4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements. This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows. Indices are selected and used to speed the search when doing
16 ** so is applicable. Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
19 #include "sqliteInt.h"
23 ** Trace output macros
25 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
26 int sqlite3WhereTrace
= 0;
28 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
29 # define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X
31 # define WHERETRACE(X)
36 typedef struct WhereClause WhereClause
;
37 typedef struct WhereMaskSet WhereMaskSet
;
38 typedef struct WhereOrInfo WhereOrInfo
;
39 typedef struct WhereAndInfo WhereAndInfo
;
40 typedef struct WhereCost WhereCost
;
43 ** The query generator uses an array of instances of this structure to
44 ** help it analyze the subexpressions of the WHERE clause. Each WHERE
45 ** clause subexpression is separated from the others by AND operators,
46 ** usually, or sometimes subexpressions separated by OR.
48 ** All WhereTerms are collected into a single WhereClause structure.
49 ** The following identity holds:
51 ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
53 ** When a term is of the form:
57 ** where X is a column name and <op> is one of certain operators,
58 ** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the
59 ** cursor number and column number for X. WhereTerm.eOperator records
60 ** the <op> using a bitmask encoding defined by WO_xxx below. The
61 ** use of a bitmask encoding for the operator allows us to search
62 ** quickly for terms that match any of several different operators.
64 ** A WhereTerm might also be two or more subterms connected by OR:
66 ** (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR ....
68 ** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR
69 ** and the WhereTerm.u.pOrInfo field points to auxiliary information that
70 ** is collected about the
72 ** If a term in the WHERE clause does not match either of the two previous
73 ** categories, then eOperator==0. The WhereTerm.pExpr field is still set
74 ** to the original subexpression content and wtFlags is set up appropriately
75 ** but no other fields in the WhereTerm object are meaningful.
77 ** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers,
78 ** but they do so indirectly. A single WhereMaskSet structure translates
79 ** cursor number into bits and the translated bit is stored in the prereq
80 ** fields. The translation is used in order to maximize the number of
81 ** bits that will fit in a Bitmask. The VDBE cursor numbers might be
82 ** spread out over the non-negative integers. For example, the cursor
83 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The WhereMaskSet
84 ** translates these sparse cursor numbers into consecutive integers
85 ** beginning with 0 in order to make the best possible use of the available
86 ** bits in the Bitmask. So, in the example above, the cursor numbers
87 ** would be mapped into integers 0 through 7.
89 ** The number of terms in a join is limited by the number of bits
90 ** in prereqRight and prereqAll. The default is 64 bits, hence SQLite
91 ** is only able to process joins with 64 or fewer tables.
93 typedef struct WhereTerm WhereTerm
;
95 Expr
*pExpr
; /* Pointer to the subexpression that is this term */
96 int iParent
; /* Disable pWC->a[iParent] when this term disabled */
97 int leftCursor
; /* Cursor number of X in "X <op> <expr>" */
99 int leftColumn
; /* Column number of X in "X <op> <expr>" */
100 WhereOrInfo
*pOrInfo
; /* Extra information if eOperator==WO_OR */
101 WhereAndInfo
*pAndInfo
; /* Extra information if eOperator==WO_AND */
103 u16 eOperator
; /* A WO_xx value describing <op> */
104 u8 wtFlags
; /* TERM_xxx bit flags. See below */
105 u8 nChild
; /* Number of children that must disable us */
106 WhereClause
*pWC
; /* The clause this term is part of */
107 Bitmask prereqRight
; /* Bitmask of tables used by pExpr->pRight */
108 Bitmask prereqAll
; /* Bitmask of tables referenced by pExpr */
112 ** Allowed values of WhereTerm.wtFlags
114 #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */
115 #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */
116 #define TERM_CODED 0x04 /* This term is already coded */
117 #define TERM_COPIED 0x08 /* Has a child */
118 #define TERM_ORINFO 0x10 /* Need to free the WhereTerm.u.pOrInfo object */
119 #define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */
120 #define TERM_OR_OK 0x40 /* Used during OR-clause processing */
121 #ifdef SQLITE_ENABLE_STAT2
122 # define TERM_VNULL 0x80 /* Manufactured x>NULL or x<=NULL term */
124 # define TERM_VNULL 0x00 /* Disabled if not using stat2 */
128 ** An instance of the following structure holds all information about a
129 ** WHERE clause. Mostly this is a container for one or more WhereTerms.
132 Parse
*pParse
; /* The parser context */
133 WhereMaskSet
*pMaskSet
; /* Mapping of table cursor numbers to bitmasks */
134 Bitmask vmask
; /* Bitmask identifying virtual table cursors */
135 u8 op
; /* Split operator. TK_AND or TK_OR */
136 int nTerm
; /* Number of terms */
137 int nSlot
; /* Number of entries in a[] */
138 WhereTerm
*a
; /* Each a[] describes a term of the WHERE cluase */
139 #if defined(SQLITE_SMALL_STACK)
140 WhereTerm aStatic
[1]; /* Initial static space for a[] */
142 WhereTerm aStatic
[8]; /* Initial static space for a[] */
147 ** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to
148 ** a dynamically allocated instance of the following structure.
151 WhereClause wc
; /* Decomposition into subterms */
152 Bitmask indexable
; /* Bitmask of all indexable tables in the clause */
156 ** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to
157 ** a dynamically allocated instance of the following structure.
159 struct WhereAndInfo
{
160 WhereClause wc
; /* The subexpression broken out */
164 ** An instance of the following structure keeps track of a mapping
165 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
167 ** The VDBE cursor numbers are small integers contained in
168 ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE
169 ** clause, the cursor numbers might not begin with 0 and they might
170 ** contain gaps in the numbering sequence. But we want to make maximum
171 ** use of the bits in our bitmasks. This structure provides a mapping
172 ** from the sparse cursor numbers into consecutive integers beginning
175 ** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
176 ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A.
178 ** For example, if the WHERE clause expression used these VDBE
179 ** cursors: 4, 5, 8, 29, 57, 73. Then the WhereMaskSet structure
180 ** would map those cursor numbers into bits 0 through 5.
182 ** Note that the mapping is not necessarily ordered. In the example
183 ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0,
184 ** 57->5, 73->4. Or one of 719 other combinations might be used. It
185 ** does not really matter. What is important is that sparse cursor
186 ** numbers all get mapped into bit numbers that begin with 0 and contain
189 struct WhereMaskSet
{
190 int n
; /* Number of assigned cursor values */
191 int ix
[BMS
]; /* Cursor assigned to each bit */
195 ** A WhereCost object records a lookup strategy and the estimated
196 ** cost of pursuing that strategy.
199 WherePlan plan
; /* The lookup strategy */
200 double rCost
; /* Overall cost of pursuing this search strategy */
201 Bitmask used
; /* Bitmask of cursors used by this plan */
205 ** Bitmasks for the operators that indices are able to exploit. An
206 ** OR-ed combination of these values can be used when searching for
207 ** terms in the where clause.
211 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ))
212 #define WO_LE (WO_EQ<<(TK_LE-TK_EQ))
213 #define WO_GT (WO_EQ<<(TK_GT-TK_EQ))
214 #define WO_GE (WO_EQ<<(TK_GE-TK_EQ))
215 #define WO_MATCH 0x040
216 #define WO_ISNULL 0x080
217 #define WO_OR 0x100 /* Two or more OR-connected terms */
218 #define WO_AND 0x200 /* Two or more AND-connected terms */
219 #define WO_NOOP 0x800 /* This term does not restrict search space */
221 #define WO_ALL 0xfff /* Mask of all possible WO_* values */
222 #define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */
225 ** Value for wsFlags returned by bestIndex() and stored in
226 ** WhereLevel.wsFlags. These flags determine which search
227 ** strategies are appropriate.
229 ** The least significant 12 bits is reserved as a mask for WO_ values above.
230 ** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
231 ** But if the table is the right table of a left join, WhereLevel.wsFlags
232 ** is set to WO_IN|WO_EQ. The WhereLevel.wsFlags field can then be used as
233 ** the "op" parameter to findTerm when we are resolving equality constraints.
234 ** ISNULL constraints will then not be used on the right table of a left
235 ** join. Tickets #2177 and #2189.
237 #define WHERE_ROWID_EQ 0x00001000 /* rowid=EXPR or rowid IN (...) */
238 #define WHERE_ROWID_RANGE 0x00002000 /* rowid<EXPR and/or rowid>EXPR */
239 #define WHERE_COLUMN_EQ 0x00010000 /* x=EXPR or x IN (...) or x IS NULL */
240 #define WHERE_COLUMN_RANGE 0x00020000 /* x<EXPR and/or x>EXPR */
241 #define WHERE_COLUMN_IN 0x00040000 /* x IN (...) */
242 #define WHERE_COLUMN_NULL 0x00080000 /* x IS NULL */
243 #define WHERE_INDEXED 0x000f0000 /* Anything that uses an index */
244 #define WHERE_NOT_FULLSCAN 0x100f3000 /* Does not do a full table scan */
245 #define WHERE_IN_ABLE 0x000f1000 /* Able to support an IN operator */
246 #define WHERE_TOP_LIMIT 0x00100000 /* x<EXPR or x<=EXPR constraint */
247 #define WHERE_BTM_LIMIT 0x00200000 /* x>EXPR or x>=EXPR constraint */
248 #define WHERE_BOTH_LIMIT 0x00300000 /* Both x>EXPR and x<EXPR */
249 #define WHERE_IDX_ONLY 0x00800000 /* Use index only - omit table */
250 #define WHERE_ORDERBY 0x01000000 /* Output will appear in correct order */
251 #define WHERE_REVERSE 0x02000000 /* Scan in reverse order */
252 #define WHERE_UNIQUE 0x04000000 /* Selects no more than one row */
253 #define WHERE_VIRTUALTABLE 0x08000000 /* Use virtual-table processing */
254 #define WHERE_MULTI_OR 0x10000000 /* OR using multiple indices */
255 #define WHERE_TEMP_INDEX 0x20000000 /* Uses an ephemeral index */
258 ** Initialize a preallocated WhereClause structure.
260 static void whereClauseInit(
261 WhereClause
*pWC
, /* The WhereClause to be initialized */
262 Parse
*pParse
, /* The parsing context */
263 WhereMaskSet
*pMaskSet
/* Mapping from table cursor numbers to bitmasks */
265 pWC
->pParse
= pParse
;
266 pWC
->pMaskSet
= pMaskSet
;
268 pWC
->nSlot
= ArraySize(pWC
->aStatic
);
269 pWC
->a
= pWC
->aStatic
;
273 /* Forward reference */
274 static void whereClauseClear(WhereClause
*);
277 ** Deallocate all memory associated with a WhereOrInfo object.
279 static void whereOrInfoDelete(sqlite3
*db
, WhereOrInfo
*p
){
280 whereClauseClear(&p
->wc
);
281 sqlite3DbFree(db
, p
);
285 ** Deallocate all memory associated with a WhereAndInfo object.
287 static void whereAndInfoDelete(sqlite3
*db
, WhereAndInfo
*p
){
288 whereClauseClear(&p
->wc
);
289 sqlite3DbFree(db
, p
);
293 ** Deallocate a WhereClause structure. The WhereClause structure
294 ** itself is not freed. This routine is the inverse of whereClauseInit().
296 static void whereClauseClear(WhereClause
*pWC
){
299 sqlite3
*db
= pWC
->pParse
->db
;
300 for(i
=pWC
->nTerm
-1, a
=pWC
->a
; i
>=0; i
--, a
++){
301 if( a
->wtFlags
& TERM_DYNAMIC
){
302 sqlite3ExprDelete(db
, a
->pExpr
);
304 if( a
->wtFlags
& TERM_ORINFO
){
305 whereOrInfoDelete(db
, a
->u
.pOrInfo
);
306 }else if( a
->wtFlags
& TERM_ANDINFO
){
307 whereAndInfoDelete(db
, a
->u
.pAndInfo
);
310 if( pWC
->a
!=pWC
->aStatic
){
311 sqlite3DbFree(db
, pWC
->a
);
316 ** Add a single new WhereTerm entry to the WhereClause object pWC.
317 ** The new WhereTerm object is constructed from Expr p and with wtFlags.
318 ** The index in pWC->a[] of the new WhereTerm is returned on success.
319 ** 0 is returned if the new WhereTerm could not be added due to a memory
320 ** allocation error. The memory allocation failure will be recorded in
321 ** the db->mallocFailed flag so that higher-level functions can detect it.
323 ** This routine will increase the size of the pWC->a[] array as necessary.
325 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
326 ** for freeing the expression p is assumed by the WhereClause object pWC.
327 ** This is true even if this routine fails to allocate a new WhereTerm.
329 ** WARNING: This routine might reallocate the space used to store
330 ** WhereTerms. All pointers to WhereTerms should be invalidated after
331 ** calling this routine. Such pointers may be reinitialized by referencing
332 ** the pWC->a[] array.
334 static int whereClauseInsert(WhereClause
*pWC
, Expr
*p
, u8 wtFlags
){
337 testcase( wtFlags
& TERM_VIRTUAL
); /* EV: R-00211-15100 */
338 if( pWC
->nTerm
>=pWC
->nSlot
){
339 WhereTerm
*pOld
= pWC
->a
;
340 sqlite3
*db
= pWC
->pParse
->db
;
341 pWC
->a
= sqlite3DbMallocRaw(db
, sizeof(pWC
->a
[0])*pWC
->nSlot
*2 );
343 if( wtFlags
& TERM_DYNAMIC
){
344 sqlite3ExprDelete(db
, p
);
349 memcpy(pWC
->a
, pOld
, sizeof(pWC
->a
[0])*pWC
->nTerm
);
350 if( pOld
!=pWC
->aStatic
){
351 sqlite3DbFree(db
, pOld
);
353 pWC
->nSlot
= sqlite3DbMallocSize(db
, pWC
->a
)/sizeof(pWC
->a
[0]);
355 pTerm
= &pWC
->a
[idx
= pWC
->nTerm
++];
357 pTerm
->wtFlags
= wtFlags
;
364 ** This routine identifies subexpressions in the WHERE clause where
365 ** each subexpression is separated by the AND operator or some other
366 ** operator specified in the op parameter. The WhereClause structure
367 ** is filled with pointers to subexpressions. For example:
369 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
370 ** \________/ \_______________/ \________________/
371 ** slot[0] slot[1] slot[2]
373 ** The original WHERE clause in pExpr is unaltered. All this routine
374 ** does is make slot[] entries point to substructure within pExpr.
376 ** In the previous sentence and in the diagram, "slot[]" refers to
377 ** the WhereClause.a[] array. The slot[] array grows as needed to contain
378 ** all terms of the WHERE clause.
380 static void whereSplit(WhereClause
*pWC
, Expr
*pExpr
, int op
){
382 if( pExpr
==0 ) return;
384 whereClauseInsert(pWC
, pExpr
, 0);
386 whereSplit(pWC
, pExpr
->pLeft
, op
);
387 whereSplit(pWC
, pExpr
->pRight
, op
);
392 ** Initialize an expression mask set (a WhereMaskSet object)
394 #define initMaskSet(P) memset(P, 0, sizeof(*P))
397 ** Return the bitmask for the given cursor number. Return 0 if
398 ** iCursor is not in the set.
400 static Bitmask
getMask(WhereMaskSet
*pMaskSet
, int iCursor
){
402 assert( pMaskSet
->n
<=(int)sizeof(Bitmask
)*8 );
403 for(i
=0; i
<pMaskSet
->n
; i
++){
404 if( pMaskSet
->ix
[i
]==iCursor
){
405 return ((Bitmask
)1)<<i
;
412 ** Create a new mask for cursor iCursor.
414 ** There is one cursor per table in the FROM clause. The number of
415 ** tables in the FROM clause is limited by a test early in the
416 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
417 ** array will never overflow.
