Fast user switcher: Add "(Supervised)" label for supervised users
[chromium-blink-merge.git] / third_party / sqlite / sqlite-src-3070603 / src / vdbeapi.c
blob90baaccc68a4e087f6ac6ddb5b146d1777b7d8d2
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
19 #ifndef SQLITE_OMIT_DEPRECATED
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled. A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates. For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
26 ** added or changed.
28 int sqlite3_expired(sqlite3_stmt *pStmt){
29 Vdbe *p = (Vdbe*)pStmt;
30 return p==0 || p->expired;
32 #endif
35 ** Check on a Vdbe to make sure it has not been finalized. Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid). Return false if it is ok.
39 static int vdbeSafety(Vdbe *p){
40 if( p->db==0 ){
41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
42 return 1;
43 }else{
44 return 0;
47 static int vdbeSafetyNotNull(Vdbe *p){
48 if( p==0 ){
49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
50 return 1;
51 }else{
52 return vdbeSafety(p);
57 ** The following routine destroys a virtual machine that is created by
58 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
59 ** success/failure code that describes the result of executing the virtual
60 ** machine.
62 ** This routine sets the error code and string returned by
63 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
65 int sqlite3_finalize(sqlite3_stmt *pStmt){
66 int rc;
67 if( pStmt==0 ){
68 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
69 ** pointer is a harmless no-op. */
70 rc = SQLITE_OK;
71 }else{
72 Vdbe *v = (Vdbe*)pStmt;
73 sqlite3 *db = v->db;
74 #if SQLITE_THREADSAFE
75 sqlite3_mutex *mutex;
76 #endif
77 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
78 #if SQLITE_THREADSAFE
79 mutex = v->db->mutex;
80 #endif
81 sqlite3_mutex_enter(mutex);
82 rc = sqlite3VdbeFinalize(v);
83 rc = sqlite3ApiExit(db, rc);
84 sqlite3_mutex_leave(mutex);
86 return rc;
90 ** Terminate the current execution of an SQL statement and reset it
91 ** back to its starting state so that it can be reused. A success code from
92 ** the prior execution is returned.
94 ** This routine sets the error code and string returned by
95 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
97 int sqlite3_reset(sqlite3_stmt *pStmt){
98 int rc;
99 if( pStmt==0 ){
100 rc = SQLITE_OK;
101 }else{
102 Vdbe *v = (Vdbe*)pStmt;
103 sqlite3_mutex_enter(v->db->mutex);
104 rc = sqlite3VdbeReset(v);
105 sqlite3VdbeMakeReady(v, -1, 0, 0, 0, 0, 0);
106 assert( (rc & (v->db->errMask))==rc );
107 rc = sqlite3ApiExit(v->db, rc);
108 sqlite3_mutex_leave(v->db->mutex);
110 return rc;
114 ** Set all the parameters in the compiled SQL statement to NULL.
116 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
117 int i;
118 int rc = SQLITE_OK;
119 Vdbe *p = (Vdbe*)pStmt;
120 #if SQLITE_THREADSAFE
121 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
122 #endif
123 sqlite3_mutex_enter(mutex);
124 for(i=0; i<p->nVar; i++){
125 sqlite3VdbeMemRelease(&p->aVar[i]);
126 p->aVar[i].flags = MEM_Null;
128 if( p->isPrepareV2 && p->expmask ){
129 p->expired = 1;
131 sqlite3_mutex_leave(mutex);
132 return rc;
136 /**************************** sqlite3_value_ *******************************
137 ** The following routines extract information from a Mem or sqlite3_value
138 ** structure.
140 const void *sqlite3_value_blob(sqlite3_value *pVal){
141 Mem *p = (Mem*)pVal;
142 if( p->flags & (MEM_Blob|MEM_Str) ){
143 sqlite3VdbeMemExpandBlob(p);
144 p->flags &= ~MEM_Str;
145 p->flags |= MEM_Blob;
146 return p->n ? p->z : 0;
147 }else{
148 return sqlite3_value_text(pVal);
151 int sqlite3_value_bytes(sqlite3_value *pVal){
152 return sqlite3ValueBytes(pVal, SQLITE_UTF8);
154 int sqlite3_value_bytes16(sqlite3_value *pVal){
155 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
157 double sqlite3_value_double(sqlite3_value *pVal){
158 return sqlite3VdbeRealValue((Mem*)pVal);
160 int sqlite3_value_int(sqlite3_value *pVal){
161 return (int)sqlite3VdbeIntValue((Mem*)pVal);
163 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
164 return sqlite3VdbeIntValue((Mem*)pVal);
166 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
167 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
169 #ifndef SQLITE_OMIT_UTF16
170 const void *sqlite3_value_text16(sqlite3_value* pVal){
171 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
173 const void *sqlite3_value_text16be(sqlite3_value *pVal){
174 return sqlite3ValueText(pVal, SQLITE_UTF16BE);
176 const void *sqlite3_value_text16le(sqlite3_value *pVal){
177 return sqlite3ValueText(pVal, SQLITE_UTF16LE);
179 #endif /* SQLITE_OMIT_UTF16 */
180 int sqlite3_value_type(sqlite3_value* pVal){
181 return pVal->type;
184 /**************************** sqlite3_result_ *******************************
185 ** The following routines are used by user-defined functions to specify
186 ** the function result.
