);
2743 p
->rc
= rc
= SQLITE_BUSY
;
2747 assert( db
->nStatement
==0 );
2748 sqlite3CloseSavepoints(db
);
2749 if( p
->rc
==SQLITE_OK
){
2756 sqlite3SetString(&p
->zErrMsg
, db
,
2757 (!desiredAutoCommit
)?"cannot start a transaction within a transaction":(
2758 (iRollback
)?"cannot rollback - no transaction is active":
2759 "cannot commit - no transaction is active"));
2766 /* Opcode: Transaction P1 P2 * * *
2768 ** Begin a transaction. The transaction ends when a Commit or Rollback
2769 ** opcode is encountered. Depending on the ON CONFLICT setting, the
2770 ** transaction might also be rolled back if an error is encountered.
2772 ** P1 is the index of the database file on which the transaction is
2773 ** started. Index 0 is the main database file and index 1 is the
2774 ** file used for temporary tables. Indices of 2 or more are used for
2775 ** attached databases.
2777 ** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
2778 ** obtained on the database file when a write-transaction is started. No
2779 ** other process can start another write transaction while this transaction is
2780 ** underway. Starting a write transaction also creates a rollback journal. A
2781 ** write transaction must be started before any changes can be made to the
2782 ** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
2785 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
2786 ** true (this flag is set if the Vdbe may modify more than one row and may
2787 ** throw an ABORT exception), a statement transaction may also be opened.
2788 ** More specifically, a statement transaction is opened iff the database
2789 ** connection is currently not in autocommit mode, or if there are other
2790 ** active statements. A statement transaction allows the affects of this
2791 ** VDBE to be rolled back after an error without having to roll back the
2792 ** entire transaction. If no error is encountered, the statement transaction
2793 ** will automatically commit when the VDBE halts.
2795 ** If P2 is zero, then a read-lock is obtained on the database file.
2797 case OP_Transaction
: {
2800 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
2801 assert( (p
->btreeMask
& (((yDbMask
)1)<<pOp
->p1
))!=0 );
2802 pBt
= db
->aDb
[pOp
->p1
].pBt
;
2805 rc
= sqlite3BtreeBeginTrans(pBt
, pOp
->p2
);
2806 if( rc
==SQLITE_BUSY
){
2808 p
->rc
= rc
= SQLITE_BUSY
;
2811 if( rc
!=SQLITE_OK
){
2812 goto abort_due_to_error
;
2815 if( pOp
->p2
&& p
->usesStmtJournal
2816 && (db
->autoCommit
==0 || db
->activeVdbeCnt
>1)
2818 assert( sqlite3BtreeIsInTrans(pBt
) );
2819 if( p
->iStatement
==0 ){
2820 assert( db
->nStatement
>=0 && db
->nSavepoint
>=0 );
2822 p
->iStatement
= db
->nSavepoint
+ db
->nStatement
;
2824 rc
= sqlite3BtreeBeginStmt(pBt
, p
->iStatement
);
2826 /* Store the current value of the database handles deferred constraint
2827 ** counter. If the statement transaction needs to be rolled back,
2828 ** the value of this counter needs to be restored too. */
2829 p
->nStmtDefCons
= db
->nDeferredCons
;
2835 /* Opcode: ReadCookie P1 P2 P3 * *
2837 ** Read cookie number P3 from database P1 and write it into register P2.
2838 ** P3==1 is the schema version. P3==2 is the database format.
2839 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is
2840 ** the main database file and P1==1 is the database file used to store
2841 ** temporary tables.
2843 ** There must be a read-lock on the database (either a transaction
2844 ** must be started or there must be an open cursor) before
2845 ** executing this instruction.
2847 case OP_ReadCookie
: { /* out2-prerelease */
2854 assert( pOp
->p3
<SQLITE_N_BTREE_META
);
2855 assert( iDb
>=0 && iDb
<db
->nDb
);
2856 assert( db
->aDb
[iDb
].pBt
!=0 );
2857 assert( (p
->btreeMask
& (((yDbMask
)1)<<iDb
))!=0 );
2859 sqlite3BtreeGetMeta(db
->aDb
[iDb
].pBt
, iCookie
, (u32
*)&iMeta
);
2864 /* Opcode: SetCookie P1 P2 P3 * *
2866 ** Write the content of register P3 (interpreted as an integer)
2867 ** into cookie number P2 of database P1. P2==1 is the schema version.
2868 ** P2==2 is the database format. P2==3 is the recommended pager cache
2869 ** size, and so forth. P1==0 is the main database file and P1==1 is the
2870 ** database file used to store temporary tables.
2872 ** A transaction must be started before executing this opcode.
2874 case OP_SetCookie
: { /* in3 */
2876 assert( pOp
->p2
<SQLITE_N_BTREE_META
);
2877 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
2878 assert( (p
->btreeMask
& (((yDbMask
)1)<<pOp
->p1
))!=0 );
2879 pDb
= &db
->aDb
[pOp
->p1
];
2880 assert( pDb
->pBt
!=0 );
2881 assert( sqlite3SchemaMutexHeld(db
, pOp
->p1
, 0) );
2882 pIn3
= &aMem
[pOp
->p3
];
2883 sqlite3VdbeMemIntegerify(pIn3
);
2884 /* See note about index shifting on OP_ReadCookie */
2885 rc
= sqlite3BtreeUpdateMeta(pDb
->pBt
, pOp
->p2
, (int)pIn3
->u
.i
);
2886 if( pOp
->p2
==BTREE_SCHEMA_VERSION
){
2887 /* When the schema cookie changes, record the new cookie internally */
2888 pDb
->pSchema
->schema_cookie
= (int)pIn3
->u
.i
;
2889 db
->flags
|= SQLITE_InternChanges
;
2890 }else if( pOp
->p2
==BTREE_FILE_FORMAT
){
2891 /* Record changes in the file format */
2892 pDb
->pSchema
->file_format
= (u8
)pIn3
->u
.i
;
2895 /* Invalidate all prepared statements whenever the TEMP database
2896 ** schema is changed. Ticket #1644 */
2897 sqlite3ExpirePreparedStatements(db
);
2903 /* Opcode: VerifyCookie P1 P2 P3 * *
2905 ** Check the value of global database parameter number 0 (the
2906 ** schema version) and make sure it is equal to P2 and that the
2907 ** generation counter on the local schema parse equals P3.
2909 ** P1 is the database number which is 0 for the main database file
2910 ** and 1 for the file holding temporary tables and some higher number
2911 ** for auxiliary databases.
2913 ** The cookie changes its value whenever the database schema changes.
2914 ** This operation is used to detect when that the cookie has changed
2915 ** and that the current process needs to reread the schema.
2917 ** Either a transaction needs to have been started or an OP_Open needs
2918 ** to be executed (to establish a read lock) before this opcode is
2921 case OP_VerifyCookie
: {
2926 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
2927 assert( (p
->btreeMask
& (((yDbMask
)1)<<pOp
->p1
))!=0 );
2928 assert( sqlite3SchemaMutexHeld(db
, pOp
->p1
, 0) );
2929 pBt
= db
->aDb
[pOp
->p1
].pBt
;
2931 sqlite3BtreeGetMeta(pBt
, BTREE_SCHEMA_VERSION
, (u32
*)&iMeta
);
2932 iGen
= db
->aDb
[pOp
->p1
].pSchema
->iGeneration
;
2936 if( iMeta
!=pOp
->p2
|| iGen
!=pOp
->p3
){
2937 sqlite3DbFree(db
, p
->zErrMsg
);
2938 p
->zErrMsg
= sqlite3DbStrDup(db
, "database schema has changed");
2939 /* If the schema-cookie from the database file matches the cookie
2940 ** stored with the in-memory representation of the schema, do
2941 ** not reload the schema from the database file.
2943 ** If virtual-tables are in use, this is not just an optimization.
2944 ** Often, v-tables store their data in other SQLite tables, which
2945 ** are queried from within xNext() and other v-table methods using
2946 ** prepared queries. If such a query is out-of-date, we do not want to
2947 ** discard the database schema, as the user code implementing the
2948 ** v-table would have to be ready for the sqlite3_vtab structure itself
2949 ** to be invalidated whenever sqlite3_step() is called from within
2950 ** a v-table method.
2952 if( db
->aDb
[pOp
->p1
].pSchema
->schema_cookie
!=iMeta
){
2953 sqlite3ResetInternalSchema(db
, pOp
->p1
);
2962 /* Opcode: OpenRead P1 P2 P3 P4 P5
2964 ** Open a read-only cursor for the database table whose root page is
2965 ** P2 in a database file. The database file is determined by P3.
2966 ** P3==0 means the main database, P3==1 means the database used for
2967 ** temporary tables, and P3>1 means used the corresponding attached
2968 ** database. Give the new cursor an identifier of P1. The P1
2969 ** values need not be contiguous but all P1 values should be small integers.
2970 ** It is an error for P1 to be negative.
2972 ** If P5!=0 then use the content of register P2 as the root page, not
2973 ** the value of P2 itself.
2975 ** There will be a read lock on the database whenever there is an
2976 ** open cursor. If the database was unlocked prior to this instruction
2977 ** then a read lock is acquired as part of this instruction. A read
2978 ** lock allows other processes to read the database but prohibits
2979 ** any other process from modifying the database. The read lock is
2980 ** released when all cursors are closed. If this instruction attempts
2981 ** to get a read lock but fails, the script terminates with an
2982 ** SQLITE_BUSY error code.
2984 ** The P4 value may be either an integer (P4_INT32) or a pointer to
2985 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
2986 ** structure, then said structure defines the content and collating
2987 ** sequence of the index being opened. Otherwise, if P4 is an integer
2988 ** value, it is set to the number of columns in the table.
2990 ** See also OpenWrite.
2992 /* Opcode: OpenWrite P1 P2 P3 P4 P5
2994 ** Open a read/write cursor named P1 on the table or index whose root
2995 ** page is P2. Or if P5!=0 use the content of register P2 to find the
2998 ** The P4 value may be either an integer (P4_INT32) or a pointer to
2999 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3000 ** structure, then said structure defines the content and collating
3001 ** sequence of the index being opened. Otherwise, if P4 is an integer
3002 ** value, it is set to the number of columns in the table, or to the
3003 ** largest index of any column of the table that is actually used.
3005 ** This instruction works just like OpenRead except that it opens the cursor
3006 ** in read/write mode. For a given table, there can be one or more read-only
3007 ** cursors or a single read/write cursor but not both.
3009 ** See also OpenRead.
3012 case OP_OpenWrite
: {
3031 assert( iDb
>=0 && iDb
<db
->nDb
);
3032 assert( (p
->btreeMask
& (((yDbMask
)1)<<iDb
))!=0 );
3033 pDb
= &db
->aDb
[iDb
];
3036 if( pOp
->opcode
==OP_OpenWrite
){
3038 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
3039 if( pDb
->pSchema
->file_format
< p
->minWriteFileFormat
){
3040 p
->minWriteFileFormat
= pDb
->pSchema
->file_format
;
3047 assert( p2
<=p
->nMem
);
3049 assert( memIsValid(pIn2
) );
3050 assert( (pIn2
->flags
& MEM_Int
)!=0 );
3051 sqlite3VdbeMemIntegerify(pIn2
);
3052 p2
= (int)pIn2
->u
.i
;
3053 /* The p2 value always comes from a prior OP_CreateTable opcode and
3054 ** that opcode will always set the p2 value to 2 or more or else fail.
3055 ** If there were a failure, the prepared statement would have halted
3056 ** before reaching this instruction. */
3058 rc
= SQLITE_CORRUPT_BKPT
;
3059 goto abort_due_to_error
;
3062 if( pOp
->p4type
==P4_KEYINFO
){
3063 pKeyInfo
= pOp
->p4
.pKeyInfo
;
3064 pKeyInfo
->enc
= ENC(p
->db
);
3065 nField
= pKeyInfo
->nField
+1;
3066 }else if( pOp
->p4type
==P4_INT32
){
3069 assert( pOp
->p1
>=0 );
3070 pCur
= allocateCursor(p
, pOp
->p1
, nField
, iDb
, 1);
3071 if( pCur
==0 ) goto no_mem
;
3073 pCur
->isOrdered
= 1;
3074 rc
= sqlite3BtreeCursor(pX
, p2
, wrFlag
, pKeyInfo
, pCur
->pCursor
);
3075 pCur
->pKeyInfo
= pKeyInfo
;
3077 /* Since it performs no memory allocation or IO, the only values that
3078 ** sqlite3BtreeCursor() may return are SQLITE_EMPTY and SQLITE_OK.
3079 ** SQLITE_EMPTY is only returned when attempting to open the table
3080 ** rooted at page 1 of a zero-byte database. */
3081 assert( rc
==SQLITE_EMPTY
|| rc
==SQLITE_OK
);
3082 if( rc
==SQLITE_EMPTY
){
3087 /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
3088 ** SQLite used to check if the root-page flags were sane at this point
3089 ** and report database corruption if they were not, but this check has
3090 ** since moved into the btree layer. */
3091 pCur
->isTable
= pOp
->p4type
!=P4_KEYINFO
;
3092 pCur
->isIndex
= !pCur
->isTable
;
3096 /* Opcode: OpenEphemeral P1 P2 * P4 *
3098 ** Open a new cursor P1 to a transient table.
3099 ** The cursor is always opened read/write even if
3100 ** the main database is read-only. The ephemeral
3101 ** table is deleted automatically when the cursor is closed.
3103 ** P2 is the number of columns in the ephemeral table.
3104 ** The cursor points to a BTree table if P4==0 and to a BTree index
3105 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
3106 ** that defines the format of keys in the index.
3108 ** This opcode was once called OpenTemp. But that created
3109 ** confusion because the term "temp table", might refer either
3110 ** to a TEMP table at the SQL level, or to a table opened by
3111 ** this opcode. Then this opcode was call OpenVirtual. But
3112 ** that created confusion with the whole virtual-table idea.
3114 /* Opcode: OpenAutoindex P1 P2 * P4 *
3116 ** This opcode works the same as OP_OpenEphemeral. It has a
3117 ** different name to distinguish its use. Tables created using
3118 ** by this opcode will be used for automatically created transient
3119 ** indices in joins.
