Fast user switcher: Add "(Supervised)" label for supervised users
[chromium-blink-merge.git] / third_party / sqlite / sqlite-src-3070603 / src / vdbe.c
blob5376b08a00ef9d9f2d27e0d54627fcbe64af20ff
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** The code in this file implements execution method of the
13 ** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
14 ** handles housekeeping details such as creating and deleting
15 ** VDBE instances. This file is solely interested in executing
16 ** the VDBE program.
18 ** In the external interface, an "sqlite3_stmt*" is an opaque pointer
19 ** to a VDBE.
21 ** The SQL parser generates a program which is then executed by
22 ** the VDBE to do the work of the SQL statement. VDBE programs are
23 ** similar in form to assembly language. The program consists of
24 ** a linear sequence of operations. Each operation has an opcode
25 ** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
26 ** is a null-terminated string. Operand P5 is an unsigned character.
27 ** Few opcodes use all 5 operands.
29 ** Computation results are stored on a set of registers numbered beginning
30 ** with 1 and going up to Vdbe.nMem. Each register can store
31 ** either an integer, a null-terminated string, a floating point
32 ** number, or the SQL "NULL" value. An implicit conversion from one
33 ** type to the other occurs as necessary.
34 **
35 ** Most of the code in this file is taken up by the sqlite3VdbeExec()
36 ** function which does the work of interpreting a VDBE program.
37 ** But other routines are also provided to help in building up
38 ** a program instruction by instruction.
40 ** Various scripts scan this source file in order to generate HTML
41 ** documentation, headers files, or other derived files. The formatting
42 ** of the code in this file is, therefore, important. See other comments
43 ** in this file for details. If in doubt, do not deviate from existing
44 ** commenting and indentation practices when changing or adding code.
46 #include "sqliteInt.h"
47 #include "vdbeInt.h"
50 ** Invoke this macro on memory cells just prior to changing the
51 ** value of the cell. This macro verifies that shallow copies are
52 ** not misused.
54 #ifdef SQLITE_DEBUG
55 # define memAboutToChange(P,M) sqlite3VdbeMemPrepareToChange(P,M)
56 #else
57 # define memAboutToChange(P,M)
58 #endif
61 ** The following global variable is incremented every time a cursor
62 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
63 ** procedures use this information to make sure that indices are
64 ** working correctly. This variable has no function other than to
65 ** help verify the correct operation of the library.
67 #ifdef SQLITE_TEST
68 int sqlite3_search_count = 0;
69 #endif
72 ** When this global variable is positive, it gets decremented once before
73 ** each instruction in the VDBE. When reaches zero, the u1.isInterrupted
74 ** field of the sqlite3 structure is set in order to simulate and interrupt.
76 ** This facility is used for testing purposes only. It does not function
77 ** in an ordinary build.
79 #ifdef SQLITE_TEST
80 int sqlite3_interrupt_count = 0;
81 #endif
84 ** The next global variable is incremented each type the OP_Sort opcode
85 ** is executed. The test procedures use this information to make sure that
86 ** sorting is occurring or not occurring at appropriate times. This variable
87 ** has no function other than to help verify the correct operation of the
88 ** library.
90 #ifdef SQLITE_TEST
91 int sqlite3_sort_count = 0;
92 #endif
95 ** The next global variable records the size of the largest MEM_Blob
96 ** or MEM_Str that has been used by a VDBE opcode. The test procedures
97 ** use this information to make sure that the zero-blob functionality
98 ** is working correctly. This variable has no function other than to
99 ** help verify the correct operation of the library.
101 #ifdef SQLITE_TEST
102 int sqlite3_max_blobsize = 0;
103 static void updateMaxBlobsize(Mem *p){
104 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
105 sqlite3_max_blobsize = p->n;
108 #endif
111 ** The next global variable is incremented each type the OP_Found opcode
112 ** is executed. This is used to test whether or not the foreign key
113 ** operation implemented using OP_FkIsZero is working. This variable
114 ** has no function other than to help verify the correct operation of the
115 ** library.
117 #ifdef SQLITE_TEST
118 int sqlite3_found_count = 0;
119 #endif
122 ** Test a register to see if it exceeds the current maximum blob size.
123 ** If it does, record the new maximum blob size.
125 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
126 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
127 #else
128 # define UPDATE_MAX_BLOBSIZE(P)
129 #endif
132 ** Convert the given register into a string if it isn't one
133 ** already. Return non-zero if a malloc() fails.
135 #define Stringify(P, enc) \
136 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
137 { goto no_mem; }
140 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
141 ** a pointer to a dynamically allocated string where some other entity
142 ** is responsible for deallocating that string. Because the register
143 ** does not control the string, it might be deleted without the register
144 ** knowing it.
146 ** This routine converts an ephemeral string into a dynamically allocated
147 ** string that the register itself controls. In other words, it
148 ** converts an MEM_Ephem string into an MEM_Dyn string.
150 #define Deephemeralize(P) \
151 if( ((P)->flags&MEM_Ephem)!=0 \
152 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
155 ** Call sqlite3VdbeMemExpandBlob() on the supplied value (type Mem*)
156 ** P if required.
158 #define ExpandBlob(P) (((P)->flags&MEM_Zero)?sqlite3VdbeMemExpandBlob(P):0)
161 ** Argument pMem points at a register that will be passed to a
162 ** user-defined function or returned to the user as the result of a query.
163 ** This routine sets the pMem->type variable used by the sqlite3_value_*()
164 ** routines.
166 void sqlite3VdbeMemStoreType(Mem *pMem){
167 int flags = pMem->flags;
168 if( flags & MEM_Null ){
169 pMem->type = SQLITE_NULL;
171 else if( flags & MEM_Int ){
172 pMem->type = SQLITE_INTEGER;
174 else if( flags & MEM_Real ){
175 pMem->type = SQLITE_FLOAT;
177 else if( flags & MEM_Str ){
178 pMem->type = SQLITE_TEXT;
179 }else{
180 pMem->type = SQLITE_BLOB;
185 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
186 ** if we run out of memory.
188 static VdbeCursor *allocateCursor(
189 Vdbe *p, /* The virtual machine */
190 int iCur, /* Index of the new VdbeCursor */
191 int nField, /* Number of fields in the table or index */
192 int iDb, /* When database the cursor belongs to, or -1 */
193 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
195 /* Find the memory cell that will be used to store the blob of memory
196 ** required for this VdbeCursor structure. It is convenient to use a
197 ** vdbe memory cell to manage the memory allocation required for a
198 ** VdbeCursor structure for the following reasons:
200 ** * Sometimes cursor numbers are used for a couple of different
201 ** purposes in a vdbe program. The different uses might require
202 ** different sized allocations. Memory cells provide growable
203 ** allocations.
205 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
206 ** be freed lazily via the sqlite3_release_memory() API. This
207 ** minimizes the number of malloc calls made by the system.
209 ** Memory cells for cursors are allocated at the top of the address
210 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
211 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
213 Mem *pMem = &p->aMem[p->nMem-iCur];
215 int nByte;
216 VdbeCursor *pCx = 0;
217 nByte =
218 ROUND8(sizeof(VdbeCursor)) +
219 (isBtreeCursor?sqlite3BtreeCursorSize():0) +
220 2*nField*sizeof(u32);
222 assert( iCur<p->nCursor );
223 if( p->apCsr[iCur] ){
224 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
225 p->apCsr[iCur] = 0;
227 if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
228 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
229 memset(pCx, 0, sizeof(VdbeCursor));
230 pCx->iDb = iDb;
231 pCx->nField = nField;
232 if( nField ){
233 pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))];
235 if( isBtreeCursor ){
236 pCx->pCursor = (BtCursor*)
237 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)];
238 sqlite3BtreeCursorZero(pCx->pCursor);
241 return pCx;
245 ** Try to convert a value into a numeric representation if we can
246 ** do so without loss of information. In other words, if the string
247 ** looks like a number, convert it into a number. If it does not
248 ** look like a number, leave it alone.
250 static void applyNumericAffinity(Mem *pRec){
251 if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
252 double rValue;
253 i64 iValue;
254 u8 enc = pRec->enc;
255 if( (pRec->flags&MEM_Str)==0 ) return;
256 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
257 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
258 pRec->u.i = iValue;
259 pRec->flags |= MEM_Int;
260 }else{
261 pRec->r = rValue;
262 pRec->flags |= MEM_Real;
268 ** Processing is determine by the affinity parameter:
270 ** SQLITE_AFF_INTEGER:
271 ** SQLITE_AFF_REAL:
272 ** SQLITE_AFF_NUMERIC:
273 ** Try to convert pRec to an integer representation or a
274 ** floating-point representation if an integer representation
275 ** is not possible. Note that the integer representation is
276 ** always preferred, even if the affinity is REAL, because
277 ** an integer representation is more space efficient on disk.
279 ** SQLITE_AFF_TEXT:
280 ** Convert pRec to a text representation.
282 ** SQLITE_AFF_NONE:
283 ** No-op. pRec is unchanged.
285 static void applyAffinity(
286 Mem *pRec, /* The value to apply affinity to */
287 char affinity, /* The affinity to be applied */
288 u8 enc /* Use this text encoding */
290 if( affinity==SQLITE_AFF_TEXT ){
291 /* Only attempt the conversion to TEXT if there is an integer or real
292 ** representation (blob and NULL do not get converted) but no string
293 ** representation.
295 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
296 sqlite3VdbeMemStringify(pRec, enc);
298 pRec->flags &= ~(MEM_Real|MEM_Int);
299 }else if( affinity!=SQLITE_AFF_NONE ){
300 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
301 || affinity==SQLITE_AFF_NUMERIC );
302 applyNumericAffinity(pRec);
303 if( pRec->flags & MEM_Real ){
304 sqlite3VdbeIntegerAffinity(pRec);
310 ** Try to convert the type of a function argument or a result column
311 ** into a numeric representation. Use either INTEGER or REAL whichever
312 ** is appropriate. But only do the conversion if it is possible without
313 ** loss of information and return the revised type of the argument.
315 int sqlite3_value_numeric_type(sqlite3_value *pVal){
316 Mem *pMem = (Mem*)pVal;
317 if( pMem->type==SQLITE_TEXT ){
318 applyNumericAffinity(pMem);
319 sqlite3VdbeMemStoreType(pMem);
321 return pMem->type;
325 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
326 ** not the internal Mem* type.
328 void sqlite3ValueApplyAffinity(
329 sqlite3_value *pVal,
330 u8 affinity,
331 u8 enc
333 applyAffinity((Mem *)pVal, affinity, enc);
336 #ifdef SQLITE_DEBUG
338 ** Write a nice string representation of the contents of cell pMem
339 ** into buffer zBuf, length nBuf.
341 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
342 char *zCsr = zBuf;
343 int f = pMem->flags;
345 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
347 if( f&MEM_Blob ){
348 int i;
349 char c;
350 if( f & MEM_Dyn ){
351 c = 'z';
352 assert( (f & (MEM_Static|MEM_Ephem))==0 );
353 }else if( f & MEM_Static ){
354 c = 't';
355 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
356 }else if( f & MEM_Ephem ){
357 c = 'e';
358 assert( (f & (MEM_Static|MEM_Dyn))==0 );
359 }else{
360 c = 's';
363 sqlite3_snprintf(100, zCsr, "%c", c);
364 zCsr += sqlite3Strlen30(zCsr);
365 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
366 zCsr += sqlite3Strlen30(zCsr);
367 for(i=0; i<16 && i<pMem->n; i++){
368 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
369 zCsr += sqlite3Strlen30(zCsr);
371 for(i=0; i<16 && i<pMem->n; i++){
372 char z = pMem->z[i];
373 if( z<32 || z>126 ) *zCsr++ = '.';
374 else *zCsr++ = z;
377 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
378 zCsr += sqlite3Strlen30(zCsr);
379 if( f & MEM_Zero ){
380 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
381 zCsr += sqlite3Strlen30(zCsr);
383 *zCsr = '\0';
384 }else if( f & MEM_Str ){
385 int j, k;
386 zBuf[0] = ' ';
387 if( f & MEM_Dyn ){
388 zBuf[1] = 'z';
389 assert( (f & (MEM_Static|MEM_Ephem))==0 );
390 }else if( f & MEM_Static ){
391 zBuf[1] = 't';
392 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
393 }else if( f & MEM_Ephem ){
394 zBuf[1] = 'e';
395 assert( (f & (MEM_Static|MEM_Dyn))==0 );
396 }else{
397 zBuf[1] = 's';
399 k = 2;
400 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
401 k += sqlite3Strlen30(&zBuf[k]);
402 zBuf[k++] = '[';
403 for(j=0; j<15 && j<pMem->n; j++){
404 u8 c = pMem->z[j];
405 if( c>=0x20 && c<0x7f ){
406 zBuf[k++] = c;
407 }else{
408 zBuf[k++] = '.';
411 zBuf[k++] = ']';
412 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
413 k += sqlite3Strlen30(&zBuf[k]);
414 zBuf[k++] = 0;
417 #endif
419 #ifdef SQLITE_DEBUG
421 ** Print the value of a register for tracing purposes:
423 static void memTracePrint(FILE *out, Mem *p){
424 if( p->flags & MEM_Null ){
425 fprintf(out, " NULL");
426 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
427 fprintf(out, " si:%lld", p->u.i);
428 }else if( p->flags & MEM_Int ){
429 fprintf(out, " i:%lld", p->u.i);
430 #ifndef SQLITE_OMIT_FLOATING_POINT
431 }else if( p->flags & MEM_Real ){
432 fprintf(out, " r:%g", p->r);
433 #endif
434 }else if( p->flags & MEM_RowSet ){
435 fprintf(out, " (rowset)");
436 }else{
437 char zBuf[200];
438 sqlite3VdbeMemPrettyPrint(p, zBuf);
439 fprintf(out, " ");
440 fprintf(out, "%s", zBuf);
443 static void registerTrace(FILE *out, int iReg, Mem *p){
444 fprintf(out, "REG[%d] = ", iReg);
445 memTracePrint(out, p);
446 fprintf(out, "\n");
448 #endif
450 #ifdef SQLITE_DEBUG
451 # define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
452 #else
453 # define REGISTER_TRACE(R,M)
454 #endif
457 #ifdef VDBE_PROFILE
460 ** hwtime.h contains inline assembler code for implementing
461 ** high-performance timing routines.
463 #include "hwtime.h"
465 #endif
468 ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
469 ** sqlite3_interrupt() routine has been called. If it has been, then
470 ** processing of the VDBE program is interrupted.
472 ** This macro added to every instruction that does a jump in order to
473 ** implement a loop. This test used to be on every single instruction,
474 ** but that meant we more testing that we needed. By only testing the
475 ** flag on jump instructions, we get a (small) speed improvement.
477 #define CHECK_FOR_INTERRUPT \
478 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
481 #ifndef NDEBUG
483 ** This function is only called from within an assert() expression. It
484 ** checks that the sqlite3.nTransaction variable is correctly set to
485 ** the number of non-transaction savepoints currently in the
486 ** linked list starting at sqlite3.pSavepoint.
488 ** Usage:
490 ** assert( checkSavepointCount(db) );
492 static int checkSavepointCount(sqlite3 *db){
493 int n = 0;
494 Savepoint *p;
495 for(p=db->pSavepoint; p; p=p->pNext) n++;
496 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
497 return 1;
499 #endif
502 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
503 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
504 ** in memory obtained from sqlite3DbMalloc).
506 static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){
507 sqlite3 *db = p->db;
508 sqlite3DbFree(db, p->zErrMsg);
509 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
510 sqlite3_free(pVtab->zErrMsg);
511 pVtab->zErrMsg = 0;
516 ** Execute as much of a VDBE program as we can then return.
518 ** sqlite3VdbeMakeReady() must be called before this routine in order to
519 ** close the program with a final OP_Halt and to set up the callbacks
520 ** and the error message pointer.
522 ** Whenever a row or result data is available, this routine will either
523 ** invoke the result callback (if there is one) or return with
524 ** SQLITE_ROW.
526 ** If an attempt is made to open a locked database, then this routine
527 ** will either invoke the busy callback (if there is one) or it will
528 ** return SQLITE_BUSY.
530 ** If an error occurs, an error message is written to memory obtained
531 ** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
532 ** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
534 ** If the callback ever returns non-zero, then the program exits
535 ** immediately. There will be no error message but the p->rc field is
536 ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
538 ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
539 ** routine to return SQLITE_ERROR.
541 ** Other fatal errors return SQLITE_ERROR.
543 ** After this routine has finished, sqlite3VdbeFinalize() should be
544 ** used to clean up the mess that was left behind.
546 int sqlite3VdbeExec(
547 Vdbe *p /* The VDBE */
549 int pc=0; /* The program counter */
550 Op *aOp = p->aOp; /* Copy of p->aOp */
551 Op *pOp; /* Current operation */
552 int rc = SQLITE_OK; /* Value to return */
553 sqlite3 *db = p->db; /* The database */
554 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
555 u8 encoding = ENC(db); /* The database encoding */
556 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
557 int checkProgress; /* True if progress callbacks are enabled */
558 int nProgressOps = 0; /* Opcodes executed since progress callback. */
559 #endif
560 Mem *aMem = p->aMem; /* Copy of p->aMem */
561 Mem *pIn1 = 0; /* 1st input operand */
562 Mem *pIn2 = 0; /* 2nd input operand */
563 Mem *pIn3 = 0; /* 3rd input operand */
564 Mem *pOut = 0; /* Output operand */
565 int iCompare = 0; /* Result of last OP_Compare operation */
566 int *aPermute = 0; /* Permutation of columns for OP_Compare */
567 #ifdef VDBE_PROFILE
568 u64 start; /* CPU clock count at start of opcode */
569 int origPc; /* Program counter at start of opcode */
570 #endif
571 /*** INSERT STACK UNION HERE ***/
573 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
574 sqlite3VdbeEnter(p);
575 if( p->rc==SQLITE_NOMEM ){
576 /* This happens if a malloc() inside a call to sqlite3_column_text() or
577 ** sqlite3_column_text16() failed. */
578 goto no_mem;
580 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
581 p->rc = SQLITE_OK;
582 assert( p->explain==0 );
583 p->pResultSet = 0;
584 db->busyHandler.nBusy = 0;
585 CHECK_FOR_INTERRUPT;
586 sqlite3VdbeIOTraceSql(p);
587 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
588 checkProgress = db->xProgress!=0;
589 #endif
590 #ifdef SQLITE_DEBUG
591 sqlite3BeginBenignMalloc();
592 if( p->pc==0 && (p->db->flags & SQLITE_VdbeListing)!=0 ){
593 int i;
594 printf("VDBE Program Listing:\n");
595 sqlite3VdbePrintSql(p);
596 for(i=0; i<p->nOp; i++){
597 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
600 sqlite3EndBenignMalloc();
601 #endif
602 for(pc=p->pc; rc==SQLITE_OK; pc++){
603 assert( pc>=0 && pc<p->nOp );
604 if( db->mallocFailed ) goto no_mem;
605 #ifdef VDBE_PROFILE
606 origPc = pc;
607 start = sqlite3Hwtime();
608 #endif
609 pOp = &aOp[pc];
611 /* Only allow tracing if SQLITE_DEBUG is defined.
613 #ifdef SQLITE_DEBUG
614 if( p->trace ){
615 if( pc==0 ){
616 printf("VDBE Execution Trace:\n");
617 sqlite3VdbePrintSql(p);
619 sqlite3VdbePrintOp(p->trace, pc, pOp);
621 #endif
624 /* Check to see if we need to simulate an interrupt. This only happens
625 ** if we have a special test build.
627 #ifdef SQLITE_TEST
628 if( sqlite3_interrupt_count>0 ){
629 sqlite3_interrupt_count--;
630 if( sqlite3_interrupt_count==0 ){
631 sqlite3_interrupt(db);
634 #endif
636 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
637 /* Call the progress callback if it is configured and the required number
638 ** of VDBE ops have been executed (either since this invocation of
639 ** sqlite3VdbeExec() or since last time the progress callback was called).
640 ** If the progress callback returns non-zero, exit the virtual machine with
641 ** a return code SQLITE_ABORT.
643 if( checkProgress ){
644 if( db->nProgressOps==nProgressOps ){
645 int prc;
646 prc = db->xProgress(db->pProgressArg);
647 if( prc!=0 ){
648 rc = SQLITE_INTERRUPT;
649 goto vdbe_error_halt;
651 nProgressOps = 0;
653 nProgressOps++;
655 #endif
657 /* On any opcode with the "out2-prerelase" tag, free any
658 ** external allocations out of mem[p2] and set mem[p2] to be
659 ** an undefined integer. Opcodes will either fill in the integer
660 ** value or convert mem[p2] to a different type.
662 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
663 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
664 assert( pOp->p2>0 );
665 assert( pOp->p2<=p->nMem );
666 pOut = &aMem[pOp->p2];
667 memAboutToChange(p, pOut);
668 sqlite3VdbeMemReleaseExternal(pOut);
669 pOut->flags = MEM_Int;
672 /* Sanity checking on other operands */
673 #ifdef SQLITE_DEBUG
674 if( (pOp->opflags & OPFLG_IN1)!=0 ){
675 assert( pOp->p1>0 );
676 assert( pOp->p1<=p->nMem );
677 assert( memIsValid(&aMem[pOp->p1]) );
678 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
680 if( (pOp->opflags & OPFLG_IN2)!=0 ){
681 assert( pOp->p2>0 );
682 assert( pOp->p2<=p->nMem );
683 assert( memIsValid(&aMem[pOp->p2]) );
684 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
686 if( (pOp->opflags & OPFLG_IN3)!=0 ){
687 assert( pOp->p3>0 );
688 assert( pOp->p3<=p->nMem );
689 assert( memIsValid(&aMem[pOp->p3]) );
690 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
692 if( (pOp->opflags & OPFLG_OUT2)!=0 ){
693 assert( pOp->p2>0 );
694 assert( pOp->p2<=p->nMem );
695 memAboutToChange(p, &aMem[pOp->p2]);
697 if( (pOp->opflags & OPFLG_OUT3)!=0 ){
698 assert( pOp->p3>0 );
699 assert( pOp->p3<=p->nMem );
700 memAboutToChange(p, &aMem[pOp->p3]);
702 #endif
704 switch( pOp->opcode ){
706 /*****************************************************************************
707 ** What follows is a massive switch statement where each case implements a
708 ** separate instruction in the virtual machine. If we follow the usual
709 ** indentation conventions, each case should be indented by 6 spaces. But
710 ** that is a lot of wasted space on the left margin. So the code within
711 ** the switch statement will break with convention and be flush-left. Another
712 ** big comment (similar to this one) will mark the point in the code where
713 ** we transition back to normal indentation.
715 ** The formatting of each case is important. The makefile for SQLite
716 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
717 ** file looking for lines that begin with "case OP_". The opcodes.h files
718 ** will be filled with #defines that give unique integer values to each
719 ** opcode and the opcodes.c file is filled with an array of strings where
720 ** each string is the symbolic name for the corresponding opcode. If the
721 ** case statement is followed by a comment of the form "/# same as ... #/"
722 ** that comment is used to determine the particular value of the opcode.
724 ** Other keywords in the comment that follows each case are used to
725 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
726 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
727 ** the mkopcodeh.awk script for additional information.
729 ** Documentation about VDBE opcodes is generated by scanning this file
730 ** for lines of that contain "Opcode:". That line and all subsequent
731 ** comment lines are used in the generation of the opcode.html documentation
732 ** file.
734 ** SUMMARY:
736 ** Formatting is important to scripts that scan this file.
737 ** Do not deviate from the formatting style currently in use.
739 *****************************************************************************/
741 /* Opcode: Goto * P2 * * *
743 ** An unconditional jump to address P2.
744 ** The next instruction executed will be
745 ** the one at index P2 from the beginning of
746 ** the program.
748 case OP_Goto: { /* jump */
749 CHECK_FOR_INTERRUPT;
750 pc = pOp->p2 - 1;
751 break;
754 /* Opcode: Gosub P1 P2 * * *
756 ** Write the current address onto register P1
757 ** and then jump to address P2.
759 case OP_Gosub: { /* jump, in1 */
760 pIn1 = &aMem[pOp->p1];
761 assert( (pIn1->flags & MEM_Dyn)==0 );
762 memAboutToChange(p, pIn1);
763 pIn1->flags = MEM_Int;
764 pIn1->u.i = pc;
765 REGISTER_TRACE(pOp->p1, pIn1);
766 pc = pOp->p2 - 1;
767 break;
770 /* Opcode: Return P1 * * * *
772 ** Jump to the next instruction after the address in register P1.
774 case OP_Return: { /* in1 */
775 pIn1 = &aMem[pOp->p1];
776 assert( pIn1->flags & MEM_Int );
777 pc = (int)pIn1->u.i;
778 break;
781 /* Opcode: Yield P1 * * * *
783 ** Swap the program counter with the value in register P1.
785 case OP_Yield: { /* in1 */
786 int pcDest;
787 pIn1 = &aMem[pOp->p1];
788 assert( (pIn1->flags & MEM_Dyn)==0 );
789 pIn1->flags = MEM_Int;
790 pcDest = (int)pIn1->u.i;
791 pIn1->u.i = pc;
792 REGISTER_TRACE(pOp->p1, pIn1);
793 pc = pcDest;
794 break;
797 /* Opcode: HaltIfNull P1 P2 P3 P4 *
799 ** Check the value in register P3. If is is NULL then Halt using
800 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the
801 ** value in register P3 is not NULL, then this routine is a no-op.