188 ** The setStrOrError() funtion calls sqlite3VdbeMemSetStr() to store the
189 ** result as a string or blob but if the string or blob is too large, it
190 ** then sets the error code to SQLITE_TOOBIG
192 static void setResultStrOrError(
193 sqlite3_context *pCtx, /* Function context */
194 const char *z, /* String pointer */
195 int n, /* Bytes in string, or negative */
196 u8 enc, /* Encoding of z. 0 for BLOBs */
197 void (*xDel)(void*) /* Destructor function */
199 if( sqlite3VdbeMemSetStr(&pCtx->s, z, n, enc, xDel)==SQLITE_TOOBIG ){
200 sqlite3_result_error_toobig(pCtx);
203 void sqlite3_result_blob(
204 sqlite3_context *pCtx,
205 const void *z,
206 int n,
207 void (*xDel)(void *)
209 assert( n>=0 );
210 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
211 setResultStrOrError(pCtx, z, n, 0, xDel);
213 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
214 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
215 sqlite3VdbeMemSetDouble(&pCtx->s, rVal);
217 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
218 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
219 pCtx->isError = SQLITE_ERROR;
220 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
222 #ifndef SQLITE_OMIT_UTF16
223 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
224 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
225 pCtx->isError = SQLITE_ERROR;
226 sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
228 #endif
229 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
230 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
231 sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal);
233 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
234 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
235 sqlite3VdbeMemSetInt64(&pCtx->s, iVal);
237 void sqlite3_result_null(sqlite3_context *pCtx){
238 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
239 sqlite3VdbeMemSetNull(&pCtx->s);
241 void sqlite3_result_text(
242 sqlite3_context *pCtx,
243 const char *z,
244 int n,
245 void (*xDel)(void *)
247 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
248 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
250 #ifndef SQLITE_OMIT_UTF16
251 void sqlite3_result_text16(
252 sqlite3_context *pCtx,
253 const void *z,
254 int n,
255 void (*xDel)(void *)
257 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
258 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
260 void sqlite3_result_text16be(
261 sqlite3_context *pCtx,
262 const void *z,
263 int n,
264 void (*xDel)(void *)
266 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
267 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
269 void sqlite3_result_text16le(
270 sqlite3_context *pCtx,
271 const void *z,
272 int n,
273 void (*xDel)(void *)
275 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
276 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
278 #endif /* SQLITE_OMIT_UTF16 */
279 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
280 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
281 sqlite3VdbeMemCopy(&pCtx->s, pValue);
283 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
284 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
285 sqlite3VdbeMemSetZeroBlob(&pCtx->s, n);
287 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
288 pCtx->isError = errCode;
289 if( pCtx->s.flags & MEM_Null ){
290 sqlite3VdbeMemSetStr(&pCtx->s, sqlite3ErrStr(errCode), -1,
291 SQLITE_UTF8, SQLITE_STATIC);
295 /* Force an SQLITE_TOOBIG error. */
296 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
297 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
298 pCtx->isError = SQLITE_TOOBIG;
299 sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1,
300 SQLITE_UTF8, SQLITE_STATIC);
303 /* An SQLITE_NOMEM error. */
304 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
305 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
306 sqlite3VdbeMemSetNull(&pCtx->s);
307 pCtx->isError = SQLITE_NOMEM;
308 pCtx->s.db->mallocFailed = 1;
312 ** This function is called after a transaction has been committed. It
313 ** invokes callbacks registered with sqlite3_wal_hook() as required.
315 static int doWalCallbacks(sqlite3 *db){
316 int rc = SQLITE_OK;
317 #ifndef SQLITE_OMIT_WAL
318 int i;
319 for(i=0; i<db->nDb; i++){
320 Btree *pBt = db->aDb[i].pBt;
321 if( pBt ){
322 int nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
323 if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){
324 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry);
328 #endif
329 return rc;
333 ** Execute the statement pStmt, either until a row of data is ready, the
334 ** statement is completely executed or an error occurs.
336 ** This routine implements the bulk of the logic behind the sqlite_step()
337 ** API. The only thing omitted is the automatic recompile if a
338 ** schema change has occurred. That detail is handled by the
339 ** outer sqlite3_step() wrapper procedure.
341 static int sqlite3Step(Vdbe *p){
342 sqlite3 *db;
343 int rc;
345 assert(p);
346 if( p->magic!=VDBE_MAGIC_RUN ){
347 /* We used to require that sqlite3_reset() be called before retrying
348 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning
349 ** with version 3.7.0, we changed this so that sqlite3_reset() would
350 ** be called automatically instead of throwing the SQLITE_MISUSE error.