3121 case OP_OpenAutoindex
:
3122 case OP_OpenEphemeral
: {
3124 static const int vfsFlags
=
3125 SQLITE_OPEN_READWRITE
|
3126 SQLITE_OPEN_CREATE
|
3127 SQLITE_OPEN_EXCLUSIVE
|
3128 SQLITE_OPEN_DELETEONCLOSE
|
3129 SQLITE_OPEN_TRANSIENT_DB
;
3131 assert( pOp
->p1
>=0 );
3132 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p2
, -1, 1);
3133 if( pCx
==0 ) goto no_mem
;
3135 rc
= sqlite3BtreeOpen(0, db
, &pCx
->pBt
,
3136 BTREE_OMIT_JOURNAL
| BTREE_SINGLE
| pOp
->p5
, vfsFlags
);
3137 if( rc
==SQLITE_OK
){
3138 rc
= sqlite3BtreeBeginTrans(pCx
->pBt
, 1);
3140 if( rc
==SQLITE_OK
){
3141 /* If a transient index is required, create it by calling
3142 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3143 ** opening it. If a transient table is required, just use the
3144 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3146 if( pOp
->p4
.pKeyInfo
){
3148 assert( pOp
->p4type
==P4_KEYINFO
);
3149 rc
= sqlite3BtreeCreateTable(pCx
->pBt
, &pgno
, BTREE_BLOBKEY
);
3150 if( rc
==SQLITE_OK
){
3151 assert( pgno
==MASTER_ROOT
+1 );
3152 rc
= sqlite3BtreeCursor(pCx
->pBt
, pgno
, 1,
3153 (KeyInfo
*)pOp
->p4
.z
, pCx
->pCursor
);
3154 pCx
->pKeyInfo
= pOp
->p4
.pKeyInfo
;
3155 pCx
->pKeyInfo
->enc
= ENC(p
->db
);
3159 rc
= sqlite3BtreeCursor(pCx
->pBt
, MASTER_ROOT
, 1, 0, pCx
->pCursor
);
3163 pCx
->isOrdered
= (pOp
->p5
!=BTREE_UNORDERED
);
3164 pCx
->isIndex
= !pCx
->isTable
;
3168 /* Opcode: OpenPseudo P1 P2 P3 * *
3170 ** Open a new cursor that points to a fake table that contains a single
3171 ** row of data. The content of that one row in the content of memory
3172 ** register P2. In other words, cursor P1 becomes an alias for the
3173 ** MEM_Blob content contained in register P2.
3175 ** A pseudo-table created by this opcode is used to hold a single
3176 ** row output from the sorter so that the row can be decomposed into
3177 ** individual columns using the OP_Column opcode. The OP_Column opcode
3178 ** is the only cursor opcode that works with a pseudo-table.
3180 ** P3 is the number of fields in the records that will be stored by
3181 ** the pseudo-table.
3183 case OP_OpenPseudo
: {
3186 assert( pOp
->p1
>=0 );
3187 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p3
, -1, 0);
3188 if( pCx
==0 ) goto no_mem
;
3190 pCx
->pseudoTableReg
= pOp
->p2
;
3196 /* Opcode: Close P1 * * * *
3198 ** Close a cursor previously opened as P1. If P1 is not
3199 ** currently open, this instruction is a no-op.
3202 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3203 sqlite3VdbeFreeCursor(p
, p
->apCsr
[pOp
->p1
]);
3204 p
->apCsr
[pOp
->p1
] = 0;
3208 /* Opcode: SeekGe P1 P2 P3 P4 *
3210 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3211 ** use the value in register P3 as the key. If cursor P1 refers
3212 ** to an SQL index, then P3 is the first in an array of P4 registers
3213 ** that are used as an unpacked index key.
3215 ** Reposition cursor P1 so that it points to the smallest entry that
3216 ** is greater than or equal to the key value. If there are no records
3217 ** greater than or equal to the key and P2 is not zero, then jump to P2.
3219 ** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
3221 /* Opcode: SeekGt P1 P2 P3 P4 *
3223 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3224 ** use the value in register P3 as a key. If cursor P1 refers
3225 ** to an SQL index, then P3 is the first in an array of P4 registers
3226 ** that are used as an unpacked index key.
3228 ** Reposition cursor P1 so that it points to the smallest entry that
3229 ** is greater than the key value. If there are no records greater than
3230 ** the key and P2 is not zero, then jump to P2.
3232 ** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
3234 /* Opcode: SeekLt P1 P2 P3 P4 *
3236 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3237 ** use the value in register P3 as a key. If cursor P1 refers
3238 ** to an SQL index, then P3 is the first in an array of P4 registers
3239 ** that are used as an unpacked index key.
3241 ** Reposition cursor P1 so that it points to the largest entry that
3242 ** is less than the key value. If there are no records less than
3243 ** the key and P2 is not zero, then jump to P2.
3245 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
3247 /* Opcode: SeekLe P1 P2 P3 P4 *
3249 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3250 ** use the value in register P3 as a key. If cursor P1 refers
3251 ** to an SQL index, then P3 is the first in an array of P4 registers
3252 ** that are used as an unpacked index key.
3254 ** Reposition cursor P1 so that it points to the largest entry that
3255 ** is less than or equal to the key value. If there are no records
3256 ** less than or equal to the key and P2 is not zero, then jump to P2.
3258 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
3260 case OP_SeekLt
: /* jump, in3 */
3261 case OP_SeekLe
: /* jump, in3 */
3262 case OP_SeekGe
: /* jump, in3 */
3263 case OP_SeekGt
: { /* jump, in3 */
3269 i64 iKey
; /* The rowid we are to seek to */
3271 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3272 assert( pOp
->p2
!=0 );
3273 pC
= p
->apCsr
[pOp
->p1
];
3275 assert( pC
->pseudoTableReg
==0 );
3276 assert( OP_SeekLe
== OP_SeekLt
+1 );
3277 assert( OP_SeekGe
== OP_SeekLt
+2 );
3278 assert( OP_SeekGt
== OP_SeekLt
+3 );
3279 assert( pC
->isOrdered
);
3280 if( pC
->pCursor
!=0 ){
3284 /* The input value in P3 might be of any type: integer, real, string,
3285 ** blob, or NULL. But it needs to be an integer before we can do
3286 ** the seek, so covert it. */
3287 pIn3
= &aMem
[pOp
->p3
];
3288 applyNumericAffinity(pIn3
);
3289 iKey
= sqlite3VdbeIntValue(pIn3
);
3290 pC
->rowidIsValid
= 0;
3292 /* If the P3 value could not be converted into an integer without
3293 ** loss of information, then special processing is required... */
3294 if( (pIn3
->flags
& MEM_Int
)==0 ){
3295 if( (pIn3
->flags
& MEM_Real
)==0 ){
3296 /* If the P3 value cannot be converted into any kind of a number,
3297 ** then the seek is not possible, so jump to P2 */
3301 /* If we reach this point, then the P3 value must be a floating
3303 assert( (pIn3
->flags
& MEM_Real
)!=0 );
3305 if( iKey
==SMALLEST_INT64
&& (pIn3
->r
<(double)iKey
|| pIn3
->r
>0) ){
3306 /* The P3 value is too large in magnitude to be expressed as an
3310 if( oc
>=OP_SeekGe
){ assert( oc
==OP_SeekGe
|| oc
==OP_SeekGt
);
3311 rc
= sqlite3BtreeFirst(pC
->pCursor
, &res
);
3312 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3315 if( oc
<=OP_SeekLe
){ assert( oc
==OP_SeekLt
|| oc
==OP_SeekLe
);
3316 rc
= sqlite3BtreeLast(pC
->pCursor
, &res
);
3317 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3324 }else if( oc
==OP_SeekLt
|| oc
==OP_SeekGe
){
3325 /* Use the ceiling() function to convert real->int */
3326 if( pIn3
->r
> (double)iKey
) iKey
++;
3328 /* Use the floor() function to convert real->int */
3329 assert( oc
==OP_SeekLe
|| oc
==OP_SeekGt
);
3330 if( pIn3
->r
< (double)iKey
) iKey
--;
3333 rc
= sqlite3BtreeMovetoUnpacked(pC
->pCursor
, 0, (u64
)iKey
, 0, &res
);
3334 if( rc
!=SQLITE_OK
){
3335 goto abort_due_to_error
;
3338 pC
->rowidIsValid
= 1;
3339 pC
->lastRowid
= iKey
;
3343 assert( pOp
->p4type
==P4_INT32
);
3345 r
.pKeyInfo
= pC
->pKeyInfo
;
3346 r
.nField
= (u16
)nField
;
3348 /* The next line of code computes as follows, only faster:
3349 ** if( oc==OP_SeekGt || oc==OP_SeekLe ){
3350 ** r.flags = UNPACKED_INCRKEY;
3355 r
.flags
= (u16
)(UNPACKED_INCRKEY
* (1 & (oc
- OP_SeekLt
)));
3356 assert( oc
!=OP_SeekGt
|| r
.flags
==UNPACKED_INCRKEY
);
3357 assert( oc
!=OP_SeekLe
|| r
.flags
==UNPACKED_INCRKEY
);
3358 assert( oc
!=OP_SeekGe
|| r
.flags
==0 );
3359 assert( oc
!=OP_SeekLt
|| r
.flags
==0 );
3361 r
.aMem
= &aMem
[pOp
->p3
];
3363 { int i
; for(i
=0; i
<r
.nField
; i
++) assert( memIsValid(&r
.aMem
[i
]) ); }
3366 rc
= sqlite3BtreeMovetoUnpacked(pC
->pCursor
, &r
, 0, 0, &res
);
3367 if( rc
!=SQLITE_OK
){
3368 goto abort_due_to_error
;
3370 pC
->rowidIsValid
= 0;
3372 pC
->deferredMoveto
= 0;
3373 pC
->cacheStatus
= CACHE_STALE
;
3375 sqlite3_search_count
++;
3377 if( oc
>=OP_SeekGe
){ assert( oc
==OP_SeekGe
|| oc
==OP_SeekGt
);
3378 if( res
<0 || (res
==0 && oc
==OP_SeekGt
) ){
3379 rc
= sqlite3BtreeNext(pC
->pCursor
, &res
);
3380 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3381 pC
->rowidIsValid
= 0;
3386 assert( oc
==OP_SeekLt
|| oc
==OP_SeekLe
);
3387 if( res
>0 || (res
==0 && oc
==OP_SeekLt
) ){
3388 rc
= sqlite3BtreePrevious(pC
->pCursor
, &res
);
3389 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3390 pC
->rowidIsValid
= 0;
3392 /* res might be negative because the table is empty. Check to
3393 ** see if this is the case.
3395 res
= sqlite3BtreeEof(pC
->pCursor
);
3398 assert( pOp
->p2
>0 );
3403 /* This happens when attempting to open the sqlite3_master table
3404 ** for read access returns SQLITE_EMPTY. In this case always
3405 ** take the jump (since there are no records in the table).
3412 /* Opcode: Seek P1 P2 * * *
3414 ** P1 is an open table cursor and P2 is a rowid integer. Arrange
3415 ** for P1 to move so that it points to the rowid given by P2.
3417 ** This is actually a deferred seek. Nothing actually happens until
3418 ** the cursor is used to read a record. That way, if no reads
3419 ** occur, no unnecessary I/O happens.
3421 case OP_Seek
: { /* in2 */
3424 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3425 pC
= p
->apCsr
[pOp
->p1
];
3427 if( ALWAYS(pC
->pCursor
!=0) ){
3428 assert( pC
->isTable
);
3430 pIn2
= &aMem
[pOp
->p2
];
3431 pC
->movetoTarget
= sqlite3VdbeIntValue(pIn2
);
3432 pC
->rowidIsValid
= 0;
3433 pC
->deferredMoveto
= 1;
3439 /* Opcode: Found P1 P2 P3 P4 *
3441 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3442 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3445 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
3446 ** is a prefix of any entry in P1 then a jump is made to P2 and
3447 ** P1 is left pointing at the matching entry.
3449 /* Opcode: NotFound P1 P2 P3 P4 *
3451 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3452 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3455 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
3456 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3457 ** does contain an entry whose prefix matches the P3/P4 record then control
3458 ** falls through to the next instruction and P1 is left pointing at the
3461 ** See also: Found, NotExists, IsUnique
3463 case OP_NotFound
: /* jump, in3 */
3464 case OP_Found
: { /* jump, in3 */
3468 UnpackedRecord
*pIdxKey
;
3470 char aTempRec
[ROUND8(sizeof(UnpackedRecord
)) + sizeof(Mem
)*3 + 7];
3473 sqlite3_found_count
++;
3477 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3478 assert( pOp
->p4type
==P4_INT32
);
3479 pC
= p
->apCsr
[pOp
->p1
];
3481 pIn3
= &aMem
[pOp
->p3
];
3482 if( ALWAYS(pC
->pCursor
!=0) ){
3484 assert( pC
->isTable
==0 );
3486 r
.pKeyInfo
= pC
->pKeyInfo
;
3487 r
.nField
= (u16
)pOp
->p4
.i
;
3490 { int i
; for(i
=0; i
<r
.nField
; i
++) assert( memIsValid(&r
.aMem
[i
]) ); }
3492 r
.flags
= UNPACKED_PREFIX_MATCH
;
3495 assert( pIn3
->flags
& MEM_Blob
);
3496 assert( (pIn3
->flags
& MEM_Zero
)==0 ); /* zeroblobs already expanded */
3497 pIdxKey
= sqlite3VdbeRecordUnpack(pC
->pKeyInfo
, pIn3
->n
, pIn3
->z
,
3498 aTempRec
, sizeof(aTempRec
));
3502 pIdxKey
->flags
|= UNPACKED_PREFIX_MATCH
;
3504 rc
= sqlite3BtreeMovetoUnpacked(pC
->pCursor
, pIdxKey
, 0, 0, &res
);
3506 sqlite3VdbeDeleteUnpackedRecord(pIdxKey
);
3508 if( rc
!=SQLITE_OK
){
3511 alreadyExists
= (res
==0);
3512 pC
->deferredMoveto
= 0;
3513 pC
->cacheStatus
= CACHE_STALE
;
3515 if( pOp
->opcode
==OP_Found
){
3516 if( alreadyExists
) pc
= pOp
->p2
- 1;
3518 if( !alreadyExists
) pc
= pOp
->p2
- 1;
3523 /* Opcode: IsUnique P1 P2 P3 P4 *
3525 ** Cursor P1 is open on an index b-tree - that is to say, a btree which
3526 ** no data and where the key are records generated by OP_MakeRecord with
3527 ** the list field being the integer ROWID of the entry that the index
3530 ** The P3 register contains an integer record number. Call this record
3531 ** number R. Register P4 is the first in a set of N contiguous registers
3532 ** that make up an unpacked index key that can be used with cursor P1.