803 case OP_HaltIfNull: { /* in3 */
804 pIn3 = &aMem[pOp->p3];
805 if( (pIn3->flags & MEM_Null)==0 ) break;
806 /* Fall through into OP_Halt */
809 /* Opcode: Halt P1 P2 * P4 *
811 ** Exit immediately. All open cursors, etc are closed
812 ** automatically.
814 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
815 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
816 ** For errors, it can be some other value. If P1!=0 then P2 will determine
817 ** whether or not to rollback the current transaction. Do not rollback
818 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
819 ** then back out all changes that have occurred during this execution of the
820 ** VDBE, but do not rollback the transaction.
822 ** If P4 is not null then it is an error message string.
824 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
825 ** every program. So a jump past the last instruction of the program
826 ** is the same as executing Halt.
828 case OP_Halt: {
829 if( pOp->p1==SQLITE_OK && p->pFrame ){
830 /* Halt the sub-program. Return control to the parent frame. */
831 VdbeFrame *pFrame = p->pFrame;
832 p->pFrame = pFrame->pParent;
833 p->nFrame--;
834 sqlite3VdbeSetChanges(db, p->nChange);
835 pc = sqlite3VdbeFrameRestore(pFrame);
836 if( pOp->p2==OE_Ignore ){
837 /* Instruction pc is the OP_Program that invoked the sub-program
838 ** currently being halted. If the p2 instruction of this OP_Halt
839 ** instruction is set to OE_Ignore, then the sub-program is throwing
840 ** an IGNORE exception. In this case jump to the address specified
841 ** as the p2 of the calling OP_Program. */
842 pc = p->aOp[pc].p2-1;
844 aOp = p->aOp;
845 aMem = p->aMem;
846 break;
849 p->rc = pOp->p1;
850 p->errorAction = (u8)pOp->p2;
851 p->pc = pc;
852 if( pOp->p4.z ){
853 assert( p->rc!=SQLITE_OK );
854 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
855 testcase( sqlite3GlobalConfig.xLog!=0 );
856 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z);
857 }else if( p->rc ){
858 testcase( sqlite3GlobalConfig.xLog!=0 );
859 sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql);
861 rc = sqlite3VdbeHalt(p);
862 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
863 if( rc==SQLITE_BUSY ){
864 p->rc = rc = SQLITE_BUSY;
865 }else{
866 assert( rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT );
867 assert( rc==SQLITE_OK || db->nDeferredCons>0 );
868 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
870 goto vdbe_return;
873 /* Opcode: Integer P1 P2 * * *
875 ** The 32-bit integer value P1 is written into register P2.
877 case OP_Integer: { /* out2-prerelease */
878 pOut->u.i = pOp->p1;
879 break;
882 /* Opcode: Int64 * P2 * P4 *
884 ** P4 is a pointer to a 64-bit integer value.
885 ** Write that value into register P2.
887 case OP_Int64: { /* out2-prerelease */
888 assert( pOp->p4.pI64!=0 );
889 pOut->u.i = *pOp->p4.pI64;
890 break;
893 #ifndef SQLITE_OMIT_FLOATING_POINT
894 /* Opcode: Real * P2 * P4 *
896 ** P4 is a pointer to a 64-bit floating point value.
897 ** Write that value into register P2.
899 case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
900 pOut->flags = MEM_Real;
901 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
902 pOut->r = *pOp->p4.pReal;
903 break;
905 #endif
907 /* Opcode: String8 * P2 * P4 *
909 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
910 ** into an OP_String before it is executed for the first time.
912 case OP_String8: { /* same as TK_STRING, out2-prerelease */
913 assert( pOp->p4.z!=0 );
914 pOp->opcode = OP_String;
915 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
917 #ifndef SQLITE_OMIT_UTF16
918 if( encoding!=SQLITE_UTF8 ){
919 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
920 if( rc==SQLITE_TOOBIG ) goto too_big;
921 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
922 assert( pOut->zMalloc==pOut->z );
923 assert( pOut->flags & MEM_Dyn );
924 pOut->zMalloc = 0;
925 pOut->flags |= MEM_Static;
926 pOut->flags &= ~MEM_Dyn;
927 if( pOp->p4type==P4_DYNAMIC ){
928 sqlite3DbFree(db, pOp->p4.z);
930 pOp->p4type = P4_DYNAMIC;
931 pOp->p4.z = pOut->z;
932 pOp->p1 = pOut->n;
934 #endif
935 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
936 goto too_big;
938 /* Fall through to the next case, OP_String */
941 /* Opcode: String P1 P2 * P4 *
943 ** The string value P4 of length P1 (bytes) is stored in register P2.
945 case OP_String: { /* out2-prerelease */
946 assert( pOp->p4.z!=0 );
947 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
948 pOut->z = pOp->p4.z;
949 pOut->n = pOp->p1;
950 pOut->enc = encoding;
951 UPDATE_MAX_BLOBSIZE(pOut);
952 break;
955 /* Opcode: Null * P2 * * *
957 ** Write a NULL into register P2.
959 case OP_Null: { /* out2-prerelease */
960 pOut->flags = MEM_Null;
961 break;
965 /* Opcode: Blob P1 P2 * P4
967 ** P4 points to a blob of data P1 bytes long. Store this
968 ** blob in register P2.
970 case OP_Blob: { /* out2-prerelease */
971 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
972 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
973 pOut->enc = encoding;
974 UPDATE_MAX_BLOBSIZE(pOut);
975 break;
978 /* Opcode: Variable P1 P2 * P4 *
980 ** Transfer the values of bound parameter P1 into register P2
982 ** If the parameter is named, then its name appears in P4 and P3==1.
983 ** The P4 value is used by sqlite3_bind_parameter_name().
985 case OP_Variable: { /* out2-prerelease */
986 Mem *pVar; /* Value being transferred */
988 assert( pOp->p1>0 && pOp->p1<=p->nVar );
989 pVar = &p->aVar[pOp->p1 - 1];
990 if( sqlite3VdbeMemTooBig(pVar) ){
991 goto too_big;
993 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
994 UPDATE_MAX_BLOBSIZE(pOut);
995 break;
998 /* Opcode: Move P1 P2 P3 * *
1000 ** Move the values in register P1..P1+P3-1 over into
1001 ** registers P2..P2+P3-1. Registers P1..P1+P1-1 are
1002 ** left holding a NULL. It is an error for register ranges
1003 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.
1005 case OP_Move: {
1006 char *zMalloc; /* Holding variable for allocated memory */
1007 int n; /* Number of registers left to copy */
1008 int p1; /* Register to copy from */
1009 int p2; /* Register to copy to */
1011 n = pOp->p3;
1012 p1 = pOp->p1;
1013 p2 = pOp->p2;
1014 assert( n>0 && p1>0 && p2>0 );
1015 assert( p1+n<=p2 || p2+n<=p1 );
1017 pIn1 = &aMem[p1];
1018 pOut = &aMem[p2];
1019 while( n-- ){
1020 assert( pOut<=&aMem[p->nMem] );
1021 assert( pIn1<=&aMem[p->nMem] );
1022 assert( memIsValid(pIn1) );
1023 memAboutToChange(p, pOut);
1024 zMalloc = pOut->zMalloc;
1025 pOut->zMalloc = 0;
1026 sqlite3VdbeMemMove(pOut, pIn1);
1027 pIn1->zMalloc = zMalloc;
1028 REGISTER_TRACE(p2++, pOut);
1029 pIn1++;
1030 pOut++;
1032 break;
1035 /* Opcode: Copy P1 P2 * * *
1037 ** Make a copy of register P1 into register P2.
1039 ** This instruction makes a deep copy of the value. A duplicate
1040 ** is made of any string or blob constant. See also OP_SCopy.
1042 case OP_Copy: { /* in1, out2 */
1043 pIn1 = &aMem[pOp->p1];
1044 pOut = &aMem[pOp->p2];
1045 assert( pOut!=pIn1 );
1046 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1047 Deephemeralize(pOut);
1048 REGISTER_TRACE(pOp->p2, pOut);
1049 break;
1052 /* Opcode: SCopy P1 P2 * * *
1054 ** Make a shallow copy of register P1 into register P2.
1056 ** This instruction makes a shallow copy of the value. If the value
1057 ** is a string or blob, then the copy is only a pointer to the
1058 ** original and hence if the original changes so will the copy.
1059 ** Worse, if the original is deallocated, the copy becomes invalid.
1060 ** Thus the program must guarantee that the original will not change
1061 ** during the lifetime of the copy. Use OP_Copy to make a complete
1062 ** copy.
1064 case OP_SCopy: { /* in1, out2 */
1065 pIn1 = &aMem[pOp->p1];
1066 pOut = &aMem[pOp->p2];
1067 assert( pOut!=pIn1 );
1068 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1069 #ifdef SQLITE_DEBUG
1070 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1071 #endif
1072 REGISTER_TRACE(pOp->p2, pOut);
1073 break;
1076 /* Opcode: ResultRow P1 P2 * * *
1078 ** The registers P1 through P1+P2-1 contain a single row of
1079 ** results. This opcode causes the sqlite3_step() call to terminate
1080 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1081 ** structure to provide access to the top P1 values as the result
1082 ** row.
1084 case OP_ResultRow: {
1085 Mem *pMem;
1086 int i;
1087 assert( p->nResColumn==pOp->p2 );
1088 assert( pOp->p1>0 );
1089 assert( pOp->p1+pOp->p2<=p->nMem+1 );
1091 /* If this statement has violated immediate foreign key constraints, do
1092 ** not return the number of rows modified. And do not RELEASE the statement
1093 ** transaction. It needs to be rolled back. */
1094 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1095 assert( db->flags&SQLITE_CountRows );
1096 assert( p->usesStmtJournal );
1097 break;
1100 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1101 ** DML statements invoke this opcode to return the number of rows
1102 ** modified to the user. This is the only way that a VM that
1103 ** opens a statement transaction may invoke this opcode.
1105 ** In case this is such a statement, close any statement transaction
1106 ** opened by this VM before returning control to the user. This is to
1107 ** ensure that statement-transactions are always nested, not overlapping.
1108 ** If the open statement-transaction is not closed here, then the user
1109 ** may step another VM that opens its own statement transaction. This
1110 ** may lead to overlapping statement transactions.
1112 ** The statement transaction is never a top-level transaction. Hence
1113 ** the RELEASE call below can never fail.
1115 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
1116 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1117 if( NEVER(rc!=SQLITE_OK) ){
1118 break;
1121 /* Invalidate all ephemeral cursor row caches */
1122 p->cacheCtr = (p->cacheCtr + 2)|1;
1124 /* Make sure the results of the current row are \000 terminated
1125 ** and have an assigned type. The results are de-ephemeralized as
1126 ** as side effect.
1128 pMem = p->pResultSet = &aMem[pOp->p1];
1129 for(i=0; i<pOp->p2; i++){
1130 assert( memIsValid(&pMem[i]) );
1131 Deephemeralize(&pMem[i]);
1132 assert( (pMem[i].flags & MEM_Ephem)==0
1133 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
1134 sqlite3VdbeMemNulTerminate(&pMem[i]);
1135 sqlite3VdbeMemStoreType(&pMem[i]);
1136 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1138 if( db->mallocFailed ) goto no_mem;
1140 /* Return SQLITE_ROW
1142 p->pc = pc + 1;
1143 rc = SQLITE_ROW;
1144 goto vdbe_return;
1147 /* Opcode: Concat P1 P2 P3 * *
1149 ** Add the text in register P1 onto the end of the text in
1150 ** register P2 and store the result in register P3.
1151 ** If either the P1 or P2 text are NULL then store NULL in P3.
1153 ** P3 = P2 || P1
1155 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1156 ** if P3 is the same register as P2, the implementation is able
1157 ** to avoid a memcpy().
1159 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
1160 i64 nByte;
1162 pIn1 = &aMem[pOp->p1];
1163 pIn2 = &aMem[pOp->p2];
1164 pOut = &aMem[pOp->p3];
1165 assert( pIn1!=pOut );
1166 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1167 sqlite3VdbeMemSetNull(pOut);
1168 break;
1170 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
1171 Stringify(pIn1, encoding);
1172 Stringify(pIn2, encoding);
1173 nByte = pIn1->n + pIn2->n;
1174 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1175 goto too_big;
1177 MemSetTypeFlag(pOut, MEM_Str);
1178 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
1179 goto no_mem;
1181 if( pOut!=pIn2 ){
1182 memcpy(pOut->z, pIn2->z, pIn2->n);
1184 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1185 pOut->z[nByte] = 0;
1186 pOut->z[nByte+1] = 0;
1187 pOut->flags |= MEM_Term;
1188 pOut->n = (int)nByte;
1189 pOut->enc = encoding;
1190 UPDATE_MAX_BLOBSIZE(pOut);
1191 break;
1194 /* Opcode: Add P1 P2 P3 * *
1196 ** Add the value in register P1 to the value in register P2
1197 ** and store the result in register P3.
1198 ** If either input is NULL, the result is NULL.
1200 /* Opcode: Multiply P1 P2 P3 * *
1203 ** Multiply the value in register P1 by the value in register P2
1204 ** and store the result in register P3.
1205 ** If either input is NULL, the result is NULL.
1207 /* Opcode: Subtract P1 P2 P3 * *
1209 ** Subtract the value in register P1 from the value in register P2
1210 ** and store the result in register P3.
1211 ** If either input is NULL, the result is NULL.
1213 /* Opcode: Divide P1 P2 P3 * *
1215 ** Divide the value in register P1 by the value in register P2
1216 ** and store the result in register P3 (P3=P2/P1). If the value in
1217 ** register P1 is zero, then the result is NULL. If either input is
1218 ** NULL, the result is NULL.
1220 /* Opcode: Remainder P1 P2 P3 * *
1222 ** Compute the remainder after integer division of the value in
1223 ** register P1 by the value in register P2 and store the result in P3.
1224 ** If the value in register P2 is zero the result is NULL.
1225 ** If either operand is NULL, the result is NULL.
1227 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1228 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1229 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1230 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1231 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
1232 int flags; /* Combined MEM_* flags from both inputs */
1233 i64 iA; /* Integer value of left operand */
1234 i64 iB; /* Integer value of right operand */
1235 double rA; /* Real value of left operand */
1236 double rB; /* Real value of right operand */
1238 pIn1 = &aMem[pOp->p1];
1239 applyNumericAffinity(pIn1);
1240 pIn2 = &aMem[pOp->p2];
1241 applyNumericAffinity(pIn2);
1242 pOut = &aMem[pOp->p3];
1243 flags = pIn1->flags | pIn2->flags;
1244 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1245 if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
1246 iA = pIn1->u.i;
1247 iB = pIn2->u.i;
1248 switch( pOp->opcode ){
1249 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1250 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1251 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
1252 case OP_Divide: {
1253 if( iA==0 ) goto arithmetic_result_is_null;
1254 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1255 iB /= iA;
1256 break;
1258 default: {
1259 if( iA==0 ) goto arithmetic_result_is_null;
1260 if( iA==-1 ) iA = 1;
1261 iB %= iA;
1262 break;
1265 pOut->u.i = iB;
1266 MemSetTypeFlag(pOut, MEM_Int);
1267 }else{
1268 fp_math:
1269 rA = sqlite3VdbeRealValue(pIn1);
1270 rB = sqlite3VdbeRealValue(pIn2);
1271 switch( pOp->opcode ){
1272 case OP_Add: rB += rA; break;
1273 case OP_Subtract: rB -= rA; break;
1274 case OP_Multiply: rB *= rA; break;
1275 case OP_Divide: {
1276 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1277 if( rA==(double)0 ) goto arithmetic_result_is_null;
1278 rB /= rA;
1279 break;
1281 default: {
1282 iA = (i64)rA;
1283 iB = (i64)rB;
1284 if( iA==0 ) goto arithmetic_result_is_null;
1285 if( iA==-1 ) iA = 1;
1286 rB = (double)(iB % iA);
1287 break;
1290 #ifdef SQLITE_OMIT_FLOATING_POINT
1291 pOut->u.i = rB;
1292 MemSetTypeFlag(pOut, MEM_Int);
1293 #else
1294 if( sqlite3IsNaN(rB) ){
1295 goto arithmetic_result_is_null;
1297 pOut->r = rB;
1298 MemSetTypeFlag(pOut, MEM_Real);
1299 if( (flags & MEM_Real)==0 ){
1300 sqlite3VdbeIntegerAffinity(pOut);
1302 #endif
1304 break;
1306 arithmetic_result_is_null:
1307 sqlite3VdbeMemSetNull(pOut);
1308 break;
1311 /* Opcode: CollSeq * * P4
1313 ** P4 is a pointer to a CollSeq struct. If the next call to a user function
1314 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1315 ** be returned. This is used by the built-in min(), max() and nullif()
1316 ** functions.
1318 ** The interface used by the implementation of the aforementioned functions
1319 ** to retrieve the collation sequence set by this opcode is not available
1320 ** publicly, only to user functions defined in func.c.
1322 case OP_CollSeq: {
1323 assert( pOp->p4type==P4_COLLSEQ );
1324 break;
1327 /* Opcode: Function P1 P2 P3 P4 P5
1329 ** Invoke a user function (P4 is a pointer to a Function structure that
1330 ** defines the function) with P5 arguments taken from register P2 and
1331 ** successors. The result of the function is stored in register P3.
1332 ** Register P3 must not be one of the function inputs.
1334 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1335 ** function was determined to be constant at compile time. If the first
1336 ** argument was constant then bit 0 of P1 is set. This is used to determine
1337 ** whether meta data associated with a user function argument using the
1338 ** sqlite3_set_auxdata() API may be safely retained until the next
1339 ** invocation of this opcode.
1341 ** See also: AggStep and AggFinal
1343 case OP_Function: {
1344 int i;
1345 Mem *pArg;
1346 sqlite3_context ctx;
1347 sqlite3_value **apVal;
1348 int n;
1350 n = pOp->p5;
1351 apVal = p->apArg;
1352 assert( apVal || n==0 );
1353 assert( pOp->p3>0 && pOp->p3<=p->nMem );
1354 pOut = &aMem[pOp->p3];
1355 memAboutToChange(p, pOut);
1357 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) );
1358 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
1359 pArg = &aMem[pOp->p2];
1360 for(i=0; i<n; i++, pArg++){
1361 assert( memIsValid(pArg) );
1362 apVal[i] = pArg;
1363 Deephemeralize(pArg);
1364 sqlite3VdbeMemStoreType(pArg);
1365 REGISTER_TRACE(pOp->p2+i, pArg);
1368 assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
1369 if( pOp->p4type==P4_FUNCDEF ){
1370 ctx.pFunc = pOp->p4.pFunc;
1371 ctx.pVdbeFunc = 0;
1372 }else{
1373 ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
1374 ctx.pFunc = ctx.pVdbeFunc->pFunc;
1377 ctx.s.flags = MEM_Null;
1378 ctx.s.db = db;
1379 ctx.s.xDel = 0;
1380 ctx.s.zMalloc = 0;
1382 /* The output cell may already have a buffer allocated. Move
1383 ** the pointer to ctx.s so in case the user-function can use
1384 ** the already allocated buffer instead of allocating a new one.
1386 sqlite3VdbeMemMove(&ctx.s, pOut);
1387 MemSetTypeFlag(&ctx.s, MEM_Null);
1389 ctx.isError = 0;
1390 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
1391 assert( pOp>aOp );
1392 assert( pOp[-1].p4type==P4_COLLSEQ );
1393 assert( pOp[-1].opcode==OP_CollSeq );
1394 ctx.pColl = pOp[-1].p4.pColl;
1396 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
1397 if( db->mallocFailed ){
1398 /* Even though a malloc() has failed, the implementation of the
1399 ** user function may have called an sqlite3_result_XXX() function
1400 ** to return a value. The following call releases any resources
1401 ** associated with such a value.
1403 sqlite3VdbeMemRelease(&ctx.s);
1404 goto no_mem;
1407 /* If any auxiliary data functions have been called by this user function,
1408 ** immediately call the destructor for any non-static values.
1410 if( ctx.pVdbeFunc ){
1411 sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
1412 pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
1413 pOp->p4type = P4_VDBEFUNC;
1416 /* If the function returned an error, throw an exception */
1417 if( ctx.isError ){
1418 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
1419 rc = ctx.isError;
1422 /* Copy the result of the function into register P3 */
1423 sqlite3VdbeChangeEncoding(&ctx.s, encoding);
1424 sqlite3VdbeMemMove(pOut, &ctx.s);
1425 if( sqlite3VdbeMemTooBig(pOut) ){
1426 goto too_big;
1429 #if 0
1430 /* The app-defined function has done something that as caused this
1431 ** statement to expire. (Perhaps the function called sqlite3_exec()
1432 ** with a CREATE TABLE statement.)
1434 if( p->expired ) rc = SQLITE_ABORT;
1435 #endif
1437 REGISTER_TRACE(pOp->p3, pOut);
1438 UPDATE_MAX_BLOBSIZE(pOut);
1439 break;
1442 /* Opcode: BitAnd P1 P2 P3 * *
1444 ** Take the bit-wise AND of the values in register P1 and P2 and
1445 ** store the result in register P3.
1446 ** If either input is NULL, the result is NULL.
1448 /* Opcode: BitOr P1 P2 P3 * *
1450 ** Take the bit-wise OR of the values in register P1 and P2 and
1451 ** store the result in register P3.
1452 ** If either input is NULL, the result is NULL.
1454 /* Opcode: ShiftLeft P1 P2 P3 * *
1456 ** Shift the integer value in register P2 to the left by the
1457 ** number of bits specified by the integer in register P1.
1458 ** Store the result in register P3.
1459 ** If either input is NULL, the result is NULL.
1461 /* Opcode: ShiftRight P1 P2 P3 * *
1463 ** Shift the integer value in register P2 to the right by the
1464 ** number of bits specified by the integer in register P1.
1465 ** Store the result in register P3.
1466 ** If either input is NULL, the result is NULL.
1468 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1469 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1470 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1471 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
1472 i64 iA;
1473 u64 uA;
1474 i64 iB;
1475 u8 op;
1477 pIn1 = &aMem[pOp->p1];
1478 pIn2 = &aMem[pOp->p2];
1479 pOut = &aMem[pOp->p3];
1480 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1481 sqlite3VdbeMemSetNull(pOut);
1482 break;
1484 iA = sqlite3VdbeIntValue(pIn2);
1485 iB = sqlite3VdbeIntValue(pIn1);
1486 op = pOp->opcode;
1487 if( op==OP_BitAnd ){
1488 iA &= iB;
1489 }else if( op==OP_BitOr ){
1490 iA |= iB;
1491 }else if( iB!=0 ){
1492 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1494 /* If shifting by a negative amount, shift in the other direction */
1495 if( iB<0 ){
1496 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1497 op = 2*OP_ShiftLeft + 1 - op;
1498 iB = iB>(-64) ? -iB : 64;
1501 if( iB>=64 ){
1502 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1503 }else{
1504 memcpy(&uA, &iA, sizeof(uA));
1505 if( op==OP_ShiftLeft ){
1506 uA <<= iB;
1507 }else{
1508 uA >>= iB;
1509 /* Sign-extend on a right shift of a negative number */
1510 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1512 memcpy(&iA, &uA, sizeof(iA));
1515 pOut->u.i = iA;
1516 MemSetTypeFlag(pOut, MEM_Int);
1517 break;
1520 /* Opcode: AddImm P1 P2 * * *
1522 ** Add the constant P2 to the value in register P1.
1523 ** The result is always an integer.
1525 ** To force any register to be an integer, just add 0.
1527 case OP_AddImm: { /* in1 */
1528 pIn1 = &aMem[pOp->p1];
1529 memAboutToChange(p, pIn1);
1530 sqlite3VdbeMemIntegerify(pIn1);
1531 pIn1->u.i += pOp->p2;
1532 break;
1535 /* Opcode: MustBeInt P1 P2 * * *
1537 ** Force the value in register P1 to be an integer. If the value
1538 ** in P1 is not an integer and cannot be converted into an integer
1539 ** without data loss, then jump immediately to P2, or if P2==0
1540 ** raise an SQLITE_MISMATCH exception.
1542 case OP_MustBeInt: { /* jump, in1 */
1543 pIn1 = &aMem[pOp->p1];
1544 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1545 if( (pIn1->flags & MEM_Int)==0 ){
1546 if( pOp->p2==0 ){
1547 rc = SQLITE_MISMATCH;
1548 goto abort_due_to_error;
1549 }else{
1550 pc = pOp->p2 - 1;
1552 }else{
1553 MemSetTypeFlag(pIn1, MEM_Int);
1555 break;
1558 #ifndef SQLITE_OMIT_FLOATING_POINT
1559 /* Opcode: RealAffinity P1 * * * *
1561 ** If register P1 holds an integer convert it to a real value.
1563 ** This opcode is used when extracting information from a column that
1564 ** has REAL affinity. Such column values may still be stored as
1565 ** integers, for space efficiency, but after extraction we want them
1566 ** to have only a real value.