419 static void createMask(WhereMaskSet
*pMaskSet
, int iCursor
){
420 assert( pMaskSet
->n
< ArraySize(pMaskSet
->ix
) );
421 pMaskSet
->ix
[pMaskSet
->n
++] = iCursor
;
425 ** This routine walks (recursively) an expression tree and generates
426 ** a bitmask indicating which tables are used in that expression
429 ** In order for this routine to work, the calling function must have
430 ** previously invoked sqlite3ResolveExprNames() on the expression. See
431 ** the header comment on that routine for additional information.
432 ** The sqlite3ResolveExprNames() routines looks for column names and
433 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
434 ** the VDBE cursor number of the table. This routine just has to
435 ** translate the cursor numbers into bitmask values and OR all
436 ** the bitmasks together.
438 static Bitmask
exprListTableUsage(WhereMaskSet
*, ExprList
*);
439 static Bitmask
exprSelectTableUsage(WhereMaskSet
*, Select
*);
440 static Bitmask
exprTableUsage(WhereMaskSet
*pMaskSet
, Expr
*p
){
443 if( p
->op
==TK_COLUMN
){
444 mask
= getMask(pMaskSet
, p
->iTable
);
447 mask
= exprTableUsage(pMaskSet
, p
->pRight
);
448 mask
|= exprTableUsage(pMaskSet
, p
->pLeft
);
449 if( ExprHasProperty(p
, EP_xIsSelect
) ){
450 mask
|= exprSelectTableUsage(pMaskSet
, p
->x
.pSelect
);
452 mask
|= exprListTableUsage(pMaskSet
, p
->x
.pList
);
456 static Bitmask
exprListTableUsage(WhereMaskSet
*pMaskSet
, ExprList
*pList
){
460 for(i
=0; i
<pList
->nExpr
; i
++){
461 mask
|= exprTableUsage(pMaskSet
, pList
->a
[i
].pExpr
);
466 static Bitmask
exprSelectTableUsage(WhereMaskSet
*pMaskSet
, Select
*pS
){
469 mask
|= exprListTableUsage(pMaskSet
, pS
->pEList
);
470 mask
|= exprListTableUsage(pMaskSet
, pS
->pGroupBy
);
471 mask
|= exprListTableUsage(pMaskSet
, pS
->pOrderBy
);
472 mask
|= exprTableUsage(pMaskSet
, pS
->pWhere
);
473 mask
|= exprTableUsage(pMaskSet
, pS
->pHaving
);
480 ** Return TRUE if the given operator is one of the operators that is
481 ** allowed for an indexable WHERE clause term. The allowed operators are
482 ** "=", "<", ">", "<=", ">=", and "IN".
484 ** IMPLEMENTATION-OF: R-59926-26393 To be usable by an index a term must be
485 ** of one of the following forms: column = expression column > expression
486 ** column >= expression column < expression column <= expression
487 ** expression = column expression > column expression >= column
488 ** expression < column expression <= column column IN
489 ** (expression-list) column IN (subquery) column IS NULL
491 static int allowedOp(int op
){
492 assert( TK_GT
>TK_EQ
&& TK_GT
<TK_GE
);
493 assert( TK_LT
>TK_EQ
&& TK_LT
<TK_GE
);
494 assert( TK_LE
>TK_EQ
&& TK_LE
<TK_GE
);
495 assert( TK_GE
==TK_EQ
+4 );
496 return op
==TK_IN
|| (op
>=TK_EQ
&& op
<=TK_GE
) || op
==TK_ISNULL
;
500 ** Swap two objects of type TYPE.
502 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
505 ** Commute a comparison operator. Expressions of the form "X op Y"
506 ** are converted into "Y op X".
508 ** If a collation sequence is associated with either the left or right
509 ** side of the comparison, it remains associated with the same side after
510 ** the commutation. So "Y collate NOCASE op X" becomes
511 ** "X collate NOCASE op Y". This is because any collation sequence on
512 ** the left hand side of a comparison overrides any collation sequence
513 ** attached to the right. For the same reason the EP_ExpCollate flag
516 static void exprCommute(Parse
*pParse
, Expr
*pExpr
){
517 u16 expRight
= (pExpr
->pRight
->flags
& EP_ExpCollate
);
518 u16 expLeft
= (pExpr
->pLeft
->flags
& EP_ExpCollate
);
519 assert( allowedOp(pExpr
->op
) && pExpr
->op
!=TK_IN
);
520 pExpr
->pRight
->pColl
= sqlite3ExprCollSeq(pParse
, pExpr
->pRight
);
521 pExpr
->pLeft
->pColl
= sqlite3ExprCollSeq(pParse
, pExpr
->pLeft
);
522 SWAP(CollSeq
*,pExpr
->pRight
->pColl
,pExpr
->pLeft
->pColl
);
523 pExpr
->pRight
->flags
= (pExpr
->pRight
->flags
& ~EP_ExpCollate
) | expLeft
;
524 pExpr
->pLeft
->flags
= (pExpr
->pLeft
->flags
& ~EP_ExpCollate
) | expRight
;
525 SWAP(Expr
*,pExpr
->pRight
,pExpr
->pLeft
);
526 if( pExpr
->op
>=TK_GT
){
527 assert( TK_LT
==TK_GT
+2 );
528 assert( TK_GE
==TK_LE
+2 );
529 assert( TK_GT
>TK_EQ
);
530 assert( TK_GT
<TK_LE
);
531 assert( pExpr
->op
>=TK_GT
&& pExpr
->op
<=TK_GE
);
532 pExpr
->op
= ((pExpr
->op
-TK_GT
)^2)+TK_GT
;
537 ** Translate from TK_xx operator to WO_xx bitmask.
539 static u16
operatorMask(int op
){
541 assert( allowedOp(op
) );
544 }else if( op
==TK_ISNULL
){
547 assert( (WO_EQ
<<(op
-TK_EQ
)) < 0x7fff );
548 c
= (u16
)(WO_EQ
<<(op
-TK_EQ
));
550 assert( op
!=TK_ISNULL
|| c
==WO_ISNULL
);
551 assert( op
!=TK_IN
|| c
==WO_IN
);
552 assert( op
!=TK_EQ
|| c
==WO_EQ
);
553 assert( op
!=TK_LT
|| c
==WO_LT
);
554 assert( op
!=TK_LE
|| c
==WO_LE
);
555 assert( op
!=TK_GT
|| c
==WO_GT
);
556 assert( op
!=TK_GE
|| c
==WO_GE
);
561 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
562 ** where X is a reference to the iColumn of table iCur and <op> is one of
563 ** the WO_xx operator codes specified by the op parameter.
564 ** Return a pointer to the term. Return 0 if not found.
566 static WhereTerm
*findTerm(
567 WhereClause
*pWC
, /* The WHERE clause to be searched */
568 int iCur
, /* Cursor number of LHS */
569 int iColumn
, /* Column number of LHS */
570 Bitmask notReady
, /* RHS must not overlap with this mask */
571 u32 op
, /* Mask of WO_xx values describing operator */
572 Index
*pIdx
/* Must be compatible with this index, if not NULL */
578 for(pTerm
=pWC
->a
, k
=pWC
->nTerm
; k
; k
--, pTerm
++){
579 if( pTerm
->leftCursor
==iCur
580 && (pTerm
->prereqRight
& notReady
)==0
581 && pTerm
->u
.leftColumn
==iColumn
582 && (pTerm
->eOperator
& op
)!=0
584 if( pIdx
&& pTerm
->eOperator
!=WO_ISNULL
){
585 Expr
*pX
= pTerm
->pExpr
;
589 Parse
*pParse
= pWC
->pParse
;
591 idxaff
= pIdx
->pTable
->aCol
[iColumn
].affinity
;
592 if( !sqlite3IndexAffinityOk(pX
, idxaff
) ) continue;
594 /* Figure out the collation sequence required from an index for
595 ** it to be useful for optimising expression pX. Store this
596 ** value in variable pColl.
599 pColl
= sqlite3BinaryCompareCollSeq(pParse
, pX
->pLeft
, pX
->pRight
);
600 assert(pColl
|| pParse
->nErr
);
602 for(j
=0; pIdx
->aiColumn
[j
]!=iColumn
; j
++){
603 if( NEVER(j
>=pIdx
->nColumn
) ) return 0;
605 if( pColl
&& sqlite3StrICmp(pColl
->zName
, pIdx
->azColl
[j
]) ) continue;
613 /* Forward reference */
614 static void exprAnalyze(SrcList
*, WhereClause
*, int);
617 ** Call exprAnalyze on all terms in a WHERE clause.
621 static void exprAnalyzeAll(
622 SrcList
*pTabList
, /* the FROM clause */
623 WhereClause
*pWC
/* the WHERE clause to be analyzed */
626 for(i
=pWC
->nTerm
-1; i
>=0; i
--){
627 exprAnalyze(pTabList
, pWC
, i
);
631 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
633 ** Check to see if the given expression is a LIKE or GLOB operator that
634 ** can be optimized using inequality constraints. Return TRUE if it is
635 ** so and false if not.
637 ** In order for the operator to be optimizible, the RHS must be a string
638 ** literal that does not begin with a wildcard.
640 static int isLikeOrGlob(
641 Parse
*pParse
, /* Parsing and code generating context */
642 Expr
*pExpr
, /* Test this expression */
643 Expr
**ppPrefix
, /* Pointer to TK_STRING expression with pattern prefix */
644 int *pisComplete
, /* True if the only wildcard is % in the last character */
645 int *pnoCase
/* True if uppercase is equivalent to lowercase */
647 const char *z
= 0; /* String on RHS of LIKE operator */
648 Expr
*pRight
, *pLeft
; /* Right and left size of LIKE operator */
649 ExprList
*pList
; /* List of operands to the LIKE operator */
650 int c
; /* One character in z[] */
651 int cnt
; /* Number of non-wildcard prefix characters */
652 char wc
[3]; /* Wildcard characters */
653 sqlite3
*db
= pParse
->db
; /* Database connection */
654 sqlite3_value
*pVal
= 0;
655 int op
; /* Opcode of pRight */
657 if( !sqlite3IsLikeFunction(db
, pExpr
, pnoCase
, wc
) ){
661 if( *pnoCase
) return 0;
663 pList
= pExpr
->x
.pList
;
664 pLeft
= pList
->a
[1].pExpr
;
665 if( pLeft
->op
!=TK_COLUMN
|| sqlite3ExprAffinity(pLeft
)!=SQLITE_AFF_TEXT
){
666 /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must
667 ** be the name of an indexed column with TEXT affinity. */
670 assert( pLeft
->iColumn
!=(-1) ); /* Because IPK never has AFF_TEXT */
672 pRight
= pList
->a
[0].pExpr
;
674 if( op
==TK_REGISTER
){
677 if( op
==TK_VARIABLE
){
678 Vdbe
*pReprepare
= pParse
->pReprepare
;
679 int iCol
= pRight
->iColumn
;
680 pVal
= sqlite3VdbeGetValue(pReprepare
, iCol
, SQLITE_AFF_NONE
);
681 if( pVal
&& sqlite3_value_type(pVal
)==SQLITE_TEXT
){
682 z
= (char *)sqlite3_value_text(pVal
);
684 sqlite3VdbeSetVarmask(pParse
->pVdbe
, iCol
); /* IMP: R-23257-02778 */
685 assert( pRight
->op
==TK_VARIABLE
|| pRight
->op
==TK_REGISTER
);
686 }else if( op
==TK_STRING
){
687 z
= pRight
->u
.zToken
;
691 while( (c
=z
[cnt
])!=0 && c
!=wc
[0] && c
!=wc
[1] && c
!=wc
[2] ){
694 if( cnt
!=0 && 255!=(u8
)z
[cnt
-1] ){
696 *pisComplete
= c
==wc
[0] && z
[cnt
+1]==0;
697 pPrefix
= sqlite3Expr(db
, TK_STRING
, z
);
698 if( pPrefix
) pPrefix
->u
.zToken
[cnt
] = 0;
700 if( op
==TK_VARIABLE
){
701 Vdbe
*v
= pParse
->pVdbe
;
702 sqlite3VdbeSetVarmask(v
, pRight
->iColumn
); /* IMP: R-23257-02778 */
703 if( *pisComplete
&& pRight
->u
.zToken
[1] ){
704 /* If the rhs of the LIKE expression is a variable, and the current
705 ** value of the variable means there is no need to invoke the LIKE
706 ** function, then no OP_Variable will be added to the program.
707 ** This causes problems for the sqlite3_bind_parameter_name()
708 ** API. To workaround them, add a dummy OP_Variable here.
710 int r1
= sqlite3GetTempReg(pParse
);
711 sqlite3ExprCodeTarget(pParse
, pRight
, r1
);
712 sqlite3VdbeChangeP3(v
, sqlite3VdbeCurrentAddr(v
)-1, 0);
713 sqlite3ReleaseTempReg(pParse
, r1
);
721 sqlite3ValueFree(pVal
);
724 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
727 #ifndef SQLITE_OMIT_VIRTUALTABLE
729 ** Check to see if the given expression is of the form
733 ** If it is then return TRUE. If not, return FALSE.
735 static int isMatchOfColumn(
736 Expr
*pExpr
/* Test this expression */
740 if( pExpr
->op
!=TK_FUNCTION
){
743 if( sqlite3StrICmp(pExpr
->u
.zToken
,"match")!=0 ){
746 pList
= pExpr
->x
.pList
;
747 if( pList
->nExpr
!=2 ){
750 if( pList
->a
[1].pExpr
->op
!= TK_COLUMN
){
755 #endif /* SQLITE_OMIT_VIRTUALTABLE */
758 ** If the pBase expression originated in the ON or USING clause of
759 ** a join, then transfer the appropriate markings over to derived.
761 static void transferJoinMarkings(Expr
*pDerived
, Expr
*pBase
){
762 pDerived
->flags
|= pBase
->flags
& EP_FromJoin
;
763 pDerived
->iRightJoinTable
= pBase
->iRightJoinTable
;
766 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
768 ** Analyze a term that consists of two or more OR-connected
771 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
772 ** ^^^^^^^^^^^^^^^^^^^^
774 ** This routine analyzes terms such as the middle term in the above example.
775 ** A WhereOrTerm object is computed and attached to the term under
776 ** analysis, regardless of the outcome of the analysis. Hence:
778 ** WhereTerm.wtFlags |= TERM_ORINFO
779 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object
781 ** The term being analyzed must have two or more of OR-connected subterms.
782 ** A single subterm might be a set of AND-connected sub-subterms.
783 ** Examples of terms under analysis:
785 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
786 ** (B) x=expr1 OR expr2=x OR x=expr3
787 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
788 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
789 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
793 ** If all subterms are of the form T.C=expr for some single column of C
794 ** a single table T (as shown in example B above) then create a new virtual
795 ** term that is an equivalent IN expression. In other words, if the term
796 ** being analyzed is:
798 ** x = expr1 OR expr2 = x OR x = expr3
800 ** then create a new virtual term like this:
802 ** x IN (expr1,expr2,expr3)
806 ** If all subterms are indexable by a single table T, then set
808 ** WhereTerm.eOperator = WO_OR
809 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T
811 ** A subterm is "indexable" if it is of the form
812 ** "T.C <op> <expr>" where C is any column of table T and
813 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
814 ** A subterm is also indexable if it is an AND of two or more
815 ** subsubterms at least one of which is indexable. Indexable AND
816 ** subterms have their eOperator set to WO_AND and they have
817 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
819 ** From another point of view, "indexable" means that the subterm could
820 ** potentially be used with an index if an appropriate index exists.
821 ** This analysis does not consider whether or not the index exists; that
822 ** is something the bestIndex() routine will determine. This analysis
823 ** only looks at whether subterms appropriate for indexing exist.