3533 ** The value of N can be inferred from the cursor. N includes the rowid
3534 ** value appended to the end of the index record. This rowid value may
3535 ** or may not be the same as R.
3537 ** If any of the N registers beginning with register P4 contains a NULL
3538 ** value, jump immediately to P2.
3540 ** Otherwise, this instruction checks if cursor P1 contains an entry
3541 ** where the first (N-1) fields match but the rowid value at the end
3542 ** of the index entry is not R. If there is no such entry, control jumps
3543 ** to instruction P2. Otherwise, the rowid of the conflicting index
3544 ** entry is copied to register P3 and control falls through to the next
3547 ** See also: NotFound, NotExists, Found
3549 case OP_IsUnique
: { /* jump, in3 */
3555 UnpackedRecord r
; /* B-Tree index search key */
3556 i64 R
; /* Rowid stored in register P3 */
3558 pIn3
= &aMem
[pOp
->p3
];
3559 aMx
= &aMem
[pOp
->p4
.i
];
3560 /* Assert that the values of parameters P1 and P4 are in range. */
3561 assert( pOp
->p4type
==P4_INT32
);
3562 assert( pOp
->p4
.i
>0 && pOp
->p4
.i
<=p
->nMem
);
3563 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3565 /* Find the index cursor. */
3566 pCx
= p
->apCsr
[pOp
->p1
];
3567 assert( pCx
->deferredMoveto
==0 );
3568 pCx
->seekResult
= 0;
3569 pCx
->cacheStatus
= CACHE_STALE
;
3570 pCrsr
= pCx
->pCursor
;
3572 /* If any of the values are NULL, take the jump. */
3573 nField
= pCx
->pKeyInfo
->nField
;
3574 for(ii
=0; ii
<nField
; ii
++){
3575 if( aMx
[ii
].flags
& MEM_Null
){
3581 assert( (aMx
[nField
].flags
& MEM_Null
)==0 );
3584 /* Populate the index search key. */
3585 r
.pKeyInfo
= pCx
->pKeyInfo
;
3586 r
.nField
= nField
+ 1;
3587 r
.flags
= UNPACKED_PREFIX_SEARCH
;
3590 { int i
; for(i
=0; i
<r
.nField
; i
++) assert( memIsValid(&r
.aMem
[i
]) ); }
3593 /* Extract the value of R from register P3. */
3594 sqlite3VdbeMemIntegerify(pIn3
);
3597 /* Search the B-Tree index. If no conflicting record is found, jump
3598 ** to P2. Otherwise, copy the rowid of the conflicting record to
3599 ** register P3 and fall through to the next instruction. */
3600 rc
= sqlite3BtreeMovetoUnpacked(pCrsr
, &r
, 0, 0, &pCx
->seekResult
);
3601 if( (r
.flags
& UNPACKED_PREFIX_SEARCH
) || r
.rowid
==R
){
3604 pIn3
->u
.i
= r
.rowid
;
3610 /* Opcode: NotExists P1 P2 P3 * *
3612 ** Use the content of register P3 as a integer key. If a record
3613 ** with that key does not exist in table of P1, then jump to P2.
3614 ** If the record does exist, then fall through. The cursor is left
3615 ** pointing to the record if it exists.
3617 ** The difference between this operation and NotFound is that this
3618 ** operation assumes the key is an integer and that P1 is a table whereas
3619 ** NotFound assumes key is a blob constructed from MakeRecord and
3622 ** See also: Found, NotFound, IsUnique
3624 case OP_NotExists
: { /* jump, in3 */
3630 pIn3
= &aMem
[pOp
->p3
];
3631 assert( pIn3
->flags
& MEM_Int
);
3632 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3633 pC
= p
->apCsr
[pOp
->p1
];
3635 assert( pC
->isTable
);
3636 assert( pC
->pseudoTableReg
==0 );
3637 pCrsr
= pC
->pCursor
;
3641 rc
= sqlite3BtreeMovetoUnpacked(pCrsr
, 0, iKey
, 0, &res
);
3642 pC
->lastRowid
= pIn3
->u
.i
;
3643 pC
->rowidIsValid
= res
==0 ?1:0;
3645 pC
->cacheStatus
= CACHE_STALE
;
3646 pC
->deferredMoveto
= 0;
3649 assert( pC
->rowidIsValid
==0 );
3651 pC
->seekResult
= res
;
3653 /* This happens when an attempt to open a read cursor on the
3654 ** sqlite_master table returns SQLITE_EMPTY.
3657 assert( pC
->rowidIsValid
==0 );
3663 /* Opcode: Sequence P1 P2 * * *
3665 ** Find the next available sequence number for cursor P1.
3666 ** Write the sequence number into register P2.
3667 ** The sequence number on the cursor is incremented after this
3670 case OP_Sequence
: { /* out2-prerelease */
3671 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3672 assert( p
->apCsr
[pOp
->p1
]!=0 );
3673 pOut
->u
.i
= p
->apCsr
[pOp
->p1
]->seqCount
++;
3678 /* Opcode: NewRowid P1 P2 P3 * *
3680 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
3681 ** The record number is not previously used as a key in the database
3682 ** table that cursor P1 points to. The new record number is written
3683 ** written to register P2.
3685 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3686 ** the largest previously generated record number. No new record numbers are
3687 ** allowed to be less than this value. When this value reaches its maximum,
3688 ** a SQLITE_FULL error is generated. The P3 register is updated with the '
3689 ** generated record number. This P3 mechanism is used to help implement the
3690 ** AUTOINCREMENT feature.
3692 case OP_NewRowid
: { /* out2-prerelease */
3693 i64 v
; /* The new rowid */
3694 VdbeCursor
*pC
; /* Cursor of table to get the new rowid */
3695 int res
; /* Result of an sqlite3BtreeLast() */
3696 int cnt
; /* Counter to limit the number of searches */
3697 Mem
*pMem
; /* Register holding largest rowid for AUTOINCREMENT */
3698 VdbeFrame
*pFrame
; /* Root frame of VDBE */
3702 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3703 pC
= p
->apCsr
[pOp
->p1
];
3705 if( NEVER(pC
->pCursor
==0) ){
3706 /* The zero initialization above is all that is needed */
3708 /* The next rowid or record number (different terms for the same
3709 ** thing) is obtained in a two-step algorithm.
3711 ** First we attempt to find the largest existing rowid and add one
3712 ** to that. But if the largest existing rowid is already the maximum
3713 ** positive integer, we have to fall through to the second
3714 ** probabilistic algorithm
3716 ** The second algorithm is to select a rowid at random and see if
3717 ** it already exists in the table. If it does not exist, we have
3718 ** succeeded. If the random rowid does exist, we select a new one
3719 ** and try again, up to 100 times.
3721 assert( pC
->isTable
);
3723 #ifdef SQLITE_32BIT_ROWID
3724 # define MAX_ROWID 0x7fffffff
3726 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3727 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
3728 ** to provide the constant while making all compilers happy.
3730 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
3733 if( !pC
->useRandomRowid
){
3734 v
= sqlite3BtreeGetCachedRowid(pC
->pCursor
);
3736 rc
= sqlite3BtreeLast(pC
->pCursor
, &res
);
3737 if( rc
!=SQLITE_OK
){
3738 goto abort_due_to_error
;
3741 v
= 1; /* IMP: R-61914-48074 */
3743 assert( sqlite3BtreeCursorIsValid(pC
->pCursor
) );
3744 rc
= sqlite3BtreeKeySize(pC
->pCursor
, &v
);
3745 assert( rc
==SQLITE_OK
); /* Cannot fail following BtreeLast() */
3747 pC
->useRandomRowid
= 1;
3749 v
++; /* IMP: R-29538-34987 */
3754 #ifndef SQLITE_OMIT_AUTOINCREMENT
3756 /* Assert that P3 is a valid memory cell. */
3757 assert( pOp
->p3
>0 );
3759 for(pFrame
=p
->pFrame
; pFrame
->pParent
; pFrame
=pFrame
->pParent
);
3760 /* Assert that P3 is a valid memory cell. */
3761 assert( pOp
->p3
<=pFrame
->nMem
);
3762 pMem
= &pFrame
->aMem
[pOp
->p3
];
3764 /* Assert that P3 is a valid memory cell. */
3765 assert( pOp
->p3
<=p
->nMem
);
3766 pMem
= &aMem
[pOp
->p3
];
3767 memAboutToChange(p
, pMem
);
3769 assert( memIsValid(pMem
) );
3771 REGISTER_TRACE(pOp
->p3
, pMem
);
3772 sqlite3VdbeMemIntegerify(pMem
);
3773 assert( (pMem
->flags
& MEM_Int
)!=0 ); /* mem(P3) holds an integer */
3774 if( pMem
->u
.i
==MAX_ROWID
|| pC
->useRandomRowid
){
3775 rc
= SQLITE_FULL
; /* IMP: R-12275-61338 */
3776 goto abort_due_to_error
;
3778 if( v
<pMem
->u
.i
+1 ){
3785 sqlite3BtreeSetCachedRowid(pC
->pCursor
, v
<MAX_ROWID
? v
+1 : 0);
3787 if( pC
->useRandomRowid
){
3788 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
3789 ** largest possible integer (9223372036854775807) then the database
3790 ** engine starts picking positive candidate ROWIDs at random until
3791 ** it finds one that is not previously used. */
3792 assert( pOp
->p3
==0 ); /* We cannot be in random rowid mode if this is
3793 ** an AUTOINCREMENT table. */
3794 /* on the first attempt, simply do one more than previous */
3796 v
&= (MAX_ROWID
>>1); /* ensure doesn't go negative */
3797 v
++; /* ensure non-zero */
3799 while( ((rc
= sqlite3BtreeMovetoUnpacked(pC
->pCursor
, 0, (u64
)v
,
3800 0, &res
))==SQLITE_OK
)
3803 /* collision - try another random rowid */
3804 sqlite3_randomness(sizeof(v
), &v
);
3806 /* try "small" random rowids for the initial attempts */
3809 v
&= (MAX_ROWID
>>1); /* ensure doesn't go negative */
3811 v
++; /* ensure non-zero */
3813 if( rc
==SQLITE_OK
&& res
==0 ){
3814 rc
= SQLITE_FULL
; /* IMP: R-38219-53002 */
3815 goto abort_due_to_error
;
3817 assert( v
>0 ); /* EV: R-40812-03570 */
3819 pC
->rowidIsValid
= 0;
3820 pC
->deferredMoveto
= 0;
3821 pC
->cacheStatus
= CACHE_STALE
;
3827 /* Opcode: Insert P1 P2 P3 P4 P5
3829 ** Write an entry into the table of cursor P1. A new entry is
3830 ** created if it doesn't already exist or the data for an existing
3831 ** entry is overwritten. The data is the value MEM_Blob stored in register
3832 ** number P2. The key is stored in register P3. The key must
3835 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
3836 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
3837 ** then rowid is stored for subsequent return by the
3838 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
3840 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
3841 ** the last seek operation (OP_NotExists) was a success, then this
3842 ** operation will not attempt to find the appropriate row before doing
3843 ** the insert but will instead overwrite the row that the cursor is
3844 ** currently pointing to. Presumably, the prior OP_NotExists opcode
3845 ** has already positioned the cursor correctly. This is an optimization
3846 ** that boosts performance by avoiding redundant seeks.
3848 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
3849 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode
3850 ** is part of an INSERT operation. The difference is only important to
3853 ** Parameter P4 may point to a string containing the table-name, or
3854 ** may be NULL. If it is not NULL, then the update-hook
3855 ** (sqlite3.xUpdateCallback) is invoked following a successful insert.
3857 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
3858 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
3859 ** and register P2 becomes ephemeral. If the cursor is changed, the
3860 ** value of register P2 will then change. Make sure this does not
3861 ** cause any problems.)
3863 ** This instruction only works on tables. The equivalent instruction
3864 ** for indices is OP_IdxInsert.
3866 /* Opcode: InsertInt P1 P2 P3 P4 P5
3868 ** This works exactly like OP_Insert except that the key is the
3869 ** integer value P3, not the value of the integer stored in register P3.
3872 case OP_InsertInt
: {
3873 Mem
*pData
; /* MEM cell holding data for the record to be inserted */
3874 Mem
*pKey
; /* MEM cell holding key for the record */
3875 i64 iKey
; /* The integer ROWID or key for the record to be inserted */
3876 VdbeCursor
*pC
; /* Cursor to table into which insert is written */
3877 int nZero
; /* Number of zero-bytes to append */
3878 int seekResult
; /* Result of prior seek or 0 if no USESEEKRESULT flag */
3879 const char *zDb
; /* database name - used by the update hook */
3880 const char *zTbl
; /* Table name - used by the opdate hook */
3881 int op
; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
3883 pData
= &aMem
[pOp
->p2
];
3884 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3885 assert( memIsValid(pData
) );
3886 pC
= p
->apCsr
[pOp
->p1
];
3888 assert( pC
->pCursor
!=0 );
3889 assert( pC
->pseudoTableReg
==0 );
3890 assert( pC
->isTable
);
3891 REGISTER_TRACE(pOp
->p2
, pData
);
3893 if( pOp
->opcode
==OP_Insert
){
3894 pKey
= &aMem
[pOp
->p3
];
3895 assert( pKey
->flags
& MEM_Int
);
3896 assert( memIsValid(pKey
) );
3897 REGISTER_TRACE(pOp
->p3
, pKey
);
3900 assert( pOp
->opcode
==OP_InsertInt
);
3904 if( pOp
->p5
& OPFLAG_NCHANGE
) p
->nChange
++;
3905 if( pOp
->p5
& OPFLAG_LASTROWID
) db
->lastRowid
= iKey
;
3906 if( pData
->flags
& MEM_Null
){
3910 assert( pData
->flags
& (MEM_Blob
|MEM_Str
) );
3912 seekResult
= ((pOp
->p5
& OPFLAG_USESEEKRESULT
) ? pC
->seekResult
: 0);
3913 if( pData
->flags
& MEM_Zero
){
3914 nZero
= pData
->u
.nZero
;
3918 sqlite3BtreeSetCachedRowid(pC
->pCursor
, 0);
3919 rc
= sqlite3BtreeInsert(pC
->pCursor
, 0, iKey
,
3920 pData
->z
, pData
->n
, nZero
,
3921 pOp
->p5
& OPFLAG_APPEND
, seekResult
3923 pC
->rowidIsValid
= 0;
3924 pC
->deferredMoveto
= 0;
3925 pC
->cacheStatus
= CACHE_STALE
;
3927 /* Invoke the update-hook if required. */
3928 if( rc
==SQLITE_OK
&& db
->xUpdateCallback
&& pOp
->p4
.z
){
3929 zDb
= db
->aDb
[pC
->iDb
].zName
;
3931 op
= ((pOp
->p5
& OPFLAG_ISUPDATE
) ? SQLITE_UPDATE
: SQLITE_INSERT
);
3932 assert( pC
->isTable
);
3933 db
->xUpdateCallback(db
->pUpdateArg
, op
, zDb
, zTbl
, iKey
);
3934 assert( pC
->iDb
>=0 );
3939 /* Opcode: Delete P1 P2 * P4 *
3941 ** Delete the record at which the P1 cursor is currently pointing.