1568 case OP_RealAffinity: { /* in1 */
1569 pIn1 = &aMem[pOp->p1];
1570 if( pIn1->flags & MEM_Int ){
1571 sqlite3VdbeMemRealify(pIn1);
1573 break;
1575 #endif
1577 #ifndef SQLITE_OMIT_CAST
1578 /* Opcode: ToText P1 * * * *
1580 ** Force the value in register P1 to be text.
1581 ** If the value is numeric, convert it to a string using the
1582 ** equivalent of printf(). Blob values are unchanged and
1583 ** are afterwards simply interpreted as text.
1585 ** A NULL value is not changed by this routine. It remains NULL.
1587 case OP_ToText: { /* same as TK_TO_TEXT, in1 */
1588 pIn1 = &aMem[pOp->p1];
1589 memAboutToChange(p, pIn1);
1590 if( pIn1->flags & MEM_Null ) break;
1591 assert( MEM_Str==(MEM_Blob>>3) );
1592 pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
1593 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
1594 rc = ExpandBlob(pIn1);
1595 assert( pIn1->flags & MEM_Str || db->mallocFailed );
1596 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
1597 UPDATE_MAX_BLOBSIZE(pIn1);
1598 break;
1601 /* Opcode: ToBlob P1 * * * *
1603 ** Force the value in register P1 to be a BLOB.
1604 ** If the value is numeric, convert it to a string first.
1605 ** Strings are simply reinterpreted as blobs with no change
1606 ** to the underlying data.
1608 ** A NULL value is not changed by this routine. It remains NULL.
1610 case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */
1611 pIn1 = &aMem[pOp->p1];
1612 if( pIn1->flags & MEM_Null ) break;
1613 if( (pIn1->flags & MEM_Blob)==0 ){
1614 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
1615 assert( pIn1->flags & MEM_Str || db->mallocFailed );
1616 MemSetTypeFlag(pIn1, MEM_Blob);
1617 }else{
1618 pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob);
1620 UPDATE_MAX_BLOBSIZE(pIn1);
1621 break;
1624 /* Opcode: ToNumeric P1 * * * *
1626 ** Force the value in register P1 to be numeric (either an
1627 ** integer or a floating-point number.)
1628 ** If the value is text or blob, try to convert it to an using the
1629 ** equivalent of atoi() or atof() and store 0 if no such conversion
1630 ** is possible.
1632 ** A NULL value is not changed by this routine. It remains NULL.
1634 case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */
1635 pIn1 = &aMem[pOp->p1];
1636 sqlite3VdbeMemNumerify(pIn1);
1637 break;
1639 #endif /* SQLITE_OMIT_CAST */
1641 /* Opcode: ToInt P1 * * * *
1643 ** Force the value in register P1 to be an integer. If
1644 ** The value is currently a real number, drop its fractional part.
1645 ** If the value is text or blob, try to convert it to an integer using the
1646 ** equivalent of atoi() and store 0 if no such conversion is possible.
1648 ** A NULL value is not changed by this routine. It remains NULL.
1650 case OP_ToInt: { /* same as TK_TO_INT, in1 */
1651 pIn1 = &aMem[pOp->p1];
1652 if( (pIn1->flags & MEM_Null)==0 ){
1653 sqlite3VdbeMemIntegerify(pIn1);
1655 break;
1658 #if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT)
1659 /* Opcode: ToReal P1 * * * *
1661 ** Force the value in register P1 to be a floating point number.
1662 ** If The value is currently an integer, convert it.
1663 ** If the value is text or blob, try to convert it to an integer using the
1664 ** equivalent of atoi() and store 0.0 if no such conversion is possible.
1666 ** A NULL value is not changed by this routine. It remains NULL.
1668 case OP_ToReal: { /* same as TK_TO_REAL, in1 */
1669 pIn1 = &aMem[pOp->p1];
1670 memAboutToChange(p, pIn1);
1671 if( (pIn1->flags & MEM_Null)==0 ){
1672 sqlite3VdbeMemRealify(pIn1);
1674 break;
1676 #endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
1678 /* Opcode: Lt P1 P2 P3 P4 P5
1680 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1681 ** jump to address P2.
1683 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1684 ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
1685 ** bit is clear then fall through if either operand is NULL.
1687 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1688 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1689 ** to coerce both inputs according to this affinity before the
1690 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1691 ** affinity is used. Note that the affinity conversions are stored
1692 ** back into the input registers P1 and P3. So this opcode can cause
1693 ** persistent changes to registers P1 and P3.
1695 ** Once any conversions have taken place, and neither value is NULL,
1696 ** the values are compared. If both values are blobs then memcmp() is
1697 ** used to determine the results of the comparison. If both values
1698 ** are text, then the appropriate collating function specified in
1699 ** P4 is used to do the comparison. If P4 is not specified then
1700 ** memcmp() is used to compare text string. If both values are
1701 ** numeric, then a numeric comparison is used. If the two values
1702 ** are of different types, then numbers are considered less than
1703 ** strings and strings are considered less than blobs.
1705 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1706 ** store a boolean result (either 0, or 1, or NULL) in register P2.
1708 /* Opcode: Ne P1 P2 P3 P4 P5
1710 ** This works just like the Lt opcode except that the jump is taken if
1711 ** the operands in registers P1 and P3 are not equal. See the Lt opcode for
1712 ** additional information.
1714 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1715 ** true or false and is never NULL. If both operands are NULL then the result
1716 ** of comparison is false. If either operand is NULL then the result is true.
1717 ** If neither operand is NULL the the result is the same as it would be if
1718 ** the SQLITE_NULLEQ flag were omitted from P5.
1720 /* Opcode: Eq P1 P2 P3 P4 P5
1722 ** This works just like the Lt opcode except that the jump is taken if
1723 ** the operands in registers P1 and P3 are equal.
1724 ** See the Lt opcode for additional information.
1726 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1727 ** true or false and is never NULL. If both operands are NULL then the result
1728 ** of comparison is true. If either operand is NULL then the result is false.
1729 ** If neither operand is NULL the the result is the same as it would be if
1730 ** the SQLITE_NULLEQ flag were omitted from P5.
1732 /* Opcode: Le P1 P2 P3 P4 P5
1734 ** This works just like the Lt opcode except that the jump is taken if
1735 ** the content of register P3 is less than or equal to the content of
1736 ** register P1. See the Lt opcode for additional information.
1738 /* Opcode: Gt P1 P2 P3 P4 P5
1740 ** This works just like the Lt opcode except that the jump is taken if
1741 ** the content of register P3 is greater than the content of
1742 ** register P1. See the Lt opcode for additional information.
1744 /* Opcode: Ge P1 P2 P3 P4 P5
1746 ** This works just like the Lt opcode except that the jump is taken if
1747 ** the content of register P3 is greater than or equal to the content of
1748 ** register P1. See the Lt opcode for additional information.
1750 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1751 case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1752 case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1753 case OP_Le: /* same as TK_LE, jump, in1, in3 */
1754 case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1755 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
1756 int res; /* Result of the comparison of pIn1 against pIn3 */
1757 char affinity; /* Affinity to use for comparison */
1758 u16 flags1; /* Copy of initial value of pIn1->flags */
1759 u16 flags3; /* Copy of initial value of pIn3->flags */
1761 pIn1 = &aMem[pOp->p1];
1762 pIn3 = &aMem[pOp->p3];
1763 flags1 = pIn1->flags;
1764 flags3 = pIn3->flags;
1765 if( (pIn1->flags | pIn3->flags)&MEM_Null ){
1766 /* One or both operands are NULL */
1767 if( pOp->p5 & SQLITE_NULLEQ ){
1768 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1769 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1770 ** or not both operands are null.
1772 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
1773 res = (pIn1->flags & pIn3->flags & MEM_Null)==0;
1774 }else{
1775 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1776 ** then the result is always NULL.
1777 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1779 if( pOp->p5 & SQLITE_STOREP2 ){
1780 pOut = &aMem[pOp->p2];
1781 MemSetTypeFlag(pOut, MEM_Null);
1782 REGISTER_TRACE(pOp->p2, pOut);
1783 }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
1784 pc = pOp->p2-1;
1786 break;
1788 }else{
1789 /* Neither operand is NULL. Do a comparison. */
1790 affinity = pOp->p5 & SQLITE_AFF_MASK;
1791 if( affinity ){
1792 applyAffinity(pIn1, affinity, encoding);
1793 applyAffinity(pIn3, affinity, encoding);
1794 if( db->mallocFailed ) goto no_mem;
1797 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
1798 ExpandBlob(pIn1);
1799 ExpandBlob(pIn3);
1800 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
1802 switch( pOp->opcode ){
1803 case OP_Eq: res = res==0; break;
1804 case OP_Ne: res = res!=0; break;
1805 case OP_Lt: res = res<0; break;
1806 case OP_Le: res = res<=0; break;
1807 case OP_Gt: res = res>0; break;
1808 default: res = res>=0; break;
1811 if( pOp->p5 & SQLITE_STOREP2 ){
1812 pOut = &aMem[pOp->p2];
1813 memAboutToChange(p, pOut);
1814 MemSetTypeFlag(pOut, MEM_Int);
1815 pOut->u.i = res;
1816 REGISTER_TRACE(pOp->p2, pOut);
1817 }else if( res ){
1818 pc = pOp->p2-1;
1821 /* Undo any changes made by applyAffinity() to the input registers. */
1822 pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask);
1823 pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask);
1824 break;
1827 /* Opcode: Permutation * * * P4 *
1829 ** Set the permutation used by the OP_Compare operator to be the array
1830 ** of integers in P4.
1832 ** The permutation is only valid until the next OP_Permutation, OP_Compare,
1833 ** OP_Halt, or OP_ResultRow. Typically the OP_Permutation should occur
1834 ** immediately prior to the OP_Compare.
1836 case OP_Permutation: {
1837 assert( pOp->p4type==P4_INTARRAY );
1838 assert( pOp->p4.ai );
1839 aPermute = pOp->p4.ai;
1840 break;
1843 /* Opcode: Compare P1 P2 P3 P4 *
1845 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
1846 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
1847 ** the comparison for use by the next OP_Jump instruct.
1849 ** P4 is a KeyInfo structure that defines collating sequences and sort
1850 ** orders for the comparison. The permutation applies to registers
1851 ** only. The KeyInfo elements are used sequentially.
1853 ** The comparison is a sort comparison, so NULLs compare equal,
1854 ** NULLs are less than numbers, numbers are less than strings,
1855 ** and strings are less than blobs.
1857 case OP_Compare: {
1858 int n;
1859 int i;
1860 int p1;
1861 int p2;
1862 const KeyInfo *pKeyInfo;
1863 int idx;
1864 CollSeq *pColl; /* Collating sequence to use on this term */
1865 int bRev; /* True for DESCENDING sort order */
1867 n = pOp->p3;
1868 pKeyInfo = pOp->p4.pKeyInfo;
1869 assert( n>0 );
1870 assert( pKeyInfo!=0 );
1871 p1 = pOp->p1;
1872 p2 = pOp->p2;
1873 #if SQLITE_DEBUG
1874 if( aPermute ){
1875 int k, mx = 0;
1876 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
1877 assert( p1>0 && p1+mx<=p->nMem+1 );
1878 assert( p2>0 && p2+mx<=p->nMem+1 );
1879 }else{
1880 assert( p1>0 && p1+n<=p->nMem+1 );
1881 assert( p2>0 && p2+n<=p->nMem+1 );
1883 #endif /* SQLITE_DEBUG */
1884 for(i=0; i<n; i++){
1885 idx = aPermute ? aPermute[i] : i;
1886 assert( memIsValid(&aMem[p1+idx]) );
1887 assert( memIsValid(&aMem[p2+idx]) );
1888 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
1889 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
1890 assert( i<pKeyInfo->nField );
1891 pColl = pKeyInfo->aColl[i];
1892 bRev = pKeyInfo->aSortOrder[i];
1893 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
1894 if( iCompare ){
1895 if( bRev ) iCompare = -iCompare;
1896 break;
1899 aPermute = 0;
1900 break;
1903 /* Opcode: Jump P1 P2 P3 * *
1905 ** Jump to the instruction at address P1, P2, or P3 depending on whether
1906 ** in the most recent OP_Compare instruction the P1 vector was less than
1907 ** equal to, or greater than the P2 vector, respectively.
1909 case OP_Jump: { /* jump */
1910 if( iCompare<0 ){
1911 pc = pOp->p1 - 1;
1912 }else if( iCompare==0 ){
1913 pc = pOp->p2 - 1;
1914 }else{
1915 pc = pOp->p3 - 1;
1917 break;
1920 /* Opcode: And P1 P2 P3 * *
1922 ** Take the logical AND of the values in registers P1 and P2 and
1923 ** write the result into register P3.
1925 ** If either P1 or P2 is 0 (false) then the result is 0 even if
1926 ** the other input is NULL. A NULL and true or two NULLs give
1927 ** a NULL output.
1929 /* Opcode: Or P1 P2 P3 * *
1931 ** Take the logical OR of the values in register P1 and P2 and
1932 ** store the answer in register P3.
1934 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
1935 ** even if the other input is NULL. A NULL and false or two NULLs
1936 ** give a NULL output.
1938 case OP_And: /* same as TK_AND, in1, in2, out3 */
1939 case OP_Or: { /* same as TK_OR, in1, in2, out3 */
1940 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
1941 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
1943 pIn1 = &aMem[pOp->p1];
1944 if( pIn1->flags & MEM_Null ){
1945 v1 = 2;
1946 }else{
1947 v1 = sqlite3VdbeIntValue(pIn1)!=0;
1949 pIn2 = &aMem[pOp->p2];
1950 if( pIn2->flags & MEM_Null ){
1951 v2 = 2;
1952 }else{
1953 v2 = sqlite3VdbeIntValue(pIn2)!=0;
1955 if( pOp->opcode==OP_And ){
1956 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
1957 v1 = and_logic[v1*3+v2];
1958 }else{
1959 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
1960 v1 = or_logic[v1*3+v2];
1962 pOut = &aMem[pOp->p3];
1963 if( v1==2 ){
1964 MemSetTypeFlag(pOut, MEM_Null);
1965 }else{
1966 pOut->u.i = v1;
1967 MemSetTypeFlag(pOut, MEM_Int);
1969 break;
1972 /* Opcode: Not P1 P2 * * *
1974 ** Interpret the value in register P1 as a boolean value. Store the
1975 ** boolean complement in register P2. If the value in register P1 is
1976 ** NULL, then a NULL is stored in P2.
1978 case OP_Not: { /* same as TK_NOT, in1, out2 */
1979 pIn1 = &aMem[pOp->p1];
1980 pOut = &aMem[pOp->p2];
1981 if( pIn1->flags & MEM_Null ){
1982 sqlite3VdbeMemSetNull(pOut);
1983 }else{
1984 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1));
1986 break;
1989 /* Opcode: BitNot P1 P2 * * *
1991 ** Interpret the content of register P1 as an integer. Store the
1992 ** ones-complement of the P1 value into register P2. If P1 holds
1993 ** a NULL then store a NULL in P2.
1995 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
1996 pIn1 = &aMem[pOp->p1];
1997 pOut = &aMem[pOp->p2];
1998 if( pIn1->flags & MEM_Null ){
1999 sqlite3VdbeMemSetNull(pOut);
2000 }else{
2001 sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
2003 break;
2006 /* Opcode: If P1 P2 P3 * *
2008 ** Jump to P2 if the value in register P1 is true. The value is
2009 ** is considered true if it is numeric and non-zero. If the value
2010 ** in P1 is NULL then take the jump if P3 is true.
2012 /* Opcode: IfNot P1 P2 P3 * *
2014 ** Jump to P2 if the value in register P1 is False. The value is
2015 ** is considered true if it has a numeric value of zero. If the value
2016 ** in P1 is NULL then take the jump if P3 is true.
2018 case OP_If: /* jump, in1 */
2019 case OP_IfNot: { /* jump, in1 */
2020 int c;
2021 pIn1 = &aMem[pOp->p1];
2022 if( pIn1->flags & MEM_Null ){
2023 c = pOp->p3;
2024 }else{
2025 #ifdef SQLITE_OMIT_FLOATING_POINT
2026 c = sqlite3VdbeIntValue(pIn1)!=0;
2027 #else
2028 c = sqlite3VdbeRealValue(pIn1)!=0.0;
2029 #endif
2030 if( pOp->opcode==OP_IfNot ) c = !c;
2032 if( c ){
2033 pc = pOp->p2-1;
2035 break;
2038 /* Opcode: IsNull P1 P2 * * *
2040 ** Jump to P2 if the value in register P1 is NULL.
2042 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
2043 pIn1 = &aMem[pOp->p1];
2044 if( (pIn1->flags & MEM_Null)!=0 ){
2045 pc = pOp->p2 - 1;
2047 break;
2050 /* Opcode: NotNull P1 P2 * * *
2052 ** Jump to P2 if the value in register P1 is not NULL.
2054 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
2055 pIn1 = &aMem[pOp->p1];
2056 if( (pIn1->flags & MEM_Null)==0 ){
2057 pc = pOp->p2 - 1;
2059 break;
2062 /* Opcode: Column P1 P2 P3 P4 P5
2064 ** Interpret the data that cursor P1 points to as a structure built using
2065 ** the MakeRecord instruction. (See the MakeRecord opcode for additional
2066 ** information about the format of the data.) Extract the P2-th column
2067 ** from this record. If there are less that (P2+1)
2068 ** values in the record, extract a NULL.
2070 ** The value extracted is stored in register P3.
2072 ** If the column contains fewer than P2 fields, then extract a NULL. Or,
2073 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2074 ** the result.
2076 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2077 ** then the cache of the cursor is reset prior to extracting the column.
2078 ** The first OP_Column against a pseudo-table after the value of the content
2079 ** register has changed should have this bit set.
2081 case OP_Column: {
2082 u32 payloadSize; /* Number of bytes in the record */
2083 i64 payloadSize64; /* Number of bytes in the record */
2084 int p1; /* P1 value of the opcode */
2085 int p2; /* column number to retrieve */
2086 VdbeCursor *pC; /* The VDBE cursor */
2087 char *zRec; /* Pointer to complete record-data */
2088 BtCursor *pCrsr; /* The BTree cursor */
2089 u32 *aType; /* aType[i] holds the numeric type of the i-th column */
2090 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
2091 int nField; /* number of fields in the record */
2092 int len; /* The length of the serialized data for the column */
2093 int i; /* Loop counter */
2094 char *zData; /* Part of the record being decoded */
2095 Mem *pDest; /* Where to write the extracted value */
2096 Mem sMem; /* For storing the record being decoded */
2097 u8 *zIdx; /* Index into header */
2098 u8 *zEndHdr; /* Pointer to first byte after the header */
2099 u32 offset; /* Offset into the data */
2100 u32 szField; /* Number of bytes in the content of a field */
2101 int szHdr; /* Size of the header size field at start of record */
2102 int avail; /* Number of bytes of available data */
2103 Mem *pReg; /* PseudoTable input register */
2106 p1 = pOp->p1;
2107 p2 = pOp->p2;
2108 pC = 0;
2109 memset(&sMem, 0, sizeof(sMem));
2110 assert( p1<p->nCursor );
2111 assert( pOp->p3>0 && pOp->p3<=p->nMem );
2112 pDest = &aMem[pOp->p3];
2113 memAboutToChange(p, pDest);
2114 MemSetTypeFlag(pDest, MEM_Null);
2115 zRec = 0;
2117 /* This block sets the variable payloadSize to be the total number of
2118 ** bytes in the record.
2120 ** zRec is set to be the complete text of the record if it is available.
2121 ** The complete record text is always available for pseudo-tables
2122 ** If the record is stored in a cursor, the complete record text
2123 ** might be available in the pC->aRow cache. Or it might not be.
2124 ** If the data is unavailable, zRec is set to NULL.
2126 ** We also compute the number of columns in the record. For cursors,
2127 ** the number of columns is stored in the VdbeCursor.nField element.
2129 pC = p->apCsr[p1];
2130 assert( pC!=0 );
2131 #ifndef SQLITE_OMIT_VIRTUALTABLE
2132 assert( pC->pVtabCursor==0 );
2133 #endif
2134 pCrsr = pC->pCursor;
2135 if( pCrsr!=0 ){
2136 /* The record is stored in a B-Tree */
2137 rc = sqlite3VdbeCursorMoveto(pC);
2138 if( rc ) goto abort_due_to_error;
2139 if( pC->nullRow ){
2140 payloadSize = 0;
2141 }else if( pC->cacheStatus==p->cacheCtr ){
2142 payloadSize = pC->payloadSize;
2143 zRec = (char*)pC->aRow;
2144 }else if( pC->isIndex ){
2145 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2146 rc = sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2147 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
2148 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2149 ** payload size, so it is impossible for payloadSize64 to be
2150 ** larger than 32 bits. */
2151 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
2152 payloadSize = (u32)payloadSize64;
2153 }else{
2154 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2155 rc = sqlite3BtreeDataSize(pCrsr, &payloadSize);
2156 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
2158 }else if( pC->pseudoTableReg>0 ){
2159 pReg = &aMem[pC->pseudoTableReg];
2160 assert( pReg->flags & MEM_Blob );
2161 assert( memIsValid(pReg) );
2162 payloadSize = pReg->n;
2163 zRec = pReg->z;
2164 pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
2165 assert( payloadSize==0 || zRec!=0 );
2166 }else{
2167 /* Consider the row to be NULL */
2168 payloadSize = 0;
2171 /* If payloadSize is 0, then just store a NULL */
2172 if( payloadSize==0 ){
2173 assert( pDest->flags&MEM_Null );
2174 goto op_column_out;
2176 assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
2177 if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2178 goto too_big;
2181 nField = pC->nField;
2182 assert( p2<nField );
2184 /* Read and parse the table header. Store the results of the parse
2185 ** into the record header cache fields of the cursor.
2187 aType = pC->aType;
2188 if( pC->cacheStatus==p->cacheCtr ){
2189 aOffset = pC->aOffset;
2190 }else{
2191 assert(aType);
2192 avail = 0;
2193 pC->aOffset = aOffset = &aType[nField];
2194 pC->payloadSize = payloadSize;
2195 pC->cacheStatus = p->cacheCtr;
2197 /* Figure out how many bytes are in the header */
2198 if( zRec ){
2199 zData = zRec;
2200 }else{
2201 if( pC->isIndex ){
2202 zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
2203 }else{
2204 zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
2206 /* If KeyFetch()/DataFetch() managed to get the entire payload,
2207 ** save the payload in the pC->aRow cache. That will save us from
2208 ** having to make additional calls to fetch the content portion of
2209 ** the record.
2211 assert( avail>=0 );
2212 if( payloadSize <= (u32)avail ){
2213 zRec = zData;
2214 pC->aRow = (u8*)zData;
2215 }else{
2216 pC->aRow = 0;
2219 /* The following assert is true in all cases accept when
2220 ** the database file has been corrupted externally.
2221 ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
2222 szHdr = getVarint32((u8*)zData, offset);
2224 /* Make sure a corrupt database has not given us an oversize header.
2225 ** Do this now to avoid an oversize memory allocation.
2227 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2228 ** types use so much data space that there can only be 4096 and 32 of
2229 ** them, respectively. So the maximum header length results from a
2230 ** 3-byte type for each of the maximum of 32768 columns plus three
2231 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2233 if( offset > 98307 ){
2234 rc = SQLITE_CORRUPT_BKPT;
2235 goto op_column_out;
2238 /* Compute in len the number of bytes of data we need to read in order
2239 ** to get nField type values. offset is an upper bound on this. But
2240 ** nField might be significantly less than the true number of columns
2241 ** in the table, and in that case, 5*nField+3 might be smaller than offset.
2242 ** We want to minimize len in order to limit the size of the memory
2243 ** allocation, especially if a corrupt database file has caused offset
2244 ** to be oversized. Offset is limited to 98307 above. But 98307 might
2245 ** still exceed Robson memory allocation limits on some configurations.
2246 ** On systems that cannot tolerate large memory allocations, nField*5+3
2247 ** will likely be much smaller since nField will likely be less than
2248 ** 20 or so. This insures that Robson memory allocation limits are
2249 ** not exceeded even for corrupt database files.
2251 len = nField*5 + 3;
2252 if( len > (int)offset ) len = (int)offset;
2254 /* The KeyFetch() or DataFetch() above are fast and will get the entire
2255 ** record header in most cases. But they will fail to get the complete
2256 ** record header if the record header does not fit on a single page
2257 ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
2258 ** acquire the complete header text.
2260 if( !zRec && avail<len ){
2261 sMem.flags = 0;
2262 sMem.db = 0;
2263 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem);
2264 if( rc!=SQLITE_OK ){
2265 goto op_column_out;
2267 zData = sMem.z;
2269 zEndHdr = (u8 *)&zData[len];
2270 zIdx = (u8 *)&zData[szHdr];
2272 /* Scan the header and use it to fill in the aType[] and aOffset[]
2273 ** arrays. aType[i] will contain the type integer for the i-th
2274 ** column and aOffset[i] will contain the offset from the beginning
2275 ** of the record to the start of the data for the i-th column
2277 for(i=0; i<nField; i++){
2278 if( zIdx<zEndHdr ){
2279 aOffset[i] = offset;
2280 zIdx += getVarint32(zIdx, aType[i]);
2281 szField = sqlite3VdbeSerialTypeLen(aType[i]);
2282 offset += szField;
2283 if( offset<szField ){ /* True if offset overflows */
2284 zIdx = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
2285 break;
2287 }else{
2288 /* If i is less that nField, then there are less fields in this
2289 ** record than SetNumColumns indicated there are columns in the
2290 ** table. Set the offset for any extra columns not present in
2291 ** the record to 0. This tells code below to store a NULL
2292 ** instead of deserializing a value from the record.