351 ** This "automatic-reset" change is not technically an incompatibility,
352 ** since any application that receives an SQLITE_MISUSE is broken by
353 ** definition.
355 ** Nevertheless, some published applications that were originally written
356 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
357 ** returns, and the so were broken by the automatic-reset change. As a
358 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
359 ** legacy behavior of returning SQLITE_MISUSE for cases where the
360 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
361 ** or SQLITE_BUSY error.
363 #ifdef SQLITE_OMIT_AUTORESET
364 if( p->rc==SQLITE_BUSY || p->rc==SQLITE_LOCKED ){
365 sqlite3_reset((sqlite3_stmt*)p);
366 }else{
367 return SQLITE_MISUSE_BKPT;
369 #else
370 sqlite3_reset((sqlite3_stmt*)p);
371 #endif
374 /* Check that malloc() has not failed. If it has, return early. */
375 db = p->db;
376 if( db->mallocFailed ){
377 p->rc = SQLITE_NOMEM;
378 return SQLITE_NOMEM;
381 if( p->pc<=0 && p->expired ){
382 p->rc = SQLITE_SCHEMA;
383 rc = SQLITE_ERROR;
384 goto end_of_step;
386 if( p->pc<0 ){
387 /* If there are no other statements currently running, then
388 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt
389 ** from interrupting a statement that has not yet started.
391 if( db->activeVdbeCnt==0 ){
392 db->u1.isInterrupted = 0;
395 assert( db->writeVdbeCnt>0 || db->autoCommit==0 || db->nDeferredCons==0 );
397 #ifndef SQLITE_OMIT_TRACE
398 if( db->xProfile && !db->init.busy ){
399 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
401 #endif
403 db->activeVdbeCnt++;
404 if( p->readOnly==0 ) db->writeVdbeCnt++;
405 p->pc = 0;
407 #ifndef SQLITE_OMIT_EXPLAIN
408 if( p->explain ){
409 rc = sqlite3VdbeList(p);
410 }else
411 #endif /* SQLITE_OMIT_EXPLAIN */
413 db->vdbeExecCnt++;
414 rc = sqlite3VdbeExec(p);
415 db->vdbeExecCnt--;
418 #ifndef SQLITE_OMIT_TRACE
419 /* Invoke the profile callback if there is one
421 if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){
422 sqlite3_int64 iNow;
423 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
424 db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000);
426 #endif
428 if( rc==SQLITE_DONE ){
429 assert( p->rc==SQLITE_OK );
430 p->rc = doWalCallbacks(db);
431 if( p->rc!=SQLITE_OK ){
432 rc = SQLITE_ERROR;
436 db->errCode = rc;
437 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
438 p->rc = SQLITE_NOMEM;
440 end_of_step:
441 /* At this point local variable rc holds the value that should be
442 ** returned if this statement was compiled using the legacy
443 ** sqlite3_prepare() interface. According to the docs, this can only
444 ** be one of the values in the first assert() below. Variable p->rc
445 ** contains the value that would be returned if sqlite3_finalize()
446 ** were called on statement p.
448 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR
449 || rc==SQLITE_BUSY || rc==SQLITE_MISUSE
451 assert( p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE );
452 if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){
453 /* If this statement was prepared using sqlite3_prepare_v2(), and an
454 ** error has occured, then return the error code in p->rc to the
455 ** caller. Set the error code in the database handle to the same value.
457 rc = db->errCode = p->rc;
459 return (rc&db->errMask);
463 ** This is the top-level implementation of sqlite3_step(). Call
464 ** sqlite3Step() to do most of the work. If a schema error occurs,
465 ** call sqlite3Reprepare() and try again.
467 int sqlite3_step(sqlite3_stmt *pStmt){
468 int rc = SQLITE_OK; /* Result from sqlite3Step() */
469 int rc2 = SQLITE_OK; /* Result from sqlite3Reprepare() */
470 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */
471 int cnt = 0; /* Counter to prevent infinite loop of reprepares */
472 sqlite3 *db; /* The database connection */
474 if( vdbeSafetyNotNull(v) ){
475 return SQLITE_MISUSE_BKPT;
477 db = v->db;
478 sqlite3_mutex_enter(db->mutex);
479 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
480 && cnt++ < 5
481 && (rc2 = rc = sqlite3Reprepare(v))==SQLITE_OK ){
482 sqlite3_reset(pStmt);
483 v->expired = 0;
485 if( rc2!=SQLITE_OK && ALWAYS(v->isPrepareV2) && ALWAYS(db->pErr) ){
486 /* This case occurs after failing to recompile an sql statement.
487 ** The error message from the SQL compiler has already been loaded
488 ** into the database handle. This block copies the error message
489 ** from the database handle into the statement and sets the statement
490 ** program counter to 0 to ensure that when the statement is
491 ** finalized or reset the parser error message is available via
492 ** sqlite3_errmsg() and sqlite3_errcode().