3943 ** The cursor will be left pointing at either the next or the previous
3944 ** record in the table. If it is left pointing at the next record, then
3945 ** the next Next instruction will be a no-op. Hence it is OK to delete
3946 ** a record from within an Next loop.
3948 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
3949 ** incremented (otherwise not).
3951 ** P1 must not be pseudo-table. It has to be a real table with
3954 ** If P4 is not NULL, then it is the name of the table that P1 is
3955 ** pointing to. The update hook will be invoked, if it exists.
3956 ** If P4 is not NULL then the P1 cursor must have been positioned
3957 ** using OP_NotFound prior to invoking this opcode.
3964 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3965 pC
= p
->apCsr
[pOp
->p1
];
3967 assert( pC
->pCursor
!=0 ); /* Only valid for real tables, no pseudotables */
3969 /* If the update-hook will be invoked, set iKey to the rowid of the
3970 ** row being deleted.
3972 if( db
->xUpdateCallback
&& pOp
->p4
.z
){
3973 assert( pC
->isTable
);
3974 assert( pC
->rowidIsValid
); /* lastRowid set by previous OP_NotFound */
3975 iKey
= pC
->lastRowid
;
3978 /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
3979 ** OP_Column on the same table without any intervening operations that
3980 ** might move or invalidate the cursor. Hence cursor pC is always pointing
3981 ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
3982 ** below is always a no-op and cannot fail. We will run it anyhow, though,
3983 ** to guard against future changes to the code generator.
3985 assert( pC
->deferredMoveto
==0 );
3986 rc
= sqlite3VdbeCursorMoveto(pC
);
3987 if( NEVER(rc
!=SQLITE_OK
) ) goto abort_due_to_error
;
3989 sqlite3BtreeSetCachedRowid(pC
->pCursor
, 0);
3990 rc
= sqlite3BtreeDelete(pC
->pCursor
);
3991 pC
->cacheStatus
= CACHE_STALE
;
3993 /* Invoke the update-hook if required. */
3994 if( rc
==SQLITE_OK
&& db
->xUpdateCallback
&& pOp
->p4
.z
){
3995 const char *zDb
= db
->aDb
[pC
->iDb
].zName
;
3996 const char *zTbl
= pOp
->p4
.z
;
3997 db
->xUpdateCallback(db
->pUpdateArg
, SQLITE_DELETE
, zDb
, zTbl
, iKey
);
3998 assert( pC
->iDb
>=0 );
4000 if( pOp
->p2
& OPFLAG_NCHANGE
) p
->nChange
++;
4003 /* Opcode: ResetCount * * * * *
4005 ** The value of the change counter is copied to the database handle
4006 ** change counter (returned by subsequent calls to sqlite3_changes()).
4007 ** Then the VMs internal change counter resets to 0.
4008 ** This is used by trigger programs.
4010 case OP_ResetCount
: {
4011 sqlite3VdbeSetChanges(db
, p
->nChange
);
4016 /* Opcode: RowData P1 P2 * * *
4018 ** Write into register P2 the complete row data for cursor P1.
4019 ** There is no interpretation of the data.
4020 ** It is just copied onto the P2 register exactly as
4021 ** it is found in the database file.
4023 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4024 ** of a real table, not a pseudo-table.
4026 /* Opcode: RowKey P1 P2 * * *
4028 ** Write into register P2 the complete row key for cursor P1.
4029 ** There is no interpretation of the data.
4030 ** The key is copied onto the P3 register exactly as
4031 ** it is found in the database file.
4033 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4034 ** of a real table, not a pseudo-table.
4043 pOut
= &aMem
[pOp
->p2
];
4044 memAboutToChange(p
, pOut
);
4046 /* Note that RowKey and RowData are really exactly the same instruction */
4047 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4048 pC
= p
->apCsr
[pOp
->p1
];
4049 assert( pC
->isTable
|| pOp
->opcode
==OP_RowKey
);
4050 assert( pC
->isIndex
|| pOp
->opcode
==OP_RowData
);
4052 assert( pC
->nullRow
==0 );
4053 assert( pC
->pseudoTableReg
==0 );
4054 assert( pC
->pCursor
!=0 );
4055 pCrsr
= pC
->pCursor
;
4056 assert( sqlite3BtreeCursorIsValid(pCrsr
) );
4058 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4059 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
4060 ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always
4061 ** a no-op and can never fail. But we leave it in place as a safety.
4063 assert( pC
->deferredMoveto
==0 );
4064 rc
= sqlite3VdbeCursorMoveto(pC
);
4065 if( NEVER(rc
!=SQLITE_OK
) ) goto abort_due_to_error
;
4068 assert( !pC
->isTable
);
4069 rc
= sqlite3BtreeKeySize(pCrsr
, &n64
);
4070 assert( rc
==SQLITE_OK
); /* True because of CursorMoveto() call above */
4071 if( n64
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
4076 rc
= sqlite3BtreeDataSize(pCrsr
, &n
);
4077 assert( rc
==SQLITE_OK
); /* DataSize() cannot fail */
4078 if( n
>(u32
)db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
4082 if( sqlite3VdbeMemGrow(pOut
, n
, 0) ){
4086 MemSetTypeFlag(pOut
, MEM_Blob
);
4088 rc
= sqlite3BtreeKey(pCrsr
, 0, n
, pOut
->z
);
4090 rc
= sqlite3BtreeData(pCrsr
, 0, n
, pOut
->z
);
4092 pOut
->enc
= SQLITE_UTF8
; /* In case the blob is ever cast to text */
4093 UPDATE_MAX_BLOBSIZE(pOut
);
4097 /* Opcode: Rowid P1 P2 * * *
4099 ** Store in register P2 an integer which is the key of the table entry that
4100 ** P1 is currently point to.
4102 ** P1 can be either an ordinary table or a virtual table. There used to
4103 ** be a separate OP_VRowid opcode for use with virtual tables, but this
4104 ** one opcode now works for both table types.
4106 case OP_Rowid
: { /* out2-prerelease */
4109 sqlite3_vtab
*pVtab
;
4110 const sqlite3_module
*pModule
;
4112 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4113 pC
= p
->apCsr
[pOp
->p1
];
4115 assert( pC
->pseudoTableReg
==0 );
4117 pOut
->flags
= MEM_Null
;
4119 }else if( pC
->deferredMoveto
){
4120 v
= pC
->movetoTarget
;
4121 #ifndef SQLITE_OMIT_VIRTUALTABLE
4122 }else if( pC
->pVtabCursor
){
4123 pVtab
= pC
->pVtabCursor
->pVtab
;
4124 pModule
= pVtab
->pModule
;
4125 assert( pModule
->xRowid
);
4126 rc
= pModule
->xRowid(pC
->pVtabCursor
, &v
);
4127 importVtabErrMsg(p
, pVtab
);
4128 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4130 assert( pC
->pCursor
!=0 );
4131 rc
= sqlite3VdbeCursorMoveto(pC
);
4132 if( rc
) goto abort_due_to_error
;
4133 if( pC
->rowidIsValid
){
4136 rc
= sqlite3BtreeKeySize(pC
->pCursor
, &v
);
4137 assert( rc
==SQLITE_OK
); /* Always so because of CursorMoveto() above */
4144 /* Opcode: NullRow P1 * * * *
4146 ** Move the cursor P1 to a null row. Any OP_Column operations
4147 ** that occur while the cursor is on the null row will always
4153 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4154 pC
= p
->apCsr
[pOp
->p1
];
4157 pC
->rowidIsValid
= 0;
4159 sqlite3BtreeClearCursor(pC
->pCursor
);
4164 /* Opcode: Last P1 P2 * * *
4166 ** The next use of the Rowid or Column or Next instruction for P1
4167 ** will refer to the last entry in the database table or index.
4168 ** If the table or index is empty and P2>0, then jump immediately to P2.
4169 ** If P2 is 0 or if the table or index is not empty, fall through
4170 ** to the following instruction.
4172 case OP_Last
: { /* jump */
4177 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4178 pC
= p
->apCsr
[pOp
->p1
];
4180 pCrsr
= pC
->pCursor
;
4184 rc
= sqlite3BtreeLast(pCrsr
, &res
);
4186 pC
->nullRow
= (u8
)res
;
4187 pC
->deferredMoveto
= 0;
4188 pC
->rowidIsValid
= 0;
4189 pC
->cacheStatus
= CACHE_STALE
;
4190 if( pOp
->p2
>0 && res
){
4197 /* Opcode: Sort P1 P2 * * *
4199 ** This opcode does exactly the same thing as OP_Rewind except that
4200 ** it increments an undocumented global variable used for testing.
4202 ** Sorting is accomplished by writing records into a sorting index,
4203 ** then rewinding that index and playing it back from beginning to
4204 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4205 ** rewinding so that the global variable will be incremented and
4206 ** regression tests can determine whether or not the optimizer is
4207 ** correctly optimizing out sorts.
4209 case OP_Sort
: { /* jump */
4211 sqlite3_sort_count
++;
4212 sqlite3_search_count
--;
4214 p
->aCounter
[SQLITE_STMTSTATUS_SORT
-1]++;
4215 /* Fall through into OP_Rewind */
4217 /* Opcode: Rewind P1 P2 * * *
4219 ** The next use of the Rowid or Column or Next instruction for P1
4220 ** will refer to the first entry in the database table or index.
4221 ** If the table or index is empty and P2>0, then jump immediately to P2.
4222 ** If P2 is 0 or if the table or index is not empty, fall through
4223 ** to the following instruction.
4225 case OP_Rewind
: { /* jump */
4230 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4231 pC
= p
->apCsr
[pOp
->p1
];
4234 if( (pCrsr
= pC
->pCursor
)!=0 ){
4235 rc
= sqlite3BtreeFirst(pCrsr
, &res
);
4236 pC
->atFirst
= res
==0 ?1:0;
4237 pC
->deferredMoveto
= 0;
4238 pC
->cacheStatus
= CACHE_STALE
;
4239 pC
->rowidIsValid
= 0;
4241 pC
->nullRow
= (u8
)res
;
4242 assert( pOp
->p2
>0 && pOp
->p2
<p
->nOp
);
4249 /* Opcode: Next P1 P2 * * P5
4251 ** Advance cursor P1 so that it points to the next key/data pair in its
4252 ** table or index. If there are no more key/value pairs then fall through
4253 ** to the following instruction. But if the cursor advance was successful,
4254 ** jump immediately to P2.
4256 ** The P1 cursor must be for a real table, not a pseudo-table.
4258 ** If P5 is positive and the jump is taken, then event counter
4259 ** number P5-1 in the prepared statement is incremented.
4263 /* Opcode: Prev P1 P2 * * P5
4265 ** Back up cursor P1 so that it points to the previous key/data pair in its
4266 ** table or index. If there is no previous key/value pairs then fall through
4267 ** to the following instruction. But if the cursor backup was successful,
4268 ** jump immediately to P2.
4270 ** The P1 cursor must be for a real table, not a pseudo-table.
4272 ** If P5 is positive and the jump is taken, then event counter
4273 ** number P5-1 in the prepared statement is incremented.
4275 case OP_Prev
: /* jump */
4276 case OP_Next
: { /* jump */
4281 CHECK_FOR_INTERRUPT
;
4282 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4283 assert( pOp
->p5
<=ArraySize(p
->aCounter
) );
4284 pC
= p
->apCsr
[pOp
->p1
];
4286 break; /* See ticket #2273 */
4288 pCrsr
= pC
->pCursor
;
4294 assert( pC
->deferredMoveto
==0 );
4295 rc
= pOp
->opcode
==OP_Next
? sqlite3BtreeNext(pCrsr
, &res
) :
4296 sqlite3BtreePrevious(pCrsr
, &res
);
4297 pC
->nullRow
= (u8
)res
;
4298 pC
->cacheStatus
= CACHE_STALE
;
4301 if( pOp
->p5
) p
->aCounter
[pOp
->p5
-1]++;
4303 sqlite3_search_count
++;
4306 pC
->rowidIsValid
= 0;
4310 /* Opcode: IdxInsert P1 P2 P3 * P5
4312 ** Register P2 holds a SQL index key made using the
4313 ** MakeRecord instructions. This opcode writes that key
4314 ** into the index P1. Data for the entry is nil.
4316 ** P3 is a flag that provides a hint to the b-tree layer that this
4317 ** insert is likely to be an append.
4319 ** This instruction only works for indices. The equivalent instruction
4320 ** for tables is OP_Insert.
4322 case OP_IdxInsert
: { /* in2 */
4328 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4329 pC
= p
->apCsr
[pOp
->p1
];
4331 pIn2
= &aMem
[pOp
->p2
];
4332 assert( pIn2
->flags
& MEM_Blob
);
4333 pCrsr
= pC
->pCursor
;
4334 if( ALWAYS(pCrsr
!=0) ){
4335 assert( pC
->isTable
==0 );
4336 rc
= ExpandBlob(pIn2
);
4337 if( rc
==SQLITE_OK
){
4340 rc
= sqlite3BtreeInsert(pCrsr
, zKey
, nKey
, "", 0, 0, pOp
->p3
,
4341 ((pOp
->p5
& OPFLAG_USESEEKRESULT
) ? pC
->seekResult
: 0)
4343 assert( pC
->deferredMoveto
==0 );
4344 pC
->cacheStatus
= CACHE_STALE
;
4350 /* Opcode: IdxDelete P1 P2 P3 * *
4352 ** The content of P3 registers starting at register P2 form
4353 ** an unpacked index key. This opcode removes that entry from the
4354 ** index opened by cursor P1.