2294 aOffset[i] = 0;
2297 sqlite3VdbeMemRelease(&sMem);
2298 sMem.flags = MEM_Null;
2300 /* If we have read more header data than was contained in the header,
2301 ** or if the end of the last field appears to be past the end of the
2302 ** record, or if the end of the last field appears to be before the end
2303 ** of the record (when all fields present), then we must be dealing
2304 ** with a corrupt database.
2306 if( (zIdx > zEndHdr) || (offset > payloadSize)
2307 || (zIdx==zEndHdr && offset!=payloadSize) ){
2308 rc = SQLITE_CORRUPT_BKPT;
2309 goto op_column_out;
2313 /* Get the column information. If aOffset[p2] is non-zero, then
2314 ** deserialize the value from the record. If aOffset[p2] is zero,
2315 ** then there are not enough fields in the record to satisfy the
2316 ** request. In this case, set the value NULL or to P4 if P4 is
2317 ** a pointer to a Mem object.
2319 if( aOffset[p2] ){
2320 assert( rc==SQLITE_OK );
2321 if( zRec ){
2322 sqlite3VdbeMemReleaseExternal(pDest);
2323 sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
2324 }else{
2325 len = sqlite3VdbeSerialTypeLen(aType[p2]);
2326 sqlite3VdbeMemMove(&sMem, pDest);
2327 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex, &sMem);
2328 if( rc!=SQLITE_OK ){
2329 goto op_column_out;
2331 zData = sMem.z;
2332 sqlite3VdbeSerialGet((u8*)zData, aType[p2], pDest);
2334 pDest->enc = encoding;
2335 }else{
2336 if( pOp->p4type==P4_MEM ){
2337 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2338 }else{
2339 assert( pDest->flags&MEM_Null );
2343 /* If we dynamically allocated space to hold the data (in the
2344 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
2345 ** dynamically allocated space over to the pDest structure.
2346 ** This prevents a memory copy.
2348 if( sMem.zMalloc ){
2349 assert( sMem.z==sMem.zMalloc );
2350 assert( !(pDest->flags & MEM_Dyn) );
2351 assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
2352 pDest->flags &= ~(MEM_Ephem|MEM_Static);
2353 pDest->flags |= MEM_Term;
2354 pDest->z = sMem.z;
2355 pDest->zMalloc = sMem.zMalloc;
2358 rc = sqlite3VdbeMemMakeWriteable(pDest);
2360 op_column_out:
2361 UPDATE_MAX_BLOBSIZE(pDest);
2362 REGISTER_TRACE(pOp->p3, pDest);
2363 break;
2366 /* Opcode: Affinity P1 P2 * P4 *
2368 ** Apply affinities to a range of P2 registers starting with P1.
2370 ** P4 is a string that is P2 characters long. The nth character of the
2371 ** string indicates the column affinity that should be used for the nth
2372 ** memory cell in the range.
2374 case OP_Affinity: {
2375 const char *zAffinity; /* The affinity to be applied */
2376 char cAff; /* A single character of affinity */
2378 zAffinity = pOp->p4.z;
2379 assert( zAffinity!=0 );
2380 assert( zAffinity[pOp->p2]==0 );
2381 pIn1 = &aMem[pOp->p1];
2382 while( (cAff = *(zAffinity++))!=0 ){
2383 assert( pIn1 <= &p->aMem[p->nMem] );
2384 assert( memIsValid(pIn1) );
2385 ExpandBlob(pIn1);
2386 applyAffinity(pIn1, cAff, encoding);
2387 pIn1++;
2389 break;
2392 /* Opcode: MakeRecord P1 P2 P3 P4 *
2394 ** Convert P2 registers beginning with P1 into the [record format]
2395 ** use as a data record in a database table or as a key
2396 ** in an index. The OP_Column opcode can decode the record later.
2398 ** P4 may be a string that is P2 characters long. The nth character of the
2399 ** string indicates the column affinity that should be used for the nth
2400 ** field of the index key.
2402 ** The mapping from character to affinity is given by the SQLITE_AFF_
2403 ** macros defined in sqliteInt.h.
2405 ** If P4 is NULL then all index fields have the affinity NONE.
2407 case OP_MakeRecord: {
2408 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2409 Mem *pRec; /* The new record */
2410 u64 nData; /* Number of bytes of data space */
2411 int nHdr; /* Number of bytes of header space */
2412 i64 nByte; /* Data space required for this record */
2413 int nZero; /* Number of zero bytes at the end of the record */
2414 int nVarint; /* Number of bytes in a varint */
2415 u32 serial_type; /* Type field */
2416 Mem *pData0; /* First field to be combined into the record */
2417 Mem *pLast; /* Last field of the record */
2418 int nField; /* Number of fields in the record */
2419 char *zAffinity; /* The affinity string for the record */
2420 int file_format; /* File format to use for encoding */
2421 int i; /* Space used in zNewRecord[] */
2422 int len; /* Length of a field */
2424 /* Assuming the record contains N fields, the record format looks
2425 ** like this:
2427 ** ------------------------------------------------------------------------
2428 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2429 ** ------------------------------------------------------------------------
2431 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
2432 ** and so froth.
2434 ** Each type field is a varint representing the serial type of the
2435 ** corresponding data element (see sqlite3VdbeSerialType()). The
2436 ** hdr-size field is also a varint which is the offset from the beginning
2437 ** of the record to data0.
2439 nData = 0; /* Number of bytes of data space */
2440 nHdr = 0; /* Number of bytes of header space */
2441 nZero = 0; /* Number of zero bytes at the end of the record */
2442 nField = pOp->p1;
2443 zAffinity = pOp->p4.z;
2444 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 );
2445 pData0 = &aMem[nField];
2446 nField = pOp->p2;
2447 pLast = &pData0[nField-1];
2448 file_format = p->minWriteFileFormat;
2450 /* Identify the output register */
2451 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2452 pOut = &aMem[pOp->p3];
2453 memAboutToChange(p, pOut);
2455 /* Loop through the elements that will make up the record to figure
2456 ** out how much space is required for the new record.
2458 for(pRec=pData0; pRec<=pLast; pRec++){
2459 assert( memIsValid(pRec) );
2460 if( zAffinity ){
2461 applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
2463 if( pRec->flags&MEM_Zero && pRec->n>0 ){
2464 sqlite3VdbeMemExpandBlob(pRec);
2466 serial_type = sqlite3VdbeSerialType(pRec, file_format);
2467 len = sqlite3VdbeSerialTypeLen(serial_type);
2468 nData += len;
2469 nHdr += sqlite3VarintLen(serial_type);
2470 if( pRec->flags & MEM_Zero ){
2471 /* Only pure zero-filled BLOBs can be input to this Opcode.
2472 ** We do not allow blobs with a prefix and a zero-filled tail. */
2473 nZero += pRec->u.nZero;
2474 }else if( len ){
2475 nZero = 0;
2479 /* Add the initial header varint and total the size */
2480 nHdr += nVarint = sqlite3VarintLen(nHdr);
2481 if( nVarint<sqlite3VarintLen(nHdr) ){
2482 nHdr++;
2484 nByte = nHdr+nData-nZero;
2485 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
2486 goto too_big;
2489 /* Make sure the output register has a buffer large enough to store
2490 ** the new record. The output register (pOp->p3) is not allowed to
2491 ** be one of the input registers (because the following call to
2492 ** sqlite3VdbeMemGrow() could clobber the value before it is used).
2494 if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){
2495 goto no_mem;
2497 zNewRecord = (u8 *)pOut->z;
2499 /* Write the record */
2500 i = putVarint32(zNewRecord, nHdr);
2501 for(pRec=pData0; pRec<=pLast; pRec++){
2502 serial_type = sqlite3VdbeSerialType(pRec, file_format);
2503 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
2505 for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */
2506 i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
2508 assert( i==nByte );
2510 assert( pOp->p3>0 && pOp->p3<=p->nMem );
2511 pOut->n = (int)nByte;
2512 pOut->flags = MEM_Blob | MEM_Dyn;
2513 pOut->xDel = 0;
2514 if( nZero ){
2515 pOut->u.nZero = nZero;
2516 pOut->flags |= MEM_Zero;
2518 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
2519 REGISTER_TRACE(pOp->p3, pOut);
2520 UPDATE_MAX_BLOBSIZE(pOut);
2521 break;
2524 /* Opcode: Count P1 P2 * * *
2526 ** Store the number of entries (an integer value) in the table or index
2527 ** opened by cursor P1 in register P2
2529 #ifndef SQLITE_OMIT_BTREECOUNT
2530 case OP_Count: { /* out2-prerelease */
2531 i64 nEntry;
2532 BtCursor *pCrsr;
2534 pCrsr = p->apCsr[pOp->p1]->pCursor;
2535 if( pCrsr ){
2536 rc = sqlite3BtreeCount(pCrsr, &nEntry);
2537 }else{
2538 nEntry = 0;
2540 pOut->u.i = nEntry;
2541 break;
2543 #endif
2545 /* Opcode: Savepoint P1 * * P4 *
2547 ** Open, release or rollback the savepoint named by parameter P4, depending
2548 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2549 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2551 case OP_Savepoint: {
2552 int p1; /* Value of P1 operand */
2553 char *zName; /* Name of savepoint */
2554 int nName;
2555 Savepoint *pNew;
2556 Savepoint *pSavepoint;
2557 Savepoint *pTmp;
2558 int iSavepoint;
2559 int ii;
2561 p1 = pOp->p1;
2562 zName = pOp->p4.z;
2564 /* Assert that the p1 parameter is valid. Also that if there is no open
2565 ** transaction, then there cannot be any savepoints.
2567 assert( db->pSavepoint==0 || db->autoCommit==0 );
2568 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2569 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2570 assert( checkSavepointCount(db) );
2572 if( p1==SAVEPOINT_BEGIN ){
2573 if( db->writeVdbeCnt>0 ){
2574 /* A new savepoint cannot be created if there are active write
2575 ** statements (i.e. open read/write incremental blob handles).
2577 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
2578 "SQL statements in progress");
2579 rc = SQLITE_BUSY;
2580 }else{
2581 nName = sqlite3Strlen30(zName);
2583 /* Create a new savepoint structure. */
2584 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2585 if( pNew ){
2586 pNew->zName = (char *)&pNew[1];
2587 memcpy(pNew->zName, zName, nName+1);
2589 /* If there is no open transaction, then mark this as a special
2590 ** "transaction savepoint". */
2591 if( db->autoCommit ){
2592 db->autoCommit = 0;
2593 db->isTransactionSavepoint = 1;
2594 }else{
2595 db->nSavepoint++;
2598 /* Link the new savepoint into the database handle's list. */
2599 pNew->pNext = db->pSavepoint;
2600 db->pSavepoint = pNew;
2601 pNew->nDeferredCons = db->nDeferredCons;
2604 }else{
2605 iSavepoint = 0;
2607 /* Find the named savepoint. If there is no such savepoint, then an
2608 ** an error is returned to the user. */
2609 for(
2610 pSavepoint = db->pSavepoint;
2611 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
2612 pSavepoint = pSavepoint->pNext
2614 iSavepoint++;
2616 if( !pSavepoint ){
2617 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
2618 rc = SQLITE_ERROR;
2619 }else if(
2620 db->writeVdbeCnt>0 || (p1==SAVEPOINT_ROLLBACK && db->activeVdbeCnt>1)
2622 /* It is not possible to release (commit) a savepoint if there are
2623 ** active write statements. It is not possible to rollback a savepoint
2624 ** if there are any active statements at all.
2626 sqlite3SetString(&p->zErrMsg, db,
2627 "cannot %s savepoint - SQL statements in progress",
2628 (p1==SAVEPOINT_ROLLBACK ? "rollback": "release")
2630 rc = SQLITE_BUSY;
2631 }else{
2633 /* Determine whether or not this is a transaction savepoint. If so,
2634 ** and this is a RELEASE command, then the current transaction
2635 ** is committed.
2637 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2638 if( isTransaction && p1==SAVEPOINT_RELEASE ){
2639 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
2640 goto vdbe_return;
2642 db->autoCommit = 1;
2643 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2644 p->pc = pc;
2645 db->autoCommit = 0;
2646 p->rc = rc = SQLITE_BUSY;
2647 goto vdbe_return;
2649 db->isTransactionSavepoint = 0;
2650 rc = p->rc;
2651 }else{
2652 iSavepoint = db->nSavepoint - iSavepoint - 1;
2653 for(ii=0; ii<db->nDb; ii++){
2654 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2655 if( rc!=SQLITE_OK ){
2656 goto abort_due_to_error;
2659 if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
2660 sqlite3ExpirePreparedStatements(db);
2661 sqlite3ResetInternalSchema(db, -1);
2662 db->flags = (db->flags | SQLITE_InternChanges);
2666 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2667 ** savepoints nested inside of the savepoint being operated on. */
2668 while( db->pSavepoint!=pSavepoint ){
2669 pTmp = db->pSavepoint;
2670 db->pSavepoint = pTmp->pNext;
2671 sqlite3DbFree(db, pTmp);
2672 db->nSavepoint--;
2675 /* If it is a RELEASE, then destroy the savepoint being operated on
2676 ** too. If it is a ROLLBACK TO, then set the number of deferred
2677 ** constraint violations present in the database to the value stored
2678 ** when the savepoint was created. */
2679 if( p1==SAVEPOINT_RELEASE ){
2680 assert( pSavepoint==db->pSavepoint );
2681 db->pSavepoint = pSavepoint->pNext;
2682 sqlite3DbFree(db, pSavepoint);
2683 if( !isTransaction ){
2684 db->nSavepoint--;
2686 }else{
2687 db->nDeferredCons = pSavepoint->nDeferredCons;
2692 break;
2695 /* Opcode: AutoCommit P1 P2 * * *
2697 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
2698 ** back any currently active btree transactions. If there are any active
2699 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
2700 ** there are active writing VMs or active VMs that use shared cache.
2702 ** This instruction causes the VM to halt.
2704 case OP_AutoCommit: {
2705 int desiredAutoCommit;
2706 int iRollback;
2707 int turnOnAC;
2709 desiredAutoCommit = pOp->p1;
2710 iRollback = pOp->p2;
2711 turnOnAC = desiredAutoCommit && !db->autoCommit;
2712 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
2713 assert( desiredAutoCommit==1 || iRollback==0 );
2714 assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */
2716 if( turnOnAC && iRollback && db->activeVdbeCnt>1 ){
2717 /* If this instruction implements a ROLLBACK and other VMs are
2718 ** still running, and a transaction is active, return an error indicating
2719 ** that the other VMs must complete first.
2721 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
2722 "SQL statements in progress");
2723 rc = SQLITE_BUSY;
2724 }else if( turnOnAC && !iRollback && db->writeVdbeCnt>0 ){
2725 /* If this instruction implements a COMMIT and other VMs are writing
2726 ** return an error indicating that the other VMs must complete first.
2728 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
2729 "SQL statements in progress");
2730 rc = SQLITE_BUSY;
2731 }else if( desiredAutoCommit!=db->autoCommit ){
2732 if( iRollback ){
2733 assert( desiredAutoCommit==1 );
2734 sqlite3RollbackAll(db);
2735 db->autoCommit = 1;
2736 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
2737 goto vdbe_return;
2738 }else{
2739 db->autoCommit = (u8)desiredAutoCommit;
2740 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2741 p->pc = pc;
2742 db->autoCommit = (u8)(1-desiredAutoCommit);
2743 p->rc = rc = SQLITE_BUSY;
2744 goto vdbe_return;
2747 assert( db->nStatement==0 );
2748 sqlite3CloseSavepoints(db);
2749 if( p->rc==SQLITE_OK ){
2750 rc = SQLITE_DONE;
2751 }else{
2752 rc = SQLITE_ERROR;
2754 goto vdbe_return;
2755 }else{
2756 sqlite3SetString(&p->zErrMsg, db,
2757 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
2758 (iRollback)?"cannot rollback - no transaction is active":
2759 "cannot commit - no transaction is active"));
2761 rc = SQLITE_ERROR;
2763 break;
2766 /* Opcode: Transaction P1 P2 * * *
2768 ** Begin a transaction. The transaction ends when a Commit or Rollback
2769 ** opcode is encountered. Depending on the ON CONFLICT setting, the
2770 ** transaction might also be rolled back if an error is encountered.
2772 ** P1 is the index of the database file on which the transaction is
2773 ** started. Index 0 is the main database file and index 1 is the
2774 ** file used for temporary tables. Indices of 2 or more are used for
2775 ** attached databases.
2777 ** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
2778 ** obtained on the database file when a write-transaction is started. No
2779 ** other process can start another write transaction while this transaction is
2780 ** underway. Starting a write transaction also creates a rollback journal. A
2781 ** write transaction must be started before any changes can be made to the
2782 ** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
2783 ** on the file.
2785 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
2786 ** true (this flag is set if the Vdbe may modify more than one row and may
2787 ** throw an ABORT exception), a statement transaction may also be opened.
2788 ** More specifically, a statement transaction is opened iff the database
2789 ** connection is currently not in autocommit mode, or if there are other
2790 ** active statements. A statement transaction allows the affects of this
2791 ** VDBE to be rolled back after an error without having to roll back the
2792 ** entire transaction. If no error is encountered, the statement transaction
2793 ** will automatically commit when the VDBE halts.
2795 ** If P2 is zero, then a read-lock is obtained on the database file.
2797 case OP_Transaction: {
2798 Btree *pBt;
2800 assert( pOp->p1>=0 && pOp->p1<db->nDb );
2801 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
2802 pBt = db->aDb[pOp->p1].pBt;
2804 if( pBt ){
2805 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
2806 if( rc==SQLITE_BUSY ){
2807 p->pc = pc;
2808 p->rc = rc = SQLITE_BUSY;
2809 goto vdbe_return;
2811 if( rc!=SQLITE_OK ){
2812 goto abort_due_to_error;
2815 if( pOp->p2 && p->usesStmtJournal
2816 && (db->autoCommit==0 || db->activeVdbeCnt>1)
2818 assert( sqlite3BtreeIsInTrans(pBt) );
2819 if( p->iStatement==0 ){
2820 assert( db->nStatement>=0 && db->nSavepoint>=0 );
2821 db->nStatement++;
2822 p->iStatement = db->nSavepoint + db->nStatement;
2824 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
2826 /* Store the current value of the database handles deferred constraint
2827 ** counter. If the statement transaction needs to be rolled back,
2828 ** the value of this counter needs to be restored too. */
2829 p->nStmtDefCons = db->nDeferredCons;
2832 break;
2835 /* Opcode: ReadCookie P1 P2 P3 * *
2837 ** Read cookie number P3 from database P1 and write it into register P2.
2838 ** P3==1 is the schema version. P3==2 is the database format.
2839 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is
2840 ** the main database file and P1==1 is the database file used to store
2841 ** temporary tables.
2843 ** There must be a read-lock on the database (either a transaction
2844 ** must be started or there must be an open cursor) before
2845 ** executing this instruction.
2847 case OP_ReadCookie: { /* out2-prerelease */
2848 int iMeta;
2849 int iDb;
2850 int iCookie;
2852 iDb = pOp->p1;
2853 iCookie = pOp->p3;
2854 assert( pOp->p3<SQLITE_N_BTREE_META );
2855 assert( iDb>=0 && iDb<db->nDb );
2856 assert( db->aDb[iDb].pBt!=0 );
2857 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
2859 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
2860 pOut->u.i = iMeta;
2861 break;
2864 /* Opcode: SetCookie P1 P2 P3 * *
2866 ** Write the content of register P3 (interpreted as an integer)
2867 ** into cookie number P2 of database P1. P2==1 is the schema version.
2868 ** P2==2 is the database format. P2==3 is the recommended pager cache
2869 ** size, and so forth. P1==0 is the main database file and P1==1 is the
2870 ** database file used to store temporary tables.
2872 ** A transaction must be started before executing this opcode.
2874 case OP_SetCookie: { /* in3 */
2875 Db *pDb;
2876 assert( pOp->p2<SQLITE_N_BTREE_META );
2877 assert( pOp->p1>=0 && pOp->p1<db->nDb );
2878 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
2879 pDb = &db->aDb[pOp->p1];
2880 assert( pDb->pBt!=0 );
2881 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
2882 pIn3 = &aMem[pOp->p3];
2883 sqlite3VdbeMemIntegerify(pIn3);
2884 /* See note about index shifting on OP_ReadCookie */
2885 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
2886 if( pOp->p2==BTREE_SCHEMA_VERSION ){
2887 /* When the schema cookie changes, record the new cookie internally */
2888 pDb->pSchema->schema_cookie = (int)pIn3->u.i;
2889 db->flags |= SQLITE_InternChanges;
2890 }else if( pOp->p2==BTREE_FILE_FORMAT ){
2891 /* Record changes in the file format */
2892 pDb->pSchema->file_format = (u8)pIn3->u.i;
2894 if( pOp->p1==1 ){
2895 /* Invalidate all prepared statements whenever the TEMP database
2896 ** schema is changed. Ticket #1644 */
2897 sqlite3ExpirePreparedStatements(db);
2898 p->expired = 0;
2900 break;
2903 /* Opcode: VerifyCookie P1 P2 P3 * *
2905 ** Check the value of global database parameter number 0 (the
2906 ** schema version) and make sure it is equal to P2 and that the
2907 ** generation counter on the local schema parse equals P3.
2909 ** P1 is the database number which is 0 for the main database file
2910 ** and 1 for the file holding temporary tables and some higher number
2911 ** for auxiliary databases.
2913 ** The cookie changes its value whenever the database schema changes.
2914 ** This operation is used to detect when that the cookie has changed
2915 ** and that the current process needs to reread the schema.
2917 ** Either a transaction needs to have been started or an OP_Open needs
2918 ** to be executed (to establish a read lock) before this opcode is
2919 ** invoked.
2921 case OP_VerifyCookie: {
2922 int iMeta;
2923 int iGen;
2924 Btree *pBt;
2926 assert( pOp->p1>=0 && pOp->p1<db->nDb );
2927 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
2928 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
2929 pBt = db->aDb[pOp->p1].pBt;
2930 if( pBt ){
2931 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
2932 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
2933 }else{
2934 iGen = iMeta = 0;
2936 if( iMeta!=pOp->p2 || iGen!=pOp->p3 ){
2937 sqlite3DbFree(db, p->zErrMsg);
2938 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
2939 /* If the schema-cookie from the database file matches the cookie
2940 ** stored with the in-memory representation of the schema, do
2941 ** not reload the schema from the database file.
2943 ** If virtual-tables are in use, this is not just an optimization.
2944 ** Often, v-tables store their data in other SQLite tables, which
2945 ** are queried from within xNext() and other v-table methods using
2946 ** prepared queries. If such a query is out-of-date, we do not want to
2947 ** discard the database schema, as the user code implementing the
2948 ** v-table would have to be ready for the sqlite3_vtab structure itself
2949 ** to be invalidated whenever sqlite3_step() is called from within
2950 ** a v-table method.
2952 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
2953 sqlite3ResetInternalSchema(db, pOp->p1);
2956 p->expired = 1;
2957 rc = SQLITE_SCHEMA;
2959 break;
2962 /* Opcode: OpenRead P1 P2 P3 P4 P5
2964 ** Open a read-only cursor for the database table whose root page is
2965 ** P2 in a database file. The database file is determined by P3.
2966 ** P3==0 means the main database, P3==1 means the database used for
2967 ** temporary tables, and P3>1 means used the corresponding attached
2968 ** database. Give the new cursor an identifier of P1. The P1
2969 ** values need not be contiguous but all P1 values should be small integers.
2970 ** It is an error for P1 to be negative.
2972 ** If P5!=0 then use the content of register P2 as the root page, not
2973 ** the value of P2 itself.
2975 ** There will be a read lock on the database whenever there is an
2976 ** open cursor. If the database was unlocked prior to this instruction
2977 ** then a read lock is acquired as part of this instruction. A read
2978 ** lock allows other processes to read the database but prohibits
2979 ** any other process from modifying the database. The read lock is
2980 ** released when all cursors are closed. If this instruction attempts
2981 ** to get a read lock but fails, the script terminates with an
2982 ** SQLITE_BUSY error code.
2984 ** The P4 value may be either an integer (P4_INT32) or a pointer to
2985 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
2986 ** structure, then said structure defines the content and collating
2987 ** sequence of the index being opened. Otherwise, if P4 is an integer
2988 ** value, it is set to the number of columns in the table.
2990 ** See also OpenWrite.
2992 /* Opcode: OpenWrite P1 P2 P3 P4 P5
2994 ** Open a read/write cursor named P1 on the table or index whose root
2995 ** page is P2. Or if P5!=0 use the content of register P2 to find the
2996 ** root page.