494 const char *zErr = (const char *)sqlite3_value_text(db->pErr);
495 sqlite3DbFree(db, v->zErrMsg);
496 if( !db->mallocFailed ){
497 v->zErrMsg = sqlite3DbStrDup(db, zErr);
498 v->rc = rc2;
499 } else {
500 v->zErrMsg = 0;
501 v->rc = rc = SQLITE_NOMEM;
504 rc = sqlite3ApiExit(db, rc);
505 sqlite3_mutex_leave(db->mutex);
506 return rc;
510 ** Extract the user data from a sqlite3_context structure and return a
511 ** pointer to it.
513 void *sqlite3_user_data(sqlite3_context *p){
514 assert( p && p->pFunc );
515 return p->pFunc->pUserData;
519 ** Extract the user data from a sqlite3_context structure and return a
520 ** pointer to it.
522 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
523 ** returns a copy of the pointer to the database connection (the 1st
524 ** parameter) of the sqlite3_create_function() and
525 ** sqlite3_create_function16() routines that originally registered the
526 ** application defined function.
528 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
529 assert( p && p->pFunc );
530 return p->s.db;
534 ** The following is the implementation of an SQL function that always
535 ** fails with an error message stating that the function is used in the
536 ** wrong context. The sqlite3_overload_function() API might construct
537 ** SQL function that use this routine so that the functions will exist
538 ** for name resolution but are actually overloaded by the xFindFunction
539 ** method of virtual tables.
541 void sqlite3InvalidFunction(
542 sqlite3_context *context, /* The function calling context */
543 int NotUsed, /* Number of arguments to the function */
544 sqlite3_value **NotUsed2 /* Value of each argument */
546 const char *zName = context->pFunc->zName;
547 char *zErr;
548 UNUSED_PARAMETER2(NotUsed, NotUsed2);
549 zErr = sqlite3_mprintf(
550 "unable to use function %s in the requested context", zName);
551 sqlite3_result_error(context, zErr, -1);
552 sqlite3_free(zErr);
556 ** Allocate or return the aggregate context for a user function. A new
557 ** context is allocated on the first call. Subsequent calls return the
558 ** same context that was returned on prior calls.
560 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
561 Mem *pMem;
562 assert( p && p->pFunc && p->pFunc->xStep );
563 assert( sqlite3_mutex_held(p->s.db->mutex) );
564 pMem = p->pMem;
565 testcase( nByte<0 );
566 if( (pMem->flags & MEM_Agg)==0 ){
567 if( nByte<=0 ){
568 sqlite3VdbeMemReleaseExternal(pMem);
569 pMem->flags = MEM_Null;
570 pMem->z = 0;
571 }else{
572 sqlite3VdbeMemGrow(pMem, nByte, 0);
573 pMem->flags = MEM_Agg;
574 pMem->u.pDef = p->pFunc;
575 if( pMem->z ){
576 memset(pMem->z, 0, nByte);
580 return (void*)pMem->z;
584 ** Return the auxilary data pointer, if any, for the iArg'th argument to
585 ** the user-function defined by pCtx.
587 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
588 VdbeFunc *pVdbeFunc;
590 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
591 pVdbeFunc = pCtx->pVdbeFunc;
592 if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){
593 return 0;
595 return pVdbeFunc->apAux[iArg].pAux;
599 ** Set the auxilary data pointer and delete function, for the iArg'th
600 ** argument to the user-function defined by pCtx. Any previous value is
601 ** deleted by calling the delete function specified when it was set.
603 void sqlite3_set_auxdata(
604 sqlite3_context *pCtx,
605 int iArg,
606 void *pAux,
607 void (*xDelete)(void*)
609 struct AuxData *pAuxData;
610 VdbeFunc *pVdbeFunc;
611 if( iArg<0 ) goto failed;
613 assert( sqlite3_mutex_held(pCtx->s.db->mutex) );
614 pVdbeFunc = pCtx->pVdbeFunc;
615 if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){
616 int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0);
617 int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg;
618 pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc);
619 if( !pVdbeFunc ){
620 goto failed;
622 pCtx->pVdbeFunc = pVdbeFunc;
623 memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux));
624 pVdbeFunc->nAux = iArg+1;
625 pVdbeFunc->pFunc = pCtx->pFunc;
628 pAuxData = &pVdbeFunc->apAux[iArg];
629 if( pAuxData->pAux && pAuxData->xDelete ){
630 pAuxData->xDelete(pAuxData->pAux);
632 pAuxData->pAux = pAux;
633 pAuxData->xDelete = xDelete;
634 return;
636 failed:
637 if( xDelete ){
638 xDelete(pAux);
642 #ifndef SQLITE_OMIT_DEPRECATED
644 ** Return the number of times the Step function of a aggregate has been
645 ** called.
647 ** This function is deprecated. Do not use it for new code. It is
648 ** provide only to avoid breaking legacy code. New aggregate function
649 ** implementations should keep their own counts within their aggregate
650 ** context.