825 ** All examples A through E above all satisfy case 2. But if a term
826 ** also statisfies case 1 (such as B) we know that the optimizer will
827 ** always prefer case 1, so in that case we pretend that case 2 is not
830 ** It might be the case that multiple tables are indexable. For example,
831 ** (E) above is indexable on tables P, Q, and R.
833 ** Terms that satisfy case 2 are candidates for lookup by using
834 ** separate indices to find rowids for each subterm and composing
835 ** the union of all rowids using a RowSet object. This is similar
836 ** to "bitmap indices" in other database engines.
840 ** If neither case 1 nor case 2 apply, then leave the eOperator set to
841 ** zero. This term is not useful for search.
843 static void exprAnalyzeOrTerm(
844 SrcList
*pSrc
, /* the FROM clause */
845 WhereClause
*pWC
, /* the complete WHERE clause */
846 int idxTerm
/* Index of the OR-term to be analyzed */
848 Parse
*pParse
= pWC
->pParse
; /* Parser context */
849 sqlite3
*db
= pParse
->db
; /* Database connection */
850 WhereTerm
*pTerm
= &pWC
->a
[idxTerm
]; /* The term to be analyzed */
851 Expr
*pExpr
= pTerm
->pExpr
; /* The expression of the term */
852 WhereMaskSet
*pMaskSet
= pWC
->pMaskSet
; /* Table use masks */
853 int i
; /* Loop counters */
854 WhereClause
*pOrWc
; /* Breakup of pTerm into subterms */
855 WhereTerm
*pOrTerm
; /* A Sub-term within the pOrWc */
856 WhereOrInfo
*pOrInfo
; /* Additional information associated with pTerm */
857 Bitmask chngToIN
; /* Tables that might satisfy case 1 */
858 Bitmask indexable
; /* Tables that are indexable, satisfying case 2 */
861 ** Break the OR clause into its separate subterms. The subterms are
862 ** stored in a WhereClause structure containing within the WhereOrInfo
863 ** object that is attached to the original OR clause term.
865 assert( (pTerm
->wtFlags
& (TERM_DYNAMIC
|TERM_ORINFO
|TERM_ANDINFO
))==0 );
866 assert( pExpr
->op
==TK_OR
);
867 pTerm
->u
.pOrInfo
= pOrInfo
= sqlite3DbMallocZero(db
, sizeof(*pOrInfo
));
868 if( pOrInfo
==0 ) return;
869 pTerm
->wtFlags
|= TERM_ORINFO
;
870 pOrWc
= &pOrInfo
->wc
;
871 whereClauseInit(pOrWc
, pWC
->pParse
, pMaskSet
);
872 whereSplit(pOrWc
, pExpr
, TK_OR
);
873 exprAnalyzeAll(pSrc
, pOrWc
);
874 if( db
->mallocFailed
) return;
875 assert( pOrWc
->nTerm
>=2 );
878 ** Compute the set of tables that might satisfy cases 1 or 2.
880 indexable
= ~(Bitmask
)0;
881 chngToIN
= ~(pWC
->vmask
);
882 for(i
=pOrWc
->nTerm
-1, pOrTerm
=pOrWc
->a
; i
>=0 && indexable
; i
--, pOrTerm
++){
883 if( (pOrTerm
->eOperator
& WO_SINGLE
)==0 ){
884 WhereAndInfo
*pAndInfo
;
885 assert( pOrTerm
->eOperator
==0 );
886 assert( (pOrTerm
->wtFlags
& (TERM_ANDINFO
|TERM_ORINFO
))==0 );
888 pAndInfo
= sqlite3DbMallocRaw(db
, sizeof(*pAndInfo
));
894 pOrTerm
->u
.pAndInfo
= pAndInfo
;
895 pOrTerm
->wtFlags
|= TERM_ANDINFO
;
896 pOrTerm
->eOperator
= WO_AND
;
897 pAndWC
= &pAndInfo
->wc
;
898 whereClauseInit(pAndWC
, pWC
->pParse
, pMaskSet
);
899 whereSplit(pAndWC
, pOrTerm
->pExpr
, TK_AND
);
900 exprAnalyzeAll(pSrc
, pAndWC
);
901 testcase( db
->mallocFailed
);
902 if( !db
->mallocFailed
){
903 for(j
=0, pAndTerm
=pAndWC
->a
; j
<pAndWC
->nTerm
; j
++, pAndTerm
++){
904 assert( pAndTerm
->pExpr
);
905 if( allowedOp(pAndTerm
->pExpr
->op
) ){
906 b
|= getMask(pMaskSet
, pAndTerm
->leftCursor
);
912 }else if( pOrTerm
->wtFlags
& TERM_COPIED
){
913 /* Skip this term for now. We revisit it when we process the
914 ** corresponding TERM_VIRTUAL term */
917 b
= getMask(pMaskSet
, pOrTerm
->leftCursor
);
918 if( pOrTerm
->wtFlags
& TERM_VIRTUAL
){
919 WhereTerm
*pOther
= &pOrWc
->a
[pOrTerm
->iParent
];
920 b
|= getMask(pMaskSet
, pOther
->leftCursor
);
923 if( pOrTerm
->eOperator
!=WO_EQ
){
932 ** Record the set of tables that satisfy case 2. The set might be
935 pOrInfo
->indexable
= indexable
;
936 pTerm
->eOperator
= indexable
==0 ? 0 : WO_OR
;
939 ** chngToIN holds a set of tables that *might* satisfy case 1. But
940 ** we have to do some additional checking to see if case 1 really
943 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means
944 ** that there is no possibility of transforming the OR clause into an
945 ** IN operator because one or more terms in the OR clause contain
946 ** something other than == on a column in the single table. The 1-bit
947 ** case means that every term of the OR clause is of the form
948 ** "table.column=expr" for some single table. The one bit that is set
949 ** will correspond to the common table. We still need to check to make
950 ** sure the same column is used on all terms. The 2-bit case is when
951 ** the all terms are of the form "table1.column=table2.column". It
952 ** might be possible to form an IN operator with either table1.column
953 ** or table2.column as the LHS if either is common to every term of
956 ** Note that terms of the form "table.column1=table.column2" (the
957 ** same table on both sizes of the ==) cannot be optimized.
960 int okToChngToIN
= 0; /* True if the conversion to IN is valid */
961 int iColumn
= -1; /* Column index on lhs of IN operator */
962 int iCursor
= -1; /* Table cursor common to all terms */
963 int j
= 0; /* Loop counter */
965 /* Search for a table and column that appears on one side or the
966 ** other of the == operator in every subterm. That table and column
967 ** will be recorded in iCursor and iColumn. There might not be any
968 ** such table and column. Set okToChngToIN if an appropriate table
969 ** and column is found but leave okToChngToIN false if not found.
971 for(j
=0; j
<2 && !okToChngToIN
; j
++){
973 for(i
=pOrWc
->nTerm
-1; i
>=0; i
--, pOrTerm
++){
974 assert( pOrTerm
->eOperator
==WO_EQ
);
975 pOrTerm
->wtFlags
&= ~TERM_OR_OK
;
976 if( pOrTerm
->leftCursor
==iCursor
){
977 /* This is the 2-bit case and we are on the second iteration and
978 ** current term is from the first iteration. So skip this term. */
982 if( (chngToIN
& getMask(pMaskSet
, pOrTerm
->leftCursor
))==0 ){
983 /* This term must be of the form t1.a==t2.b where t2 is in the
984 ** chngToIN set but t1 is not. This term will be either preceeded
985 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term
986 ** and use its inversion. */
987 testcase( pOrTerm
->wtFlags
& TERM_COPIED
);
988 testcase( pOrTerm
->wtFlags
& TERM_VIRTUAL
);
989 assert( pOrTerm
->wtFlags
& (TERM_COPIED
|TERM_VIRTUAL
) );
992 iColumn
= pOrTerm
->u
.leftColumn
;
993 iCursor
= pOrTerm
->leftCursor
;
997 /* No candidate table+column was found. This can only occur
998 ** on the second iteration */
1000 assert( (chngToIN
&(chngToIN
-1))==0 );
1001 assert( chngToIN
==getMask(pMaskSet
, iCursor
) );
1006 /* We have found a candidate table and column. Check to see if that
1007 ** table and column is common to every term in the OR clause */
1009 for(; i
>=0 && okToChngToIN
; i
--, pOrTerm
++){
1010 assert( pOrTerm
->eOperator
==WO_EQ
);
1011 if( pOrTerm
->leftCursor
!=iCursor
){
1012 pOrTerm
->wtFlags
&= ~TERM_OR_OK
;
1013 }else if( pOrTerm
->u
.leftColumn
!=iColumn
){
1016 int affLeft
, affRight
;
1017 /* If the right-hand side is also a column, then the affinities
1018 ** of both right and left sides must be such that no type
1019 ** conversions are required on the right. (Ticket #2249)
1021 affRight
= sqlite3ExprAffinity(pOrTerm
->pExpr
->pRight
);
1022 affLeft
= sqlite3ExprAffinity(pOrTerm
->pExpr
->pLeft
);
1023 if( affRight
!=0 && affRight
!=affLeft
){
1026 pOrTerm
->wtFlags
|= TERM_OR_OK
;
1032 /* At this point, okToChngToIN is true if original pTerm satisfies
1033 ** case 1. In that case, construct a new virtual term that is
1034 ** pTerm converted into an IN operator.
1036 ** EV: R-00211-15100
1039 Expr
*pDup
; /* A transient duplicate expression */
1040 ExprList
*pList
= 0; /* The RHS of the IN operator */
1041 Expr
*pLeft
= 0; /* The LHS of the IN operator */
1042 Expr
*pNew
; /* The complete IN operator */
1044 for(i
=pOrWc
->nTerm
-1, pOrTerm
=pOrWc
->a
; i
>=0; i
--, pOrTerm
++){
1045 if( (pOrTerm
->wtFlags
& TERM_OR_OK
)==0 ) continue;
1046 assert( pOrTerm
->eOperator
==WO_EQ
);
1047 assert( pOrTerm
->leftCursor
==iCursor
);
1048 assert( pOrTerm
->u
.leftColumn
==iColumn
);
1049 pDup
= sqlite3ExprDup(db
, pOrTerm
->pExpr
->pRight
, 0);
1050 pList
= sqlite3ExprListAppend(pWC
->pParse
, pList
, pDup
);
1051 pLeft
= pOrTerm
->pExpr
->pLeft
;
1054 pDup
= sqlite3ExprDup(db
, pLeft
, 0);
1055 pNew
= sqlite3PExpr(pParse
, TK_IN
, pDup
, 0, 0);
1058 transferJoinMarkings(pNew
, pExpr
);
1059 assert( !ExprHasProperty(pNew
, EP_xIsSelect
) );
1060 pNew
->x
.pList
= pList
;
1061 idxNew
= whereClauseInsert(pWC
, pNew
, TERM_VIRTUAL
|TERM_DYNAMIC
);
1062 testcase( idxNew
==0 );
1063 exprAnalyze(pSrc
, pWC
, idxNew
);
1064 pTerm
= &pWC
->a
[idxTerm
];
1065 pWC
->a
[idxNew
].iParent
= idxTerm
;
1068 sqlite3ExprListDelete(db
, pList
);
1070 pTerm
->eOperator
= WO_NOOP
; /* case 1 trumps case 2 */
1074 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
1078 ** The input to this routine is an WhereTerm structure with only the
1079 ** "pExpr" field filled in. The job of this routine is to analyze the
1080 ** subexpression and populate all the other fields of the WhereTerm
1083 ** If the expression is of the form "<expr> <op> X" it gets commuted
1084 ** to the standard form of "X <op> <expr>".
1086 ** If the expression is of the form "X <op> Y" where both X and Y are
1087 ** columns, then the original expression is unchanged and a new virtual
1088 ** term of the form "Y <op> X" is added to the WHERE clause and
1089 ** analyzed separately. The original term is marked with TERM_COPIED
1090 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr
1091 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
1092 ** is a commuted copy of a prior term.) The original term has nChild=1
1093 ** and the copy has idxParent set to the index of the original term.
1095 static void exprAnalyze(
1096 SrcList
*pSrc
, /* the FROM clause */
1097 WhereClause
*pWC
, /* the WHERE clause */
1098 int idxTerm
/* Index of the term to be analyzed */
1100 WhereTerm
*pTerm
; /* The term to be analyzed */
1101 WhereMaskSet
*pMaskSet
; /* Set of table index masks */
1102 Expr
*pExpr
; /* The expression to be analyzed */
1103 Bitmask prereqLeft
; /* Prerequesites of the pExpr->pLeft */
1104 Bitmask prereqAll
; /* Prerequesites of pExpr */
1105 Bitmask extraRight
= 0; /* Extra dependencies on LEFT JOIN */
1106 Expr
*pStr1
= 0; /* RHS of LIKE/GLOB operator */
1107 int isComplete
= 0; /* RHS of LIKE/GLOB ends with wildcard */
1108 int noCase
= 0; /* LIKE/GLOB distinguishes case */
1109 int op
; /* Top-level operator. pExpr->op */
1110 Parse
*pParse
= pWC
->pParse
; /* Parsing context */
1111 sqlite3
*db
= pParse
->db
; /* Database connection */
1113 if( db
->mallocFailed
){
1116 pTerm
= &pWC
->a
[idxTerm
];
1117 pMaskSet
= pWC
->pMaskSet
;
1118 pExpr
= pTerm
->pExpr
;
1119 prereqLeft
= exprTableUsage(pMaskSet
, pExpr
->pLeft
);
1122 assert( pExpr
->pRight
==0 );
1123 if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
1124 pTerm
->prereqRight
= exprSelectTableUsage(pMaskSet
, pExpr
->x
.pSelect
);
1126 pTerm
->prereqRight
= exprListTableUsage(pMaskSet
, pExpr
->x
.pList
);
1128 }else if( op
==TK_ISNULL
){
1129 pTerm
->prereqRight
= 0;
1131 pTerm
->prereqRight
= exprTableUsage(pMaskSet
, pExpr
->pRight
);
1133 prereqAll
= exprTableUsage(pMaskSet
, pExpr
);
1134 if( ExprHasProperty(pExpr
, EP_FromJoin
) ){
1135 Bitmask x
= getMask(pMaskSet
, pExpr
->iRightJoinTable
);
1137 extraRight
= x
-1; /* ON clause terms may not be used with an index
1138 ** on left table of a LEFT JOIN. Ticket #3015 */
1140 pTerm
->prereqAll
= prereqAll
;
1141 pTerm
->leftCursor
= -1;
1142 pTerm
->iParent
= -1;
1143 pTerm
->eOperator
= 0;
1144 if( allowedOp(op
) && (pTerm
->prereqRight
& prereqLeft
)==0 ){
1145 Expr
*pLeft
= pExpr
->pLeft
;
1146 Expr
*pRight
= pExpr
->pRight
;
1147 if( pLeft
->op
==TK_COLUMN
){
1148 pTerm
->leftCursor
= pLeft
->iTable
;
1149 pTerm
->u
.leftColumn
= pLeft
->iColumn
;
1150 pTerm
->eOperator
= operatorMask(op
);
1152 if( pRight
&& pRight
->op
==TK_COLUMN
){
1155 if( pTerm
->leftCursor
>=0 ){
1157 pDup
= sqlite3ExprDup(db
, pExpr
, 0);
1158 if( db
->mallocFailed
){
1159 sqlite3ExprDelete(db
, pDup
);
1162 idxNew
= whereClauseInsert(pWC
, pDup
, TERM_VIRTUAL
|TERM_DYNAMIC
);
1163 if( idxNew
==0 ) return;
1164 pNew
= &pWC
->a
[idxNew
];
1165 pNew
->iParent
= idxTerm
;
1166 pTerm
= &pWC
->a
[idxTerm
];
1168 pTerm
->wtFlags
|= TERM_COPIED
;
1173 exprCommute(pParse
, pDup
);
1174 pLeft
= pDup
->pLeft
;
1175 pNew
->leftCursor
= pLeft
->iTable
;
1176 pNew
->u
.leftColumn
= pLeft
->iColumn
;
1177 testcase( (prereqLeft
| extraRight
) != prereqLeft
);
1178 pNew
->prereqRight
= prereqLeft
| extraRight
;
1179 pNew
->prereqAll
= prereqAll
;
1180 pNew
->eOperator
= operatorMask(pDup
->op
);
1184 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
1185 /* If a term is the BETWEEN operator, create two new virtual terms
1186 ** that define the range that the BETWEEN implements. For example:
1188 ** a BETWEEN b AND c
1190 ** is converted into:
1192 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
1194 ** The two new terms are added onto the end of the WhereClause object.