2998 ** The P4 value may be either an integer (P4_INT32) or a pointer to
2999 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3000 ** structure, then said structure defines the content and collating
3001 ** sequence of the index being opened. Otherwise, if P4 is an integer
3002 ** value, it is set to the number of columns in the table, or to the
3003 ** largest index of any column of the table that is actually used.
3005 ** This instruction works just like OpenRead except that it opens the cursor
3006 ** in read/write mode. For a given table, there can be one or more read-only
3007 ** cursors or a single read/write cursor but not both.
3009 ** See also OpenRead.
3011 case OP_OpenRead:
3012 case OP_OpenWrite: {
3013 int nField;
3014 KeyInfo *pKeyInfo;
3015 int p2;
3016 int iDb;
3017 int wrFlag;
3018 Btree *pX;
3019 VdbeCursor *pCur;
3020 Db *pDb;
3022 if( p->expired ){
3023 rc = SQLITE_ABORT;
3024 break;
3027 nField = 0;
3028 pKeyInfo = 0;
3029 p2 = pOp->p2;
3030 iDb = pOp->p3;
3031 assert( iDb>=0 && iDb<db->nDb );
3032 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
3033 pDb = &db->aDb[iDb];
3034 pX = pDb->pBt;
3035 assert( pX!=0 );
3036 if( pOp->opcode==OP_OpenWrite ){
3037 wrFlag = 1;
3038 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3039 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3040 p->minWriteFileFormat = pDb->pSchema->file_format;
3042 }else{
3043 wrFlag = 0;
3045 if( pOp->p5 ){
3046 assert( p2>0 );
3047 assert( p2<=p->nMem );
3048 pIn2 = &aMem[p2];
3049 assert( memIsValid(pIn2) );
3050 assert( (pIn2->flags & MEM_Int)!=0 );
3051 sqlite3VdbeMemIntegerify(pIn2);
3052 p2 = (int)pIn2->u.i;
3053 /* The p2 value always comes from a prior OP_CreateTable opcode and
3054 ** that opcode will always set the p2 value to 2 or more or else fail.
3055 ** If there were a failure, the prepared statement would have halted
3056 ** before reaching this instruction. */
3057 if( NEVER(p2<2) ) {
3058 rc = SQLITE_CORRUPT_BKPT;
3059 goto abort_due_to_error;
3062 if( pOp->p4type==P4_KEYINFO ){
3063 pKeyInfo = pOp->p4.pKeyInfo;
3064 pKeyInfo->enc = ENC(p->db);
3065 nField = pKeyInfo->nField+1;
3066 }else if( pOp->p4type==P4_INT32 ){
3067 nField = pOp->p4.i;
3069 assert( pOp->p1>=0 );
3070 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
3071 if( pCur==0 ) goto no_mem;
3072 pCur->nullRow = 1;
3073 pCur->isOrdered = 1;
3074 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
3075 pCur->pKeyInfo = pKeyInfo;
3077 /* Since it performs no memory allocation or IO, the only values that
3078 ** sqlite3BtreeCursor() may return are SQLITE_EMPTY and SQLITE_OK.
3079 ** SQLITE_EMPTY is only returned when attempting to open the table
3080 ** rooted at page 1 of a zero-byte database. */
3081 assert( rc==SQLITE_EMPTY || rc==SQLITE_OK );
3082 if( rc==SQLITE_EMPTY ){
3083 pCur->pCursor = 0;
3084 rc = SQLITE_OK;
3087 /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
3088 ** SQLite used to check if the root-page flags were sane at this point
3089 ** and report database corruption if they were not, but this check has
3090 ** since moved into the btree layer. */
3091 pCur->isTable = pOp->p4type!=P4_KEYINFO;
3092 pCur->isIndex = !pCur->isTable;
3093 break;
3096 /* Opcode: OpenEphemeral P1 P2 * P4 *
3098 ** Open a new cursor P1 to a transient table.
3099 ** The cursor is always opened read/write even if
3100 ** the main database is read-only. The ephemeral
3101 ** table is deleted automatically when the cursor is closed.
3103 ** P2 is the number of columns in the ephemeral table.
3104 ** The cursor points to a BTree table if P4==0 and to a BTree index
3105 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
3106 ** that defines the format of keys in the index.
3108 ** This opcode was once called OpenTemp. But that created
3109 ** confusion because the term "temp table", might refer either
3110 ** to a TEMP table at the SQL level, or to a table opened by
3111 ** this opcode. Then this opcode was call OpenVirtual. But
3112 ** that created confusion with the whole virtual-table idea.
3114 /* Opcode: OpenAutoindex P1 P2 * P4 *
3116 ** This opcode works the same as OP_OpenEphemeral. It has a
3117 ** different name to distinguish its use. Tables created using
3118 ** by this opcode will be used for automatically created transient
3119 ** indices in joins.
3121 case OP_OpenAutoindex:
3122 case OP_OpenEphemeral: {
3123 VdbeCursor *pCx;
3124 static const int vfsFlags =
3125 SQLITE_OPEN_READWRITE |
3126 SQLITE_OPEN_CREATE |
3127 SQLITE_OPEN_EXCLUSIVE |
3128 SQLITE_OPEN_DELETEONCLOSE |
3129 SQLITE_OPEN_TRANSIENT_DB;
3131 assert( pOp->p1>=0 );
3132 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3133 if( pCx==0 ) goto no_mem;
3134 pCx->nullRow = 1;
3135 rc = sqlite3BtreeOpen(0, db, &pCx->pBt,
3136 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
3137 if( rc==SQLITE_OK ){
3138 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
3140 if( rc==SQLITE_OK ){
3141 /* If a transient index is required, create it by calling
3142 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3143 ** opening it. If a transient table is required, just use the
3144 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3146 if( pOp->p4.pKeyInfo ){
3147 int pgno;
3148 assert( pOp->p4type==P4_KEYINFO );
3149 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY);
3150 if( rc==SQLITE_OK ){
3151 assert( pgno==MASTER_ROOT+1 );
3152 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1,
3153 (KeyInfo*)pOp->p4.z, pCx->pCursor);
3154 pCx->pKeyInfo = pOp->p4.pKeyInfo;
3155 pCx->pKeyInfo->enc = ENC(p->db);
3157 pCx->isTable = 0;
3158 }else{
3159 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
3160 pCx->isTable = 1;
3163 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
3164 pCx->isIndex = !pCx->isTable;
3165 break;
3168 /* Opcode: OpenPseudo P1 P2 P3 * *
3170 ** Open a new cursor that points to a fake table that contains a single
3171 ** row of data. The content of that one row in the content of memory
3172 ** register P2. In other words, cursor P1 becomes an alias for the
3173 ** MEM_Blob content contained in register P2.
3175 ** A pseudo-table created by this opcode is used to hold a single
3176 ** row output from the sorter so that the row can be decomposed into
3177 ** individual columns using the OP_Column opcode. The OP_Column opcode
3178 ** is the only cursor opcode that works with a pseudo-table.
3180 ** P3 is the number of fields in the records that will be stored by
3181 ** the pseudo-table.
3183 case OP_OpenPseudo: {
3184 VdbeCursor *pCx;
3186 assert( pOp->p1>=0 );
3187 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
3188 if( pCx==0 ) goto no_mem;
3189 pCx->nullRow = 1;
3190 pCx->pseudoTableReg = pOp->p2;
3191 pCx->isTable = 1;
3192 pCx->isIndex = 0;
3193 break;
3196 /* Opcode: Close P1 * * * *
3198 ** Close a cursor previously opened as P1. If P1 is not
3199 ** currently open, this instruction is a no-op.
3201 case OP_Close: {
3202 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3203 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3204 p->apCsr[pOp->p1] = 0;
3205 break;
3208 /* Opcode: SeekGe P1 P2 P3 P4 *
3210 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3211 ** use the value in register P3 as the key. If cursor P1 refers
3212 ** to an SQL index, then P3 is the first in an array of P4 registers
3213 ** that are used as an unpacked index key.
3215 ** Reposition cursor P1 so that it points to the smallest entry that
3216 ** is greater than or equal to the key value. If there are no records
3217 ** greater than or equal to the key and P2 is not zero, then jump to P2.
3219 ** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
3221 /* Opcode: SeekGt P1 P2 P3 P4 *
3223 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3224 ** use the value in register P3 as a key. If cursor P1 refers
3225 ** to an SQL index, then P3 is the first in an array of P4 registers
3226 ** that are used as an unpacked index key.
3228 ** Reposition cursor P1 so that it points to the smallest entry that
3229 ** is greater than the key value. If there are no records greater than
3230 ** the key and P2 is not zero, then jump to P2.
3232 ** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
3234 /* Opcode: SeekLt P1 P2 P3 P4 *
3236 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3237 ** use the value in register P3 as a key. If cursor P1 refers
3238 ** to an SQL index, then P3 is the first in an array of P4 registers
3239 ** that are used as an unpacked index key.
3241 ** Reposition cursor P1 so that it points to the largest entry that
3242 ** is less than the key value. If there are no records less than
3243 ** the key and P2 is not zero, then jump to P2.
3245 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
3247 /* Opcode: SeekLe P1 P2 P3 P4 *
3249 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3250 ** use the value in register P3 as a key. If cursor P1 refers
3251 ** to an SQL index, then P3 is the first in an array of P4 registers
3252 ** that are used as an unpacked index key.
3254 ** Reposition cursor P1 so that it points to the largest entry that
3255 ** is less than or equal to the key value. If there are no records
3256 ** less than or equal to the key and P2 is not zero, then jump to P2.
3258 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
3260 case OP_SeekLt: /* jump, in3 */
3261 case OP_SeekLe: /* jump, in3 */
3262 case OP_SeekGe: /* jump, in3 */
3263 case OP_SeekGt: { /* jump, in3 */
3264 int res;
3265 int oc;
3266 VdbeCursor *pC;
3267 UnpackedRecord r;
3268 int nField;
3269 i64 iKey; /* The rowid we are to seek to */
3271 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3272 assert( pOp->p2!=0 );
3273 pC = p->apCsr[pOp->p1];
3274 assert( pC!=0 );
3275 assert( pC->pseudoTableReg==0 );
3276 assert( OP_SeekLe == OP_SeekLt+1 );
3277 assert( OP_SeekGe == OP_SeekLt+2 );
3278 assert( OP_SeekGt == OP_SeekLt+3 );
3279 assert( pC->isOrdered );
3280 if( pC->pCursor!=0 ){
3281 oc = pOp->opcode;
3282 pC->nullRow = 0;
3283 if( pC->isTable ){
3284 /* The input value in P3 might be of any type: integer, real, string,
3285 ** blob, or NULL. But it needs to be an integer before we can do
3286 ** the seek, so covert it. */
3287 pIn3 = &aMem[pOp->p3];
3288 applyNumericAffinity(pIn3);
3289 iKey = sqlite3VdbeIntValue(pIn3);
3290 pC->rowidIsValid = 0;
3292 /* If the P3 value could not be converted into an integer without
3293 ** loss of information, then special processing is required... */
3294 if( (pIn3->flags & MEM_Int)==0 ){
3295 if( (pIn3->flags & MEM_Real)==0 ){
3296 /* If the P3 value cannot be converted into any kind of a number,
3297 ** then the seek is not possible, so jump to P2 */
3298 pc = pOp->p2 - 1;
3299 break;
3301 /* If we reach this point, then the P3 value must be a floating
3302 ** point number. */
3303 assert( (pIn3->flags & MEM_Real)!=0 );
3305 if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){
3306 /* The P3 value is too large in magnitude to be expressed as an
3307 ** integer. */
3308 res = 1;
3309 if( pIn3->r<0 ){
3310 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
3311 rc = sqlite3BtreeFirst(pC->pCursor, &res);
3312 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3314 }else{
3315 if( oc<=OP_SeekLe ){ assert( oc==OP_SeekLt || oc==OP_SeekLe );
3316 rc = sqlite3BtreeLast(pC->pCursor, &res);
3317 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3320 if( res ){
3321 pc = pOp->p2 - 1;
3323 break;
3324 }else if( oc==OP_SeekLt || oc==OP_SeekGe ){
3325 /* Use the ceiling() function to convert real->int */
3326 if( pIn3->r > (double)iKey ) iKey++;
3327 }else{
3328 /* Use the floor() function to convert real->int */
3329 assert( oc==OP_SeekLe || oc==OP_SeekGt );
3330 if( pIn3->r < (double)iKey ) iKey--;
3333 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
3334 if( rc!=SQLITE_OK ){
3335 goto abort_due_to_error;
3337 if( res==0 ){
3338 pC->rowidIsValid = 1;
3339 pC->lastRowid = iKey;
3341 }else{
3342 nField = pOp->p4.i;
3343 assert( pOp->p4type==P4_INT32 );
3344 assert( nField>0 );
3345 r.pKeyInfo = pC->pKeyInfo;
3346 r.nField = (u16)nField;
3348 /* The next line of code computes as follows, only faster:
3349 ** if( oc==OP_SeekGt || oc==OP_SeekLe ){
3350 ** r.flags = UNPACKED_INCRKEY;
3351 ** }else{
3352 ** r.flags = 0;
3353 ** }
3355 r.flags = (u16)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt)));
3356 assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY );
3357 assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY );
3358 assert( oc!=OP_SeekGe || r.flags==0 );
3359 assert( oc!=OP_SeekLt || r.flags==0 );
3361 r.aMem = &aMem[pOp->p3];
3362 #ifdef SQLITE_DEBUG
3363 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3364 #endif
3365 ExpandBlob(r.aMem);
3366 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
3367 if( rc!=SQLITE_OK ){
3368 goto abort_due_to_error;
3370 pC->rowidIsValid = 0;
3372 pC->deferredMoveto = 0;
3373 pC->cacheStatus = CACHE_STALE;
3374 #ifdef SQLITE_TEST
3375 sqlite3_search_count++;
3376 #endif
3377 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
3378 if( res<0 || (res==0 && oc==OP_SeekGt) ){
3379 rc = sqlite3BtreeNext(pC->pCursor, &res);
3380 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3381 pC->rowidIsValid = 0;
3382 }else{
3383 res = 0;
3385 }else{
3386 assert( oc==OP_SeekLt || oc==OP_SeekLe );
3387 if( res>0 || (res==0 && oc==OP_SeekLt) ){
3388 rc = sqlite3BtreePrevious(pC->pCursor, &res);
3389 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3390 pC->rowidIsValid = 0;
3391 }else{
3392 /* res might be negative because the table is empty. Check to
3393 ** see if this is the case.
3395 res = sqlite3BtreeEof(pC->pCursor);
3398 assert( pOp->p2>0 );
3399 if( res ){
3400 pc = pOp->p2 - 1;
3402 }else{
3403 /* This happens when attempting to open the sqlite3_master table
3404 ** for read access returns SQLITE_EMPTY. In this case always
3405 ** take the jump (since there are no records in the table).
3407 pc = pOp->p2 - 1;
3409 break;
3412 /* Opcode: Seek P1 P2 * * *
3414 ** P1 is an open table cursor and P2 is a rowid integer. Arrange
3415 ** for P1 to move so that it points to the rowid given by P2.
3417 ** This is actually a deferred seek. Nothing actually happens until
3418 ** the cursor is used to read a record. That way, if no reads
3419 ** occur, no unnecessary I/O happens.
3421 case OP_Seek: { /* in2 */
3422 VdbeCursor *pC;
3424 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3425 pC = p->apCsr[pOp->p1];
3426 assert( pC!=0 );
3427 if( ALWAYS(pC->pCursor!=0) ){
3428 assert( pC->isTable );
3429 pC->nullRow = 0;
3430 pIn2 = &aMem[pOp->p2];
3431 pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
3432 pC->rowidIsValid = 0;
3433 pC->deferredMoveto = 1;
3435 break;
3439 /* Opcode: Found P1 P2 P3 P4 *
3441 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3442 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3443 ** record.
3445 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
3446 ** is a prefix of any entry in P1 then a jump is made to P2 and
3447 ** P1 is left pointing at the matching entry.
3449 /* Opcode: NotFound P1 P2 P3 P4 *
3451 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3452 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3453 ** record.
3455 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
3456 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3457 ** does contain an entry whose prefix matches the P3/P4 record then control
3458 ** falls through to the next instruction and P1 is left pointing at the
3459 ** matching entry.
3461 ** See also: Found, NotExists, IsUnique
3463 case OP_NotFound: /* jump, in3 */
3464 case OP_Found: { /* jump, in3 */
3465 int alreadyExists;
3466 VdbeCursor *pC;
3467 int res;
3468 UnpackedRecord *pIdxKey;
3469 UnpackedRecord r;
3470 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
3472 #ifdef SQLITE_TEST
3473 sqlite3_found_count++;
3474 #endif
3476 alreadyExists = 0;
3477 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3478 assert( pOp->p4type==P4_INT32 );
3479 pC = p->apCsr[pOp->p1];
3480 assert( pC!=0 );
3481 pIn3 = &aMem[pOp->p3];
3482 if( ALWAYS(pC->pCursor!=0) ){
3484 assert( pC->isTable==0 );
3485 if( pOp->p4.i>0 ){
3486 r.pKeyInfo = pC->pKeyInfo;
3487 r.nField = (u16)pOp->p4.i;
3488 r.aMem = pIn3;
3489 #ifdef SQLITE_DEBUG
3490 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3491 #endif
3492 r.flags = UNPACKED_PREFIX_MATCH;
3493 pIdxKey = &r;
3494 }else{
3495 assert( pIn3->flags & MEM_Blob );
3496 assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */
3497 pIdxKey = sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z,
3498 aTempRec, sizeof(aTempRec));
3499 if( pIdxKey==0 ){
3500 goto no_mem;
3502 pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
3504 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
3505 if( pOp->p4.i==0 ){
3506 sqlite3VdbeDeleteUnpackedRecord(pIdxKey);
3508 if( rc!=SQLITE_OK ){
3509 break;
3511 alreadyExists = (res==0);
3512 pC->deferredMoveto = 0;
3513 pC->cacheStatus = CACHE_STALE;
3515 if( pOp->opcode==OP_Found ){
3516 if( alreadyExists ) pc = pOp->p2 - 1;
3517 }else{
3518 if( !alreadyExists ) pc = pOp->p2 - 1;
3520 break;
3523 /* Opcode: IsUnique P1 P2 P3 P4 *
3525 ** Cursor P1 is open on an index b-tree - that is to say, a btree which
3526 ** no data and where the key are records generated by OP_MakeRecord with
3527 ** the list field being the integer ROWID of the entry that the index
3528 ** entry refers to.
3530 ** The P3 register contains an integer record number. Call this record
3531 ** number R. Register P4 is the first in a set of N contiguous registers
3532 ** that make up an unpacked index key that can be used with cursor P1.
3533 ** The value of N can be inferred from the cursor. N includes the rowid
3534 ** value appended to the end of the index record. This rowid value may
3535 ** or may not be the same as R.
3537 ** If any of the N registers beginning with register P4 contains a NULL
3538 ** value, jump immediately to P2.
3540 ** Otherwise, this instruction checks if cursor P1 contains an entry
3541 ** where the first (N-1) fields match but the rowid value at the end
3542 ** of the index entry is not R. If there is no such entry, control jumps
3543 ** to instruction P2. Otherwise, the rowid of the conflicting index
3544 ** entry is copied to register P3 and control falls through to the next
3545 ** instruction.
3547 ** See also: NotFound, NotExists, Found
3549 case OP_IsUnique: { /* jump, in3 */
3550 u16 ii;
3551 VdbeCursor *pCx;
3552 BtCursor *pCrsr;
3553 u16 nField;
3554 Mem *aMx;
3555 UnpackedRecord r; /* B-Tree index search key */
3556 i64 R; /* Rowid stored in register P3 */
3558 pIn3 = &aMem[pOp->p3];
3559 aMx = &aMem[pOp->p4.i];
3560 /* Assert that the values of parameters P1 and P4 are in range. */
3561 assert( pOp->p4type==P4_INT32 );
3562 assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
3563 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3565 /* Find the index cursor. */
3566 pCx = p->apCsr[pOp->p1];
3567 assert( pCx->deferredMoveto==0 );
3568 pCx->seekResult = 0;
3569 pCx->cacheStatus = CACHE_STALE;
3570 pCrsr = pCx->pCursor;
3572 /* If any of the values are NULL, take the jump. */
3573 nField = pCx->pKeyInfo->nField;
3574 for(ii=0; ii<nField; ii++){
3575 if( aMx[ii].flags & MEM_Null ){
3576 pc = pOp->p2 - 1;
3577 pCrsr = 0;
3578 break;
3581 assert( (aMx[nField].flags & MEM_Null)==0 );
3583 if( pCrsr!=0 ){
3584 /* Populate the index search key. */
3585 r.pKeyInfo = pCx->pKeyInfo;
3586 r.nField = nField + 1;
3587 r.flags = UNPACKED_PREFIX_SEARCH;
3588 r.aMem = aMx;
3589 #ifdef SQLITE_DEBUG
3590 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3591 #endif
3593 /* Extract the value of R from register P3. */
3594 sqlite3VdbeMemIntegerify(pIn3);
3595 R = pIn3->u.i;
3597 /* Search the B-Tree index. If no conflicting record is found, jump
3598 ** to P2. Otherwise, copy the rowid of the conflicting record to
3599 ** register P3 and fall through to the next instruction. */
3600 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult);
3601 if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){
3602 pc = pOp->p2 - 1;
3603 }else{
3604 pIn3->u.i = r.rowid;
3607 break;
3610 /* Opcode: NotExists P1 P2 P3 * *
3612 ** Use the content of register P3 as a integer key. If a record
3613 ** with that key does not exist in table of P1, then jump to P2.
3614 ** If the record does exist, then fall through. The cursor is left
3615 ** pointing to the record if it exists.
3617 ** The difference between this operation and NotFound is that this
3618 ** operation assumes the key is an integer and that P1 is a table whereas
3619 ** NotFound assumes key is a blob constructed from MakeRecord and
3620 ** P1 is an index.
3622 ** See also: Found, NotFound, IsUnique
3624 case OP_NotExists: { /* jump, in3 */
3625 VdbeCursor *pC;
3626 BtCursor *pCrsr;
3627 int res;
3628 u64 iKey;
3630 pIn3 = &aMem[pOp->p3];
3631 assert( pIn3->flags & MEM_Int );
3632 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3633 pC = p->apCsr[pOp->p1];
3634 assert( pC!=0 );
3635 assert( pC->isTable );
3636 assert( pC->pseudoTableReg==0 );
3637 pCrsr = pC->pCursor;
3638 if( pCrsr!=0 ){
3639 res = 0;
3640 iKey = pIn3->u.i;
3641 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
3642 pC->lastRowid = pIn3->u.i;
3643 pC->rowidIsValid = res==0 ?1:0;
3644 pC->nullRow = 0;
3645 pC->cacheStatus = CACHE_STALE;
3646 pC->deferredMoveto = 0;
3647 if( res!=0 ){
3648 pc = pOp->p2 - 1;
3649 assert( pC->rowidIsValid==0 );
3651 pC->seekResult = res;
3652 }else{
3653 /* This happens when an attempt to open a read cursor on the
3654 ** sqlite_master table returns SQLITE_EMPTY.
3656 pc = pOp->p2 - 1;
3657 assert( pC->rowidIsValid==0 );
3658 pC->seekResult = 0;
3660 break;
3663 /* Opcode: Sequence P1 P2 * * *
3665 ** Find the next available sequence number for cursor P1.
3666 ** Write the sequence number into register P2.
3667 ** The sequence number on the cursor is incremented after this
3668 ** instruction.
3670 case OP_Sequence: { /* out2-prerelease */
3671 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3672 assert( p->apCsr[pOp->p1]!=0 );
3673 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
3674 break;
3678 /* Opcode: NewRowid P1 P2 P3 * *
3680 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
3681 ** The record number is not previously used as a key in the database
3682 ** table that cursor P1 points to. The new record number is written
3683 ** written to register P2.
3685 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3686 ** the largest previously generated record number. No new record numbers are
3687 ** allowed to be less than this value. When this value reaches its maximum,
3688 ** a SQLITE_FULL error is generated. The P3 register is updated with the '
3689 ** generated record number. This P3 mechanism is used to help implement the
3690 ** AUTOINCREMENT feature.
3692 case OP_NewRowid: { /* out2-prerelease */
3693 i64 v; /* The new rowid */
3694 VdbeCursor *pC; /* Cursor of table to get the new rowid */
3695 int res; /* Result of an sqlite3BtreeLast() */
3696 int cnt; /* Counter to limit the number of searches */
3697 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
3698 VdbeFrame *pFrame; /* Root frame of VDBE */
3700 v = 0;
3701 res = 0;
3702 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3703 pC = p->apCsr[pOp->p1];
3704 assert( pC!=0 );
3705 if( NEVER(pC->pCursor==0) ){
3706 /* The zero initialization above is all that is needed */
3707 }else{
3708 /* The next rowid or record number (different terms for the same
3709 ** thing) is obtained in a two-step algorithm.
3711 ** First we attempt to find the largest existing rowid and add one
3712 ** to that. But if the largest existing rowid is already the maximum
3713 ** positive integer, we have to fall through to the second
3714 ** probabilistic algorithm
3716 ** The second algorithm is to select a rowid at random and see if
3717 ** it already exists in the table. If it does not exist, we have
3718 ** succeeded. If the random rowid does exist, we select a new one
3719 ** and try again, up to 100 times.