652 int sqlite3_aggregate_count(sqlite3_context *p){
653 assert( p && p->pMem && p->pFunc && p->pFunc->xStep );
654 return p->pMem->n;
656 #endif
659 ** Return the number of columns in the result set for the statement pStmt.
661 int sqlite3_column_count(sqlite3_stmt *pStmt){
662 Vdbe *pVm = (Vdbe *)pStmt;
663 return pVm ? pVm->nResColumn : 0;
667 ** Return the number of values available from the current row of the
668 ** currently executing statement pStmt.
670 int sqlite3_data_count(sqlite3_stmt *pStmt){
671 Vdbe *pVm = (Vdbe *)pStmt;
672 if( pVm==0 || pVm->pResultSet==0 ) return 0;
673 return pVm->nResColumn;
678 ** Check to see if column iCol of the given statement is valid. If
679 ** it is, return a pointer to the Mem for the value of that column.
680 ** If iCol is not valid, return a pointer to a Mem which has a value
681 ** of NULL.
683 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
684 Vdbe *pVm;
685 Mem *pOut;
687 pVm = (Vdbe *)pStmt;
688 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
689 sqlite3_mutex_enter(pVm->db->mutex);
690 pOut = &pVm->pResultSet[i];
691 }else{
692 /* If the value passed as the second argument is out of range, return
693 ** a pointer to the following static Mem object which contains the
694 ** value SQL NULL. Even though the Mem structure contains an element
695 ** of type i64, on certain architecture (x86) with certain compiler
696 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
697 ** instead of an 8-byte one. This all works fine, except that when
698 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
699 ** that a Mem structure is located on an 8-byte boundary. To prevent
700 ** this assert() from failing, when building with SQLITE_DEBUG defined
701 ** using gcc, force nullMem to be 8-byte aligned using the magical
702 ** __attribute__((aligned(8))) macro. */
703 static const Mem nullMem
704 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
705 __attribute__((aligned(8)))
706 #endif
707 = {0, "", (double)0, {0}, 0, MEM_Null, SQLITE_NULL, 0,
708 #ifdef SQLITE_DEBUG
709 0, 0, /* pScopyFrom, pFiller */
710 #endif
711 0, 0 };
713 if( pVm && ALWAYS(pVm->db) ){
714 sqlite3_mutex_enter(pVm->db->mutex);
715 sqlite3Error(pVm->db, SQLITE_RANGE, 0);
717 pOut = (Mem*)&nullMem;
719 return pOut;
723 ** This function is called after invoking an sqlite3_value_XXX function on a
724 ** column value (i.e. a value returned by evaluating an SQL expression in the
725 ** select list of a SELECT statement) that may cause a malloc() failure. If
726 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
727 ** code of statement pStmt set to SQLITE_NOMEM.
729 ** Specifically, this is called from within:
731 ** sqlite3_column_int()
732 ** sqlite3_column_int64()
733 ** sqlite3_column_text()
734 ** sqlite3_column_text16()
735 ** sqlite3_column_real()
736 ** sqlite3_column_bytes()
737 ** sqlite3_column_bytes16()
738 ** sqiite3_column_blob()
740 static void columnMallocFailure(sqlite3_stmt *pStmt)
742 /* If malloc() failed during an encoding conversion within an
743 ** sqlite3_column_XXX API, then set the return code of the statement to
744 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
745 ** and _finalize() will return NOMEM.
747 Vdbe *p = (Vdbe *)pStmt;
748 if( p ){
749 p->rc = sqlite3ApiExit(p->db, p->rc);
750 sqlite3_mutex_leave(p->db->mutex);
754 /**************************** sqlite3_column_ *******************************
755 ** The following routines are used to access elements of the current row
756 ** in the result set.
758 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
759 const void *val;
760 val = sqlite3_value_blob( columnMem(pStmt,i) );
761 /* Even though there is no encoding conversion, value_blob() might
762 ** need to call malloc() to expand the result of a zeroblob()
763 ** expression.
765 columnMallocFailure(pStmt);
766 return val;
768 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
769 int val = sqlite3_value_bytes( columnMem(pStmt,i) );
770 columnMallocFailure(pStmt);
771 return val;
773 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
774 int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
775 columnMallocFailure(pStmt);
776 return val;
778 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
779 double val = sqlite3_value_double( columnMem(pStmt,i) );
780 columnMallocFailure(pStmt);
781 return val;
783 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
784 int val = sqlite3_value_int( columnMem(pStmt,i) );
785 columnMallocFailure(pStmt);
786 return val;
788 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
789 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
790 columnMallocFailure(pStmt);
791 return val;
793 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
794 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
795 columnMallocFailure(pStmt);
796 return val;
798 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
799 Mem *pOut = columnMem(pStmt, i);
800 if( pOut->flags&MEM_Static ){
801 pOut->flags &= ~MEM_Static;
802 pOut->flags |= MEM_Ephem;
804 columnMallocFailure(pStmt);
805 return (sqlite3_value *)pOut;
807 #ifndef SQLITE_OMIT_UTF16
808 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
809 const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
810 columnMallocFailure(pStmt);
811 return val;
813 #endif /* SQLITE_OMIT_UTF16 */
814 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
815 int iType = sqlite3_value_type( columnMem(pStmt,i) );
816 columnMallocFailure(pStmt);
817 return iType;
820 /* The following function is experimental and subject to change or
821 ** removal */
822 /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){
823 ** return sqlite3_value_numeric_type( columnMem(pStmt,i) );
828 ** Convert the N-th element of pStmt->pColName[] into a string using
829 ** xFunc() then return that string. If N is out of range, return 0.