1195 ** The new terms are "dynamic" and are children of the original BETWEEN
1196 ** term. That means that if the BETWEEN term is coded, the children are
1197 ** skipped. Or, if the children are satisfied by an index, the original
1198 ** BETWEEN term is skipped.
1200 else if( pExpr
->op
==TK_BETWEEN
&& pWC
->op
==TK_AND
){
1201 ExprList
*pList
= pExpr
->x
.pList
;
1203 static const u8 ops
[] = {TK_GE
, TK_LE
};
1205 assert( pList
->nExpr
==2 );
1209 pNewExpr
= sqlite3PExpr(pParse
, ops
[i
],
1210 sqlite3ExprDup(db
, pExpr
->pLeft
, 0),
1211 sqlite3ExprDup(db
, pList
->a
[i
].pExpr
, 0), 0);
1212 idxNew
= whereClauseInsert(pWC
, pNewExpr
, TERM_VIRTUAL
|TERM_DYNAMIC
);
1213 testcase( idxNew
==0 );
1214 exprAnalyze(pSrc
, pWC
, idxNew
);
1215 pTerm
= &pWC
->a
[idxTerm
];
1216 pWC
->a
[idxNew
].iParent
= idxTerm
;
1220 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
1222 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
1223 /* Analyze a term that is composed of two or more subterms connected by
1226 else if( pExpr
->op
==TK_OR
){
1227 assert( pWC
->op
==TK_AND
);
1228 exprAnalyzeOrTerm(pSrc
, pWC
, idxTerm
);
1229 pTerm
= &pWC
->a
[idxTerm
];
1231 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1233 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
1234 /* Add constraints to reduce the search space on a LIKE or GLOB
1237 ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
1239 ** x>='abc' AND x<'abd' AND x LIKE 'abc%'
1241 ** The last character of the prefix "abc" is incremented to form the
1242 ** termination condition "abd".
1245 && isLikeOrGlob(pParse
, pExpr
, &pStr1
, &isComplete
, &noCase
)
1247 Expr
*pLeft
; /* LHS of LIKE/GLOB operator */
1248 Expr
*pStr2
; /* Copy of pStr1 - RHS of LIKE/GLOB operator */
1253 CollSeq
*pColl
; /* Collating sequence to use */
1255 pLeft
= pExpr
->x
.pList
->a
[1].pExpr
;
1256 pStr2
= sqlite3ExprDup(db
, pStr1
, 0);
1257 if( !db
->mallocFailed
){
1258 u8 c
, *pC
; /* Last character before the first wildcard */
1259 pC
= (u8
*)&pStr2
->u
.zToken
[sqlite3Strlen30(pStr2
->u
.zToken
)-1];
1262 /* The point is to increment the last character before the first
1263 ** wildcard. But if we increment '@', that will push it into the
1264 ** alphabetic range where case conversions will mess up the
1265 ** inequality. To avoid this, make sure to also run the full
1266 ** LIKE on all candidate expressions by clearing the isComplete flag
1268 if( c
=='A'-1 ) isComplete
= 0; /* EV: R-64339-08207 */
1271 c
= sqlite3UpperToLower
[c
];
1275 pColl
= sqlite3FindCollSeq(db
, SQLITE_UTF8
, noCase
? "NOCASE" : "BINARY",0);
1276 pNewExpr1
= sqlite3PExpr(pParse
, TK_GE
,
1277 sqlite3ExprSetColl(sqlite3ExprDup(db
,pLeft
,0), pColl
),
1279 idxNew1
= whereClauseInsert(pWC
, pNewExpr1
, TERM_VIRTUAL
|TERM_DYNAMIC
);
1280 testcase( idxNew1
==0 );
1281 exprAnalyze(pSrc
, pWC
, idxNew1
);
1282 pNewExpr2
= sqlite3PExpr(pParse
, TK_LT
,
1283 sqlite3ExprSetColl(sqlite3ExprDup(db
,pLeft
,0), pColl
),
1285 idxNew2
= whereClauseInsert(pWC
, pNewExpr2
, TERM_VIRTUAL
|TERM_DYNAMIC
);
1286 testcase( idxNew2
==0 );
1287 exprAnalyze(pSrc
, pWC
, idxNew2
);
1288 pTerm
= &pWC
->a
[idxTerm
];
1290 pWC
->a
[idxNew1
].iParent
= idxTerm
;
1291 pWC
->a
[idxNew2
].iParent
= idxTerm
;
1295 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
1297 #ifndef SQLITE_OMIT_VIRTUALTABLE
1298 /* Add a WO_MATCH auxiliary term to the constraint set if the
1299 ** current expression is of the form: column MATCH expr.
1300 ** This information is used by the xBestIndex methods of
1301 ** virtual tables. The native query optimizer does not attempt
1302 ** to do anything with MATCH functions.
1304 if( isMatchOfColumn(pExpr
) ){
1306 Expr
*pRight
, *pLeft
;
1307 WhereTerm
*pNewTerm
;
1308 Bitmask prereqColumn
, prereqExpr
;
1310 pRight
= pExpr
->x
.pList
->a
[0].pExpr
;
1311 pLeft
= pExpr
->x
.pList
->a
[1].pExpr
;
1312 prereqExpr
= exprTableUsage(pMaskSet
, pRight
);
1313 prereqColumn
= exprTableUsage(pMaskSet
, pLeft
);
1314 if( (prereqExpr
& prereqColumn
)==0 ){
1316 pNewExpr
= sqlite3PExpr(pParse
, TK_MATCH
,
1317 0, sqlite3ExprDup(db
, pRight
, 0), 0);
1318 idxNew
= whereClauseInsert(pWC
, pNewExpr
, TERM_VIRTUAL
|TERM_DYNAMIC
);
1319 testcase( idxNew
==0 );
1320 pNewTerm
= &pWC
->a
[idxNew
];
1321 pNewTerm
->prereqRight
= prereqExpr
;
1322 pNewTerm
->leftCursor
= pLeft
->iTable
;
1323 pNewTerm
->u
.leftColumn
= pLeft
->iColumn
;
1324 pNewTerm
->eOperator
= WO_MATCH
;
1325 pNewTerm
->iParent
= idxTerm
;
1326 pTerm
= &pWC
->a
[idxTerm
];
1328 pTerm
->wtFlags
|= TERM_COPIED
;
1329 pNewTerm
->prereqAll
= pTerm
->prereqAll
;
1332 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1334 #ifdef SQLITE_ENABLE_STAT2
1335 /* When sqlite_stat2 histogram data is available an operator of the
1336 ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
1337 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a
1338 ** virtual term of that form.
1340 ** Note that the virtual term must be tagged with TERM_VNULL. This
1341 ** TERM_VNULL tag will suppress the not-null check at the beginning
1342 ** of the loop. Without the TERM_VNULL flag, the not-null check at
1343 ** the start of the loop will prevent any results from being returned.
1345 if( pExpr
->op
==TK_NOTNULL
1346 && pExpr
->pLeft
->op
==TK_COLUMN
1347 && pExpr
->pLeft
->iColumn
>=0
1350 Expr
*pLeft
= pExpr
->pLeft
;
1352 WhereTerm
*pNewTerm
;
1354 pNewExpr
= sqlite3PExpr(pParse
, TK_GT
,
1355 sqlite3ExprDup(db
, pLeft
, 0),
1356 sqlite3PExpr(pParse
, TK_NULL
, 0, 0, 0), 0);
1358 idxNew
= whereClauseInsert(pWC
, pNewExpr
,
1359 TERM_VIRTUAL
|TERM_DYNAMIC
|TERM_VNULL
);
1361 pNewTerm
= &pWC
->a
[idxNew
];
1362 pNewTerm
->prereqRight
= 0;
1363 pNewTerm
->leftCursor
= pLeft
->iTable
;
1364 pNewTerm
->u
.leftColumn
= pLeft
->iColumn
;
1365 pNewTerm
->eOperator
= WO_GT
;
1366 pNewTerm
->iParent
= idxTerm
;
1367 pTerm
= &pWC
->a
[idxTerm
];
1369 pTerm
->wtFlags
|= TERM_COPIED
;
1370 pNewTerm
->prereqAll
= pTerm
->prereqAll
;
1373 #endif /* SQLITE_ENABLE_STAT2 */
1375 /* Prevent ON clause terms of a LEFT JOIN from being used to drive
1376 ** an index for tables to the left of the join.
1378 pTerm
->prereqRight
|= extraRight
;
1382 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain
1383 ** a reference to any table other than the iBase table.
1385 static int referencesOtherTables(
1386 ExprList
*pList
, /* Search expressions in ths list */
1387 WhereMaskSet
*pMaskSet
, /* Mapping from tables to bitmaps */
1388 int iFirst
, /* Be searching with the iFirst-th expression */
1389 int iBase
/* Ignore references to this table */
1391 Bitmask allowed
= ~getMask(pMaskSet
, iBase
);
1392 while( iFirst
<pList
->nExpr
){
1393 if( (exprTableUsage(pMaskSet
, pList
->a
[iFirst
++].pExpr
)&allowed
)!=0 ){
1402 ** This routine decides if pIdx can be used to satisfy the ORDER BY
1403 ** clause. If it can, it returns 1. If pIdx cannot satisfy the
1404 ** ORDER BY clause, this routine returns 0.
1406 ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the
1407 ** left-most table in the FROM clause of that same SELECT statement and
1408 ** the table has a cursor number of "base". pIdx is an index on pTab.
1410 ** nEqCol is the number of columns of pIdx that are used as equality
1411 ** constraints. Any of these columns may be missing from the ORDER BY
1412 ** clause and the match can still be a success.
1414 ** All terms of the ORDER BY that match against the index must be either
1415 ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE
1416 ** index do not need to satisfy this constraint.) The *pbRev value is
1417 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
1418 ** the ORDER BY clause is all ASC.
1420 static int isSortingIndex(
1421 Parse
*pParse
, /* Parsing context */
1422 WhereMaskSet
*pMaskSet
, /* Mapping from table cursor numbers to bitmaps */
1423 Index
*pIdx
, /* The index we are testing */
1424 int base
, /* Cursor number for the table to be sorted */
1425 ExprList
*pOrderBy
, /* The ORDER BY clause */
1426 int nEqCol
, /* Number of index columns with == constraints */
1427 int wsFlags
, /* Index usages flags */
1428 int *pbRev
/* Set to 1 if ORDER BY is DESC */
1430 int i
, j
; /* Loop counters */
1431 int sortOrder
= 0; /* XOR of index and ORDER BY sort direction */
1432 int nTerm
; /* Number of ORDER BY terms */
1433 struct ExprList_item
*pTerm
; /* A term of the ORDER BY clause */
1434 sqlite3
*db
= pParse
->db
;
1436 assert( pOrderBy
!=0 );
1437 nTerm
= pOrderBy
->nExpr
;
1440 /* Argument pIdx must either point to a 'real' named index structure,
1441 ** or an index structure allocated on the stack by bestBtreeIndex() to
1442 ** represent the rowid index that is part of every table. */
1443 assert( pIdx
->zName
|| (pIdx
->nColumn
==1 && pIdx
->aiColumn
[0]==-1) );
1445 /* Match terms of the ORDER BY clause against columns of
1448 ** Note that indices have pIdx->nColumn regular columns plus
1449 ** one additional column containing the rowid. The rowid column
1450 ** of the index is also allowed to match against the ORDER BY
1453 for(i
=j
=0, pTerm
=pOrderBy
->a
; j
<nTerm
&& i
<=pIdx
->nColumn
; i
++){
1454 Expr
*pExpr
; /* The expression of the ORDER BY pTerm */
1455 CollSeq
*pColl
; /* The collating sequence of pExpr */
1456 int termSortOrder
; /* Sort order for this term */
1457 int iColumn
; /* The i-th column of the index. -1 for rowid */
1458 int iSortOrder
; /* 1 for DESC, 0 for ASC on the i-th index term */
1459 const char *zColl
; /* Name of the collating sequence for i-th index term */
1461 pExpr
= pTerm
->pExpr
;
1462 if( pExpr
->op
!=TK_COLUMN
|| pExpr
->iTable
!=base
){
1463 /* Can not use an index sort on anything that is not a column in the
1464 ** left-most table of the FROM clause */
1467 pColl
= sqlite3ExprCollSeq(pParse
, pExpr
);
1469 pColl
= db
->pDfltColl
;
1471 if( pIdx
->zName
&& i
<pIdx
->nColumn
){
1472 iColumn
= pIdx
->aiColumn
[i
];
1473 if( iColumn
==pIdx
->pTable
->iPKey
){
1476 iSortOrder
= pIdx
->aSortOrder
[i
];
1477 zColl
= pIdx
->azColl
[i
];
1481 zColl
= pColl
->zName
;
1483 if( pExpr
->iColumn
!=iColumn
|| sqlite3StrICmp(pColl
->zName
, zColl
) ){
1484 /* Term j of the ORDER BY clause does not match column i of the index */
1486 /* If an index column that is constrained by == fails to match an
1487 ** ORDER BY term, that is OK. Just ignore that column of the index
1490 }else if( i
==pIdx
->nColumn
){
1491 /* Index column i is the rowid. All other terms match. */
1494 /* If an index column fails to match and is not constrained by ==
1495 ** then the index cannot satisfy the ORDER BY constraint.
1500 assert( pIdx
->aSortOrder
!=0 || iColumn
==-1 );
1501 assert( pTerm
->sortOrder
==0 || pTerm
->sortOrder
==1 );
1502 assert( iSortOrder
==0 || iSortOrder
==1 );
1503 termSortOrder
= iSortOrder
^ pTerm
->sortOrder
;
1505 if( termSortOrder
!=sortOrder
){
1506 /* Indices can only be used if all ORDER BY terms past the
1507 ** equality constraints are all either DESC or ASC. */
1511 sortOrder
= termSortOrder
;
1515 if( iColumn
<0 && !referencesOtherTables(pOrderBy
, pMaskSet
, j
, base
) ){
1516 /* If the indexed column is the primary key and everything matches
1517 ** so far and none of the ORDER BY terms to the right reference other
1518 ** tables in the join, then we are assured that the index can be used
1519 ** to sort because the primary key is unique and so none of the other
1520 ** columns will make any difference
1526 *pbRev
= sortOrder
!=0;
1528 /* All terms of the ORDER BY clause are covered by this index so
1529 ** this index can be used for sorting. */
1532 if( pIdx
->onError
!=OE_None
&& i
==pIdx
->nColumn
1533 && (wsFlags
& WHERE_COLUMN_NULL
)==0
1534 && !referencesOtherTables(pOrderBy
, pMaskSet
, j
, base
) ){
1535 /* All terms of this index match some prefix of the ORDER BY clause
1536 ** and the index is UNIQUE and no terms on the tail of the ORDER BY
1537 ** clause reference other tables in a join. If this is all true then
1538 ** the order by clause is superfluous. Not that if the matching
1539 ** condition is IS NULL then the result is not necessarily unique
1540 ** even on a UNIQUE index, so disallow those cases. */
1547 ** Prepare a crude estimate of the logarithm of the input value.