3721 assert( pC->isTable );
3723 #ifdef SQLITE_32BIT_ROWID
3724 # define MAX_ROWID 0x7fffffff
3725 #else
3726 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3727 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
3728 ** to provide the constant while making all compilers happy.
3730 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
3731 #endif
3733 if( !pC->useRandomRowid ){
3734 v = sqlite3BtreeGetCachedRowid(pC->pCursor);
3735 if( v==0 ){
3736 rc = sqlite3BtreeLast(pC->pCursor, &res);
3737 if( rc!=SQLITE_OK ){
3738 goto abort_due_to_error;
3740 if( res ){
3741 v = 1; /* IMP: R-61914-48074 */
3742 }else{
3743 assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
3744 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
3745 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
3746 if( v==MAX_ROWID ){
3747 pC->useRandomRowid = 1;
3748 }else{
3749 v++; /* IMP: R-29538-34987 */
3754 #ifndef SQLITE_OMIT_AUTOINCREMENT
3755 if( pOp->p3 ){
3756 /* Assert that P3 is a valid memory cell. */
3757 assert( pOp->p3>0 );
3758 if( p->pFrame ){
3759 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
3760 /* Assert that P3 is a valid memory cell. */
3761 assert( pOp->p3<=pFrame->nMem );
3762 pMem = &pFrame->aMem[pOp->p3];
3763 }else{
3764 /* Assert that P3 is a valid memory cell. */
3765 assert( pOp->p3<=p->nMem );
3766 pMem = &aMem[pOp->p3];
3767 memAboutToChange(p, pMem);
3769 assert( memIsValid(pMem) );
3771 REGISTER_TRACE(pOp->p3, pMem);
3772 sqlite3VdbeMemIntegerify(pMem);
3773 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
3774 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
3775 rc = SQLITE_FULL; /* IMP: R-12275-61338 */
3776 goto abort_due_to_error;
3778 if( v<pMem->u.i+1 ){
3779 v = pMem->u.i + 1;
3781 pMem->u.i = v;
3783 #endif
3785 sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0);
3787 if( pC->useRandomRowid ){
3788 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
3789 ** largest possible integer (9223372036854775807) then the database
3790 ** engine starts picking positive candidate ROWIDs at random until
3791 ** it finds one that is not previously used. */
3792 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
3793 ** an AUTOINCREMENT table. */
3794 /* on the first attempt, simply do one more than previous */
3795 v = db->lastRowid;
3796 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
3797 v++; /* ensure non-zero */
3798 cnt = 0;
3799 while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
3800 0, &res))==SQLITE_OK)
3801 && (res==0)
3802 && (++cnt<100)){
3803 /* collision - try another random rowid */
3804 sqlite3_randomness(sizeof(v), &v);
3805 if( cnt<5 ){
3806 /* try "small" random rowids for the initial attempts */
3807 v &= 0xffffff;
3808 }else{
3809 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
3811 v++; /* ensure non-zero */
3813 if( rc==SQLITE_OK && res==0 ){
3814 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
3815 goto abort_due_to_error;
3817 assert( v>0 ); /* EV: R-40812-03570 */
3819 pC->rowidIsValid = 0;
3820 pC->deferredMoveto = 0;
3821 pC->cacheStatus = CACHE_STALE;
3823 pOut->u.i = v;
3824 break;
3827 /* Opcode: Insert P1 P2 P3 P4 P5
3829 ** Write an entry into the table of cursor P1. A new entry is
3830 ** created if it doesn't already exist or the data for an existing
3831 ** entry is overwritten. The data is the value MEM_Blob stored in register
3832 ** number P2. The key is stored in register P3. The key must
3833 ** be a MEM_Int.
3835 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
3836 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
3837 ** then rowid is stored for subsequent return by the
3838 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
3840 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
3841 ** the last seek operation (OP_NotExists) was a success, then this
3842 ** operation will not attempt to find the appropriate row before doing
3843 ** the insert but will instead overwrite the row that the cursor is
3844 ** currently pointing to. Presumably, the prior OP_NotExists opcode
3845 ** has already positioned the cursor correctly. This is an optimization
3846 ** that boosts performance by avoiding redundant seeks.
3848 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
3849 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode
3850 ** is part of an INSERT operation. The difference is only important to
3851 ** the update hook.
3853 ** Parameter P4 may point to a string containing the table-name, or
3854 ** may be NULL. If it is not NULL, then the update-hook
3855 ** (sqlite3.xUpdateCallback) is invoked following a successful insert.
3857 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
3858 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
3859 ** and register P2 becomes ephemeral. If the cursor is changed, the
3860 ** value of register P2 will then change. Make sure this does not
3861 ** cause any problems.)
3863 ** This instruction only works on tables. The equivalent instruction
3864 ** for indices is OP_IdxInsert.
3866 /* Opcode: InsertInt P1 P2 P3 P4 P5
3868 ** This works exactly like OP_Insert except that the key is the
3869 ** integer value P3, not the value of the integer stored in register P3.
3871 case OP_Insert:
3872 case OP_InsertInt: {
3873 Mem *pData; /* MEM cell holding data for the record to be inserted */
3874 Mem *pKey; /* MEM cell holding key for the record */
3875 i64 iKey; /* The integer ROWID or key for the record to be inserted */
3876 VdbeCursor *pC; /* Cursor to table into which insert is written */
3877 int nZero; /* Number of zero-bytes to append */
3878 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
3879 const char *zDb; /* database name - used by the update hook */
3880 const char *zTbl; /* Table name - used by the opdate hook */
3881 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
3883 pData = &aMem[pOp->p2];
3884 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3885 assert( memIsValid(pData) );
3886 pC = p->apCsr[pOp->p1];
3887 assert( pC!=0 );
3888 assert( pC->pCursor!=0 );
3889 assert( pC->pseudoTableReg==0 );
3890 assert( pC->isTable );
3891 REGISTER_TRACE(pOp->p2, pData);
3893 if( pOp->opcode==OP_Insert ){
3894 pKey = &aMem[pOp->p3];
3895 assert( pKey->flags & MEM_Int );
3896 assert( memIsValid(pKey) );
3897 REGISTER_TRACE(pOp->p3, pKey);
3898 iKey = pKey->u.i;
3899 }else{
3900 assert( pOp->opcode==OP_InsertInt );
3901 iKey = pOp->p3;
3904 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
3905 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = iKey;
3906 if( pData->flags & MEM_Null ){
3907 pData->z = 0;
3908 pData->n = 0;
3909 }else{
3910 assert( pData->flags & (MEM_Blob|MEM_Str) );
3912 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
3913 if( pData->flags & MEM_Zero ){
3914 nZero = pData->u.nZero;
3915 }else{
3916 nZero = 0;
3918 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
3919 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
3920 pData->z, pData->n, nZero,
3921 pOp->p5 & OPFLAG_APPEND, seekResult
3923 pC->rowidIsValid = 0;
3924 pC->deferredMoveto = 0;
3925 pC->cacheStatus = CACHE_STALE;
3927 /* Invoke the update-hook if required. */
3928 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
3929 zDb = db->aDb[pC->iDb].zName;
3930 zTbl = pOp->p4.z;
3931 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
3932 assert( pC->isTable );
3933 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
3934 assert( pC->iDb>=0 );
3936 break;
3939 /* Opcode: Delete P1 P2 * P4 *
3941 ** Delete the record at which the P1 cursor is currently pointing.
3943 ** The cursor will be left pointing at either the next or the previous
3944 ** record in the table. If it is left pointing at the next record, then
3945 ** the next Next instruction will be a no-op. Hence it is OK to delete
3946 ** a record from within an Next loop.
3948 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
3949 ** incremented (otherwise not).
3951 ** P1 must not be pseudo-table. It has to be a real table with
3952 ** multiple rows.
3954 ** If P4 is not NULL, then it is the name of the table that P1 is
3955 ** pointing to. The update hook will be invoked, if it exists.
3956 ** If P4 is not NULL then the P1 cursor must have been positioned
3957 ** using OP_NotFound prior to invoking this opcode.
3959 case OP_Delete: {
3960 i64 iKey;
3961 VdbeCursor *pC;
3963 iKey = 0;
3964 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3965 pC = p->apCsr[pOp->p1];
3966 assert( pC!=0 );
3967 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
3969 /* If the update-hook will be invoked, set iKey to the rowid of the
3970 ** row being deleted.
3972 if( db->xUpdateCallback && pOp->p4.z ){
3973 assert( pC->isTable );
3974 assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */
3975 iKey = pC->lastRowid;
3978 /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
3979 ** OP_Column on the same table without any intervening operations that
3980 ** might move or invalidate the cursor. Hence cursor pC is always pointing
3981 ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
3982 ** below is always a no-op and cannot fail. We will run it anyhow, though,
3983 ** to guard against future changes to the code generator.
3985 assert( pC->deferredMoveto==0 );
3986 rc = sqlite3VdbeCursorMoveto(pC);
3987 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
3989 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
3990 rc = sqlite3BtreeDelete(pC->pCursor);
3991 pC->cacheStatus = CACHE_STALE;
3993 /* Invoke the update-hook if required. */
3994 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
3995 const char *zDb = db->aDb[pC->iDb].zName;
3996 const char *zTbl = pOp->p4.z;
3997 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
3998 assert( pC->iDb>=0 );
4000 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
4001 break;
4003 /* Opcode: ResetCount * * * * *
4005 ** The value of the change counter is copied to the database handle
4006 ** change counter (returned by subsequent calls to sqlite3_changes()).
4007 ** Then the VMs internal change counter resets to 0.
4008 ** This is used by trigger programs.
4010 case OP_ResetCount: {
4011 sqlite3VdbeSetChanges(db, p->nChange);
4012 p->nChange = 0;
4013 break;
4016 /* Opcode: RowData P1 P2 * * *
4018 ** Write into register P2 the complete row data for cursor P1.
4019 ** There is no interpretation of the data.
4020 ** It is just copied onto the P2 register exactly as
4021 ** it is found in the database file.
4023 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4024 ** of a real table, not a pseudo-table.
4026 /* Opcode: RowKey P1 P2 * * *
4028 ** Write into register P2 the complete row key for cursor P1.
4029 ** There is no interpretation of the data.
4030 ** The key is copied onto the P3 register exactly as
4031 ** it is found in the database file.
4033 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4034 ** of a real table, not a pseudo-table.
4036 case OP_RowKey:
4037 case OP_RowData: {
4038 VdbeCursor *pC;
4039 BtCursor *pCrsr;
4040 u32 n;
4041 i64 n64;
4043 pOut = &aMem[pOp->p2];
4044 memAboutToChange(p, pOut);
4046 /* Note that RowKey and RowData are really exactly the same instruction */
4047 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4048 pC = p->apCsr[pOp->p1];
4049 assert( pC->isTable || pOp->opcode==OP_RowKey );
4050 assert( pC->isIndex || pOp->opcode==OP_RowData );
4051 assert( pC!=0 );
4052 assert( pC->nullRow==0 );
4053 assert( pC->pseudoTableReg==0 );
4054 assert( pC->pCursor!=0 );
4055 pCrsr = pC->pCursor;
4056 assert( sqlite3BtreeCursorIsValid(pCrsr) );
4058 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4059 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
4060 ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always
4061 ** a no-op and can never fail. But we leave it in place as a safety.
4063 assert( pC->deferredMoveto==0 );
4064 rc = sqlite3VdbeCursorMoveto(pC);
4065 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4067 if( pC->isIndex ){
4068 assert( !pC->isTable );
4069 rc = sqlite3BtreeKeySize(pCrsr, &n64);
4070 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
4071 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
4072 goto too_big;
4074 n = (u32)n64;
4075 }else{
4076 rc = sqlite3BtreeDataSize(pCrsr, &n);
4077 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
4078 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
4079 goto too_big;
4082 if( sqlite3VdbeMemGrow(pOut, n, 0) ){
4083 goto no_mem;
4085 pOut->n = n;
4086 MemSetTypeFlag(pOut, MEM_Blob);
4087 if( pC->isIndex ){
4088 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4089 }else{
4090 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
4092 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
4093 UPDATE_MAX_BLOBSIZE(pOut);
4094 break;
4097 /* Opcode: Rowid P1 P2 * * *
4099 ** Store in register P2 an integer which is the key of the table entry that
4100 ** P1 is currently point to.
4102 ** P1 can be either an ordinary table or a virtual table. There used to
4103 ** be a separate OP_VRowid opcode for use with virtual tables, but this
4104 ** one opcode now works for both table types.
4106 case OP_Rowid: { /* out2-prerelease */
4107 VdbeCursor *pC;
4108 i64 v;
4109 sqlite3_vtab *pVtab;
4110 const sqlite3_module *pModule;
4112 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4113 pC = p->apCsr[pOp->p1];
4114 assert( pC!=0 );
4115 assert( pC->pseudoTableReg==0 );
4116 if( pC->nullRow ){
4117 pOut->flags = MEM_Null;
4118 break;
4119 }else if( pC->deferredMoveto ){
4120 v = pC->movetoTarget;
4121 #ifndef SQLITE_OMIT_VIRTUALTABLE
4122 }else if( pC->pVtabCursor ){
4123 pVtab = pC->pVtabCursor->pVtab;
4124 pModule = pVtab->pModule;
4125 assert( pModule->xRowid );
4126 rc = pModule->xRowid(pC->pVtabCursor, &v);
4127 importVtabErrMsg(p, pVtab);
4128 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4129 }else{
4130 assert( pC->pCursor!=0 );
4131 rc = sqlite3VdbeCursorMoveto(pC);
4132 if( rc ) goto abort_due_to_error;
4133 if( pC->rowidIsValid ){
4134 v = pC->lastRowid;
4135 }else{
4136 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4137 assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */
4140 pOut->u.i = v;
4141 break;
4144 /* Opcode: NullRow P1 * * * *
4146 ** Move the cursor P1 to a null row. Any OP_Column operations
4147 ** that occur while the cursor is on the null row will always
4148 ** write a NULL.
4150 case OP_NullRow: {
4151 VdbeCursor *pC;
4153 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4154 pC = p->apCsr[pOp->p1];
4155 assert( pC!=0 );
4156 pC->nullRow = 1;
4157 pC->rowidIsValid = 0;
4158 if( pC->pCursor ){
4159 sqlite3BtreeClearCursor(pC->pCursor);
4161 break;
4164 /* Opcode: Last P1 P2 * * *
4166 ** The next use of the Rowid or Column or Next instruction for P1
4167 ** will refer to the last entry in the database table or index.
4168 ** If the table or index is empty and P2>0, then jump immediately to P2.
4169 ** If P2 is 0 or if the table or index is not empty, fall through
4170 ** to the following instruction.
4172 case OP_Last: { /* jump */
4173 VdbeCursor *pC;
4174 BtCursor *pCrsr;
4175 int res;
4177 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4178 pC = p->apCsr[pOp->p1];
4179 assert( pC!=0 );
4180 pCrsr = pC->pCursor;
4181 if( pCrsr==0 ){
4182 res = 1;
4183 }else{
4184 rc = sqlite3BtreeLast(pCrsr, &res);
4186 pC->nullRow = (u8)res;
4187 pC->deferredMoveto = 0;
4188 pC->rowidIsValid = 0;
4189 pC->cacheStatus = CACHE_STALE;
4190 if( pOp->p2>0 && res ){
4191 pc = pOp->p2 - 1;
4193 break;
4197 /* Opcode: Sort P1 P2 * * *
4199 ** This opcode does exactly the same thing as OP_Rewind except that
4200 ** it increments an undocumented global variable used for testing.
4202 ** Sorting is accomplished by writing records into a sorting index,
4203 ** then rewinding that index and playing it back from beginning to
4204 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4205 ** rewinding so that the global variable will be incremented and
4206 ** regression tests can determine whether or not the optimizer is
4207 ** correctly optimizing out sorts.
4209 case OP_Sort: { /* jump */
4210 #ifdef SQLITE_TEST
4211 sqlite3_sort_count++;
4212 sqlite3_search_count--;
4213 #endif
4214 p->aCounter[SQLITE_STMTSTATUS_SORT-1]++;
4215 /* Fall through into OP_Rewind */
4217 /* Opcode: Rewind P1 P2 * * *
4219 ** The next use of the Rowid or Column or Next instruction for P1
4220 ** will refer to the first entry in the database table or index.
4221 ** If the table or index is empty and P2>0, then jump immediately to P2.
4222 ** If P2 is 0 or if the table or index is not empty, fall through
4223 ** to the following instruction.
4225 case OP_Rewind: { /* jump */
4226 VdbeCursor *pC;
4227 BtCursor *pCrsr;
4228 int res;
4230 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4231 pC = p->apCsr[pOp->p1];
4232 assert( pC!=0 );
4233 res = 1;
4234 if( (pCrsr = pC->pCursor)!=0 ){
4235 rc = sqlite3BtreeFirst(pCrsr, &res);
4236 pC->atFirst = res==0 ?1:0;
4237 pC->deferredMoveto = 0;
4238 pC->cacheStatus = CACHE_STALE;
4239 pC->rowidIsValid = 0;
4241 pC->nullRow = (u8)res;
4242 assert( pOp->p2>0 && pOp->p2<p->nOp );
4243 if( res ){
4244 pc = pOp->p2 - 1;
4246 break;
4249 /* Opcode: Next P1 P2 * * P5
4251 ** Advance cursor P1 so that it points to the next key/data pair in its
4252 ** table or index. If there are no more key/value pairs then fall through
4253 ** to the following instruction. But if the cursor advance was successful,
4254 ** jump immediately to P2.
4256 ** The P1 cursor must be for a real table, not a pseudo-table.
4258 ** If P5 is positive and the jump is taken, then event counter
4259 ** number P5-1 in the prepared statement is incremented.
4261 ** See also: Prev
4263 /* Opcode: Prev P1 P2 * * P5
4265 ** Back up cursor P1 so that it points to the previous key/data pair in its
4266 ** table or index. If there is no previous key/value pairs then fall through
4267 ** to the following instruction. But if the cursor backup was successful,
4268 ** jump immediately to P2.
4270 ** The P1 cursor must be for a real table, not a pseudo-table.
4272 ** If P5 is positive and the jump is taken, then event counter
4273 ** number P5-1 in the prepared statement is incremented.
4275 case OP_Prev: /* jump */
4276 case OP_Next: { /* jump */
4277 VdbeCursor *pC;
4278 BtCursor *pCrsr;
4279 int res;
4281 CHECK_FOR_INTERRUPT;
4282 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4283 assert( pOp->p5<=ArraySize(p->aCounter) );
4284 pC = p->apCsr[pOp->p1];
4285 if( pC==0 ){
4286 break; /* See ticket #2273 */
4288 pCrsr = pC->pCursor;
4289 if( pCrsr==0 ){
4290 pC->nullRow = 1;
4291 break;
4293 res = 1;
4294 assert( pC->deferredMoveto==0 );
4295 rc = pOp->opcode==OP_Next ? sqlite3BtreeNext(pCrsr, &res) :
4296 sqlite3BtreePrevious(pCrsr, &res);
4297 pC->nullRow = (u8)res;
4298 pC->cacheStatus = CACHE_STALE;
4299 if( res==0 ){
4300 pc = pOp->p2 - 1;
4301 if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
4302 #ifdef SQLITE_TEST
4303 sqlite3_search_count++;
4304 #endif
4306 pC->rowidIsValid = 0;
4307 break;
4310 /* Opcode: IdxInsert P1 P2 P3 * P5
4312 ** Register P2 holds a SQL index key made using the
4313 ** MakeRecord instructions. This opcode writes that key
4314 ** into the index P1. Data for the entry is nil.
4316 ** P3 is a flag that provides a hint to the b-tree layer that this
4317 ** insert is likely to be an append.
4319 ** This instruction only works for indices. The equivalent instruction
4320 ** for tables is OP_Insert.
4322 case OP_IdxInsert: { /* in2 */
4323 VdbeCursor *pC;
4324 BtCursor *pCrsr;
4325 int nKey;
4326 const char *zKey;
4328 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4329 pC = p->apCsr[pOp->p1];
4330 assert( pC!=0 );
4331 pIn2 = &aMem[pOp->p2];
4332 assert( pIn2->flags & MEM_Blob );
4333 pCrsr = pC->pCursor;
4334 if( ALWAYS(pCrsr!=0) ){
4335 assert( pC->isTable==0 );
4336 rc = ExpandBlob(pIn2);
4337 if( rc==SQLITE_OK ){
4338 nKey = pIn2->n;
4339 zKey = pIn2->z;
4340 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
4341 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
4343 assert( pC->deferredMoveto==0 );
4344 pC->cacheStatus = CACHE_STALE;
4347 break;
4350 /* Opcode: IdxDelete P1 P2 P3 * *
4352 ** The content of P3 registers starting at register P2 form
4353 ** an unpacked index key. This opcode removes that entry from the
4354 ** index opened by cursor P1.
4356 case OP_IdxDelete: {
4357 VdbeCursor *pC;
4358 BtCursor *pCrsr;
4359 int res;
4360 UnpackedRecord r;
4362 assert( pOp->p3>0 );
4363 assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
4364 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4365 pC = p->apCsr[pOp->p1];
4366 assert( pC!=0 );
4367 pCrsr = pC->pCursor;
4368 if( ALWAYS(pCrsr!=0) ){
4369 r.pKeyInfo = pC->pKeyInfo;
4370 r.nField = (u16)pOp->p3;
4371 r.flags = 0;
4372 r.aMem = &aMem[pOp->p2];
4373 #ifdef SQLITE_DEBUG
4374 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4375 #endif
4376 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
4377 if( rc==SQLITE_OK && res==0 ){
4378 rc = sqlite3BtreeDelete(pCrsr);
4380 assert( pC->deferredMoveto==0 );
4381 pC->cacheStatus = CACHE_STALE;
4383 break;
4386 /* Opcode: IdxRowid P1 P2 * * *
4388 ** Write into register P2 an integer which is the last entry in the record at
4389 ** the end of the index key pointed to by cursor P1. This integer should be
4390 ** the rowid of the table entry to which this index entry points.
4392 ** See also: Rowid, MakeRecord.
4394 case OP_IdxRowid: { /* out2-prerelease */
4395 BtCursor *pCrsr;
4396 VdbeCursor *pC;
4397 i64 rowid;
4399 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4400 pC = p->apCsr[pOp->p1];
4401 assert( pC!=0 );
4402 pCrsr = pC->pCursor;
4403 pOut->flags = MEM_Null;
4404 if( ALWAYS(pCrsr!=0) ){
4405 rc = sqlite3VdbeCursorMoveto(pC);
4406 if( NEVER(rc) ) goto abort_due_to_error;
4407 assert( pC->deferredMoveto==0 );
4408 assert( pC->isTable==0 );
4409 if( !pC->nullRow ){
4410 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
4411 if( rc!=SQLITE_OK ){
4412 goto abort_due_to_error;
4414 pOut->u.i = rowid;
4415 pOut->flags = MEM_Int;
4418 break;
4421 /* Opcode: IdxGE P1 P2 P3 P4 P5
4423 ** The P4 register values beginning with P3 form an unpacked index
4424 ** key that omits the ROWID. Compare this key value against the index
4425 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
4427 ** If the P1 index entry is greater than or equal to the key value
4428 ** then jump to P2. Otherwise fall through to the next instruction.
4430 ** If P5 is non-zero then the key value is increased by an epsilon
4431 ** prior to the comparison. This make the opcode work like IdxGT except
4432 ** that if the key from register P3 is a prefix of the key in the cursor,
4433 ** the result is false whereas it would be true with IdxGT.
4435 /* Opcode: IdxLT P1 P2 P3 P4 P5
4437 ** The P4 register values beginning with P3 form an unpacked index
4438 ** key that omits the ROWID. Compare this key value against the index
4439 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
4441 ** If the P1 index entry is less than the key value then jump to P2.
4442 ** Otherwise fall through to the next instruction.
4444 ** If P5 is non-zero then the key value is increased by an epsilon prior
4445 ** to the comparison. This makes the opcode work like IdxLE.
4447 case OP_IdxLT: /* jump */
4448 case OP_IdxGE: { /* jump */
4449 VdbeCursor *pC;
4450 int res;
4451 UnpackedRecord r;
4453 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4454 pC = p->apCsr[pOp->p1];
4455 assert( pC!=0 );
4456 assert( pC->isOrdered );
4457 if( ALWAYS(pC->pCursor!=0) ){
4458 assert( pC->deferredMoveto==0 );
4459 assert( pOp->p5==0 || pOp->p5==1 );
4460 assert( pOp->p4type==P4_INT32 );
4461 r.pKeyInfo = pC->pKeyInfo;
4462 r.nField = (u16)pOp->p4.i;
4463 if( pOp->p5 ){
4464 r.flags = UNPACKED_INCRKEY | UNPACKED_IGNORE_ROWID;
4465 }else{
4466 r.flags = UNPACKED_IGNORE_ROWID;
4468 r.aMem = &aMem[pOp->p3];
4469 #ifdef SQLITE_DEBUG
4470 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4471 #endif
4472 rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
4473 if( pOp->opcode==OP_IdxLT ){
4474 res = -res;
4475 }else{
4476 assert( pOp->opcode==OP_IdxGE );
4477 res++;
4479 if( res>0 ){
4480 pc = pOp->p2 - 1 ;
4483 break;
4486 /* Opcode: Destroy P1 P2 P3 * *
4488 ** Delete an entire database table or index whose root page in the database
4489 ** file is given by P1.