831 ** There are up to 5 names for each column. useType determines which
832 ** name is returned. Here are the names:
834 ** 0 The column name as it should be displayed for output
835 ** 1 The datatype name for the column
836 ** 2 The name of the database that the column derives from
837 ** 3 The name of the table that the column derives from
838 ** 4 The name of the table column that the result column derives from
840 ** If the result is not a simple column reference (if it is an expression
841 ** or a constant) then useTypes 2, 3, and 4 return NULL.
843 static const void *columnName(
844 sqlite3_stmt *pStmt,
845 int N,
846 const void *(*xFunc)(Mem*),
847 int useType
849 const void *ret = 0;
850 Vdbe *p = (Vdbe *)pStmt;
851 int n;
852 sqlite3 *db = p->db;
854 assert( db!=0 );
855 n = sqlite3_column_count(pStmt);
856 if( N<n && N>=0 ){
857 N += useType*n;
858 sqlite3_mutex_enter(db->mutex);
859 assert( db->mallocFailed==0 );
860 ret = xFunc(&p->aColName[N]);
861 /* A malloc may have failed inside of the xFunc() call. If this
862 ** is the case, clear the mallocFailed flag and return NULL.
864 if( db->mallocFailed ){
865 db->mallocFailed = 0;
866 ret = 0;
868 sqlite3_mutex_leave(db->mutex);
870 return ret;
874 ** Return the name of the Nth column of the result set returned by SQL
875 ** statement pStmt.
877 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
878 return columnName(
879 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
881 #ifndef SQLITE_OMIT_UTF16
882 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
883 return columnName(
884 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
886 #endif
889 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must
890 ** not define OMIT_DECLTYPE.
892 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
893 # error "Must not define both SQLITE_OMIT_DECLTYPE \
894 and SQLITE_ENABLE_COLUMN_METADATA"
895 #endif
897 #ifndef SQLITE_OMIT_DECLTYPE
899 ** Return the column declaration type (if applicable) of the 'i'th column
900 ** of the result set of SQL statement pStmt.
902 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
903 return columnName(
904 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
906 #ifndef SQLITE_OMIT_UTF16
907 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
908 return columnName(
909 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
911 #endif /* SQLITE_OMIT_UTF16 */
912 #endif /* SQLITE_OMIT_DECLTYPE */
914 #ifdef SQLITE_ENABLE_COLUMN_METADATA
916 ** Return the name of the database from which a result column derives.
917 ** NULL is returned if the result column is an expression or constant or
918 ** anything else which is not an unabiguous reference to a database column.
920 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
921 return columnName(
922 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
924 #ifndef SQLITE_OMIT_UTF16
925 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
926 return columnName(
927 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
929 #endif /* SQLITE_OMIT_UTF16 */
932 ** Return the name of the table from which a result column derives.
933 ** NULL is returned if the result column is an expression or constant or
934 ** anything else which is not an unabiguous reference to a database column.
936 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
937 return columnName(
938 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
940 #ifndef SQLITE_OMIT_UTF16
941 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
942 return columnName(
943 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
945 #endif /* SQLITE_OMIT_UTF16 */
948 ** Return the name of the table column from which a result column derives.
949 ** NULL is returned if the result column is an expression or constant or
950 ** anything else which is not an unabiguous reference to a database column.
952 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
953 return columnName(
954 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
956 #ifndef SQLITE_OMIT_UTF16
957 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
958 return columnName(
959 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
961 #endif /* SQLITE_OMIT_UTF16 */
962 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
965 /******************************* sqlite3_bind_ ***************************
967 ** Routines used to attach values to wildcards in a compiled SQL statement.
970 ** Unbind the value bound to variable i in virtual machine p. This is the
971 ** the same as binding a NULL value to the column. If the "i" parameter is
972 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
974 ** A successful evaluation of this routine acquires the mutex on p.
975 ** the mutex is released if any kind of error occurs.
977 ** The error code stored in database p->db is overwritten with the return
978 ** value in any case.