1548 ** The results need not be exact. This is only used for estimating
1549 ** the total cost of performing operations with O(logN) or O(NlogN)
1550 ** complexity. Because N is just a guess, it is no great tragedy if
1551 ** logN is a little off.
1553 static double estLog(double N
){
1564 ** Two routines for printing the content of an sqlite3_index_info
1565 ** structure. Used for testing and debugging only. If neither
1566 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
1569 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
1570 static void TRACE_IDX_INPUTS(sqlite3_index_info
*p
){
1572 if( !sqlite3WhereTrace
) return;
1573 for(i
=0; i
<p
->nConstraint
; i
++){
1574 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
1576 p
->aConstraint
[i
].iColumn
,
1577 p
->aConstraint
[i
].iTermOffset
,
1578 p
->aConstraint
[i
].op
,
1579 p
->aConstraint
[i
].usable
);
1581 for(i
=0; i
<p
->nOrderBy
; i
++){
1582 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
1584 p
->aOrderBy
[i
].iColumn
,
1585 p
->aOrderBy
[i
].desc
);
1588 static void TRACE_IDX_OUTPUTS(sqlite3_index_info
*p
){
1590 if( !sqlite3WhereTrace
) return;
1591 for(i
=0; i
<p
->nConstraint
; i
++){
1592 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
1594 p
->aConstraintUsage
[i
].argvIndex
,
1595 p
->aConstraintUsage
[i
].omit
);
1597 sqlite3DebugPrintf(" idxNum=%d\n", p
->idxNum
);
1598 sqlite3DebugPrintf(" idxStr=%s\n", p
->idxStr
);
1599 sqlite3DebugPrintf(" orderByConsumed=%d\n", p
->orderByConsumed
);
1600 sqlite3DebugPrintf(" estimatedCost=%g\n", p
->estimatedCost
);
1603 #define TRACE_IDX_INPUTS(A)
1604 #define TRACE_IDX_OUTPUTS(A)
1608 ** Required because bestIndex() is called by bestOrClauseIndex()
1610 static void bestIndex(
1611 Parse
*, WhereClause
*, struct SrcList_item
*,
1612 Bitmask
, Bitmask
, ExprList
*, WhereCost
*);
1615 ** This routine attempts to find an scanning strategy that can be used
1616 ** to optimize an 'OR' expression that is part of a WHERE clause.
1618 ** The table associated with FROM clause term pSrc may be either a
1619 ** regular B-Tree table or a virtual table.
1621 static void bestOrClauseIndex(
1622 Parse
*pParse
, /* The parsing context */
1623 WhereClause
*pWC
, /* The WHERE clause */
1624 struct SrcList_item
*pSrc
, /* The FROM clause term to search */
1625 Bitmask notReady
, /* Mask of cursors not available for indexing */
1626 Bitmask notValid
, /* Cursors not available for any purpose */
1627 ExprList
*pOrderBy
, /* The ORDER BY clause */
1628 WhereCost
*pCost
/* Lowest cost query plan */
1630 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
1631 const int iCur
= pSrc
->iCursor
; /* The cursor of the table to be accessed */
1632 const Bitmask maskSrc
= getMask(pWC
->pMaskSet
, iCur
); /* Bitmask for pSrc */
1633 WhereTerm
* const pWCEnd
= &pWC
->a
[pWC
->nTerm
]; /* End of pWC->a[] */
1634 WhereTerm
*pTerm
; /* A single term of the WHERE clause */
1636 /* No OR-clause optimization allowed if the INDEXED BY or NOT INDEXED clauses
1638 if( pSrc
->notIndexed
|| pSrc
->pIndex
!=0 ){
1642 /* Search the WHERE clause terms for a usable WO_OR term. */
1643 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
; pTerm
++){
1644 if( pTerm
->eOperator
==WO_OR
1645 && ((pTerm
->prereqAll
& ~maskSrc
) & notReady
)==0
1646 && (pTerm
->u
.pOrInfo
->indexable
& maskSrc
)!=0
1648 WhereClause
* const pOrWC
= &pTerm
->u
.pOrInfo
->wc
;
1649 WhereTerm
* const pOrWCEnd
= &pOrWC
->a
[pOrWC
->nTerm
];
1651 int flags
= WHERE_MULTI_OR
;
1656 for(pOrTerm
=pOrWC
->a
; pOrTerm
<pOrWCEnd
; pOrTerm
++){
1657 WhereCost sTermCost
;
1658 WHERETRACE(("... Multi-index OR testing for term %d of %d....\n",
1659 (pOrTerm
- pOrWC
->a
), (pTerm
- pWC
->a
)
1661 if( pOrTerm
->eOperator
==WO_AND
){
1662 WhereClause
*pAndWC
= &pOrTerm
->u
.pAndInfo
->wc
;
1663 bestIndex(pParse
, pAndWC
, pSrc
, notReady
, notValid
, 0, &sTermCost
);
1664 }else if( pOrTerm
->leftCursor
==iCur
){
1666 tempWC
.pParse
= pWC
->pParse
;
1667 tempWC
.pMaskSet
= pWC
->pMaskSet
;
1671 bestIndex(pParse
, &tempWC
, pSrc
, notReady
, notValid
, 0, &sTermCost
);
1675 rTotal
+= sTermCost
.rCost
;
1676 nRow
+= sTermCost
.plan
.nRow
;
1677 used
|= sTermCost
.used
;
1678 if( rTotal
>=pCost
->rCost
) break;
1681 /* If there is an ORDER BY clause, increase the scan cost to account
1682 ** for the cost of the sort. */
1684 WHERETRACE(("... sorting increases OR cost %.9g to %.9g\n",
1685 rTotal
, rTotal
+nRow
*estLog(nRow
)));
1686 rTotal
+= nRow
*estLog(nRow
);
1689 /* If the cost of scanning using this OR term for optimization is
1690 ** less than the current cost stored in pCost, replace the contents
1692 WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal
, nRow
));
1693 if( rTotal
<pCost
->rCost
){
1694 pCost
->rCost
= rTotal
;
1696 pCost
->plan
.nRow
= nRow
;
1697 pCost
->plan
.wsFlags
= flags
;
1698 pCost
->plan
.u
.pTerm
= pTerm
;
1702 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1705 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
1707 ** Return TRUE if the WHERE clause term pTerm is of a form where it
1708 ** could be used with an index to access pSrc, assuming an appropriate
1711 static int termCanDriveIndex(
1712 WhereTerm
*pTerm
, /* WHERE clause term to check */
1713 struct SrcList_item
*pSrc
, /* Table we are trying to access */
1714 Bitmask notReady
/* Tables in outer loops of the join */
1717 if( pTerm
->leftCursor
!=pSrc
->iCursor
) return 0;
1718 if( pTerm
->eOperator
!=WO_EQ
) return 0;
1719 if( (pTerm
->prereqRight
& notReady
)!=0 ) return 0;
1720 aff
= pSrc
->pTab
->aCol
[pTerm
->u
.leftColumn
].affinity
;
1721 if( !sqlite3IndexAffinityOk(pTerm
->pExpr
, aff
) ) return 0;
1726 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
1728 ** If the query plan for pSrc specified in pCost is a full table scan
1729 ** and indexing is allows (if there is no NOT INDEXED clause) and it
1730 ** possible to construct a transient index that would perform better
1731 ** than a full table scan even when the cost of constructing the index
1732 ** is taken into account, then alter the query plan to use the
1735 static void bestAutomaticIndex(
1736 Parse
*pParse
, /* The parsing context */
1737 WhereClause
*pWC
, /* The WHERE clause */
1738 struct SrcList_item
*pSrc
, /* The FROM clause term to search */
1739 Bitmask notReady
, /* Mask of cursors that are not available */
1740 WhereCost
*pCost
/* Lowest cost query plan */
1742 double nTableRow
; /* Rows in the input table */
1743 double logN
; /* log(nTableRow) */
1744 double costTempIdx
; /* per-query cost of the transient index */
1745 WhereTerm
*pTerm
; /* A single term of the WHERE clause */
1746 WhereTerm
*pWCEnd
; /* End of pWC->a[] */
1747 Table
*pTable
; /* Table tht might be indexed */
1749 if( (pParse
->db
->flags
& SQLITE_AutoIndex
)==0 ){
1750 /* Automatic indices are disabled at run-time */
1753 if( (pCost
->plan
.wsFlags
& WHERE_NOT_FULLSCAN
)!=0 ){
1754 /* We already have some kind of index in use for this query. */
1757 if( pSrc
->notIndexed
){
1758 /* The NOT INDEXED clause appears in the SQL. */
1762 assert( pParse
->nQueryLoop
>= (double)1 );
1763 pTable
= pSrc
->pTab
;
1764 nTableRow
= pTable
->nRowEst
;
1765 logN
= estLog(nTableRow
);
1766 costTempIdx
= 2*logN
*(nTableRow
/pParse
->nQueryLoop
+ 1);
1767 if( costTempIdx
>=pCost
->rCost
){
1768 /* The cost of creating the transient table would be greater than
1769 ** doing the full table scan */
1773 /* Search for any equality comparison term */
1774 pWCEnd
= &pWC
->a
[pWC
->nTerm
];
1775 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
; pTerm
++){
1776 if( termCanDriveIndex(pTerm
, pSrc
, notReady
) ){
1777 WHERETRACE(("auto-index reduces cost from %.1f to %.1f\n",
1778 pCost
->rCost
, costTempIdx
));
1779 pCost
->rCost
= costTempIdx
;
1780 pCost
->plan
.nRow
= logN
+ 1;
1781 pCost
->plan
.wsFlags
= WHERE_TEMP_INDEX
;
1782 pCost
->used
= pTerm
->prereqRight
;
1788 # define bestAutomaticIndex(A,B,C,D,E) /* no-op */
1789 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
1792 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
1794 ** Generate code to construct the Index object for an automatic index
1795 ** and to set up the WhereLevel object pLevel so that the code generator
1796 ** makes use of the automatic index.
1798 static void constructAutomaticIndex(
1799 Parse
*pParse
, /* The parsing context */
1800 WhereClause
*pWC
, /* The WHERE clause */
1801 struct SrcList_item
*pSrc
, /* The FROM clause term to get the next index */
1802 Bitmask notReady
, /* Mask of cursors that are not available */
1803 WhereLevel
*pLevel
/* Write new index here */
1805 int nColumn
; /* Number of columns in the constructed index */
1806 WhereTerm
*pTerm
; /* A single term of the WHERE clause */
1807 WhereTerm
*pWCEnd
; /* End of pWC->a[] */
1808 int nByte
; /* Byte of memory needed for pIdx */
1809 Index
*pIdx
; /* Object describing the transient index */
1810 Vdbe
*v
; /* Prepared statement under construction */
1811 int regIsInit
; /* Register set by initialization */
1812 int addrInit
; /* Address of the initialization bypass jump */
1813 Table
*pTable
; /* The table being indexed */
1814 KeyInfo
*pKeyinfo
; /* Key information for the index */
1815 int addrTop
; /* Top of the index fill loop */
1816 int regRecord
; /* Register holding an index record */
1817 int n
; /* Column counter */
1818 int i
; /* Loop counter */
1819 int mxBitCol
; /* Maximum column in pSrc->colUsed */
1820 CollSeq
*pColl
; /* Collating sequence to on a column */
1821 Bitmask idxCols
; /* Bitmap of columns used for indexing */
1822 Bitmask extraCols
; /* Bitmap of additional columns */
1824 /* Generate code to skip over the creation and initialization of the
1825 ** transient index on 2nd and subsequent iterations of the loop. */
1828 regIsInit
= ++pParse
->nMem
;
1829 addrInit
= sqlite3VdbeAddOp1(v
, OP_If
, regIsInit
);
1830 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, regIsInit
);
1832 /* Count the number of columns that will be added to the index
1833 ** and used to match WHERE clause constraints */
1835 pTable
= pSrc
->pTab
;
1836 pWCEnd
= &pWC
->a
[pWC
->nTerm
];
1838 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
; pTerm
++){
1839 if( termCanDriveIndex(pTerm
, pSrc
, notReady
) ){
1840 int iCol
= pTerm
->u
.leftColumn
;
1841 Bitmask cMask
= iCol
>=BMS
? ((Bitmask
)1)<<(BMS
-1) : ((Bitmask
)1)<<iCol
;
1842 testcase( iCol
==BMS
);
1843 testcase( iCol
==BMS
-1 );
1844 if( (idxCols
& cMask
)==0 ){
1850 assert( nColumn
>0 );
1851 pLevel
->plan
.nEq
= nColumn
;
1853 /* Count the number of additional columns needed to create a
1854 ** covering index. A "covering index" is an index that contains all
1855 ** columns that are needed by the query. With a covering index, the
1856 ** original table never needs to be accessed. Automatic indices must
1857 ** be a covering index because the index will not be updated if the
1858 ** original table changes and the index and table cannot both be used
1859 ** if they go out of sync.
1861 extraCols
= pSrc
->colUsed
& (~idxCols
| (((Bitmask
)1)<<(BMS
-1)));
1862 mxBitCol
= (pTable
->nCol
>= BMS
-1) ? BMS
-1 : pTable
->nCol
;
1863 testcase( pTable
->nCol
==BMS
-1 );
1864 testcase( pTable
->nCol
==BMS
-2 );
1865 for(i
=0; i
<mxBitCol
; i
++){
1866 if( extraCols
& (((Bitmask
)1)<<i
) ) nColumn
++;
1868 if( pSrc
->colUsed
& (((Bitmask
)1)<<(BMS
-1)) ){
1869 nColumn
+= pTable
->nCol
- BMS
+ 1;
1871 pLevel
->plan
.wsFlags
|= WHERE_COLUMN_EQ
| WHERE_IDX_ONLY
| WO_EQ
;
1873 /* Construct the Index object to describe this index */
1874 nByte
= sizeof(Index
);
1875 nByte
+= nColumn
*sizeof(int); /* Index.aiColumn */
1876 nByte
+= nColumn
*sizeof(char*); /* Index.azColl */
1877 nByte
+= nColumn
; /* Index.aSortOrder */
1878 pIdx
= sqlite3DbMallocZero(pParse
->db
, nByte
);
1879 if( pIdx
==0 ) return;
1880 pLevel
->plan
.u
.pIdx
= pIdx
;
1881 pIdx
->azColl
= (char**)&pIdx
[1];
1882 pIdx
->aiColumn
= (int*)&pIdx
->azColl
[nColumn
];
1883 pIdx
->aSortOrder
= (u8
*)&pIdx
->aiColumn
[nColumn
];
1884 pIdx
->zName
= "auto-index";
1885 pIdx
->nColumn
= nColumn
;
1886 pIdx
->pTable
= pTable
;
1889 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
; pTerm
++){
1890 if( termCanDriveIndex(pTerm
, pSrc
, notReady
) ){
1891 int iCol
= pTerm
->u
.leftColumn
;
1892 Bitmask cMask
= iCol
>=BMS
? ((Bitmask
)1)<<(BMS
-1) : ((Bitmask
)1)<<iCol
;
1893 if( (idxCols
& cMask
)==0 ){
1894 Expr
*pX
= pTerm
->pExpr
;
1896 pIdx
->aiColumn
[n
] = pTerm
->u
.leftColumn
;
1897 pColl
= sqlite3BinaryCompareCollSeq(pParse
, pX
->pLeft
, pX
->pRight
);
1898 pIdx
->azColl
[n
] = ALWAYS(pColl
) ? pColl
->zName
: "BINARY";
1903 assert( (u32
)n
==pLevel
->plan
.nEq
);
1905 /* Add additional columns needed to make the automatic index into
1906 ** a covering index */
1907 for(i
=0; i
<mxBitCol
; i
++){
1908 if( extraCols
& (((Bitmask
)1)<<i
) ){
1909 pIdx
->aiColumn
[n
] = i
;
1910 pIdx
->azColl
[n
] = "BINARY";
1914 if( pSrc
->colUsed
& (((Bitmask
)1)<<(BMS
-1)) ){
1915 for(i
=BMS
-1; i
<pTable
->nCol
; i
++){
1916 pIdx
->aiColumn
[n
] = i
;
1917 pIdx
->azColl
[n
] = "BINARY";
1921 assert( n
==nColumn
);
1923 /* Create the automatic index */
1924 pKeyinfo
= sqlite3IndexKeyinfo(pParse
, pIdx
);
1925 assert( pLevel
->iIdxCur
>=0 );
1926 sqlite3VdbeAddOp4(v
, OP_OpenAutoindex
, pLevel
->iIdxCur
, nColumn
+1, 0,
1927 (char*)pKeyinfo
, P4_KEYINFO_HANDOFF
);
1928 VdbeComment((v
, "for %s", pTable
->zName
));
1930 /* Fill the automatic index with content */
1931 addrTop
= sqlite3VdbeAddOp1(v
, OP_Rewind
, pLevel
->iTabCur
);
1932 regRecord
= sqlite3GetTempReg(pParse
);
1933 sqlite3GenerateIndexKey(pParse
, pIdx
, pLevel
->iTabCur
, regRecord
, 1);
1934 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, pLevel
->iIdxCur
, regRecord
);
1935 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
1936 sqlite3VdbeAddOp2(v
, OP_Next
, pLevel
->iTabCur
, addrTop
+1);
1937 sqlite3VdbeChangeP5(v
, SQLITE_STMTSTATUS_AUTOINDEX
);
1938 sqlite3VdbeJumpHere(v
, addrTop
);
1939 sqlite3ReleaseTempReg(pParse
, regRecord
);
1941 /* Jump here when skipping the initialization */
1942 sqlite3VdbeJumpHere(v
, addrInit
);
1944 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
1946 #ifndef SQLITE_OMIT_VIRTUALTABLE
1948 ** Allocate and populate an sqlite3_index_info structure. It is the
1949 ** responsibility of the caller to eventually release the structure
1950 ** by passing the pointer returned by this function to sqlite3_free().