4491 ** The table being destroyed is in the main database file if P3==0. If
4492 ** P3==1 then the table to be clear is in the auxiliary database file
4493 ** that is used to store tables create using CREATE TEMPORARY TABLE.
4495 ** If AUTOVACUUM is enabled then it is possible that another root page
4496 ** might be moved into the newly deleted root page in order to keep all
4497 ** root pages contiguous at the beginning of the database. The former
4498 ** value of the root page that moved - its value before the move occurred -
4499 ** is stored in register P2. If no page
4500 ** movement was required (because the table being dropped was already
4501 ** the last one in the database) then a zero is stored in register P2.
4502 ** If AUTOVACUUM is disabled then a zero is stored in register P2.
4504 ** See also: Clear
4506 case OP_Destroy: { /* out2-prerelease */
4507 int iMoved;
4508 int iCnt;
4509 Vdbe *pVdbe;
4510 int iDb;
4511 #ifndef SQLITE_OMIT_VIRTUALTABLE
4512 iCnt = 0;
4513 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
4514 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
4515 iCnt++;
4518 #else
4519 iCnt = db->activeVdbeCnt;
4520 #endif
4521 pOut->flags = MEM_Null;
4522 if( iCnt>1 ){
4523 rc = SQLITE_LOCKED;
4524 p->errorAction = OE_Abort;
4525 }else{
4526 iDb = pOp->p3;
4527 assert( iCnt==1 );
4528 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
4529 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
4530 pOut->flags = MEM_Int;
4531 pOut->u.i = iMoved;
4532 #ifndef SQLITE_OMIT_AUTOVACUUM
4533 if( rc==SQLITE_OK && iMoved!=0 ){
4534 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
4535 /* All OP_Destroy operations occur on the same btree */
4536 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
4537 resetSchemaOnFault = iDb+1;
4539 #endif
4541 break;
4544 /* Opcode: Clear P1 P2 P3
4546 ** Delete all contents of the database table or index whose root page
4547 ** in the database file is given by P1. But, unlike Destroy, do not
4548 ** remove the table or index from the database file.
4550 ** The table being clear is in the main database file if P2==0. If
4551 ** P2==1 then the table to be clear is in the auxiliary database file
4552 ** that is used to store tables create using CREATE TEMPORARY TABLE.
4554 ** If the P3 value is non-zero, then the table referred to must be an
4555 ** intkey table (an SQL table, not an index). In this case the row change
4556 ** count is incremented by the number of rows in the table being cleared.
4557 ** If P3 is greater than zero, then the value stored in register P3 is
4558 ** also incremented by the number of rows in the table being cleared.
4560 ** See also: Destroy
4562 case OP_Clear: {
4563 int nChange;
4565 nChange = 0;
4566 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
4567 rc = sqlite3BtreeClearTable(
4568 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
4570 if( pOp->p3 ){
4571 p->nChange += nChange;
4572 if( pOp->p3>0 ){
4573 assert( memIsValid(&aMem[pOp->p3]) );
4574 memAboutToChange(p, &aMem[pOp->p3]);
4575 aMem[pOp->p3].u.i += nChange;
4578 break;
4581 /* Opcode: CreateTable P1 P2 * * *
4583 ** Allocate a new table in the main database file if P1==0 or in the
4584 ** auxiliary database file if P1==1 or in an attached database if
4585 ** P1>1. Write the root page number of the new table into
4586 ** register P2
4588 ** The difference between a table and an index is this: A table must
4589 ** have a 4-byte integer key and can have arbitrary data. An index
4590 ** has an arbitrary key but no data.
4592 ** See also: CreateIndex
4594 /* Opcode: CreateIndex P1 P2 * * *
4596 ** Allocate a new index in the main database file if P1==0 or in the
4597 ** auxiliary database file if P1==1 or in an attached database if
4598 ** P1>1. Write the root page number of the new table into
4599 ** register P2.
4601 ** See documentation on OP_CreateTable for additional information.
4603 case OP_CreateIndex: /* out2-prerelease */
4604 case OP_CreateTable: { /* out2-prerelease */
4605 int pgno;
4606 int flags;
4607 Db *pDb;
4609 pgno = 0;
4610 assert( pOp->p1>=0 && pOp->p1<db->nDb );
4611 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
4612 pDb = &db->aDb[pOp->p1];
4613 assert( pDb->pBt!=0 );
4614 if( pOp->opcode==OP_CreateTable ){
4615 /* flags = BTREE_INTKEY; */
4616 flags = BTREE_INTKEY;
4617 }else{
4618 flags = BTREE_BLOBKEY;
4620 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
4621 pOut->u.i = pgno;
4622 break;
4625 /* Opcode: ParseSchema P1 * * P4 *
4627 ** Read and parse all entries from the SQLITE_MASTER table of database P1
4628 ** that match the WHERE clause P4.
4630 ** This opcode invokes the parser to create a new virtual machine,
4631 ** then runs the new virtual machine. It is thus a re-entrant opcode.
4633 case OP_ParseSchema: {
4634 int iDb;
4635 const char *zMaster;
4636 char *zSql;
4637 InitData initData;
4639 /* Any prepared statement that invokes this opcode will hold mutexes
4640 ** on every btree. This is a prerequisite for invoking
4641 ** sqlite3InitCallback().
4643 #ifdef SQLITE_DEBUG
4644 for(iDb=0; iDb<db->nDb; iDb++){
4645 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
4647 #endif
4649 iDb = pOp->p1;
4650 assert( iDb>=0 && iDb<db->nDb );
4651 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
4652 /* Used to be a conditional */ {
4653 zMaster = SCHEMA_TABLE(iDb);
4654 initData.db = db;
4655 initData.iDb = pOp->p1;
4656 initData.pzErrMsg = &p->zErrMsg;
4657 zSql = sqlite3MPrintf(db,
4658 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
4659 db->aDb[iDb].zName, zMaster, pOp->p4.z);
4660 if( zSql==0 ){
4661 rc = SQLITE_NOMEM;
4662 }else{
4663 assert( db->init.busy==0 );
4664 db->init.busy = 1;
4665 initData.rc = SQLITE_OK;
4666 assert( !db->mallocFailed );
4667 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
4668 if( rc==SQLITE_OK ) rc = initData.rc;
4669 sqlite3DbFree(db, zSql);
4670 db->init.busy = 0;
4673 if( rc==SQLITE_NOMEM ){
4674 goto no_mem;
4676 break;
4679 #if !defined(SQLITE_OMIT_ANALYZE)
4680 /* Opcode: LoadAnalysis P1 * * * *
4682 ** Read the sqlite_stat1 table for database P1 and load the content
4683 ** of that table into the internal index hash table. This will cause
4684 ** the analysis to be used when preparing all subsequent queries.
4686 case OP_LoadAnalysis: {
4687 assert( pOp->p1>=0 && pOp->p1<db->nDb );
4688 rc = sqlite3AnalysisLoad(db, pOp->p1);
4689 break;
4691 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
4693 /* Opcode: DropTable P1 * * P4 *
4695 ** Remove the internal (in-memory) data structures that describe
4696 ** the table named P4 in database P1. This is called after a table
4697 ** is dropped in order to keep the internal representation of the
4698 ** schema consistent with what is on disk.
4700 case OP_DropTable: {
4701 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
4702 break;
4705 /* Opcode: DropIndex P1 * * P4 *
4707 ** Remove the internal (in-memory) data structures that describe
4708 ** the index named P4 in database P1. This is called after an index
4709 ** is dropped in order to keep the internal representation of the
4710 ** schema consistent with what is on disk.
4712 case OP_DropIndex: {
4713 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
4714 break;
4717 /* Opcode: DropTrigger P1 * * P4 *
4719 ** Remove the internal (in-memory) data structures that describe
4720 ** the trigger named P4 in database P1. This is called after a trigger
4721 ** is dropped in order to keep the internal representation of the
4722 ** schema consistent with what is on disk.
4724 case OP_DropTrigger: {
4725 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
4726 break;
4730 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
4731 /* Opcode: IntegrityCk P1 P2 P3 * P5
4733 ** Do an analysis of the currently open database. Store in
4734 ** register P1 the text of an error message describing any problems.
4735 ** If no problems are found, store a NULL in register P1.
4737 ** The register P3 contains the maximum number of allowed errors.
4738 ** At most reg(P3) errors will be reported.
4739 ** In other words, the analysis stops as soon as reg(P1) errors are
4740 ** seen. Reg(P1) is updated with the number of errors remaining.
4742 ** The root page numbers of all tables in the database are integer
4743 ** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
4744 ** total.
4746 ** If P5 is not zero, the check is done on the auxiliary database
4747 ** file, not the main database file.
4749 ** This opcode is used to implement the integrity_check pragma.
4751 case OP_IntegrityCk: {
4752 int nRoot; /* Number of tables to check. (Number of root pages.) */
4753 int *aRoot; /* Array of rootpage numbers for tables to be checked */
4754 int j; /* Loop counter */
4755 int nErr; /* Number of errors reported */
4756 char *z; /* Text of the error report */
4757 Mem *pnErr; /* Register keeping track of errors remaining */
4759 nRoot = pOp->p2;
4760 assert( nRoot>0 );
4761 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
4762 if( aRoot==0 ) goto no_mem;
4763 assert( pOp->p3>0 && pOp->p3<=p->nMem );
4764 pnErr = &aMem[pOp->p3];
4765 assert( (pnErr->flags & MEM_Int)!=0 );
4766 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
4767 pIn1 = &aMem[pOp->p1];
4768 for(j=0; j<nRoot; j++){
4769 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
4771 aRoot[j] = 0;
4772 assert( pOp->p5<db->nDb );
4773 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 );
4774 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
4775 (int)pnErr->u.i, &nErr);
4776 sqlite3DbFree(db, aRoot);
4777 pnErr->u.i -= nErr;
4778 sqlite3VdbeMemSetNull(pIn1);
4779 if( nErr==0 ){
4780 assert( z==0 );
4781 }else if( z==0 ){
4782 goto no_mem;
4783 }else{
4784 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
4786 UPDATE_MAX_BLOBSIZE(pIn1);
4787 sqlite3VdbeChangeEncoding(pIn1, encoding);
4788 break;
4790 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
4792 /* Opcode: RowSetAdd P1 P2 * * *
4794 ** Insert the integer value held by register P2 into a boolean index
4795 ** held in register P1.
4797 ** An assertion fails if P2 is not an integer.
4799 case OP_RowSetAdd: { /* in1, in2 */
4800 pIn1 = &aMem[pOp->p1];
4801 pIn2 = &aMem[pOp->p2];
4802 assert( (pIn2->flags & MEM_Int)!=0 );
4803 if( (pIn1->flags & MEM_RowSet)==0 ){
4804 sqlite3VdbeMemSetRowSet(pIn1);
4805 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
4807 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
4808 break;
4811 /* Opcode: RowSetRead P1 P2 P3 * *
4813 ** Extract the smallest value from boolean index P1 and put that value into
4814 ** register P3. Or, if boolean index P1 is initially empty, leave P3
4815 ** unchanged and jump to instruction P2.
4817 case OP_RowSetRead: { /* jump, in1, out3 */
4818 i64 val;
4819 CHECK_FOR_INTERRUPT;
4820 pIn1 = &aMem[pOp->p1];
4821 if( (pIn1->flags & MEM_RowSet)==0
4822 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
4824 /* The boolean index is empty */
4825 sqlite3VdbeMemSetNull(pIn1);
4826 pc = pOp->p2 - 1;
4827 }else{
4828 /* A value was pulled from the index */
4829 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
4831 break;
4834 /* Opcode: RowSetTest P1 P2 P3 P4
4836 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
4837 ** contains a RowSet object and that RowSet object contains
4838 ** the value held in P3, jump to register P2. Otherwise, insert the
4839 ** integer in P3 into the RowSet and continue on to the
4840 ** next opcode.
4842 ** The RowSet object is optimized for the case where successive sets
4843 ** of integers, where each set contains no duplicates. Each set
4844 ** of values is identified by a unique P4 value. The first set
4845 ** must have P4==0, the final set P4=-1. P4 must be either -1 or
4846 ** non-negative. For non-negative values of P4 only the lower 4
4847 ** bits are significant.
4849 ** This allows optimizations: (a) when P4==0 there is no need to test
4850 ** the rowset object for P3, as it is guaranteed not to contain it,
4851 ** (b) when P4==-1 there is no need to insert the value, as it will
4852 ** never be tested for, and (c) when a value that is part of set X is
4853 ** inserted, there is no need to search to see if the same value was
4854 ** previously inserted as part of set X (only if it was previously
4855 ** inserted as part of some other set).
4857 case OP_RowSetTest: { /* jump, in1, in3 */
4858 int iSet;
4859 int exists;
4861 pIn1 = &aMem[pOp->p1];
4862 pIn3 = &aMem[pOp->p3];
4863 iSet = pOp->p4.i;
4864 assert( pIn3->flags&MEM_Int );
4866 /* If there is anything other than a rowset object in memory cell P1,
4867 ** delete it now and initialize P1 with an empty rowset
4869 if( (pIn1->flags & MEM_RowSet)==0 ){
4870 sqlite3VdbeMemSetRowSet(pIn1);
4871 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
4874 assert( pOp->p4type==P4_INT32 );
4875 assert( iSet==-1 || iSet>=0 );
4876 if( iSet ){
4877 exists = sqlite3RowSetTest(pIn1->u.pRowSet,
4878 (u8)(iSet>=0 ? iSet & 0xf : 0xff),
4879 pIn3->u.i);
4880 if( exists ){
4881 pc = pOp->p2 - 1;
4882 break;
4885 if( iSet>=0 ){
4886 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
4888 break;
4892 #ifndef SQLITE_OMIT_TRIGGER
4894 /* Opcode: Program P1 P2 P3 P4 *
4896 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
4898 ** P1 contains the address of the memory cell that contains the first memory
4899 ** cell in an array of values used as arguments to the sub-program. P2
4900 ** contains the address to jump to if the sub-program throws an IGNORE
4901 ** exception using the RAISE() function. Register P3 contains the address
4902 ** of a memory cell in this (the parent) VM that is used to allocate the
4903 ** memory required by the sub-vdbe at runtime.
4905 ** P4 is a pointer to the VM containing the trigger program.
4907 case OP_Program: { /* jump */
4908 int nMem; /* Number of memory registers for sub-program */
4909 int nByte; /* Bytes of runtime space required for sub-program */
4910 Mem *pRt; /* Register to allocate runtime space */
4911 Mem *pMem; /* Used to iterate through memory cells */
4912 Mem *pEnd; /* Last memory cell in new array */
4913 VdbeFrame *pFrame; /* New vdbe frame to execute in */
4914 SubProgram *pProgram; /* Sub-program to execute */
4915 void *t; /* Token identifying trigger */
4917 pProgram = pOp->p4.pProgram;
4918 pRt = &aMem[pOp->p3];
4919 assert( memIsValid(pRt) );
4920 assert( pProgram->nOp>0 );
4922 /* If the p5 flag is clear, then recursive invocation of triggers is
4923 ** disabled for backwards compatibility (p5 is set if this sub-program
4924 ** is really a trigger, not a foreign key action, and the flag set
4925 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
4927 ** It is recursive invocation of triggers, at the SQL level, that is
4928 ** disabled. In some cases a single trigger may generate more than one
4929 ** SubProgram (if the trigger may be executed with more than one different
4930 ** ON CONFLICT algorithm). SubProgram structures associated with a
4931 ** single trigger all have the same value for the SubProgram.token
4932 ** variable. */
4933 if( pOp->p5 ){
4934 t = pProgram->token;
4935 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
4936 if( pFrame ) break;
4939 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
4940 rc = SQLITE_ERROR;
4941 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
4942 break;
4945 /* Register pRt is used to store the memory required to save the state
4946 ** of the current program, and the memory required at runtime to execute
4947 ** the trigger program. If this trigger has been fired before, then pRt
4948 ** is already allocated. Otherwise, it must be initialized. */
4949 if( (pRt->flags&MEM_Frame)==0 ){
4950 /* SubProgram.nMem is set to the number of memory cells used by the
4951 ** program stored in SubProgram.aOp. As well as these, one memory
4952 ** cell is required for each cursor used by the program. Set local
4953 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
4955 nMem = pProgram->nMem + pProgram->nCsr;
4956 nByte = ROUND8(sizeof(VdbeFrame))
4957 + nMem * sizeof(Mem)
4958 + pProgram->nCsr * sizeof(VdbeCursor *);
4959 pFrame = sqlite3DbMallocZero(db, nByte);
4960 if( !pFrame ){
4961 goto no_mem;
4963 sqlite3VdbeMemRelease(pRt);
4964 pRt->flags = MEM_Frame;
4965 pRt->u.pFrame = pFrame;
4967 pFrame->v = p;
4968 pFrame->nChildMem = nMem;
4969 pFrame->nChildCsr = pProgram->nCsr;
4970 pFrame->pc = pc;
4971 pFrame->aMem = p->aMem;
4972 pFrame->nMem = p->nMem;
4973 pFrame->apCsr = p->apCsr;
4974 pFrame->nCursor = p->nCursor;
4975 pFrame->aOp = p->aOp;
4976 pFrame->nOp = p->nOp;
4977 pFrame->token = pProgram->token;
4979 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
4980 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
4981 pMem->flags = MEM_Null;
4982 pMem->db = db;
4984 }else{
4985 pFrame = pRt->u.pFrame;
4986 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
4987 assert( pProgram->nCsr==pFrame->nChildCsr );
4988 assert( pc==pFrame->pc );
4991 p->nFrame++;
4992 pFrame->pParent = p->pFrame;
4993 pFrame->lastRowid = db->lastRowid;
4994 pFrame->nChange = p->nChange;
4995 p->nChange = 0;
4996 p->pFrame = pFrame;
4997 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
4998 p->nMem = pFrame->nChildMem;
4999 p->nCursor = (u16)pFrame->nChildCsr;
5000 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
5001 p->aOp = aOp = pProgram->aOp;
5002 p->nOp = pProgram->nOp;
5003 pc = -1;
5005 break;
5008 /* Opcode: Param P1 P2 * * *
5010 ** This opcode is only ever present in sub-programs called via the
5011 ** OP_Program instruction. Copy a value currently stored in a memory
5012 ** cell of the calling (parent) frame to cell P2 in the current frames
5013 ** address space. This is used by trigger programs to access the new.*
5014 ** and old.* values.
5016 ** The address of the cell in the parent frame is determined by adding
5017 ** the value of the P1 argument to the value of the P1 argument to the
5018 ** calling OP_Program instruction.
5020 case OP_Param: { /* out2-prerelease */
5021 VdbeFrame *pFrame;
5022 Mem *pIn;
5023 pFrame = p->pFrame;
5024 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
5025 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5026 break;
5029 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
5031 #ifndef SQLITE_OMIT_FOREIGN_KEY
5032 /* Opcode: FkCounter P1 P2 * * *
5034 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5035 ** If P1 is non-zero, the database constraint counter is incremented
5036 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
5037 ** statement counter is incremented (immediate foreign key constraints).
5039 case OP_FkCounter: {
5040 if( pOp->p1 ){
5041 db->nDeferredCons += pOp->p2;
5042 }else{
5043 p->nFkConstraint += pOp->p2;
5045 break;
5048 /* Opcode: FkIfZero P1 P2 * * *
5050 ** This opcode tests if a foreign key constraint-counter is currently zero.
5051 ** If so, jump to instruction P2. Otherwise, fall through to the next
5052 ** instruction.
5054 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
5055 ** is zero (the one that counts deferred constraint violations). If P1 is
5056 ** zero, the jump is taken if the statement constraint-counter is zero
5057 ** (immediate foreign key constraint violations).
5059 case OP_FkIfZero: { /* jump */
5060 if( pOp->p1 ){
5061 if( db->nDeferredCons==0 ) pc = pOp->p2-1;
5062 }else{
5063 if( p->nFkConstraint==0 ) pc = pOp->p2-1;
5065 break;
5067 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5069 #ifndef SQLITE_OMIT_AUTOINCREMENT
5070 /* Opcode: MemMax P1 P2 * * *
5072 ** P1 is a register in the root frame of this VM (the root frame is
5073 ** different from the current frame if this instruction is being executed
5074 ** within a sub-program). Set the value of register P1 to the maximum of
5075 ** its current value and the value in register P2.
5077 ** This instruction throws an error if the memory cell is not initially
5078 ** an integer.
5080 case OP_MemMax: { /* in2 */
5081 Mem *pIn1;
5082 VdbeFrame *pFrame;
5083 if( p->pFrame ){
5084 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5085 pIn1 = &pFrame->aMem[pOp->p1];
5086 }else{
5087 pIn1 = &aMem[pOp->p1];
5089 assert( memIsValid(pIn1) );
5090 sqlite3VdbeMemIntegerify(pIn1);
5091 pIn2 = &aMem[pOp->p2];
5092 sqlite3VdbeMemIntegerify(pIn2);
5093 if( pIn1->u.i<pIn2->u.i){
5094 pIn1->u.i = pIn2->u.i;
5096 break;
5098 #endif /* SQLITE_OMIT_AUTOINCREMENT */
5100 /* Opcode: IfPos P1 P2 * * *
5102 ** If the value of register P1 is 1 or greater, jump to P2.
5104 ** It is illegal to use this instruction on a register that does
5105 ** not contain an integer. An assertion fault will result if you try.
5107 case OP_IfPos: { /* jump, in1 */
5108 pIn1 = &aMem[pOp->p1];
5109 assert( pIn1->flags&MEM_Int );
5110 if( pIn1->u.i>0 ){
5111 pc = pOp->p2 - 1;
5113 break;
5116 /* Opcode: IfNeg P1 P2 * * *
5118 ** If the value of register P1 is less than zero, jump to P2.
5120 ** It is illegal to use this instruction on a register that does
5121 ** not contain an integer. An assertion fault will result if you try.
5123 case OP_IfNeg: { /* jump, in1 */
5124 pIn1 = &aMem[pOp->p1];
5125 assert( pIn1->flags&MEM_Int );
5126 if( pIn1->u.i<0 ){
5127 pc = pOp->p2 - 1;
5129 break;
5132 /* Opcode: IfZero P1 P2 P3 * *
5134 ** The register P1 must contain an integer. Add literal P3 to the
5135 ** value in register P1. If the result is exactly 0, jump to P2.
5137 ** It is illegal to use this instruction on a register that does
5138 ** not contain an integer. An assertion fault will result if you try.
5140 case OP_IfZero: { /* jump, in1 */
5141 pIn1 = &aMem[pOp->p1];
5142 assert( pIn1->flags&MEM_Int );
5143 pIn1->u.i += pOp->p3;
5144 if( pIn1->u.i==0 ){
5145 pc = pOp->p2 - 1;
5147 break;
5150 /* Opcode: AggStep * P2 P3 P4 P5
5152 ** Execute the step function for an aggregate. The
5153 ** function has P5 arguments. P4 is a pointer to the FuncDef
5154 ** structure that specifies the function. Use register
5155 ** P3 as the accumulator.
5157 ** The P5 arguments are taken from register P2 and its
5158 ** successors.
5160 case OP_AggStep: {
5161 int n;
5162 int i;
5163 Mem *pMem;
5164 Mem *pRec;
5165 sqlite3_context ctx;
5166 sqlite3_value **apVal;
5168 n = pOp->p5;
5169 assert( n>=0 );
5170 pRec = &aMem[pOp->p2];
5171 apVal = p->apArg;
5172 assert( apVal || n==0 );
5173 for(i=0; i<n; i++, pRec++){
5174 assert( memIsValid(pRec) );
5175 apVal[i] = pRec;
5176 memAboutToChange(p, pRec);
5177 sqlite3VdbeMemStoreType(pRec);
5179 ctx.pFunc = pOp->p4.pFunc;
5180 assert( pOp->p3>0 && pOp->p3<=p->nMem );
5181 ctx.pMem = pMem = &aMem[pOp->p3];
5182 pMem->n++;
5183 ctx.s.flags = MEM_Null;
5184 ctx.s.z = 0;
5185 ctx.s.zMalloc = 0;
5186 ctx.s.xDel = 0;
5187 ctx.s.db = db;
5188 ctx.isError = 0;
5189 ctx.pColl = 0;
5190 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
5191 assert( pOp>p->aOp );
5192 assert( pOp[-1].p4type==P4_COLLSEQ );
5193 assert( pOp[-1].opcode==OP_CollSeq );
5194 ctx.pColl = pOp[-1].p4.pColl;
5196 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
5197 if( ctx.isError ){
5198 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
5199 rc = ctx.isError;
5202 sqlite3VdbeMemRelease(&ctx.s);
5204 break;
5207 /* Opcode: AggFinal P1 P2 * P4 *
5209 ** Execute the finalizer function for an aggregate. P1 is
5210 ** the memory location that is the accumulator for the aggregate.