980 static int vdbeUnbind(Vdbe *p, int i){
981 Mem *pVar;
982 if( vdbeSafetyNotNull(p) ){
983 return SQLITE_MISUSE_BKPT;
985 sqlite3_mutex_enter(p->db->mutex);
986 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
987 sqlite3Error(p->db, SQLITE_MISUSE, 0);
988 sqlite3_mutex_leave(p->db->mutex);
989 sqlite3_log(SQLITE_MISUSE,
990 "bind on a busy prepared statement: [%s]", p->zSql);
991 return SQLITE_MISUSE_BKPT;
993 if( i<1 || i>p->nVar ){
994 sqlite3Error(p->db, SQLITE_RANGE, 0);
995 sqlite3_mutex_leave(p->db->mutex);
996 return SQLITE_RANGE;
998 i--;
999 pVar = &p->aVar[i];
1000 sqlite3VdbeMemRelease(pVar);
1001 pVar->flags = MEM_Null;
1002 sqlite3Error(p->db, SQLITE_OK, 0);
1004 /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1005 ** binding a new value to this variable invalidates the current query plan.
1007 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host
1008 ** parameter in the WHERE clause might influence the choice of query plan
1009 ** for a statement, then the statement will be automatically recompiled,
1010 ** as if there had been a schema change, on the first sqlite3_step() call
1011 ** following any change to the bindings of that parameter.
1013 if( p->isPrepareV2 &&
1014 ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff)
1016 p->expired = 1;
1018 return SQLITE_OK;
1022 ** Bind a text or BLOB value.
1024 static int bindText(
1025 sqlite3_stmt *pStmt, /* The statement to bind against */
1026 int i, /* Index of the parameter to bind */
1027 const void *zData, /* Pointer to the data to be bound */
1028 int nData, /* Number of bytes of data to be bound */
1029 void (*xDel)(void*), /* Destructor for the data */
1030 u8 encoding /* Encoding for the data */
1032 Vdbe *p = (Vdbe *)pStmt;
1033 Mem *pVar;
1034 int rc;
1036 rc = vdbeUnbind(p, i);
1037 if( rc==SQLITE_OK ){
1038 if( zData!=0 ){
1039 pVar = &p->aVar[i-1];
1040 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1041 if( rc==SQLITE_OK && encoding!=0 ){
1042 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1044 sqlite3Error(p->db, rc, 0);
1045 rc = sqlite3ApiExit(p->db, rc);
1047 sqlite3_mutex_leave(p->db->mutex);
1048 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
1049 xDel((void*)zData);
1051 return rc;
1056 ** Bind a blob value to an SQL statement variable.
1058 int sqlite3_bind_blob(
1059 sqlite3_stmt *pStmt,
1060 int i,
1061 const void *zData,
1062 int nData,
1063 void (*xDel)(void*)
1065 return bindText(pStmt, i, zData, nData, xDel, 0);
1067 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1068 int rc;
1069 Vdbe *p = (Vdbe *)pStmt;
1070 rc = vdbeUnbind(p, i);
1071 if( rc==SQLITE_OK ){
1072 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1073 sqlite3_mutex_leave(p->db->mutex);
1075 return rc;
1077 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1078 return sqlite3_bind_int64(p, i, (i64)iValue);
1080 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1081 int rc;
1082 Vdbe *p = (Vdbe *)pStmt;
1083 rc = vdbeUnbind(p, i);
1084 if( rc==SQLITE_OK ){
1085 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1086 sqlite3_mutex_leave(p->db->mutex);
1088 return rc;
1090 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1091 int rc;
1092 Vdbe *p = (Vdbe*)pStmt;
1093 rc = vdbeUnbind(p, i);
1094 if( rc==SQLITE_OK ){
1095 sqlite3_mutex_leave(p->db->mutex);
1097 return rc;
1099 int sqlite3_bind_text(
1100 sqlite3_stmt *pStmt,
1101 int i,
1102 const char *zData,
1103 int nData,
1104 void (*xDel)(void*)
1106 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1108 #ifndef SQLITE_OMIT_UTF16
1109 int sqlite3_bind_text16(
1110 sqlite3_stmt *pStmt,
1111 int i,
1112 const void *zData,
1113 int nData,
1114 void (*xDel)(void*)
1116 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1118 #endif /* SQLITE_OMIT_UTF16 */
1119 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1120 int rc;
1121 switch( pValue->type ){
1122 case SQLITE_INTEGER: {
1123 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1124 break;
1126 case SQLITE_FLOAT: {
1127 rc = sqlite3_bind_double(pStmt, i, pValue->r);
1128 break;
1130 case SQLITE_BLOB: {
1131 if( pValue->flags & MEM_Zero ){
1132 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1133 }else{
1134 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1136 break;
1138 case SQLITE_TEXT: {
1139 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT,
1140 pValue->enc);
1141 break;
1143 default: {
1144 rc = sqlite3_bind_null(pStmt, i);
1145 break;
1148 return rc;
1150 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1151 int rc;
1152 Vdbe *p = (Vdbe *)pStmt;
1153 rc = vdbeUnbind(p, i);
1154 if( rc==SQLITE_OK ){
1155 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1156 sqlite3_mutex_leave(p->db->mutex);
1158 return rc;
1162 ** Return the number of wildcards that can be potentially bound to.