1952 static sqlite3_index_info
*allocateIndexInfo(
1955 struct SrcList_item
*pSrc
,
1960 struct sqlite3_index_constraint
*pIdxCons
;
1961 struct sqlite3_index_orderby
*pIdxOrderBy
;
1962 struct sqlite3_index_constraint_usage
*pUsage
;
1965 sqlite3_index_info
*pIdxInfo
;
1967 WHERETRACE(("Recomputing index info for %s...\n", pSrc
->pTab
->zName
));
1969 /* Count the number of possible WHERE clause constraints referring
1970 ** to this virtual table */
1971 for(i
=nTerm
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
1972 if( pTerm
->leftCursor
!= pSrc
->iCursor
) continue;
1973 assert( (pTerm
->eOperator
&(pTerm
->eOperator
-1))==0 );
1974 testcase( pTerm
->eOperator
==WO_IN
);
1975 testcase( pTerm
->eOperator
==WO_ISNULL
);
1976 if( pTerm
->eOperator
& (WO_IN
|WO_ISNULL
) ) continue;
1980 /* If the ORDER BY clause contains only columns in the current
1981 ** virtual table then allocate space for the aOrderBy part of
1982 ** the sqlite3_index_info structure.
1986 for(i
=0; i
<pOrderBy
->nExpr
; i
++){
1987 Expr
*pExpr
= pOrderBy
->a
[i
].pExpr
;
1988 if( pExpr
->op
!=TK_COLUMN
|| pExpr
->iTable
!=pSrc
->iCursor
) break;
1990 if( i
==pOrderBy
->nExpr
){
1991 nOrderBy
= pOrderBy
->nExpr
;
1995 /* Allocate the sqlite3_index_info structure
1997 pIdxInfo
= sqlite3DbMallocZero(pParse
->db
, sizeof(*pIdxInfo
)
1998 + (sizeof(*pIdxCons
) + sizeof(*pUsage
))*nTerm
1999 + sizeof(*pIdxOrderBy
)*nOrderBy
);
2001 sqlite3ErrorMsg(pParse
, "out of memory");
2002 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
2006 /* Initialize the structure. The sqlite3_index_info structure contains
2007 ** many fields that are declared "const" to prevent xBestIndex from
2008 ** changing them. We have to do some funky casting in order to
2009 ** initialize those fields.
2011 pIdxCons
= (struct sqlite3_index_constraint
*)&pIdxInfo
[1];
2012 pIdxOrderBy
= (struct sqlite3_index_orderby
*)&pIdxCons
[nTerm
];
2013 pUsage
= (struct sqlite3_index_constraint_usage
*)&pIdxOrderBy
[nOrderBy
];
2014 *(int*)&pIdxInfo
->nConstraint
= nTerm
;
2015 *(int*)&pIdxInfo
->nOrderBy
= nOrderBy
;
2016 *(struct sqlite3_index_constraint
**)&pIdxInfo
->aConstraint
= pIdxCons
;
2017 *(struct sqlite3_index_orderby
**)&pIdxInfo
->aOrderBy
= pIdxOrderBy
;
2018 *(struct sqlite3_index_constraint_usage
**)&pIdxInfo
->aConstraintUsage
=
2021 for(i
=j
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
2022 if( pTerm
->leftCursor
!= pSrc
->iCursor
) continue;
2023 assert( (pTerm
->eOperator
&(pTerm
->eOperator
-1))==0 );
2024 testcase( pTerm
->eOperator
==WO_IN
);
2025 testcase( pTerm
->eOperator
==WO_ISNULL
);
2026 if( pTerm
->eOperator
& (WO_IN
|WO_ISNULL
) ) continue;
2027 pIdxCons
[j
].iColumn
= pTerm
->u
.leftColumn
;
2028 pIdxCons
[j
].iTermOffset
= i
;
2029 pIdxCons
[j
].op
= (u8
)pTerm
->eOperator
;
2030 /* The direct assignment in the previous line is possible only because
2031 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
2032 ** following asserts verify this fact. */
2033 assert( WO_EQ
==SQLITE_INDEX_CONSTRAINT_EQ
);
2034 assert( WO_LT
==SQLITE_INDEX_CONSTRAINT_LT
);
2035 assert( WO_LE
==SQLITE_INDEX_CONSTRAINT_LE
);
2036 assert( WO_GT
==SQLITE_INDEX_CONSTRAINT_GT
);
2037 assert( WO_GE
==SQLITE_INDEX_CONSTRAINT_GE
);
2038 assert( WO_MATCH
==SQLITE_INDEX_CONSTRAINT_MATCH
);
2039 assert( pTerm
->eOperator
& (WO_EQ
|WO_LT
|WO_LE
|WO_GT
|WO_GE
|WO_MATCH
) );
2042 for(i
=0; i
<nOrderBy
; i
++){
2043 Expr
*pExpr
= pOrderBy
->a
[i
].pExpr
;
2044 pIdxOrderBy
[i
].iColumn
= pExpr
->iColumn
;
2045 pIdxOrderBy
[i
].desc
= pOrderBy
->a
[i
].sortOrder
;
2052 ** The table object reference passed as the second argument to this function
2053 ** must represent a virtual table. This function invokes the xBestIndex()
2054 ** method of the virtual table with the sqlite3_index_info pointer passed
2057 ** If an error occurs, pParse is populated with an error message and a
2058 ** non-zero value is returned. Otherwise, 0 is returned and the output
2059 ** part of the sqlite3_index_info structure is left populated.
2061 ** Whether or not an error is returned, it is the responsibility of the
2062 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
2063 ** that this is required.
2065 static int vtabBestIndex(Parse
*pParse
, Table
*pTab
, sqlite3_index_info
*p
){
2066 sqlite3_vtab
*pVtab
= sqlite3GetVTable(pParse
->db
, pTab
)->pVtab
;
2070 WHERETRACE(("xBestIndex for %s\n", pTab
->zName
));
2071 TRACE_IDX_INPUTS(p
);
2072 rc
= pVtab
->pModule
->xBestIndex(pVtab
, p
);
2073 TRACE_IDX_OUTPUTS(p
);
2075 if( rc
!=SQLITE_OK
){
2076 if( rc
==SQLITE_NOMEM
){
2077 pParse
->db
->mallocFailed
= 1;
2078 }else if( !pVtab
->zErrMsg
){
2079 sqlite3ErrorMsg(pParse
, "%s", sqlite3ErrStr(rc
));
2081 sqlite3ErrorMsg(pParse
, "%s", pVtab
->zErrMsg
);
2084 sqlite3_free(pVtab
->zErrMsg
);
2087 for(i
=0; i
<p
->nConstraint
; i
++){
2088 if( !p
->aConstraint
[i
].usable
&& p
->aConstraintUsage
[i
].argvIndex
>0 ){
2089 sqlite3ErrorMsg(pParse
,
2090 "table %s: xBestIndex returned an invalid plan", pTab
->zName
);
2094 return pParse
->nErr
;
2099 ** Compute the best index for a virtual table.
2101 ** The best index is computed by the xBestIndex method of the virtual
2102 ** table module. This routine is really just a wrapper that sets up
2103 ** the sqlite3_index_info structure that is used to communicate with
2106 ** In a join, this routine might be called multiple times for the
2107 ** same virtual table. The sqlite3_index_info structure is created
2108 ** and initialized on the first invocation and reused on all subsequent
2109 ** invocations. The sqlite3_index_info structure is also used when
2110 ** code is generated to access the virtual table. The whereInfoDelete()
2111 ** routine takes care of freeing the sqlite3_index_info structure after
2112 ** everybody has finished with it.
2114 static void bestVirtualIndex(
2115 Parse
*pParse
, /* The parsing context */
2116 WhereClause
*pWC
, /* The WHERE clause */
2117 struct SrcList_item
*pSrc
, /* The FROM clause term to search */
2118 Bitmask notReady
, /* Mask of cursors not available for index */
2119 Bitmask notValid
, /* Cursors not valid for any purpose */
2120 ExprList
*pOrderBy
, /* The order by clause */
2121 WhereCost
*pCost
, /* Lowest cost query plan */
2122 sqlite3_index_info
**ppIdxInfo
/* Index information passed to xBestIndex */
2124 Table
*pTab
= pSrc
->pTab
;
2125 sqlite3_index_info
*pIdxInfo
;
2126 struct sqlite3_index_constraint
*pIdxCons
;
2127 struct sqlite3_index_constraint_usage
*pUsage
;
2133 /* Make sure wsFlags is initialized to some sane value. Otherwise, if the
2134 ** malloc in allocateIndexInfo() fails and this function returns leaving
2135 ** wsFlags in an uninitialized state, the caller may behave unpredictably.
2137 memset(pCost
, 0, sizeof(*pCost
));
2138 pCost
->plan
.wsFlags
= WHERE_VIRTUALTABLE
;
2140 /* If the sqlite3_index_info structure has not been previously
2141 ** allocated and initialized, then allocate and initialize it now.
2143 pIdxInfo
= *ppIdxInfo
;
2145 *ppIdxInfo
= pIdxInfo
= allocateIndexInfo(pParse
, pWC
, pSrc
, pOrderBy
);
2151 /* At this point, the sqlite3_index_info structure that pIdxInfo points
2152 ** to will have been initialized, either during the current invocation or
2153 ** during some prior invocation. Now we just have to customize the
2154 ** details of pIdxInfo for the current invocation and pass it to
2158 /* The module name must be defined. Also, by this point there must
2159 ** be a pointer to an sqlite3_vtab structure. Otherwise
2160 ** sqlite3ViewGetColumnNames() would have picked up the error.
2162 assert( pTab
->azModuleArg
&& pTab
->azModuleArg
[0] );
2163 assert( sqlite3GetVTable(pParse
->db
, pTab
) );
2165 /* Set the aConstraint[].usable fields and initialize all
2166 ** output variables to zero.
2168 ** aConstraint[].usable is true for constraints where the right-hand
2169 ** side contains only references to tables to the left of the current
2170 ** table. In other words, if the constraint is of the form:
2174 ** and we are evaluating a join, then the constraint on column is
2175 ** only valid if all tables referenced in expr occur to the left
2176 ** of the table containing column.
2178 ** The aConstraints[] array contains entries for all constraints
2179 ** on the current table. That way we only have to compute it once
2180 ** even though we might try to pick the best index multiple times.
2181 ** For each attempt at picking an index, the order of tables in the
2182 ** join might be different so we have to recompute the usable flag
2185 pIdxCons
= *(struct sqlite3_index_constraint
**)&pIdxInfo
->aConstraint
;
2186 pUsage
= pIdxInfo
->aConstraintUsage
;
2187 for(i
=0; i
<pIdxInfo
->nConstraint
; i
++, pIdxCons
++){
2188 j
= pIdxCons
->iTermOffset
;
2190 pIdxCons
->usable
= (pTerm
->prereqRight
¬Ready
) ? 0 : 1;
2192 memset(pUsage
, 0, sizeof(pUsage
[0])*pIdxInfo
->nConstraint
);
2193 if( pIdxInfo
->needToFreeIdxStr
){
2194 sqlite3_free(pIdxInfo
->idxStr
);
2196 pIdxInfo
->idxStr
= 0;
2197 pIdxInfo
->idxNum
= 0;
2198 pIdxInfo
->needToFreeIdxStr
= 0;
2199 pIdxInfo
->orderByConsumed
= 0;
2200 /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
2201 pIdxInfo
->estimatedCost
= SQLITE_BIG_DBL
/ ((double)2);
2202 nOrderBy
= pIdxInfo
->nOrderBy
;
2204 pIdxInfo
->nOrderBy
= 0;
2207 if( vtabBestIndex(pParse
, pTab
, pIdxInfo
) ){
2211 pIdxCons
= *(struct sqlite3_index_constraint
**)&pIdxInfo
->aConstraint
;
2212 for(i
=0; i
<pIdxInfo
->nConstraint
; i
++){
2213 if( pUsage
[i
].argvIndex
>0 ){
2214 pCost
->used
|= pWC
->a
[pIdxCons
[i
].iTermOffset
].prereqRight
;
2218 /* If there is an ORDER BY clause, and the selected virtual table index
2219 ** does not satisfy it, increase the cost of the scan accordingly. This
2220 ** matches the processing for non-virtual tables in bestBtreeIndex().
2222 rCost
= pIdxInfo
->estimatedCost
;
2223 if( pOrderBy
&& pIdxInfo
->orderByConsumed
==0 ){
2224 rCost
+= estLog(rCost
)*rCost
;
2227 /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
2228 ** inital value of lowestCost in this loop. If it is, then the
2229 ** (cost<lowestCost) test below will never be true.
2231 ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT
2234 if( (SQLITE_BIG_DBL
/((double)2))<rCost
){
2235 pCost
->rCost
= (SQLITE_BIG_DBL
/((double)2));
2237 pCost
->rCost
= rCost
;
2239 pCost
->plan
.u
.pVtabIdx
= pIdxInfo
;
2240 if( pIdxInfo
->orderByConsumed
){
2241 pCost
->plan
.wsFlags
|= WHERE_ORDERBY
;
2243 pCost
->plan
.nEq
= 0;
2244 pIdxInfo
->nOrderBy
= nOrderBy
;
2246 /* Try to find a more efficient access pattern by using multiple indexes
2247 ** to optimize an OR expression within the WHERE clause.
2249 bestOrClauseIndex(pParse
, pWC
, pSrc
, notReady
, notValid
, pOrderBy
, pCost
);
2251 #endif /* SQLITE_OMIT_VIRTUALTABLE */
2254 ** Argument pIdx is a pointer to an index structure that has an array of
2255 ** SQLITE_INDEX_SAMPLES evenly spaced samples of the first indexed column
2256 ** stored in Index.aSample. These samples divide the domain of values stored
2257 ** the index into (SQLITE_INDEX_SAMPLES+1) regions.