5212 ** P2 is the number of arguments that the step function takes and
5213 ** P4 is a pointer to the FuncDef for this function. The P2
5214 ** argument is not used by this opcode. It is only there to disambiguate
5215 ** functions that can take varying numbers of arguments. The
5216 ** P4 argument is only needed for the degenerate case where
5217 ** the step function was not previously called.
5219 case OP_AggFinal: {
5220 Mem *pMem;
5221 assert( pOp->p1>0 && pOp->p1<=p->nMem );
5222 pMem = &aMem[pOp->p1];
5223 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
5224 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
5225 if( rc ){
5226 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
5228 sqlite3VdbeChangeEncoding(pMem, encoding);
5229 UPDATE_MAX_BLOBSIZE(pMem);
5230 if( sqlite3VdbeMemTooBig(pMem) ){
5231 goto too_big;
5233 break;
5236 #ifndef SQLITE_OMIT_WAL
5237 /* Opcode: Checkpoint P1 P2 P3 * *
5239 ** Checkpoint database P1. This is a no-op if P1 is not currently in
5240 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
5241 ** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns
5242 ** SQLITE_BUSY or not, respectively. Write the number of pages in the
5243 ** WAL after the checkpoint into mem[P3+1] and the number of pages
5244 ** in the WAL that have been checkpointed after the checkpoint
5245 ** completes into mem[P3+2]. However on an error, mem[P3+1] and
5246 ** mem[P3+2] are initialized to -1.
5248 case OP_Checkpoint: {
5249 int i; /* Loop counter */
5250 int aRes[3]; /* Results */
5251 Mem *pMem; /* Write results here */
5253 aRes[0] = 0;
5254 aRes[1] = aRes[2] = -1;
5255 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
5256 || pOp->p2==SQLITE_CHECKPOINT_FULL
5257 || pOp->p2==SQLITE_CHECKPOINT_RESTART
5259 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
5260 if( rc==SQLITE_BUSY ){
5261 rc = SQLITE_OK;
5262 aRes[0] = 1;
5264 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
5265 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
5267 break;
5269 #endif
5271 #ifndef SQLITE_OMIT_PRAGMA
5272 /* Opcode: JournalMode P1 P2 P3 * P5
5274 ** Change the journal mode of database P1 to P3. P3 must be one of the
5275 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5276 ** modes (delete, truncate, persist, off and memory), this is a simple
5277 ** operation. No IO is required.
5279 ** If changing into or out of WAL mode the procedure is more complicated.
5281 ** Write a string containing the final journal-mode to register P2.
5283 case OP_JournalMode: { /* out2-prerelease */
5284 Btree *pBt; /* Btree to change journal mode of */
5285 Pager *pPager; /* Pager associated with pBt */
5286 int eNew; /* New journal mode */
5287 int eOld; /* The old journal mode */
5288 const char *zFilename; /* Name of database file for pPager */
5290 eNew = pOp->p3;
5291 assert( eNew==PAGER_JOURNALMODE_DELETE
5292 || eNew==PAGER_JOURNALMODE_TRUNCATE
5293 || eNew==PAGER_JOURNALMODE_PERSIST
5294 || eNew==PAGER_JOURNALMODE_OFF
5295 || eNew==PAGER_JOURNALMODE_MEMORY
5296 || eNew==PAGER_JOURNALMODE_WAL
5297 || eNew==PAGER_JOURNALMODE_QUERY
5299 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5301 pBt = db->aDb[pOp->p1].pBt;
5302 pPager = sqlite3BtreePager(pBt);
5303 eOld = sqlite3PagerGetJournalMode(pPager);
5304 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
5305 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
5307 #ifndef SQLITE_OMIT_WAL
5308 zFilename = sqlite3PagerFilename(pPager);
5310 /* Do not allow a transition to journal_mode=WAL for a database
5311 ** in temporary storage or if the VFS does not support shared memory
5313 if( eNew==PAGER_JOURNALMODE_WAL
5314 && (zFilename[0]==0 /* Temp file */
5315 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
5317 eNew = eOld;
5320 if( (eNew!=eOld)
5321 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
5323 if( !db->autoCommit || db->activeVdbeCnt>1 ){
5324 rc = SQLITE_ERROR;
5325 sqlite3SetString(&p->zErrMsg, db,
5326 "cannot change %s wal mode from within a transaction",
5327 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
5329 break;
5330 }else{
5332 if( eOld==PAGER_JOURNALMODE_WAL ){
5333 /* If leaving WAL mode, close the log file. If successful, the call
5334 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5335 ** file. An EXCLUSIVE lock may still be held on the database file
5336 ** after a successful return.
5338 rc = sqlite3PagerCloseWal(pPager);
5339 if( rc==SQLITE_OK ){
5340 sqlite3PagerSetJournalMode(pPager, eNew);
5342 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
5343 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
5344 ** as an intermediate */
5345 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
5348 /* Open a transaction on the database file. Regardless of the journal
5349 ** mode, this transaction always uses a rollback journal.
5351 assert( sqlite3BtreeIsInTrans(pBt)==0 );
5352 if( rc==SQLITE_OK ){
5353 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
5357 #endif /* ifndef SQLITE_OMIT_WAL */
5359 if( rc ){
5360 eNew = eOld;
5362 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
5364 pOut = &aMem[pOp->p2];
5365 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
5366 pOut->z = (char *)sqlite3JournalModename(eNew);
5367 pOut->n = sqlite3Strlen30(pOut->z);
5368 pOut->enc = SQLITE_UTF8;
5369 sqlite3VdbeChangeEncoding(pOut, encoding);
5370 break;
5372 #endif /* SQLITE_OMIT_PRAGMA */
5374 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
5375 /* Opcode: Vacuum * * * * *
5377 ** Vacuum the entire database. This opcode will cause other virtual
5378 ** machines to be created and run. It may not be called from within
5379 ** a transaction.
5381 case OP_Vacuum: {
5382 rc = sqlite3RunVacuum(&p->zErrMsg, db);
5383 break;
5385 #endif
5387 #if !defined(SQLITE_OMIT_AUTOVACUUM)
5388 /* Opcode: IncrVacuum P1 P2 * * *
5390 ** Perform a single step of the incremental vacuum procedure on
5391 ** the P1 database. If the vacuum has finished, jump to instruction
5392 ** P2. Otherwise, fall through to the next instruction.
5394 case OP_IncrVacuum: { /* jump */
5395 Btree *pBt;
5397 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5398 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
5399 pBt = db->aDb[pOp->p1].pBt;
5400 rc = sqlite3BtreeIncrVacuum(pBt);
5401 if( rc==SQLITE_DONE ){
5402 pc = pOp->p2 - 1;
5403 rc = SQLITE_OK;
5405 break;
5407 #endif
5409 /* Opcode: Expire P1 * * * *
5411 ** Cause precompiled statements to become expired. An expired statement
5412 ** fails with an error code of SQLITE_SCHEMA if it is ever executed
5413 ** (via sqlite3_step()).
5415 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
5416 ** then only the currently executing statement is affected.
5418 case OP_Expire: {
5419 if( !pOp->p1 ){
5420 sqlite3ExpirePreparedStatements(db);
5421 }else{
5422 p->expired = 1;
5424 break;
5427 #ifndef SQLITE_OMIT_SHARED_CACHE
5428 /* Opcode: TableLock P1 P2 P3 P4 *
5430 ** Obtain a lock on a particular table. This instruction is only used when
5431 ** the shared-cache feature is enabled.
5433 ** P1 is the index of the database in sqlite3.aDb[] of the database
5434 ** on which the lock is acquired. A readlock is obtained if P3==0 or
5435 ** a write lock if P3==1.
5437 ** P2 contains the root-page of the table to lock.
5439 ** P4 contains a pointer to the name of the table being locked. This is only
5440 ** used to generate an error message if the lock cannot be obtained.
5442 case OP_TableLock: {
5443 u8 isWriteLock = (u8)pOp->p3;
5444 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
5445 int p1 = pOp->p1;
5446 assert( p1>=0 && p1<db->nDb );
5447 assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 );
5448 assert( isWriteLock==0 || isWriteLock==1 );
5449 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
5450 if( (rc&0xFF)==SQLITE_LOCKED ){
5451 const char *z = pOp->p4.z;
5452 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
5455 break;
5457 #endif /* SQLITE_OMIT_SHARED_CACHE */
5459 #ifndef SQLITE_OMIT_VIRTUALTABLE
5460 /* Opcode: VBegin * * * P4 *
5462 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
5463 ** xBegin method for that table.
5465 ** Also, whether or not P4 is set, check that this is not being called from
5466 ** within a callback to a virtual table xSync() method. If it is, the error
5467 ** code will be set to SQLITE_LOCKED.
5469 case OP_VBegin: {
5470 VTable *pVTab;
5471 pVTab = pOp->p4.pVtab;
5472 rc = sqlite3VtabBegin(db, pVTab);
5473 if( pVTab ) importVtabErrMsg(p, pVTab->pVtab);
5474 break;
5476 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5478 #ifndef SQLITE_OMIT_VIRTUALTABLE
5479 /* Opcode: VCreate P1 * * P4 *
5481 ** P4 is the name of a virtual table in database P1. Call the xCreate method
5482 ** for that table.
5484 case OP_VCreate: {
5485 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
5486 break;
5488 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5490 #ifndef SQLITE_OMIT_VIRTUALTABLE
5491 /* Opcode: VDestroy P1 * * P4 *
5493 ** P4 is the name of a virtual table in database P1. Call the xDestroy method
5494 ** of that table.
5496 case OP_VDestroy: {
5497 p->inVtabMethod = 2;
5498 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
5499 p->inVtabMethod = 0;
5500 break;
5502 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5504 #ifndef SQLITE_OMIT_VIRTUALTABLE
5505 /* Opcode: VOpen P1 * * P4 *
5507 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5508 ** P1 is a cursor number. This opcode opens a cursor to the virtual
5509 ** table and stores that cursor in P1.
5511 case OP_VOpen: {
5512 VdbeCursor *pCur;
5513 sqlite3_vtab_cursor *pVtabCursor;
5514 sqlite3_vtab *pVtab;
5515 sqlite3_module *pModule;
5517 pCur = 0;
5518 pVtabCursor = 0;
5519 pVtab = pOp->p4.pVtab->pVtab;
5520 pModule = (sqlite3_module *)pVtab->pModule;
5521 assert(pVtab && pModule);
5522 rc = pModule->xOpen(pVtab, &pVtabCursor);
5523 importVtabErrMsg(p, pVtab);
5524 if( SQLITE_OK==rc ){
5525 /* Initialize sqlite3_vtab_cursor base class */
5526 pVtabCursor->pVtab = pVtab;
5528 /* Initialise vdbe cursor object */
5529 pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
5530 if( pCur ){
5531 pCur->pVtabCursor = pVtabCursor;
5532 pCur->pModule = pVtabCursor->pVtab->pModule;
5533 }else{
5534 db->mallocFailed = 1;
5535 pModule->xClose(pVtabCursor);
5538 break;
5540 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5542 #ifndef SQLITE_OMIT_VIRTUALTABLE
5543 /* Opcode: VFilter P1 P2 P3 P4 *
5545 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if
5546 ** the filtered result set is empty.
5548 ** P4 is either NULL or a string that was generated by the xBestIndex
5549 ** method of the module. The interpretation of the P4 string is left
5550 ** to the module implementation.
5552 ** This opcode invokes the xFilter method on the virtual table specified
5553 ** by P1. The integer query plan parameter to xFilter is stored in register
5554 ** P3. Register P3+1 stores the argc parameter to be passed to the
5555 ** xFilter method. Registers P3+2..P3+1+argc are the argc
5556 ** additional parameters which are passed to
5557 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
5559 ** A jump is made to P2 if the result set after filtering would be empty.
5561 case OP_VFilter: { /* jump */
5562 int nArg;
5563 int iQuery;
5564 const sqlite3_module *pModule;
5565 Mem *pQuery;
5566 Mem *pArgc;
5567 sqlite3_vtab_cursor *pVtabCursor;
5568 sqlite3_vtab *pVtab;
5569 VdbeCursor *pCur;
5570 int res;
5571 int i;
5572 Mem **apArg;
5574 pQuery = &aMem[pOp->p3];
5575 pArgc = &pQuery[1];
5576 pCur = p->apCsr[pOp->p1];
5577 assert( memIsValid(pQuery) );
5578 REGISTER_TRACE(pOp->p3, pQuery);
5579 assert( pCur->pVtabCursor );
5580 pVtabCursor = pCur->pVtabCursor;
5581 pVtab = pVtabCursor->pVtab;
5582 pModule = pVtab->pModule;
5584 /* Grab the index number and argc parameters */
5585 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
5586 nArg = (int)pArgc->u.i;
5587 iQuery = (int)pQuery->u.i;
5589 /* Invoke the xFilter method */
5591 res = 0;
5592 apArg = p->apArg;
5593 for(i = 0; i<nArg; i++){
5594 apArg[i] = &pArgc[i+1];
5595 sqlite3VdbeMemStoreType(apArg[i]);
5598 p->inVtabMethod = 1;
5599 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
5600 p->inVtabMethod = 0;
5601 importVtabErrMsg(p, pVtab);
5602 if( rc==SQLITE_OK ){
5603 res = pModule->xEof(pVtabCursor);
5606 if( res ){
5607 pc = pOp->p2 - 1;
5610 pCur->nullRow = 0;
5612 break;
5614 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5616 #ifndef SQLITE_OMIT_VIRTUALTABLE
5617 /* Opcode: VColumn P1 P2 P3 * *
5619 ** Store the value of the P2-th column of
5620 ** the row of the virtual-table that the
5621 ** P1 cursor is pointing to into register P3.
5623 case OP_VColumn: {
5624 sqlite3_vtab *pVtab;
5625 const sqlite3_module *pModule;
5626 Mem *pDest;
5627 sqlite3_context sContext;
5629 VdbeCursor *pCur = p->apCsr[pOp->p1];
5630 assert( pCur->pVtabCursor );
5631 assert( pOp->p3>0 && pOp->p3<=p->nMem );
5632 pDest = &aMem[pOp->p3];
5633 memAboutToChange(p, pDest);
5634 if( pCur->nullRow ){
5635 sqlite3VdbeMemSetNull(pDest);
5636 break;
5638 pVtab = pCur->pVtabCursor->pVtab;
5639 pModule = pVtab->pModule;
5640 assert( pModule->xColumn );
5641 memset(&sContext, 0, sizeof(sContext));
5643 /* The output cell may already have a buffer allocated. Move
5644 ** the current contents to sContext.s so in case the user-function
5645 ** can use the already allocated buffer instead of allocating a
5646 ** new one.
5648 sqlite3VdbeMemMove(&sContext.s, pDest);
5649 MemSetTypeFlag(&sContext.s, MEM_Null);
5651 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
5652 importVtabErrMsg(p, pVtab);
5653 if( sContext.isError ){
5654 rc = sContext.isError;
5657 /* Copy the result of the function to the P3 register. We
5658 ** do this regardless of whether or not an error occurred to ensure any
5659 ** dynamic allocation in sContext.s (a Mem struct) is released.
5661 sqlite3VdbeChangeEncoding(&sContext.s, encoding);
5662 sqlite3VdbeMemMove(pDest, &sContext.s);
5663 REGISTER_TRACE(pOp->p3, pDest);
5664 UPDATE_MAX_BLOBSIZE(pDest);
5666 if( sqlite3VdbeMemTooBig(pDest) ){
5667 goto too_big;
5669 break;
5671 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5673 #ifndef SQLITE_OMIT_VIRTUALTABLE
5674 /* Opcode: VNext P1 P2 * * *
5676 ** Advance virtual table P1 to the next row in its result set and
5677 ** jump to instruction P2. Or, if the virtual table has reached
5678 ** the end of its result set, then fall through to the next instruction.
5680 case OP_VNext: { /* jump */
5681 sqlite3_vtab *pVtab;
5682 const sqlite3_module *pModule;
5683 int res;
5684 VdbeCursor *pCur;
5686 res = 0;
5687 pCur = p->apCsr[pOp->p1];
5688 assert( pCur->pVtabCursor );
5689 if( pCur->nullRow ){
5690 break;
5692 pVtab = pCur->pVtabCursor->pVtab;
5693 pModule = pVtab->pModule;
5694 assert( pModule->xNext );
5696 /* Invoke the xNext() method of the module. There is no way for the
5697 ** underlying implementation to return an error if one occurs during
5698 ** xNext(). Instead, if an error occurs, true is returned (indicating that
5699 ** data is available) and the error code returned when xColumn or
5700 ** some other method is next invoked on the save virtual table cursor.
5702 p->inVtabMethod = 1;
5703 rc = pModule->xNext(pCur->pVtabCursor);
5704 p->inVtabMethod = 0;
5705 importVtabErrMsg(p, pVtab);
5706 if( rc==SQLITE_OK ){
5707 res = pModule->xEof(pCur->pVtabCursor);
5710 if( !res ){
5711 /* If there is data, jump to P2 */
5712 pc = pOp->p2 - 1;
5714 break;
5716 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5718 #ifndef SQLITE_OMIT_VIRTUALTABLE
5719 /* Opcode: VRename P1 * * P4 *
5721 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5722 ** This opcode invokes the corresponding xRename method. The value
5723 ** in register P1 is passed as the zName argument to the xRename method.
5725 case OP_VRename: {
5726 sqlite3_vtab *pVtab;
5727 Mem *pName;
5729 pVtab = pOp->p4.pVtab->pVtab;
5730 pName = &aMem[pOp->p1];
5731 assert( pVtab->pModule->xRename );
5732 assert( memIsValid(pName) );
5733 REGISTER_TRACE(pOp->p1, pName);
5734 assert( pName->flags & MEM_Str );
5735 rc = pVtab->pModule->xRename(pVtab, pName->z);
5736 importVtabErrMsg(p, pVtab);
5737 p->expired = 0;
5739 break;
5741 #endif
5743 #ifndef SQLITE_OMIT_VIRTUALTABLE
5744 /* Opcode: VUpdate P1 P2 P3 P4 *
5746 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5747 ** This opcode invokes the corresponding xUpdate method. P2 values
5748 ** are contiguous memory cells starting at P3 to pass to the xUpdate
5749 ** invocation. The value in register (P3+P2-1) corresponds to the
5750 ** p2th element of the argv array passed to xUpdate.
5752 ** The xUpdate method will do a DELETE or an INSERT or both.
5753 ** The argv[0] element (which corresponds to memory cell P3)
5754 ** is the rowid of a row to delete. If argv[0] is NULL then no
5755 ** deletion occurs. The argv[1] element is the rowid of the new
5756 ** row. This can be NULL to have the virtual table select the new
5757 ** rowid for itself. The subsequent elements in the array are
5758 ** the values of columns in the new row.
5760 ** If P2==1 then no insert is performed. argv[0] is the rowid of
5761 ** a row to delete.
5763 ** P1 is a boolean flag. If it is set to true and the xUpdate call
5764 ** is successful, then the value returned by sqlite3_last_insert_rowid()
5765 ** is set to the value of the rowid for the row just inserted.
5767 case OP_VUpdate: {
5768 sqlite3_vtab *pVtab;
5769 sqlite3_module *pModule;
5770 int nArg;
5771 int i;
5772 sqlite_int64 rowid;
5773 Mem **apArg;
5774 Mem *pX;
5776 pVtab = pOp->p4.pVtab->pVtab;
5777 pModule = (sqlite3_module *)pVtab->pModule;
5778 nArg = pOp->p2;
5779 assert( pOp->p4type==P4_VTAB );
5780 if( ALWAYS(pModule->xUpdate) ){
5781 apArg = p->apArg;
5782 pX = &aMem[pOp->p3];
5783 for(i=0; i<nArg; i++){
5784 assert( memIsValid(pX) );
5785 memAboutToChange(p, pX);
5786 sqlite3VdbeMemStoreType(pX);
5787 apArg[i] = pX;
5788 pX++;
5790 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
5791 importVtabErrMsg(p, pVtab);
5792 if( rc==SQLITE_OK && pOp->p1 ){
5793 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
5794 db->lastRowid = rowid;
5796 p->nChange++;
5798 break;
5800 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5802 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
5803 /* Opcode: Pagecount P1 P2 * * *
5805 ** Write the current number of pages in database P1 to memory cell P2.
5807 case OP_Pagecount: { /* out2-prerelease */
5808 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
5809 break;
5811 #endif
5814 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
5815 /* Opcode: MaxPgcnt P1 P2 P3 * *
5817 ** Try to set the maximum page count for database P1 to the value in P3.
5818 ** Do not let the maximum page count fall below the current page count and
5819 ** do not change the maximum page count value if P3==0.
5821 ** Store the maximum page count after the change in register P2.
5823 case OP_MaxPgcnt: { /* out2-prerelease */
5824 unsigned int newMax;
5825 Btree *pBt;
5827 pBt = db->aDb[pOp->p1].pBt;
5828 newMax = 0;
5829 if( pOp->p3 ){
5830 newMax = sqlite3BtreeLastPage(pBt);
5831 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
5833 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
5834 break;
5836 #endif
5839 #ifndef SQLITE_OMIT_TRACE
5840 /* Opcode: Trace * * * P4 *
5842 ** If tracing is enabled (by the sqlite3_trace()) interface, then
5843 ** the UTF-8 string contained in P4 is emitted on the trace callback.
5845 case OP_Trace: {
5846 char *zTrace;
5848 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
5849 if( zTrace ){
5850 if( db->xTrace ){
5851 char *z = sqlite3VdbeExpandSql(p, zTrace);
5852 db->xTrace(db->pTraceArg, z);
5853 sqlite3DbFree(db, z);
5855 #ifdef SQLITE_DEBUG
5856 if( (db->flags & SQLITE_SqlTrace)!=0 ){
5857 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
5859 #endif /* SQLITE_DEBUG */
5861 break;
5863 #endif
5866 /* Opcode: Noop * * * * *
5868 ** Do nothing. This instruction is often useful as a jump
5869 ** destination.
5872 ** The magic Explain opcode are only inserted when explain==2 (which
5873 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
5874 ** This opcode records information from the optimizer. It is the
5875 ** the same as a no-op. This opcodesnever appears in a real VM program.
5877 default: { /* This is really OP_Noop and OP_Explain */
5878 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
5879 break;
5882 /*****************************************************************************
5883 ** The cases of the switch statement above this line should all be indented
5884 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the
5885 ** readability. From this point on down, the normal indentation rules are
5886 ** restored.
5887 *****************************************************************************/
5890 #ifdef VDBE_PROFILE
5892 u64 elapsed = sqlite3Hwtime() - start;
5893 pOp->cycles += elapsed;
5894 pOp->cnt++;
5895 #if 0
5896 fprintf(stdout, "%10llu ", elapsed);
5897 sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]);
5898 #endif
5900 #endif
5902 /* The following code adds nothing to the actual functionality
5903 ** of the program. It is only here for testing and debugging.
5904 ** On the other hand, it does burn CPU cycles every time through
5905 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
5907 #ifndef NDEBUG
5908 assert( pc>=-1 && pc<p->nOp );
5910 #ifdef SQLITE_DEBUG
5911 if( p->trace ){
5912 if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
5913 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
5914 registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]);
5916 if( pOp->opflags & OPFLG_OUT3 ){
5917 registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]);
5920 #endif /* SQLITE_DEBUG */
5921 #endif /* NDEBUG */
5922 } /* The end of the for(;;) loop the loops through opcodes */
5924 /* If we reach this point, it means that execution is finished with
5925 ** an error of some kind.
5927 vdbe_error_halt:
5928 assert( rc );
5929 p->rc = rc;
5930 testcase( sqlite3GlobalConfig.xLog!=0 );
5931 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
5932 pc, p->zSql, p->zErrMsg);
5933 sqlite3VdbeHalt(p);
5934 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
5935 rc = SQLITE_ERROR;
5936 if( resetSchemaOnFault>0 ){
5937 sqlite3ResetInternalSchema(db, resetSchemaOnFault-1);
5940 /* This is the only way out of this procedure. We have to
5941 ** release the mutexes on btrees that were acquired at the
5942 ** top. */
5943 vdbe_return:
5944 sqlite3VdbeLeave(p);
5945 return rc;
5947 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
5948 ** is encountered.
5950 too_big:
5951 sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
5952 rc = SQLITE_TOOBIG;
5953 goto vdbe_error_halt;
5955 /* Jump to here if a malloc() fails.
5957 no_mem:
5958 db->mallocFailed = 1;
5959 sqlite3SetString(&p->zErrMsg, db, "out of memory");
5960 rc = SQLITE_NOMEM;
5961 goto vdbe_error_halt;
5963 /* Jump to here for any other kind of fatal error. The "rc" variable
5964 ** should hold the error number.
5966 abort_due_to_error:
5967 assert( p->zErrMsg==0 );
5968 if( db->mallocFailed ) rc = SQLITE_NOMEM;
5969 if( rc!=SQLITE_IOERR_NOMEM ){
5970 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
5972 goto vdbe_error_halt;
5974 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
5975 ** flag.
5977 abort_due_to_interrupt:
5978 assert( db->u1.isInterrupted );
5979 rc = SQLITE_INTERRUPT;
5980 p->rc = rc;
5981 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
5982 goto vdbe_error_halt;