4356 case OP_IdxDelete
: {
4362 assert( pOp
->p3
>0 );
4363 assert( pOp
->p2
>0 && pOp
->p2
+pOp
->p3
<=p
->nMem
+1 );
4364 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4365 pC
= p
->apCsr
[pOp
->p1
];
4367 pCrsr
= pC
->pCursor
;
4368 if( ALWAYS(pCrsr
!=0) ){
4369 r
.pKeyInfo
= pC
->pKeyInfo
;
4370 r
.nField
= (u16
)pOp
->p3
;
4372 r
.aMem
= &aMem
[pOp
->p2
];
4374 { int i
; for(i
=0; i
<r
.nField
; i
++) assert( memIsValid(&r
.aMem
[i
]) ); }
4376 rc
= sqlite3BtreeMovetoUnpacked(pCrsr
, &r
, 0, 0, &res
);
4377 if( rc
==SQLITE_OK
&& res
==0 ){
4378 rc
= sqlite3BtreeDelete(pCrsr
);
4380 assert( pC
->deferredMoveto
==0 );
4381 pC
->cacheStatus
= CACHE_STALE
;
4386 /* Opcode: IdxRowid P1 P2 * * *
4388 ** Write into register P2 an integer which is the last entry in the record at
4389 ** the end of the index key pointed to by cursor P1. This integer should be
4390 ** the rowid of the table entry to which this index entry points.
4392 ** See also: Rowid, MakeRecord.
4394 case OP_IdxRowid
: { /* out2-prerelease */
4399 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4400 pC
= p
->apCsr
[pOp
->p1
];
4402 pCrsr
= pC
->pCursor
;
4403 pOut
->flags
= MEM_Null
;
4404 if( ALWAYS(pCrsr
!=0) ){
4405 rc
= sqlite3VdbeCursorMoveto(pC
);
4406 if( NEVER(rc
) ) goto abort_due_to_error
;
4407 assert( pC
->deferredMoveto
==0 );
4408 assert( pC
->isTable
==0 );
4410 rc
= sqlite3VdbeIdxRowid(db
, pCrsr
, &rowid
);
4411 if( rc
!=SQLITE_OK
){
4412 goto abort_due_to_error
;
4415 pOut
->flags
= MEM_Int
;
4421 /* Opcode: IdxGE P1 P2 P3 P4 P5
4423 ** The P4 register values beginning with P3 form an unpacked index
4424 ** key that omits the ROWID. Compare this key value against the index
4425 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
4427 ** If the P1 index entry is greater than or equal to the key value
4428 ** then jump to P2. Otherwise fall through to the next instruction.
4430 ** If P5 is non-zero then the key value is increased by an epsilon
4431 ** prior to the comparison. This make the opcode work like IdxGT except
4432 ** that if the key from register P3 is a prefix of the key in the cursor,
4433 ** the result is false whereas it would be true with IdxGT.
4435 /* Opcode: IdxLT P1 P2 P3 P4 P5
4437 ** The P4 register values beginning with P3 form an unpacked index
4438 ** key that omits the ROWID. Compare this key value against the index
4439 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
4441 ** If the P1 index entry is less than the key value then jump to P2.
4442 ** Otherwise fall through to the next instruction.
4444 ** If P5 is non-zero then the key value is increased by an epsilon prior
4445 ** to the comparison. This makes the opcode work like IdxLE.
4447 case OP_IdxLT
: /* jump */
4448 case OP_IdxGE
: { /* jump */
4453 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4454 pC
= p
->apCsr
[pOp
->p1
];
4456 assert( pC
->isOrdered
);
4457 if( ALWAYS(pC
->pCursor
!=0) ){
4458 assert( pC
->deferredMoveto
==0 );
4459 assert( pOp
->p5
==0 || pOp
->p5
==1 );
4460 assert( pOp
->p4type
==P4_INT32
);
4461 r
.pKeyInfo
= pC
->pKeyInfo
;
4462 r
.nField
= (u16
)pOp
->p4
.i
;
4464 r
.flags
= UNPACKED_INCRKEY
| UNPACKED_IGNORE_ROWID
;
4466 r
.flags
= UNPACKED_IGNORE_ROWID
;
4468 r
.aMem
= &aMem
[pOp
->p3
];
4470 { int i
; for(i
=0; i
<r
.nField
; i
++) assert( memIsValid(&r
.aMem
[i
]) ); }
4472 rc
= sqlite3VdbeIdxKeyCompare(pC
, &r
, &res
);
4473 if( pOp
->opcode
==OP_IdxLT
){
4476 assert( pOp
->opcode
==OP_IdxGE
);
4486 /* Opcode: Destroy P1 P2 P3 * *
4488 ** Delete an entire database table or index whose root page in the database
4489 ** file is given by P1.
4491 ** The table being destroyed is in the main database file if P3==0. If
4492 ** P3==1 then the table to be clear is in the auxiliary database file
4493 ** that is used to store tables create using CREATE TEMPORARY TABLE.
4495 ** If AUTOVACUUM is enabled then it is possible that another root page
4496 ** might be moved into the newly deleted root page in order to keep all
4497 ** root pages contiguous at the beginning of the database. The former
4498 ** value of the root page that moved - its value before the move occurred -
4499 ** is stored in register P2. If no page
4500 ** movement was required (because the table being dropped was already
4501 ** the last one in the database) then a zero is stored in register P2.
4502 ** If AUTOVACUUM is disabled then a zero is stored in register P2.
4506 case OP_Destroy
: { /* out2-prerelease */
4511 #ifndef SQLITE_OMIT_VIRTUALTABLE
4513 for(pVdbe
=db
->pVdbe
; pVdbe
; pVdbe
= pVdbe
->pNext
){
4514 if( pVdbe
->magic
==VDBE_MAGIC_RUN
&& pVdbe
->inVtabMethod
<2 && pVdbe
->pc
>=0 ){
4519 iCnt
= db
->activeVdbeCnt
;
4521 pOut
->flags
= MEM_Null
;
4524 p
->errorAction
= OE_Abort
;
4528 assert( (p
->btreeMask
& (((yDbMask
)1)<<iDb
))!=0 );
4529 rc
= sqlite3BtreeDropTable(db
->aDb
[iDb
].pBt
, pOp
->p1
, &iMoved
);
4530 pOut
->flags
= MEM_Int
;
4532 #ifndef SQLITE_OMIT_AUTOVACUUM
4533 if( rc
==SQLITE_OK
&& iMoved
!=0 ){
4534 sqlite3RootPageMoved(db
, iDb
, iMoved
, pOp
->p1
);
4535 /* All OP_Destroy operations occur on the same btree */
4536 assert( resetSchemaOnFault
==0 || resetSchemaOnFault
==iDb
+1 );
4537 resetSchemaOnFault
= iDb
+1;
4544 /* Opcode: Clear P1 P2 P3
4546 ** Delete all contents of the database table or index whose root page
4547 ** in the database file is given by P1. But, unlike Destroy, do not
4548 ** remove the table or index from the database file.
4550 ** The table being clear is in the main database file if P2==0. If
4551 ** P2==1 then the table to be clear is in the auxiliary database file
4552 ** that is used to store tables create using CREATE TEMPORARY TABLE.
4554 ** If the P3 value is non-zero, then the table referred to must be an
4555 ** intkey table (an SQL table, not an index). In this case the row change
4556 ** count is incremented by the number of rows in the table being cleared.
4557 ** If P3 is greater than zero, then the value stored in register P3 is
4558 ** also incremented by the number of rows in the table being cleared.
4560 ** See also: Destroy
4566 assert( (p
->btreeMask
& (((yDbMask
)1)<<pOp
->p2
))!=0 );
4567 rc
= sqlite3BtreeClearTable(
4568 db
->aDb
[pOp
->p2
].pBt
, pOp
->p1
, (pOp
->p3
? &nChange
: 0)
4571 p
->nChange
+= nChange
;
4573 assert( memIsValid(&aMem
[pOp
->p3
]) );
4574 memAboutToChange(p
, &aMem
[pOp
->p3
]);
4575 aMem
[pOp
->p3
].u
.i
+= nChange
;
4581 /* Opcode: CreateTable P1 P2 * * *
4583 ** Allocate a new table in the main database file if P1==0 or in the
4584 ** auxiliary database file if P1==1 or in an attached database if
4585 ** P1>1. Write the root page number of the new table into
4588 ** The difference between a table and an index is this: A table must
4589 ** have a 4-byte integer key and can have arbitrary data. An index
4590 ** has an arbitrary key but no data.
4592 ** See also: CreateIndex
4594 /* Opcode: CreateIndex P1 P2 * * *
4596 ** Allocate a new index in the main database file if P1==0 or in the
4597 ** auxiliary database file if P1==1 or in an attached database if
4598 ** P1>1. Write the root page number of the new table into
4601 ** See documentation on OP_CreateTable for additional information.
4603 case OP_CreateIndex
: /* out2-prerelease */
4604 case OP_CreateTable
: { /* out2-prerelease */
4610 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
4611 assert( (p
->btreeMask
& (((yDbMask
)1)<<pOp
->p1
))!=0 );
4612 pDb
= &db
->aDb
[pOp
->p1
];
4613 assert( pDb
->pBt
!=0 );
4614 if( pOp
->opcode
==OP_CreateTable
){
4615 /* flags = BTREE_INTKEY; */
4616 flags
= BTREE_INTKEY
;
4618 flags
= BTREE_BLOBKEY
;
4620 rc
= sqlite3BtreeCreateTable(pDb
->pBt
, &pgno
, flags
);
4625 /* Opcode: ParseSchema P1 * * P4 *
4627 ** Read and parse all entries from the SQLITE_MASTER table of database P1
4628 ** that match the WHERE clause P4.
4630 ** This opcode invokes the parser to create a new virtual machine,
4631 ** then runs the new virtual machine. It is thus a re-entrant opcode.
4633 case OP_ParseSchema
: {
4635 const char *zMaster
;
4639 /* Any prepared statement that invokes this opcode will hold mutexes
4640 ** on every btree. This is a prerequisite for invoking
4641 ** sqlite3InitCallback().
4644 for(iDb
=0; iDb
<db
->nDb
; iDb
++){
4645 assert( iDb
==1 || sqlite3BtreeHoldsMutex(db
->aDb
[iDb
].pBt
) );
4650 assert( iDb
>=0 && iDb
<db
->nDb
);
4651 assert( DbHasProperty(db
, iDb
, DB_SchemaLoaded
) );
4652 /* Used to be a conditional */ {
4653 zMaster
= SCHEMA_TABLE(iDb
);
4655 initData
.iDb
= pOp
->p1
;
4656 initData
.pzErrMsg
= &p
->zErrMsg
;
4657 zSql
= sqlite3MPrintf(db
,
4658 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
4659 db
->aDb
[iDb
].zName
, zMaster
, pOp
->p4
.z
);
4663 assert( db
->init
.busy
==0 );
4665 initData
.rc
= SQLITE_OK
;
4666 assert( !db
->mallocFailed
);
4667 rc
= sqlite3_exec(db
, zSql
, sqlite3InitCallback
, &initData
, 0);
4668 if( rc
==SQLITE_OK
) rc
= initData
.rc
;
4669 sqlite3DbFree(db
, zSql
);
4673 if( rc
==SQLITE_NOMEM
){
4679 #if !defined(SQLITE_OMIT_ANALYZE)
4680 /* Opcode: LoadAnalysis P1 * * * *
4682 ** Read the sqlite_stat1 table for database P1 and load the content
4683 ** of that table into the internal index hash table. This will cause
4684 ** the analysis to be used when preparing all subsequent queries.
4686 case OP_LoadAnalysis
: {
4687 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
4688 rc
= sqlite3AnalysisLoad(db
, pOp
->p1
);
4691 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
4693 /* Opcode: DropTable P1 * * P4 *
4695 ** Remove the internal (in-memory) data structures that describe
4696 ** the table named P4 in database P1. This is called after a table
4697 ** is dropped in order to keep the internal representation of the
4698 ** schema consistent with what is on disk.
4700 case OP_DropTable
: {
4701 sqlite3UnlinkAndDeleteTable(db
, pOp
->p1
, pOp
->p4
.z
);
4705 /* Opcode: DropIndex P1 * * P4 *
4707 ** Remove the internal (in-memory) data structures that describe
4708 ** the index named P4 in database P1. This is called after an index
4709 ** is dropped in order to keep the internal representation of the
4710 ** schema consistent with what is on disk.
4712 case OP_DropIndex
: {
4713 sqlite3UnlinkAndDeleteIndex(db
, pOp
->p1
, pOp
->p4
.z
);
4717 /* Opcode: DropTrigger P1 * * P4 *
4719 ** Remove the internal (in-memory) data structures that describe
4720 ** the trigger named P4 in database P1. This is called after a trigger
4721 ** is dropped in order to keep the internal representation of the
4722 ** schema consistent with what is on disk.
4724 case OP_DropTrigger
: {
4725 sqlite3UnlinkAndDeleteTrigger(db
, pOp
->p1
, pOp
->p4
.z
);
4730 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
4731 /* Opcode: IntegrityCk P1 P2 P3 * P5
4733 ** Do an analysis of the currently open database. Store in
4734 ** register P1 the text of an error message describing any problems.
4735 ** If no problems are found, store a NULL in register P1.
4737 ** The register P3 contains the maximum number of allowed errors.
4738 ** At most reg(P3) errors will be reported.
4739 ** In other words, the analysis stops as soon as reg(P1) errors are
4740 ** seen. Reg(P1) is updated with the number of errors remaining.
4742 ** The root page numbers of all tables in the database are integer
4743 ** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
4746 ** If P5 is not zero, the check is done on the auxiliary database
4747 ** file, not the main database file.
4749 ** This opcode is used to implement the integrity_check pragma.