1163 ** This routine is added to support DBD::SQLite.
1165 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1166 Vdbe *p = (Vdbe*)pStmt;
1167 return p ? p->nVar : 0;
1171 ** Create a mapping from variable numbers to variable names
1172 ** in the Vdbe.azVar[] array, if such a mapping does not already
1173 ** exist.
1175 static void createVarMap(Vdbe *p){
1176 if( !p->okVar ){
1177 int j;
1178 Op *pOp;
1179 sqlite3_mutex_enter(p->db->mutex);
1180 /* The race condition here is harmless. If two threads call this
1181 ** routine on the same Vdbe at the same time, they both might end
1182 ** up initializing the Vdbe.azVar[] array. That is a little extra
1183 ** work but it results in the same answer.
1185 for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){
1186 if( pOp->opcode==OP_Variable ){
1187 assert( pOp->p1>0 && pOp->p1<=p->nVar );
1188 p->azVar[pOp->p1-1] = pOp->p4.z;
1191 p->okVar = 1;
1192 sqlite3_mutex_leave(p->db->mutex);
1197 ** Return the name of a wildcard parameter. Return NULL if the index
1198 ** is out of range or if the wildcard is unnamed.
1200 ** The result is always UTF-8.
1202 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1203 Vdbe *p = (Vdbe*)pStmt;
1204 if( p==0 || i<1 || i>p->nVar ){
1205 return 0;
1207 createVarMap(p);
1208 return p->azVar[i-1];
1212 ** Given a wildcard parameter name, return the index of the variable
1213 ** with that name. If there is no variable with the given name,
1214 ** return 0.
1216 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
1217 int i;
1218 if( p==0 ){
1219 return 0;
1221 createVarMap(p);
1222 if( zName ){
1223 for(i=0; i<p->nVar; i++){
1224 const char *z = p->azVar[i];
1225 if( z && memcmp(z,zName,nName)==0 && z[nName]==0 ){
1226 return i+1;
1230 return 0;
1232 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1233 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
1237 ** Transfer all bindings from the first statement over to the second.
1239 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1240 Vdbe *pFrom = (Vdbe*)pFromStmt;
1241 Vdbe *pTo = (Vdbe*)pToStmt;
1242 int i;
1243 assert( pTo->db==pFrom->db );
1244 assert( pTo->nVar==pFrom->nVar );
1245 sqlite3_mutex_enter(pTo->db->mutex);
1246 for(i=0; i<pFrom->nVar; i++){
1247 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1249 sqlite3_mutex_leave(pTo->db->mutex);
1250 return SQLITE_OK;
1253 #ifndef SQLITE_OMIT_DEPRECATED
1255 ** Deprecated external interface. Internal/core SQLite code
1256 ** should call sqlite3TransferBindings.
1258 ** Is is misuse to call this routine with statements from different
1259 ** database connections. But as this is a deprecated interface, we
1260 ** will not bother to check for that condition.
1262 ** If the two statements contain a different number of bindings, then
1263 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise
1264 ** SQLITE_OK is returned.
1266 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1267 Vdbe *pFrom = (Vdbe*)pFromStmt;
1268 Vdbe *pTo = (Vdbe*)pToStmt;
1269 if( pFrom->nVar!=pTo->nVar ){
1270 return SQLITE_ERROR;
1272 if( pTo->isPrepareV2 && pTo->expmask ){
1273 pTo->expired = 1;
1275 if( pFrom->isPrepareV2 && pFrom->expmask ){
1276 pFrom->expired = 1;
1278 return sqlite3TransferBindings(pFromStmt, pToStmt);
1280 #endif
1283 ** Return the sqlite3* database handle to which the prepared statement given
1284 ** in the argument belongs. This is the same database handle that was
1285 ** the first argument to the sqlite3_prepare() that was used to create
1286 ** the statement in the first place.
1288 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1289 return pStmt ? ((Vdbe*)pStmt)->db : 0;
1293 ** Return true if the prepared statement is guaranteed to not modify the
1294 ** database.
1296 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
1297 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
1301 ** Return a pointer to the next prepared statement after pStmt associated
1302 ** with database connection pDb. If pStmt is NULL, return the first
1303 ** prepared statement for the database connection. Return NULL if there
1304 ** are no more.
1306 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1307 sqlite3_stmt *pNext;
1308 sqlite3_mutex_enter(pDb->mutex);
1309 if( pStmt==0 ){
1310 pNext = (sqlite3_stmt*)pDb->pVdbe;
1311 }else{
1312 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1314 sqlite3_mutex_leave(pDb->mutex);
1315 return pNext;
1319 ** Return the value of a status counter for a prepared statement
1321 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1322 Vdbe *pVdbe = (Vdbe*)pStmt;
1323 int v = pVdbe->aCounter[op-1];
1324 if( resetFlag ) pVdbe->aCounter[op-1] = 0;
1325 return v;