2258 ** Region 0 contains all values less than the first sample value. Region
2259 ** 1 contains values between the first and second samples. Region 2 contains
2260 ** values between samples 2 and 3. And so on. Region SQLITE_INDEX_SAMPLES
2261 ** contains values larger than the last sample.
2263 ** If the index contains many duplicates of a single value, then it is
2264 ** possible that two or more adjacent samples can hold the same value.
2265 ** When that is the case, the smallest possible region code is returned
2266 ** when roundUp is false and the largest possible region code is returned
2267 ** when roundUp is true.
2269 ** If successful, this function determines which of the regions value
2270 ** pVal lies in, sets *piRegion to the region index (a value between 0
2271 ** and SQLITE_INDEX_SAMPLES+1, inclusive) and returns SQLITE_OK.
2272 ** Or, if an OOM occurs while converting text values between encodings,
2273 ** SQLITE_NOMEM is returned and *piRegion is undefined.
2275 #ifdef SQLITE_ENABLE_STAT2
2276 static int whereRangeRegion(
2277 Parse
*pParse
, /* Database connection */
2278 Index
*pIdx
, /* Index to consider domain of */
2279 sqlite3_value
*pVal
, /* Value to consider */
2280 int roundUp
, /* Return largest valid region if true */
2281 int *piRegion
/* OUT: Region of domain in which value lies */
2283 assert( roundUp
==0 || roundUp
==1 );
2285 IndexSample
*aSample
= pIdx
->aSample
;
2287 int eType
= sqlite3_value_type(pVal
);
2289 if( eType
==SQLITE_INTEGER
|| eType
==SQLITE_FLOAT
){
2290 double r
= sqlite3_value_double(pVal
);
2291 for(i
=0; i
<SQLITE_INDEX_SAMPLES
; i
++){
2292 if( aSample
[i
].eType
==SQLITE_NULL
) continue;
2293 if( aSample
[i
].eType
>=SQLITE_TEXT
) break;
2295 if( aSample
[i
].u
.r
>r
) break;
2297 if( aSample
[i
].u
.r
>=r
) break;
2300 }else if( eType
==SQLITE_NULL
){
2303 while( i
<SQLITE_INDEX_SAMPLES
&& aSample
[i
].eType
==SQLITE_NULL
) i
++;
2306 sqlite3
*db
= pParse
->db
;
2311 /* pVal comes from sqlite3ValueFromExpr() so the type cannot be NULL */
2312 assert( eType
==SQLITE_TEXT
|| eType
==SQLITE_BLOB
);
2314 if( eType
==SQLITE_BLOB
){
2315 z
= (const u8
*)sqlite3_value_blob(pVal
);
2316 pColl
= db
->pDfltColl
;
2317 assert( pColl
->enc
==SQLITE_UTF8
);
2319 pColl
= sqlite3GetCollSeq(db
, SQLITE_UTF8
, 0, *pIdx
->azColl
);
2321 sqlite3ErrorMsg(pParse
, "no such collation sequence: %s",
2323 return SQLITE_ERROR
;
2325 z
= (const u8
*)sqlite3ValueText(pVal
, pColl
->enc
);
2327 return SQLITE_NOMEM
;
2329 assert( z
&& pColl
&& pColl
->xCmp
);
2331 n
= sqlite3ValueBytes(pVal
, pColl
->enc
);
2333 for(i
=0; i
<SQLITE_INDEX_SAMPLES
; i
++){
2335 int eSampletype
= aSample
[i
].eType
;
2336 if( eSampletype
==SQLITE_NULL
|| eSampletype
<eType
) continue;
2337 if( (eSampletype
!=eType
) ) break;
2338 #ifndef SQLITE_OMIT_UTF16
2339 if( pColl
->enc
!=SQLITE_UTF8
){
2341 char *zSample
= sqlite3Utf8to16(
2342 db
, pColl
->enc
, aSample
[i
].u
.z
, aSample
[i
].nByte
, &nSample
2345 assert( db
->mallocFailed
);
2346 return SQLITE_NOMEM
;
2348 c
= pColl
->xCmp(pColl
->pUser
, nSample
, zSample
, n
, z
);
2349 sqlite3DbFree(db
, zSample
);
2353 c
= pColl
->xCmp(pColl
->pUser
, aSample
[i
].nByte
, aSample
[i
].u
.z
, n
, z
);
2355 if( c
-roundUp
>=0 ) break;
2359 assert( i
>=0 && i
<=SQLITE_INDEX_SAMPLES
);
2364 #endif /* #ifdef SQLITE_ENABLE_STAT2 */
2367 ** If expression pExpr represents a literal value, set *pp to point to
2368 ** an sqlite3_value structure containing the same value, with affinity
2369 ** aff applied to it, before returning. It is the responsibility of the
2370 ** caller to eventually release this structure by passing it to
2371 ** sqlite3ValueFree().
2373 ** If the current parse is a recompile (sqlite3Reprepare()) and pExpr
2374 ** is an SQL variable that currently has a non-NULL value bound to it,
2375 ** create an sqlite3_value structure containing this value, again with
2376 ** affinity aff applied to it, instead.
2378 ** If neither of the above apply, set *pp to NULL.
2380 ** If an error occurs, return an error code. Otherwise, SQLITE_OK.
2382 #ifdef SQLITE_ENABLE_STAT2
2383 static int valueFromExpr(
2389 if( pExpr
->op
==TK_VARIABLE
2390 || (pExpr
->op
==TK_REGISTER
&& pExpr
->op2
==TK_VARIABLE
)
2392 int iVar
= pExpr
->iColumn
;
2393 sqlite3VdbeSetVarmask(pParse
->pVdbe
, iVar
); /* IMP: R-23257-02778 */
2394 *pp
= sqlite3VdbeGetValue(pParse
->pReprepare
, iVar
, aff
);
2397 return sqlite3ValueFromExpr(pParse
->db
, pExpr
, SQLITE_UTF8
, aff
, pp
);
2402 ** This function is used to estimate the number of rows that will be visited
2403 ** by scanning an index for a range of values. The range may have an upper
2404 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
2405 ** and lower bounds are represented by pLower and pUpper respectively. For
2406 ** example, assuming that index p is on t1(a):
2408 ** ... FROM t1 WHERE a > ? AND a < ? ...
2413 ** If either of the upper or lower bound is not present, then NULL is passed in
2414 ** place of the corresponding WhereTerm.
2416 ** The nEq parameter is passed the index of the index column subject to the
2417 ** range constraint. Or, equivalently, the number of equality constraints
2418 ** optimized by the proposed index scan. For example, assuming index p is
2419 ** on t1(a, b), and the SQL query is:
2421 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
2423 ** then nEq should be passed the value 1 (as the range restricted column,
2424 ** b, is the second left-most column of the index). Or, if the query is:
2426 ** ... FROM t1 WHERE a > ? AND a < ? ...
2428 ** then nEq should be passed 0.
2430 ** The returned value is an integer between 1 and 100, inclusive. A return
2431 ** value of 1 indicates that the proposed range scan is expected to visit
2432 ** approximately 1/100th (1%) of the rows selected by the nEq equality
2433 ** constraints (if any). A return value of 100 indicates that it is expected
2434 ** that the range scan will visit every row (100%) selected by the equality
2437 ** In the absence of sqlite_stat2 ANALYZE data, each range inequality
2438 ** reduces the search space by 3/4ths. Hence a single constraint (x>?)
2439 ** results in a return of 25 and a range constraint (x>? AND x<?) results
2440 ** in a return of 6.
2442 static int whereRangeScanEst(
2443 Parse
*pParse
, /* Parsing & code generating context */
2444 Index
*p
, /* The index containing the range-compared column; "x" */
2445 int nEq
, /* index into p->aCol[] of the range-compared column */
2446 WhereTerm
*pLower
, /* Lower bound on the range. ex: "x>123" Might be NULL */
2447 WhereTerm
*pUpper
, /* Upper bound on the range. ex: "x<455" Might be NULL */
2448 int *piEst
/* OUT: Return value */
2452 #ifdef SQLITE_ENABLE_STAT2
2454 if( nEq
==0 && p
->aSample
){
2455 sqlite3_value
*pLowerVal
= 0;
2456 sqlite3_value
*pUpperVal
= 0;
2459 int iUpper
= SQLITE_INDEX_SAMPLES
;
2460 int roundUpUpper
= 0;
2461 int roundUpLower
= 0;
2462 u8 aff
= p
->pTable
->aCol
[p
->aiColumn
[0]].affinity
;
2465 Expr
*pExpr
= pLower
->pExpr
->pRight
;
2466 rc
= valueFromExpr(pParse
, pExpr
, aff
, &pLowerVal
);
2467 assert( pLower
->eOperator
==WO_GT
|| pLower
->eOperator
==WO_GE
);
2468 roundUpLower
= (pLower
->eOperator
==WO_GT
) ?1:0;
2470 if( rc
==SQLITE_OK
&& pUpper
){
2471 Expr
*pExpr
= pUpper
->pExpr
->pRight
;
2472 rc
= valueFromExpr(pParse
, pExpr
, aff
, &pUpperVal
);
2473 assert( pUpper
->eOperator
==WO_LT
|| pUpper
->eOperator
==WO_LE
);
2474 roundUpUpper
= (pUpper
->eOperator
==WO_LE
) ?1:0;
2477 if( rc
!=SQLITE_OK
|| (pLowerVal
==0 && pUpperVal
==0) ){
2478 sqlite3ValueFree(pLowerVal
);
2479 sqlite3ValueFree(pUpperVal
);
2480 goto range_est_fallback
;
2481 }else if( pLowerVal
==0 ){
2482 rc
= whereRangeRegion(pParse
, p
, pUpperVal
, roundUpUpper
, &iUpper
);
2483 if( pLower
) iLower
= iUpper
/2;
2484 }else if( pUpperVal
==0 ){
2485 rc
= whereRangeRegion(pParse
, p
, pLowerVal
, roundUpLower
, &iLower
);
2486 if( pUpper
) iUpper
= (iLower
+ SQLITE_INDEX_SAMPLES
+ 1)/2;
2488 rc
= whereRangeRegion(pParse
, p
, pUpperVal
, roundUpUpper
, &iUpper
);
2489 if( rc
==SQLITE_OK
){
2490 rc
= whereRangeRegion(pParse
, p
, pLowerVal
, roundUpLower
, &iLower
);
2493 WHERETRACE(("range scan regions: %d..%d\n", iLower
, iUpper
));
2495 iEst
= iUpper
- iLower
;
2496 testcase( iEst
==SQLITE_INDEX_SAMPLES
);
2497 assert( iEst
<=SQLITE_INDEX_SAMPLES
);
2499 *piEst
= 50/SQLITE_INDEX_SAMPLES
;
2501 *piEst
= (iEst
*100)/SQLITE_INDEX_SAMPLES
;
2503 sqlite3ValueFree(pLowerVal
);
2504 sqlite3ValueFree(pUpperVal
);
2509 UNUSED_PARAMETER(pParse
);
2510 UNUSED_PARAMETER(p
);
2511 UNUSED_PARAMETER(nEq
);
2513 assert( pLower
|| pUpper
);
2515 if( pLower
&& (pLower
->wtFlags
& TERM_VNULL
)==0 ) *piEst
/= 4;
2516 if( pUpper
) *piEst
/= 4;
2520 #ifdef SQLITE_ENABLE_STAT2
2522 ** Estimate the number of rows that will be returned based on
2523 ** an equality constraint x=VALUE and where that VALUE occurs in
2524 ** the histogram data. This only works when x is the left-most
2525 ** column of an index and sqlite_stat2 histogram data is available
2526 ** for that index. When pExpr==NULL that means the constraint is
2527 ** "x IS NULL" instead of "x=VALUE".
2529 ** Write the estimated row count into *pnRow and return SQLITE_OK.
2530 ** If unable to make an estimate, leave *pnRow unchanged and return
2533 ** This routine can fail if it is unable to load a collating sequence
2534 ** required for string comparison, or if unable to allocate memory
2535 ** for a UTF conversion required for comparison. The error is stored
2536 ** in the pParse structure.
2538 static int whereEqualScanEst(
2539 Parse
*pParse
, /* Parsing & code generating context */
2540 Index
*p
, /* The index whose left-most column is pTerm */
2541 Expr
*pExpr
, /* Expression for VALUE in the x=VALUE constraint */
2542 double *pnRow
/* Write the revised row estimate here */
2544 sqlite3_value
*pRhs
= 0; /* VALUE on right-hand side of pTerm */
2545 int iLower
, iUpper
; /* Range of histogram regions containing pRhs */
2546 u8 aff
; /* Column affinity */
2547 int rc
; /* Subfunction return code */
2548 double nRowEst
; /* New estimate of the number of rows */
2550 assert( p
->aSample
!=0 );
2551 aff
= p
->pTable
->aCol
[p
->aiColumn
[0]].affinity
;
2553 rc
= valueFromExpr(pParse
, pExpr
, aff
, &pRhs
);
2554 if( rc
) goto whereEqualScanEst_cancel
;
2556 pRhs
= sqlite3ValueNew(pParse
->db
);
2558 if( pRhs
==0 ) return SQLITE_NOTFOUND
;
2559 rc
= whereRangeRegion(pParse
, p
, pRhs
, 0, &iLower
);
2560 if( rc
) goto whereEqualScanEst_cancel
;
2561 rc
= whereRangeRegion(pParse
, p
, pRhs
, 1, &iUpper
);
2562 if( rc
) goto whereEqualScanEst_cancel
;
2563 WHERETRACE(("equality scan regions: %d..%d\n", iLower
, iUpper
));
2564 if( iLower
>=iUpper
){
2565 nRowEst
= p
->aiRowEst
[0]/(SQLITE_INDEX_SAMPLES
*2);
2566 if( nRowEst
<*pnRow
) *pnRow
= nRowEst
;
2568 nRowEst
= (iUpper
-iLower
)*p
->aiRowEst
[0]/SQLITE_INDEX_SAMPLES
;
2572 whereEqualScanEst_cancel
:
2573 sqlite3ValueFree(pRhs
);
2576 #endif /* defined(SQLITE_ENABLE_STAT2) */
2578 #ifdef SQLITE_ENABLE_STAT2
2580 ** Estimate the number of rows that will be returned based on
2581 ** an IN constraint where the right-hand side of the IN operator
2582 ** is a list of values. Example:
2584 ** WHERE x IN (1,2,3,4)
2586 ** Write the estimated row count into *pnRow and return SQLITE_OK.
2587 ** If unable to make an estimate, leave *pnRow unchanged and return
2590 ** This routine can fail if it is unable to load a collating sequence
2591 ** required for string comparison, or if unable to allocate memory
2592 ** for a UTF conversion required for comparison. The error is stored
2593 ** in the pParse structure.