4751 case OP_IntegrityCk
: {
4752 int nRoot
; /* Number of tables to check. (Number of root pages.) */
4753 int *aRoot
; /* Array of rootpage numbers for tables to be checked */
4754 int j
; /* Loop counter */
4755 int nErr
; /* Number of errors reported */
4756 char *z
; /* Text of the error report */
4757 Mem
*pnErr
; /* Register keeping track of errors remaining */
4761 aRoot
= sqlite3DbMallocRaw(db
, sizeof(int)*(nRoot
+1) );
4762 if( aRoot
==0 ) goto no_mem
;
4763 assert( pOp
->p3
>0 && pOp
->p3
<=p
->nMem
);
4764 pnErr
= &aMem
[pOp
->p3
];
4765 assert( (pnErr
->flags
& MEM_Int
)!=0 );
4766 assert( (pnErr
->flags
& (MEM_Str
|MEM_Blob
))==0 );
4767 pIn1
= &aMem
[pOp
->p1
];
4768 for(j
=0; j
<nRoot
; j
++){
4769 aRoot
[j
] = (int)sqlite3VdbeIntValue(&pIn1
[j
]);
4772 assert( pOp
->p5
<db
->nDb
);
4773 assert( (p
->btreeMask
& (((yDbMask
)1)<<pOp
->p5
))!=0 );
4774 z
= sqlite3BtreeIntegrityCheck(db
->aDb
[pOp
->p5
].pBt
, aRoot
, nRoot
,
4775 (int)pnErr
->u
.i
, &nErr
);
4776 sqlite3DbFree(db
, aRoot
);
4778 sqlite3VdbeMemSetNull(pIn1
);
4784 sqlite3VdbeMemSetStr(pIn1
, z
, -1, SQLITE_UTF8
, sqlite3_free
);
4786 UPDATE_MAX_BLOBSIZE(pIn1
);
4787 sqlite3VdbeChangeEncoding(pIn1
, encoding
);
4790 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
4792 /* Opcode: RowSetAdd P1 P2 * * *
4794 ** Insert the integer value held by register P2 into a boolean index
4795 ** held in register P1.
4797 ** An assertion fails if P2 is not an integer.
4799 case OP_RowSetAdd
: { /* in1, in2 */
4800 pIn1
= &aMem
[pOp
->p1
];
4801 pIn2
= &aMem
[pOp
->p2
];
4802 assert( (pIn2
->flags
& MEM_Int
)!=0 );
4803 if( (pIn1
->flags
& MEM_RowSet
)==0 ){
4804 sqlite3VdbeMemSetRowSet(pIn1
);
4805 if( (pIn1
->flags
& MEM_RowSet
)==0 ) goto no_mem
;
4807 sqlite3RowSetInsert(pIn1
->u
.pRowSet
, pIn2
->u
.i
);
4811 /* Opcode: RowSetRead P1 P2 P3 * *
4813 ** Extract the smallest value from boolean index P1 and put that value into
4814 ** register P3. Or, if boolean index P1 is initially empty, leave P3
4815 ** unchanged and jump to instruction P2.
4817 case OP_RowSetRead
: { /* jump, in1, out3 */
4819 CHECK_FOR_INTERRUPT
;
4820 pIn1
= &aMem
[pOp
->p1
];
4821 if( (pIn1
->flags
& MEM_RowSet
)==0
4822 || sqlite3RowSetNext(pIn1
->u
.pRowSet
, &val
)==0
4824 /* The boolean index is empty */
4825 sqlite3VdbeMemSetNull(pIn1
);
4828 /* A value was pulled from the index */
4829 sqlite3VdbeMemSetInt64(&aMem
[pOp
->p3
], val
);
4834 /* Opcode: RowSetTest P1 P2 P3 P4
4836 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
4837 ** contains a RowSet object and that RowSet object contains
4838 ** the value held in P3, jump to register P2. Otherwise, insert the
4839 ** integer in P3 into the RowSet and continue on to the
4842 ** The RowSet object is optimized for the case where successive sets
4843 ** of integers, where each set contains no duplicates. Each set
4844 ** of values is identified by a unique P4 value. The first set
4845 ** must have P4==0, the final set P4=-1. P4 must be either -1 or
4846 ** non-negative. For non-negative values of P4 only the lower 4
4847 ** bits are significant.
4849 ** This allows optimizations: (a) when P4==0 there is no need to test
4850 ** the rowset object for P3, as it is guaranteed not to contain it,
4851 ** (b) when P4==-1 there is no need to insert the value, as it will
4852 ** never be tested for, and (c) when a value that is part of set X is
4853 ** inserted, there is no need to search to see if the same value was
4854 ** previously inserted as part of set X (only if it was previously
4855 ** inserted as part of some other set).
4857 case OP_RowSetTest
: { /* jump, in1, in3 */
4861 pIn1
= &aMem
[pOp
->p1
];
4862 pIn3
= &aMem
[pOp
->p3
];
4864 assert( pIn3
->flags
&MEM_Int
);
4866 /* If there is anything other than a rowset object in memory cell P1,
4867 ** delete it now and initialize P1 with an empty rowset
4869 if( (pIn1
->flags
& MEM_RowSet
)==0 ){
4870 sqlite3VdbeMemSetRowSet(pIn1
);
4871 if( (pIn1
->flags
& MEM_RowSet
)==0 ) goto no_mem
;
4874 assert( pOp
->p4type
==P4_INT32
);
4875 assert( iSet
==-1 || iSet
>=0 );
4877 exists
= sqlite3RowSetTest(pIn1
->u
.pRowSet
,
4878 (u8
)(iSet
>=0 ? iSet
& 0xf : 0xff),
4886 sqlite3RowSetInsert(pIn1
->u
.pRowSet
, pIn3
->u
.i
);
4892 #ifndef SQLITE_OMIT_TRIGGER
4894 /* Opcode: Program P1 P2 P3 P4 *
4896 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
4898 ** P1 contains the address of the memory cell that contains the first memory
4899 ** cell in an array of values used as arguments to the sub-program. P2
4900 ** contains the address to jump to if the sub-program throws an IGNORE
4901 ** exception using the RAISE() function. Register P3 contains the address
4902 ** of a memory cell in this (the parent) VM that is used to allocate the
4903 ** memory required by the sub-vdbe at runtime.
4905 ** P4 is a pointer to the VM containing the trigger program.
4907 case OP_Program
: { /* jump */
4908 int nMem
; /* Number of memory registers for sub-program */
4909 int nByte
; /* Bytes of runtime space required for sub-program */
4910 Mem
*pRt
; /* Register to allocate runtime space */
4911 Mem
*pMem
; /* Used to iterate through memory cells */
4912 Mem
*pEnd
; /* Last memory cell in new array */
4913 VdbeFrame
*pFrame
; /* New vdbe frame to execute in */
4914 SubProgram
*pProgram
; /* Sub-program to execute */
4915 void *t
; /* Token identifying trigger */
4917 pProgram
= pOp
->p4
.pProgram
;
4918 pRt
= &aMem
[pOp
->p3
];
4919 assert( memIsValid(pRt
) );
4920 assert( pProgram
->nOp
>0 );
4922 /* If the p5 flag is clear, then recursive invocation of triggers is
4923 ** disabled for backwards compatibility (p5 is set if this sub-program
4924 ** is really a trigger, not a foreign key action, and the flag set
4925 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
4927 ** It is recursive invocation of triggers, at the SQL level, that is
4928 ** disabled. In some cases a single trigger may generate more than one
4929 ** SubProgram (if the trigger may be executed with more than one different
4930 ** ON CONFLICT algorithm). SubProgram structures associated with a
4931 ** single trigger all have the same value for the SubProgram.token
4934 t
= pProgram
->token
;
4935 for(pFrame
=p
->pFrame
; pFrame
&& pFrame
->token
!=t
; pFrame
=pFrame
->pParent
);
4939 if( p
->nFrame
>=db
->aLimit
[SQLITE_LIMIT_TRIGGER_DEPTH
] ){
4941 sqlite3SetString(&p
->zErrMsg
, db
, "too many levels of trigger recursion");
4945 /* Register pRt is used to store the memory required to save the state
4946 ** of the current program, and the memory required at runtime to execute
4947 ** the trigger program. If this trigger has been fired before, then pRt
4948 ** is already allocated. Otherwise, it must be initialized. */
4949 if( (pRt
->flags
&MEM_Frame
)==0 ){
4950 /* SubProgram.nMem is set to the number of memory cells used by the
4951 ** program stored in SubProgram.aOp. As well as these, one memory
4952 ** cell is required for each cursor used by the program. Set local
4953 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
4955 nMem
= pProgram
->nMem
+ pProgram
->nCsr
;
4956 nByte
= ROUND8(sizeof(VdbeFrame
))
4957 + nMem
* sizeof(Mem
)
4958 + pProgram
->nCsr
* sizeof(VdbeCursor
*);
4959 pFrame
= sqlite3DbMallocZero(db
, nByte
);
4963 sqlite3VdbeMemRelease(pRt
);
4964 pRt
->flags
= MEM_Frame
;
4965 pRt
->u
.pFrame
= pFrame
;
4968 pFrame
->nChildMem
= nMem
;
4969 pFrame
->nChildCsr
= pProgram
->nCsr
;
4971 pFrame
->aMem
= p
->aMem
;
4972 pFrame
->nMem
= p
->nMem
;
4973 pFrame
->apCsr
= p
->apCsr
;
4974 pFrame
->nCursor
= p
->nCursor
;
4975 pFrame
->aOp
= p
->aOp
;
4976 pFrame
->nOp
= p
->nOp
;
4977 pFrame
->token
= pProgram
->token
;
4979 pEnd
= &VdbeFrameMem(pFrame
)[pFrame
->nChildMem
];
4980 for(pMem
=VdbeFrameMem(pFrame
); pMem
!=pEnd
; pMem
++){
4981 pMem
->flags
= MEM_Null
;
4985 pFrame
= pRt
->u
.pFrame
;
4986 assert( pProgram
->nMem
+pProgram
->nCsr
==pFrame
->nChildMem
);
4987 assert( pProgram
->nCsr
==pFrame
->nChildCsr
);
4988 assert( pc
==pFrame
->pc
);
4992 pFrame
->pParent
= p
->pFrame
;
4993 pFrame
->lastRowid
= db
->lastRowid
;
4994 pFrame
->nChange
= p
->nChange
;
4997 p
->aMem
= aMem
= &VdbeFrameMem(pFrame
)[-1];
4998 p
->nMem
= pFrame
->nChildMem
;
4999 p
->nCursor
= (u16
)pFrame
->nChildCsr
;
5000 p
->apCsr
= (VdbeCursor
**)&aMem
[p
->nMem
+1];
5001 p
->aOp
= aOp
= pProgram
->aOp
;
5002 p
->nOp
= pProgram
->nOp
;
5008 /* Opcode: Param P1 P2 * * *
5010 ** This opcode is only ever present in sub-programs called via the
5011 ** OP_Program instruction. Copy a value currently stored in a memory
5012 ** cell of the calling (parent) frame to cell P2 in the current frames
5013 ** address space. This is used by trigger programs to access the new.*
5014 ** and old.* values.
5016 ** The address of the cell in the parent frame is determined by adding
5017 ** the value of the P1 argument to the value of the P1 argument to the
5018 ** calling OP_Program instruction.
5020 case OP_Param
: { /* out2-prerelease */
5024 pIn
= &pFrame
->aMem
[pOp
->p1
+ pFrame
->aOp
[pFrame
->pc
].p1
];
5025 sqlite3VdbeMemShallowCopy(pOut
, pIn
, MEM_Ephem
);
5029 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
5031 #ifndef SQLITE_OMIT_FOREIGN_KEY
5032 /* Opcode: FkCounter P1 P2 * * *
5034 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5035 ** If P1 is non-zero, the database constraint counter is incremented
5036 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
5037 ** statement counter is incremented (immediate foreign key constraints).
5039 case OP_FkCounter
: {
5041 db
->nDeferredCons
+= pOp
->p2
;
5043 p
->nFkConstraint
+= pOp
->p2
;
5048 /* Opcode: FkIfZero P1 P2 * * *
5050 ** This opcode tests if a foreign key constraint-counter is currently zero.
5051 ** If so, jump to instruction P2. Otherwise, fall through to the next
5054 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
5055 ** is zero (the one that counts deferred constraint violations). If P1 is
5056 ** zero, the jump is taken if the statement constraint-counter is zero
5057 ** (immediate foreign key constraint violations).
5059 case OP_FkIfZero
: { /* jump */
5061 if( db
->nDeferredCons
==0 ) pc
= pOp
->p2
-1;
5063 if( p
->nFkConstraint
==0 ) pc
= pOp
->p2
-1;
5067 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5069 #ifndef SQLITE_OMIT_AUTOINCREMENT
5070 /* Opcode: MemMax P1 P2 * * *
5072 ** P1 is a register in the root frame of this VM (the root frame is
5073 ** different from the current frame if this instruction is being executed
5074 ** within a sub-program). Set the value of register P1 to the maximum of
5075 ** its current value and the value in register P2.
5077 ** This instruction throws an error if the memory cell is not initially
5080 case OP_MemMax
: { /* in2 */
5084 for(pFrame
=p
->pFrame
; pFrame
->pParent
; pFrame
=pFrame
->pParent
);
5085 pIn1
= &pFrame
->aMem
[pOp
->p1
];
5087 pIn1
= &aMem
[pOp
->p1
];
5089 assert( memIsValid(pIn1
) );
5090 sqlite3VdbeMemIntegerify(pIn1
);
5091 pIn2
= &aMem
[pOp
->p2
];
5092 sqlite3VdbeMemIntegerify(pIn2
);
5093 if( pIn1
->u
.i
<pIn2
->u
.i
){
5094 pIn1
->u
.i
= pIn2
->u
.i
;
5098 #endif /* SQLITE_OMIT_AUTOINCREMENT */
5100 /* Opcode: IfPos P1 P2 * * *
5102 ** If the value of register P1 is 1 or greater, jump to P2.
5104 ** It is illegal to use this instruction on a register that does
5105 ** not contain an integer. An assertion fault will result if you try.
5107 case OP_IfPos
: { /* jump, in1 */
5108 pIn1
= &aMem
[pOp
->p1
];
5109 assert( pIn1
->flags
&MEM_Int
);
5116 /* Opcode: IfNeg P1 P2 * * *
5118 ** If the value of register P1 is less than zero, jump to P2.
5120 ** It is illegal to use this instruction on a register that does
5121 ** not contain an integer. An assertion fault will result if you try.
5123 case OP_IfNeg
: { /* jump, in1 */
5124 pIn1
= &aMem
[pOp
->p1
];
5125 assert( pIn1
->flags
&MEM_Int
);
5132 /* Opcode: IfZero P1 P2 P3 * *
5134 ** The register P1 must contain an integer. Add literal P3 to the
5135 ** value in register P1. If the result is exactly 0, jump to P2.
5137 ** It is illegal to use this instruction on a register that does
5138 ** not contain an integer. An assertion fault will result if you try.
5140 case OP_IfZero
: { /* jump, in1 */
5141 pIn1
= &aMem
[pOp
->p1
];
5142 assert( pIn1
->flags
&MEM_Int
);
5143 pIn1
->u
.i
+= pOp
->p3
;
5150 /* Opcode: AggStep * P2 P3 P4 P5
5152 ** Execute the step function for an aggregate. The
5153 ** function has P5 arguments. P4 is a pointer to the FuncDef
5154 ** structure that specifies the function. Use register
5155 ** P3 as the accumulator.
5157 ** The P5 arguments are taken from register P2 and its
5165 sqlite3_context ctx
;
5166 sqlite3_value
**apVal
;
5170 pRec
= &aMem
[pOp
->p2
];
5172 assert( apVal
|| n
==0 );
5173 for(i
=0; i
<n
; i
++, pRec
++){
5174 assert( memIsValid(pRec
) );
5176 memAboutToChange(p
, pRec
);
5177 sqlite3VdbeMemStoreType(pRec
);
5179 ctx
.pFunc
= pOp
->p4
.pFunc
;
5180 assert( pOp
->p3
>0 && pOp
->p3
<=p
->nMem
);
5181 ctx
.pMem
= pMem
= &aMem
[pOp
->p3
];
5183 ctx
.s
.flags
= MEM_Null
;
5190 if( ctx
.pFunc
->flags
& SQLITE_FUNC_NEEDCOLL
){
5191 assert( pOp
>p
->aOp
);
5192 assert( pOp
[-1].p4type
==P4_COLLSEQ
);
5193 assert( pOp
[-1].opcode
==OP_CollSeq
);
5194 ctx
.pColl
= pOp
[-1].p4
.pColl
;
5196 (ctx
.pFunc
->xStep
)(&ctx
, n
, apVal
); /* IMP: R-24505-23230 */
5198 sqlite3SetString(&p
->zErrMsg
, db
, "%s", sqlite3_value_text(&ctx
.s
));
5202 sqlite3VdbeMemRelease(&ctx
.s
);
5207 /* Opcode: AggFinal P1 P2 * P4 *
5209 ** Execute the finalizer function for an aggregate. P1 is
5210 ** the memory location that is the accumulator for the aggregate.
5212 ** P2 is the number of arguments that the step function takes and
5213 ** P4 is a pointer to the FuncDef for this function. The P2
5214 ** argument is not used by this opcode. It is only there to disambiguate
5215 ** functions that can take varying numbers of arguments. The
5216 ** P4 argument is only needed for the degenerate case where
5217 ** the step function was not previously called.
5221 assert( pOp
->p1
>0 && pOp
->p1
<=p
->nMem
);
5222 pMem
= &aMem
[pOp
->p1
];
5223 assert( (pMem
->flags
& ~(MEM_Null
|MEM_Agg
))==0 );
5224 rc
= sqlite3VdbeMemFinalize(pMem
, pOp
->p4
.pFunc
);
5226 sqlite3SetString(&p
->zErrMsg
, db
, "%s", sqlite3_value_text(pMem
));
5228 sqlite3VdbeChangeEncoding(pMem
, encoding
);
5229 UPDATE_MAX_BLOBSIZE(pMem
);
5230 if( sqlite3VdbeMemTooBig(pMem
) ){
5236 #ifndef SQLITE_OMIT_WAL
5237 /* Opcode: Checkpoint P1 P2 P3 * *
5239 ** Checkpoint database P1. This is a no-op if P1 is not currently in
5240 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
5241 ** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns
5242 ** SQLITE_BUSY or not, respectively. Write the number of pages in the
5243 ** WAL after the checkpoint into mem[P3+1] and the number of pages
5244 ** in the WAL that have been checkpointed after the checkpoint
5245 ** completes into mem[P3+2]. However on an error, mem[P3+1] and
5246 ** mem[P3+2] are initialized to -1.
5248 case OP_Checkpoint
: {
5249 int i
; /* Loop counter */
5250 int aRes
[3]; /* Results */
5251 Mem
*pMem
; /* Write results here */
5254 aRes
[1] = aRes
[2] = -1;
5255 assert( pOp
->p2
==SQLITE_CHECKPOINT_PASSIVE
5256 || pOp
->p2
==SQLITE_CHECKPOINT_FULL
5257 || pOp
->p2
==SQLITE_CHECKPOINT_RESTART
5259 rc
= sqlite3Checkpoint(db
, pOp
->p1
, pOp
->p2
, &aRes
[1], &aRes
[2]);
5260 if( rc
==SQLITE_BUSY
){
5264 for(i
=0, pMem
= &aMem
[pOp
->p3
]; i
<3; i
++, pMem
++){
5265 sqlite3VdbeMemSetInt64(pMem
, (i64
)aRes
[i
]);
5271 #ifndef SQLITE_OMIT_PRAGMA
5272 /* Opcode: JournalMode P1 P2 P3 * P5
5274 ** Change the journal mode of database P1 to P3. P3 must be one of the
5275 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5276 ** modes (delete, truncate, persist, off and memory), this is a simple
5277 ** operation. No IO is required.
5279 ** If changing into or out of WAL mode the procedure is more complicated.
5281 ** Write a string containing the final journal-mode to register P2.
5283 case OP_JournalMode
: { /* out2-prerelease */
5284 Btree
*pBt
; /* Btree to change journal mode of */
5285 Pager
*pPager
; /* Pager associated with pBt */
5286 int eNew
; /* New journal mode */
5287 int eOld
; /* The old journal mode */
5288 const char *zFilename
; /* Name of database file for pPager */
5291 assert( eNew
==PAGER_JOURNALMODE_DELETE
5292 || eNew
==PAGER_JOURNALMODE_TRUNCATE
5293 || eNew
==PAGER_JOURNALMODE_PERSIST
5294 || eNew
==PAGER_JOURNALMODE_OFF
5295 || eNew
==PAGER_JOURNALMODE_MEMORY
5296 || eNew
==PAGER_JOURNALMODE_WAL
5297 || eNew
==PAGER_JOURNALMODE_QUERY
5299 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
5301 pBt
= db
->aDb
[pOp
->p1
].pBt
;
5302 pPager
= sqlite3BtreePager(pBt
);
5303 eOld
= sqlite3PagerGetJournalMode(pPager
);
5304 if( eNew
==PAGER_JOURNALMODE_QUERY
) eNew
= eOld
;
5305 if( !sqlite3PagerOkToChangeJournalMode(pPager
) ) eNew
= eOld
;
5307 #ifndef SQLITE_OMIT_WAL
5308 zFilename
= sqlite3PagerFilename(pPager
);
5310 /* Do not allow a transition to journal_mode=WAL for a database
5311 ** in temporary storage or if the VFS does not support shared memory
5313 if( eNew
==PAGER_JOURNALMODE_WAL
5314 && (zFilename
[0]==0 /* Temp file */
5315 || !sqlite3PagerWalSupported(pPager
)) /* No shared-memory support */
5321 && (eOld
==PAGER_JOURNALMODE_WAL
|| eNew
==PAGER_JOURNALMODE_WAL
)
5323 if( !db
->autoCommit
|| db
->activeVdbeCnt
>1 ){
5325 sqlite3SetString(&p
->zErrMsg
, db
,
5326 "cannot change %s wal mode from within a transaction",
5327 (eNew
==PAGER_JOURNALMODE_WAL
? "into" : "out of")
5332 if( eOld
==PAGER_JOURNALMODE_WAL
){
5333 /* If leaving WAL mode, close the log file. If successful, the call
5334 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5335 ** file. An EXCLUSIVE lock may still be held on the database file
5336 ** after a successful return.
5338 rc
= sqlite3PagerCloseWal(pPager
);
5339 if( rc
==SQLITE_OK
){
5340 sqlite3PagerSetJournalMode(pPager
, eNew
);
5342 }else if( eOld
==PAGER_JOURNALMODE_MEMORY
){
5343 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
5344 ** as an intermediate */
5345 sqlite3PagerSetJournalMode(pPager
, PAGER_JOURNALMODE_OFF
);
5348 /* Open a transaction on the database file. Regardless of the journal
5349 ** mode, this transaction always uses a rollback journal.
5351 assert( sqlite3BtreeIsInTrans(pBt
)==0 );
5352 if( rc
==SQLITE_OK
){
5353 rc
= sqlite3BtreeSetVersion(pBt
, (eNew
==PAGER_JOURNALMODE_WAL
? 2 : 1));
5357 #endif /* ifndef SQLITE_OMIT_WAL */
5362 eNew
= sqlite3PagerSetJournalMode(pPager
, eNew
);
5364 pOut
= &aMem
[pOp
->p2
];
5365 pOut
->flags
= MEM_Str
|MEM_Static
|MEM_Term
;
5366 pOut
->z
= (char *)sqlite3JournalModename(eNew
);
5367 pOut
->n
= sqlite3Strlen30(pOut
->z
);
5368 pOut
->enc
= SQLITE_UTF8
;
5369 sqlite3VdbeChangeEncoding(pOut
, encoding
);
5372 #endif /* SQLITE_OMIT_PRAGMA */
5374 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
5375 /* Opcode: Vacuum * * * * *
5377 ** Vacuum the entire database. This opcode will cause other virtual
5378 ** machines to be created and run. It may not be called from within
5382 rc
= sqlite3RunVacuum(&p
->zErrMsg
, db
);
5387 #if !defined(SQLITE_OMIT_AUTOVACUUM)
5388 /* Opcode: IncrVacuum P1 P2 * * *
5390 ** Perform a single step of the incremental vacuum procedure on
5391 ** the P1 database. If the vacuum has finished, jump to instruction
5392 ** P2. Otherwise, fall through to the next instruction.
5394 case OP_IncrVacuum
: { /* jump */
5397 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
5398 assert( (p
->btreeMask
& (((yDbMask
)1)<<pOp
->p1
))!=0 );
5399 pBt
= db
->aDb
[pOp
->p1
].pBt
;
5400 rc
= sqlite3BtreeIncrVacuum(pBt
);
5401 if( rc
==SQLITE_DONE
){
5409 /* Opcode: Expire P1 * * * *
5411 ** Cause precompiled statements to become expired. An expired statement
5412 ** fails with an error code of SQLITE_SCHEMA if it is ever executed
5413 ** (via sqlite3_step()).
5415 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
5416 ** then only the currently executing statement is affected.
5420 sqlite3ExpirePreparedStatements(db
);
5427 #ifndef SQLITE_OMIT_SHARED_CACHE
5428 /* Opcode: TableLock P1 P2 P3 P4 *
5430 ** Obtain a lock on a particular table. This instruction is only used when
5431 ** the shared-cache feature is enabled.
5433 ** P1 is the index of the database in sqlite3.aDb[] of the database
5434 ** on which the lock is acquired. A readlock is obtained if P3==0 or
5435 ** a write lock if P3==1.
5437 ** P2 contains the root-page of the table to lock.
5439 ** P4 contains a pointer to the name of the table being locked. This is only
5440 ** used to generate an error message if the lock cannot be obtained.
5442 case OP_TableLock
: {
5443 u8 isWriteLock
= (u8
)pOp
->p3
;
5444 if( isWriteLock
|| 0==(db
->flags
&SQLITE_ReadUncommitted
) ){
5446 assert( p1
>=0 && p1
<db
->nDb
);
5447 assert( (p
->btreeMask
& (((yDbMask
)1)<<p1
))!=0 );
5448 assert( isWriteLock
==0 || isWriteLock
==1 );
5449 rc
= sqlite3BtreeLockTable(db
->aDb
[p1
].pBt
, pOp
->p2
, isWriteLock
);
5450 if( (rc
&0xFF)==SQLITE_LOCKED
){
5451 const char *z
= pOp
->p4
.z
;
5452 sqlite3SetString(&p
->zErrMsg
, db
, "database table is locked: %s", z
);
5457 #endif /* SQLITE_OMIT_SHARED_CACHE */
5459 #ifndef SQLITE_OMIT_VIRTUALTABLE
5460 /* Opcode: VBegin * * * P4 *
5462 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
5463 ** xBegin method for that table.
5465 ** Also, whether or not P4 is set, check that this is not being called from
5466 ** within a callback to a virtual table xSync() method. If it is, the error
5467 ** code will be set to SQLITE_LOCKED.
5471 pVTab
= pOp
->p4
.pVtab
;
5472 rc
= sqlite3VtabBegin(db
, pVTab
);
5473 if( pVTab
) importVtabErrMsg(p
, pVTab
->pVtab
);
5476 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5478 #ifndef SQLITE_OMIT_VIRTUALTABLE
5479 /* Opcode: VCreate P1 * * P4 *
5481 ** P4 is the name of a virtual table in database P1. Call the xCreate method
5485 rc
= sqlite3VtabCallCreate(db
, pOp
->p1
, pOp
->p4
.z
, &p
->zErrMsg
);
5488 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5490 #ifndef SQLITE_OMIT_VIRTUALTABLE
5491 /* Opcode: VDestroy P1 * * P4 *
5493 ** P4 is the name of a virtual table in database P1. Call the xDestroy method
5497 p
->inVtabMethod
= 2;
5498 rc
= sqlite3VtabCallDestroy(db
, pOp
->p1
, pOp
->p4
.z
);
5499 p
->inVtabMethod
= 0;
5502 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5504 #ifndef SQLITE_OMIT_VIRTUALTABLE
5505 /* Opcode: VOpen P1 * * P4 *
5507 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5508 ** P1 is a cursor number. This opcode opens a cursor to the virtual
5509 ** table and stores that cursor in P1.
5513 sqlite3_vtab_cursor
*pVtabCursor
;
5514 sqlite3_vtab
*pVtab
;
5515 sqlite3_module
*pModule
;
5519 pVtab
= pOp
->p4
.pVtab
->pVtab
;
5520 pModule
= (sqlite3_module
*)pVtab
->pModule
;
5521 assert(pVtab
&& pModule
);
5522 rc
= pModule
->xOpen(pVtab
, &pVtabCursor
);
5523 importVtabErrMsg(p
, pVtab
);
5524 if( SQLITE_OK
==rc
){
5525 /* Initialize sqlite3_vtab_cursor base class */
5526 pVtabCursor
->pVtab
= pVtab
;
5528 /* Initialise vdbe cursor object */
5529 pCur
= allocateCursor(p
, pOp
->p1
, 0, -1, 0);
5531 pCur
->pVtabCursor
= pVtabCursor
;
5532 pCur
->pModule
= pVtabCursor
->pVtab
->pModule
;
5534 db
->mallocFailed
= 1;
5535 pModule
->xClose(pVtabCursor
);
5540 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5542 #ifndef SQLITE_OMIT_VIRTUALTABLE
5543 /* Opcode: VFilter P1 P2 P3 P4 *
5545 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if
5546 ** the filtered result set is empty.
5548 ** P4 is either NULL or a string that was generated by the xBestIndex
5549 ** method of the module. The interpretation of the P4 string is left
5550 ** to the module implementation.
5552 ** This opcode invokes the xFilter method on the virtual table specified
5553 ** by P1. The integer query plan parameter to xFilter is stored in register
5554 ** P3. Register P3+1 stores the argc parameter to be passed to the
5555 ** xFilter method. Registers P3+2..P3+1+argc are the argc
5556 ** additional parameters which are passed to
5557 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
5559 ** A jump is made to P2 if the result set after filtering would be empty.
5561 case OP_VFilter
: { /* jump */
5564 const sqlite3_module
*pModule
;
5567 sqlite3_vtab_cursor
*pVtabCursor
;
5568 sqlite3_vtab
*pVtab
;
5574 pQuery
= &aMem
[pOp
->p3
];
5576 pCur
= p
->apCsr
[pOp
->p1
];
5577 assert( memIsValid(pQuery
) );
5578 REGISTER_TRACE(pOp
->p3
, pQuery
);
5579 assert( pCur
->pVtabCursor
);
5580 pVtabCursor
= pCur
->pVtabCursor
;
5581 pVtab
= pVtabCursor
->pVtab
;
5582 pModule
= pVtab
->pModule
;
5584 /* Grab the index number and argc parameters */
5585 assert( (pQuery
->flags
&MEM_Int
)!=0 && pArgc
->flags
==MEM_Int
);
5586 nArg
= (int)pArgc
->u
.i
;
5587 iQuery
= (int)pQuery
->u
.i
;
5589 /* Invoke the xFilter method */
5593 for(i
= 0; i
<nArg
; i
++){
5594 apArg
[i
] = &pArgc
[i
+1];
5595 sqlite3VdbeMemStoreType(apArg
[i
]);
5598 p
->inVtabMethod
= 1;
5599 rc
= pModule
->xFilter(pVtabCursor
, iQuery
, pOp
->p4
.z
, nArg
, apArg
);
5600 p
->inVtabMethod
= 0;
5601 importVtabErrMsg(p
, pVtab
);
5602 if( rc
==SQLITE_OK
){
5603 res
= pModule
->xEof(pVtabCursor
);
5614 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5616 #ifndef SQLITE_OMIT_VIRTUALTABLE
5617 /* Opcode: VColumn P1 P2 P3 * *
5619 ** Store the value of the P2-th column of
5620 ** the row of the virtual-table that the
5621 ** P1 cursor is pointing to into register P3.
5624 sqlite3_vtab
*pVtab
;
5625 const sqlite3_module
*pModule
;
5627 sqlite3_context sContext
;
5629 VdbeCursor
*pCur
= p
->apCsr
[pOp
->p1
];
5630 assert( pCur
->pVtabCursor
);
5631 assert( pOp
->p3
>0 && pOp
->p3
<=p
->nMem
);
5632 pDest
= &aMem
[pOp
->p3
];
5633 memAboutToChange(p
, pDest
);
5634 if( pCur
->nullRow
){
5635 sqlite3VdbeMemSetNull(pDest
);
5638 pVtab
= pCur
->pVtabCursor
->pVtab
;
5639 pModule
= pVtab
->pModule
;
5640 assert( pModule
->xColumn
);
5641 memset(&sContext
, 0, sizeof(sContext
));
5643 /* The output cell may already have a buffer allocated. Move
5644 ** the current contents to sContext.s so in case the user-function
5645 ** can use the already allocated buffer instead of allocating a
5648 sqlite3VdbeMemMove(&sContext
.s
, pDest
);
5649 MemSetTypeFlag(&sContext
.s
, MEM_Null
);
5651 rc
= pModule
->xColumn(pCur
->pVtabCursor
, &sContext
, pOp
->p2
);
5652 importVtabErrMsg(p
, pVtab
);
5653 if( sContext
.isError
){
5654 rc
= sContext
.isError
;
5657 /* Copy the result of the function to the P3 register. We
5658 ** do this regardless of whether or not an error occurred to ensure any
5659 ** dynamic allocation in sContext.s (a Mem struct) is released.
5661 sqlite3VdbeChangeEncoding(&sContext
.s
, encoding
);
5662 sqlite3VdbeMemMove(pDest
, &sContext
.s
);
5663 REGISTER_TRACE(pOp
->p3
, pDest
);
5664 UPDATE_MAX_BLOBSIZE(pDest
);
5666 if( sqlite3VdbeMemTooBig(pDest
) ){
5671 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5673 #ifndef SQLITE_OMIT_VIRTUALTABLE
5674 /* Opcode: VNext P1 P2 * * *
5676 ** Advance virtual table P1 to the next row in its result set and
5677 ** jump to instruction P2. Or, if the virtual table has reached
5678 ** the end of its result set, then fall through to the next instruction.
5680 case OP_VNext
: { /* jump */
5681 sqlite3_vtab
*pVtab
;
5682 const sqlite3_module
*pModule
;
5687 pCur
= p
->apCsr
[pOp
->p1
];
5688 assert( pCur
->pVtabCursor
);
5689 if( pCur
->nullRow
){
5692 pVtab
= pCur
->pVtabCursor
->pVtab
;
5693 pModule
= pVtab
->pModule
;
5694 assert( pModule
->xNext
);
5696 /* Invoke the xNext() method of the module. There is no way for the
5697 ** underlying implementation to return an error if one occurs during
5698 ** xNext(). Instead, if an error occurs, true is returned (indicating that
5699 ** data is available) and the error code returned when xColumn or
5700 ** some other method is next invoked on the save virtual table cursor.
5702 p
->inVtabMethod
= 1;
5703 rc
= pModule
->xNext(pCur
->pVtabCursor
);
5704 p
->inVtabMethod
= 0;
5705 importVtabErrMsg(p
, pVtab
);
5706 if( rc
==SQLITE_OK
){
5707 res
= pModule
->xEof(pCur
->pVtabCursor
);
5711 /* If there is data, jump to P2 */
5716 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5718 #ifndef SQLITE_OMIT_VIRTUALTABLE
5719 /* Opcode: VRename P1 * * P4 *
5721 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5722 ** This opcode invokes the corresponding xRename method. The value
5723 ** in register P1 is passed as the zName argument to the xRename method.
5726 sqlite3_vtab
*pVtab
;
5729 pVtab
= pOp
->p4
.pVtab
->pVtab
;
5730 pName
= &aMem
[pOp
->p1
];
5731 assert( pVtab
->pModule
->xRename
);
5732 assert( memIsValid(pName
) );
5733 REGISTER_TRACE(pOp
->p1
, pName
);
5734 assert( pName
->flags
& MEM_Str
);
5735 rc
= pVtab
->pModule
->xRename(pVtab
, pName
->z
);
5736 importVtabErrMsg(p
, pVtab
);
5743 #ifndef SQLITE_OMIT_VIRTUALTABLE
5744 /* Opcode: VUpdate P1 P2 P3 P4 *
5746 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5747 ** This opcode invokes the corresponding xUpdate method. P2 values
5748 ** are contiguous memory cells starting at P3 to pass to the xUpdate
5749 ** invocation. The value in register (P3+P2-1) corresponds to the
5750 ** p2th element of the argv array passed to xUpdate.
5752 ** The xUpdate method will do a DELETE or an INSERT or both.
5753 ** The argv[0] element (which corresponds to memory cell P3)
5754 ** is the rowid of a row to delete. If argv[0] is NULL then no
5755 ** deletion occurs. The argv[1] element is the rowid of the new
5756 ** row. This can be NULL to have the virtual table select the new
5757 ** rowid for itself. The subsequent elements in the array are
5758 ** the values of columns in the new row.
5760 ** If P2==1 then no insert is performed. argv[0] is the rowid of
5763 ** P1 is a boolean flag. If it is set to true and the xUpdate call
5764 ** is successful, then the value returned by sqlite3_last_insert_rowid()
5765 ** is set to the value of the rowid for the row just inserted.
5768 sqlite3_vtab
*pVtab
;
5769 sqlite3_module
*pModule
;
5776 pVtab
= pOp
->p4
.pVtab
->pVtab
;
5777 pModule
= (sqlite3_module
*)pVtab
->pModule
;
5779 assert( pOp
->p4type
==P4_VTAB
);
5780 if( ALWAYS(pModule
->xUpdate
) ){
5782 pX
= &aMem
[pOp
->p3
];
5783 for(i
=0; i
<nArg
; i
++){
5784 assert( memIsValid(pX
) );
5785 memAboutToChange(p
, pX
);
5786 sqlite3VdbeMemStoreType(pX
);
5790 rc
= pModule
->xUpdate(pVtab
, nArg
, apArg
, &rowid
);
5791 importVtabErrMsg(p
, pVtab
);
5792 if( rc
==SQLITE_OK
&& pOp
->p1
){
5793 assert( nArg
>1 && apArg
[0] && (apArg
[0]->flags
&MEM_Null
) );
5794 db
->lastRowid
= rowid
;
5800 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5802 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
5803 /* Opcode: Pagecount P1 P2 * * *
5805 ** Write the current number of pages in database P1 to memory cell P2.
5807 case OP_Pagecount
: { /* out2-prerelease */
5808 pOut
->u
.i
= sqlite3BtreeLastPage(db
->aDb
[pOp
->p1
].pBt
);
5814 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
5815 /* Opcode: MaxPgcnt P1 P2 P3 * *
5817 ** Try to set the maximum page count for database P1 to the value in P3.
5818 ** Do not let the maximum page count fall below the current page count and
5819 ** do not change the maximum page count value if P3==0.
5821 ** Store the maximum page count after the change in register P2.
5823 case OP_MaxPgcnt
: { /* out2-prerelease */
5824 unsigned int newMax
;
5827 pBt
= db
->aDb
[pOp
->p1
].pBt
;
5830 newMax
= sqlite3BtreeLastPage(pBt
);
5831 if( newMax
< (unsigned)pOp
->p3
) newMax
= (unsigned)pOp
->p3
;
5833 pOut
->u
.i
= sqlite3BtreeMaxPageCount(pBt
, newMax
);
5839 #ifndef SQLITE_OMIT_TRACE
5840 /* Opcode: Trace * * * P4 *
5842 ** If tracing is enabled (by the sqlite3_trace()) interface, then
5843 ** the UTF-8 string contained in P4 is emitted on the trace callback.
5848 zTrace
= (pOp
->p4
.z
? pOp
->p4
.z
: p
->zSql
);
5851 char *z
= sqlite3VdbeExpandSql(p
, zTrace
);
5852 db
->xTrace(db
->pTraceArg
, z
);
5853 sqlite3DbFree(db
, z
);
5856 if( (db
->flags
& SQLITE_SqlTrace
)!=0 ){
5857 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace
);
5859 #endif /* SQLITE_DEBUG */
5866 /* Opcode: Noop * * * * *
5868 ** Do nothing. This instruction is often useful as a jump
5872 ** The magic Explain opcode are only inserted when explain==2 (which
5873 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
5874 ** This opcode records information from the optimizer. It is the
5875 ** the same as a no-op. This opcodesnever appears in a real VM program.
5877 default: { /* This is really OP_Noop and OP_Explain */
5878 assert( pOp
->opcode
==OP_Noop
|| pOp
->opcode
==OP_Explain
);
5882 /*****************************************************************************
5883 ** The cases of the switch statement above this line should all be indented
5884 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the
5885 ** readability. From this point on down, the normal indentation rules are
5887 *****************************************************************************/
5892 u64 elapsed
= sqlite3Hwtime() - start
;
5893 pOp
->cycles
+= elapsed
;
5896 fprintf(stdout
, "%10llu ", elapsed
);
5897 sqlite3VdbePrintOp(stdout
, origPc
, &aOp
[origPc
]);
5902 /* The following code adds nothing to the actual functionality
5903 ** of the program. It is only here for testing and debugging.
5904 ** On the other hand, it does burn CPU cycles every time through
5905 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
5908 assert( pc
>=-1 && pc
<p
->nOp
);
5912 if( rc
!=0 ) fprintf(p
->trace
,"rc=%d\n",rc
);
5913 if( pOp
->opflags
& (OPFLG_OUT2_PRERELEASE
|OPFLG_OUT2
) ){
5914 registerTrace(p
->trace
, pOp
->p2
, &aMem
[pOp
->p2
]);
5916 if( pOp
->opflags
& OPFLG_OUT3
){
5917 registerTrace(p
->trace
, pOp
->p3
, &aMem
[pOp
->p3
]);
5920 #endif /* SQLITE_DEBUG */
5922 } /* The end of the for(;;) loop the loops through opcodes */
5924 /* If we reach this point, it means that execution is finished with
5925 ** an error of some kind.
5930 testcase( sqlite3GlobalConfig
.xLog
!=0 );
5931 sqlite3_log(rc
, "statement aborts at %d: [%s] %s",
5932 pc
, p
->zSql
, p
->zErrMsg
);
5934 if( rc
==SQLITE_IOERR_NOMEM
) db
->mallocFailed
= 1;
5936 if( resetSchemaOnFault
>0 ){
5937 sqlite3ResetInternalSchema(db
, resetSchemaOnFault
-1);
5940 /* This is the only way out of this procedure. We have to
5941 ** release the mutexes on btrees that were acquired at the
5944 sqlite3VdbeLeave(p
);
5947 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
5951 sqlite3SetString(&p
->zErrMsg
, db
, "string or blob too big");
5953 goto vdbe_error_halt
;
5955 /* Jump to here if a malloc() fails.
5958 db
->mallocFailed
= 1;
5959 sqlite3SetString(&p
->zErrMsg
, db
, "out of memory");
5961 goto vdbe_error_halt
;
5963 /* Jump to here for any other kind of fatal error. The "rc" variable
5964 ** should hold the error number.
5967 assert( p
->zErrMsg
==0 );
5968 if( db
->mallocFailed
) rc
= SQLITE_NOMEM
;
5969 if( rc
!=SQLITE_IOERR_NOMEM
){
5970 sqlite3SetString(&p
->zErrMsg
, db
, "%s", sqlite3ErrStr(rc
));
5972 goto vdbe_error_halt
;
5974 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
5977 abort_due_to_interrupt
:
5978 assert( db
->u1
.isInterrupted
);
5979 rc
= SQLITE_INTERRUPT
;
5981 sqlite3SetString(&p
->zErrMsg
, db
, "%s", sqlite3ErrStr(rc
));
5982 goto vdbe_error_halt
;