2595 static int whereInScanEst(
2596 Parse
*pParse
, /* Parsing & code generating context */
2597 Index
*p
, /* The index whose left-most column is pTerm */
2598 ExprList
*pList
, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
2599 double *pnRow
/* Write the revised row estimate here */
2601 sqlite3_value
*pVal
= 0; /* One value from list */
2602 int iLower
, iUpper
; /* Range of histogram regions containing pRhs */
2603 u8 aff
; /* Column affinity */
2604 int rc
= SQLITE_OK
; /* Subfunction return code */
2605 double nRowEst
; /* New estimate of the number of rows */
2606 int nSpan
= 0; /* Number of histogram regions spanned */
2607 int nSingle
= 0; /* Histogram regions hit by a single value */
2608 int nNotFound
= 0; /* Count of values that are not constants */
2609 int i
; /* Loop counter */
2610 u8 aSpan
[SQLITE_INDEX_SAMPLES
+1]; /* Histogram regions that are spanned */
2611 u8 aSingle
[SQLITE_INDEX_SAMPLES
+1]; /* Histogram regions hit once */
2613 assert( p
->aSample
!=0 );
2614 aff
= p
->pTable
->aCol
[p
->aiColumn
[0]].affinity
;
2615 memset(aSpan
, 0, sizeof(aSpan
));
2616 memset(aSingle
, 0, sizeof(aSingle
));
2617 for(i
=0; i
<pList
->nExpr
; i
++){
2618 sqlite3ValueFree(pVal
);
2619 rc
= valueFromExpr(pParse
, pList
->a
[i
].pExpr
, aff
, &pVal
);
2621 if( pVal
==0 || sqlite3_value_type(pVal
)==SQLITE_NULL
){
2625 rc
= whereRangeRegion(pParse
, p
, pVal
, 0, &iLower
);
2627 rc
= whereRangeRegion(pParse
, p
, pVal
, 1, &iUpper
);
2629 if( iLower
>=iUpper
){
2630 aSingle
[iLower
] = 1;
2632 assert( iLower
>=0 && iUpper
<=SQLITE_INDEX_SAMPLES
);
2633 while( iLower
<iUpper
) aSpan
[iLower
++] = 1;
2636 if( rc
==SQLITE_OK
){
2637 for(i
=nSpan
=0; i
<=SQLITE_INDEX_SAMPLES
; i
++){
2640 }else if( aSingle
[i
] ){
2644 nRowEst
= (nSpan
*2+nSingle
)*p
->aiRowEst
[0]/(2*SQLITE_INDEX_SAMPLES
)
2645 + nNotFound
*p
->aiRowEst
[1];
2646 if( nRowEst
> p
->aiRowEst
[0] ) nRowEst
= p
->aiRowEst
[0];
2648 WHERETRACE(("IN row estimate: nSpan=%d, nSingle=%d, nNotFound=%d, est=%g\n",
2649 nSpan
, nSingle
, nNotFound
, nRowEst
));
2651 sqlite3ValueFree(pVal
);
2654 #endif /* defined(SQLITE_ENABLE_STAT2) */
2658 ** Find the best query plan for accessing a particular table. Write the
2659 ** best query plan and its cost into the WhereCost object supplied as the
2662 ** The lowest cost plan wins. The cost is an estimate of the amount of
2663 ** CPU and disk I/O needed to process the requested result.
2664 ** Factors that influence cost include:
2666 ** * The estimated number of rows that will be retrieved. (The
2667 ** fewer the better.)
2669 ** * Whether or not sorting must occur.
2671 ** * Whether or not there must be separate lookups in the
2672 ** index and in the main table.
2674 ** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in
2675 ** the SQL statement, then this function only considers plans using the
2676 ** named index. If no such plan is found, then the returned cost is
2677 ** SQLITE_BIG_DBL. If a plan is found that uses the named index,
2678 ** then the cost is calculated in the usual way.
2680 ** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table
2681 ** in the SELECT statement, then no indexes are considered. However, the
2682 ** selected plan may still take advantage of the built-in rowid primary key
2685 static void bestBtreeIndex(
2686 Parse
*pParse
, /* The parsing context */
2687 WhereClause
*pWC
, /* The WHERE clause */
2688 struct SrcList_item
*pSrc
, /* The FROM clause term to search */
2689 Bitmask notReady
, /* Mask of cursors not available for indexing */
2690 Bitmask notValid
, /* Cursors not available for any purpose */
2691 ExprList
*pOrderBy
, /* The ORDER BY clause */
2692 WhereCost
*pCost
/* Lowest cost query plan */
2694 int iCur
= pSrc
->iCursor
; /* The cursor of the table to be accessed */
2695 Index
*pProbe
; /* An index we are evaluating */
2696 Index
*pIdx
; /* Copy of pProbe, or zero for IPK index */
2697 int eqTermMask
; /* Current mask of valid equality operators */
2698 int idxEqTermMask
; /* Index mask of valid equality operators */
2699 Index sPk
; /* A fake index object for the primary key */
2700 unsigned int aiRowEstPk
[2]; /* The aiRowEst[] value for the sPk index */
2701 int aiColumnPk
= -1; /* The aColumn[] value for the sPk index */
2702 int wsFlagMask
; /* Allowed flags in pCost->plan.wsFlag */
2704 /* Initialize the cost to a worst-case value */
2705 memset(pCost
, 0, sizeof(*pCost
));
2706 pCost
->rCost
= SQLITE_BIG_DBL
;
2708 /* If the pSrc table is the right table of a LEFT JOIN then we may not
2709 ** use an index to satisfy IS NULL constraints on that table. This is
2710 ** because columns might end up being NULL if the table does not match -
2711 ** a circumstance which the index cannot help us discover. Ticket #2177.
2713 if( pSrc
->jointype
& JT_LEFT
){
2714 idxEqTermMask
= WO_EQ
|WO_IN
;
2716 idxEqTermMask
= WO_EQ
|WO_IN
|WO_ISNULL
;
2720 /* An INDEXED BY clause specifies a particular index to use */
2721 pIdx
= pProbe
= pSrc
->pIndex
;
2722 wsFlagMask
= ~(WHERE_ROWID_EQ
|WHERE_ROWID_RANGE
);
2723 eqTermMask
= idxEqTermMask
;
2725 /* There is no INDEXED BY clause. Create a fake Index object in local
2726 ** variable sPk to represent the rowid primary key index. Make this
2727 ** fake index the first in a chain of Index objects with all of the real
2728 ** indices to follow */
2729 Index
*pFirst
; /* First of real indices on the table */
2730 memset(&sPk
, 0, sizeof(Index
));
2732 sPk
.aiColumn
= &aiColumnPk
;
2733 sPk
.aiRowEst
= aiRowEstPk
;
2734 sPk
.onError
= OE_Replace
;
2735 sPk
.pTable
= pSrc
->pTab
;
2736 aiRowEstPk
[0] = pSrc
->pTab
->nRowEst
;
2738 pFirst
= pSrc
->pTab
->pIndex
;
2739 if( pSrc
->notIndexed
==0 ){
2740 /* The real indices of the table are only considered if the
2741 ** NOT INDEXED qualifier is omitted from the FROM clause */
2746 WHERE_COLUMN_IN
|WHERE_COLUMN_EQ
|WHERE_COLUMN_NULL
|WHERE_COLUMN_RANGE
2748 eqTermMask
= WO_EQ
|WO_IN
;
2752 /* Loop over all indices looking for the best one to use
2754 for(; pProbe
; pIdx
=pProbe
=pProbe
->pNext
){
2755 const unsigned int * const aiRowEst
= pProbe
->aiRowEst
;
2756 double cost
; /* Cost of using pProbe */
2757 double nRow
; /* Estimated number of rows in result set */
2758 double log10N
; /* base-10 logarithm of nRow (inexact) */
2759 int rev
; /* True to scan in reverse order */
2763 /* The following variables are populated based on the properties of
2764 ** index being evaluated. They are then used to determine the expected
2765 ** cost and number of rows returned.
2768 ** Number of equality terms that can be implemented using the index.
2769 ** In other words, the number of initial fields in the index that
2770 ** are used in == or IN or NOT NULL constraints of the WHERE clause.
2773 ** The "in-multiplier". This is an estimate of how many seek operations
2774 ** SQLite must perform on the index in question. For example, if the
2777 ** WHERE a IN (1, 2, 3) AND b IN (4, 5, 6)
2779 ** SQLite must perform 9 lookups on an index on (a, b), so nInMul is
2780 ** set to 9. Given the same schema and either of the following WHERE
2786 ** nInMul is set to 1.
2788 ** If there exists a WHERE term of the form "x IN (SELECT ...)", then
2789 ** the sub-select is assumed to return 25 rows for the purposes of
2790 ** determining nInMul.
2793 ** Set to true if there was at least one "x IN (SELECT ...)" term used
2794 ** in determining the value of nInMul. Note that the RHS of the
2795 ** IN operator must be a SELECT, not a value list, for this variable
2799 ** An estimate on the amount of the table that must be searched. A
2800 ** value of 100 means the entire table is searched. Range constraints
2801 ** might reduce this to a value less than 100 to indicate that only
2802 ** a fraction of the table needs searching. In the absence of
2803 ** sqlite_stat2 ANALYZE data, a single inequality reduces the search
2804 ** space to 1/4rd its original size. So an x>? constraint reduces
2805 ** estBound to 25. Two constraints (x>? AND x<?) reduce estBound to 6.
2808 ** Boolean. True if there is an ORDER BY clause that will require an
2809 ** external sort (i.e. scanning the index being evaluated will not
2810 ** correctly order records).
2813 ** Boolean. True if a table lookup is required for each index entry
2814 ** visited. In other words, true if this is not a covering index.
2815 ** This is always false for the rowid primary key index of a table.
2816 ** For other indexes, it is true unless all the columns of the table
2817 ** used by the SELECT statement are present in the index (such an
2818 ** index is sometimes described as a covering index).
2819 ** For example, given the index on (a, b), the second of the following
2820 ** two queries requires table b-tree lookups in order to find the value
2821 ** of column c, but the first does not because columns a and b are
2822 ** both available in the index.
2824 ** SELECT a, b FROM tbl WHERE a = 1;
2825 ** SELECT a, b, c FROM tbl WHERE a = 1;
2827 int nEq
; /* Number of == or IN terms matching index */
2828 int bInEst
= 0; /* True if "x IN (SELECT...)" seen */
2829 int nInMul
= 1; /* Number of distinct equalities to lookup */
2830 int estBound
= 100; /* Estimated reduction in search space */
2831 int nBound
= 0; /* Number of range constraints seen */
2832 int bSort
= 0; /* True if external sort required */
2833 int bLookup
= 0; /* True if not a covering index */
2834 WhereTerm
*pTerm
; /* A single term of the WHERE clause */
2835 #ifdef SQLITE_ENABLE_STAT2
2836 WhereTerm
*pFirstTerm
= 0; /* First term matching the index */
2839 /* Determine the values of nEq and nInMul */
2840 for(nEq
=0; nEq
<pProbe
->nColumn
; nEq
++){
2841 int j
= pProbe
->aiColumn
[nEq
];
2842 pTerm
= findTerm(pWC
, iCur
, j
, notReady
, eqTermMask
, pIdx
);
2843 if( pTerm
==0 ) break;
2844 wsFlags
|= (WHERE_COLUMN_EQ
|WHERE_ROWID_EQ
);
2845 if( pTerm
->eOperator
& WO_IN
){
2846 Expr
*pExpr
= pTerm
->pExpr
;
2847 wsFlags
|= WHERE_COLUMN_IN
;
2848 if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
2849 /* "x IN (SELECT ...)": Assume the SELECT returns 25 rows */
2852 }else if( ALWAYS(pExpr
->x
.pList
&& pExpr
->x
.pList
->nExpr
) ){
2853 /* "x IN (value, value, ...)" */
2854 nInMul
*= pExpr
->x
.pList
->nExpr
;
2856 }else if( pTerm
->eOperator
& WO_ISNULL
){
2857 wsFlags
|= WHERE_COLUMN_NULL
;
2859 #ifdef SQLITE_ENABLE_STAT2
2860 if( nEq
==0 && pProbe
->aSample
) pFirstTerm
= pTerm
;
2862 used
|= pTerm
->prereqRight
;
2865 /* Determine the value of estBound. */
2866 if( nEq
<pProbe
->nColumn
&& pProbe
->bUnordered
==0 ){
2867 int j
= pProbe
->aiColumn
[nEq
];
2868 if( findTerm(pWC
, iCur
, j
, notReady
, WO_LT
|WO_LE
|WO_GT
|WO_GE
, pIdx
) ){
2869 WhereTerm
*pTop
= findTerm(pWC
, iCur
, j
, notReady
, WO_LT
|WO_LE
, pIdx
);
2870 WhereTerm
*pBtm
= findTerm(pWC
, iCur
, j
, notReady
, WO_GT
|WO_GE
, pIdx
);
2871 whereRangeScanEst(pParse
, pProbe
, nEq
, pBtm
, pTop
, &estBound
);
2874 wsFlags
|= WHERE_TOP_LIMIT
;
2875 used
|= pTop
->prereqRight
;
2879 wsFlags
|= WHERE_BTM_LIMIT
;
2880 used
|= pBtm
->prereqRight
;
2882 wsFlags
|= (WHERE_COLUMN_RANGE
|WHERE_ROWID_RANGE
);
2884 }else if( pProbe
->onError
!=OE_None
){
2885 testcase( wsFlags
& WHERE_COLUMN_IN
);
2886 testcase( wsFlags
& WHERE_COLUMN_NULL
);
2887 if( (wsFlags
& (WHERE_COLUMN_IN
|WHERE_COLUMN_NULL
))==0 ){
2888 wsFlags
|= WHERE_UNIQUE
;
2892 /* If there is an ORDER BY clause and the index being considered will
2893 ** naturally scan rows in the required order, set the appropriate flags
2894 ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index
2895 ** will scan rows in a different order, set the bSort variable. */
2897 if( (wsFlags
& WHERE_COLUMN_IN
)==0
2898 && pProbe
->bUnordered
==0
2899 && isSortingIndex(pParse
, pWC
->pMaskSet
, pProbe
, iCur
, pOrderBy
,
2902 wsFlags
|= WHERE_ROWID_RANGE
|WHERE_COLUMN_RANGE
|WHERE_ORDERBY
;
2903 wsFlags
|= (rev
? WHERE_REVERSE
: 0);
2909 /* If currently calculating the cost of using an index (not the IPK
2910 ** index), determine if all required column data may be obtained without
2911 ** using the main table (i.e. if the index is a covering
2912 ** index for this query). If it is, set the WHERE_IDX_ONLY flag in
2913 ** wsFlags. Otherwise, set the bLookup variable to true. */
2914 if( pIdx
&& wsFlags
){
2915 Bitmask m
= pSrc
->colUsed
;
2917 for(j
=0; j
<pIdx
->nColumn
; j
++){
2918 int x
= pIdx
->aiColumn
[j
];
2920 m
&= ~(((Bitmask
)1)<<x
);
2924 wsFlags
|= WHERE_IDX_ONLY
;
2931 ** Estimate the number of rows of output. For an "x IN (SELECT...)"
2932 ** constraint, do not let the estimate exceed half the rows in the table.
2934 nRow
= (double)(aiRowEst
[nEq
] * nInMul
);
2935 if( bInEst
&& nRow
*2>aiRowEst
[0] ){
2936 nRow
= aiRowEst
[0]/2;
2937 nInMul
= (int)(nRow
/ aiRowEst
[nEq
]);
2940 #ifdef SQLITE_ENABLE_STAT2
2941 /* If the constraint is of the form x=VALUE and histogram
2942 ** data is available for column x, then it might be possible
2943 ** to get a better estimate on the number of rows based on
2944 ** VALUE and how common that value is according to the histogram.
2946 if( nRow
>(double)1 && nEq
==1 && pFirstTerm
!=0 ){
2947 if( pFirstTerm
->eOperator
& (WO_EQ
|WO_ISNULL
) ){
2948 testcase( pFirstTerm
->eOperator
==WO_EQ
);
2949 testcase( pFirstTerm
->eOperator
==WO_ISNULL
);
2950 whereEqualScanEst(pParse
, pProbe
, pFirstTerm
->pExpr
->pRight
, &nRow
);
2951 }else if( pFirstTerm
->eOperator
==WO_IN
&& bInEst
==0 ){
2952 whereInScanEst(pParse
, pProbe
, pFirstTerm
->pExpr
->x
.pList
, &nRow
);
2955 #endif /* SQLITE_ENABLE_STAT2 */
2957 /* Adjust the number of output rows and downward to reflect rows
2958 ** that are excluded by range constraints.
2960 nRow
= (nRow
* (double)estBound
) / (double)100;
2961 if( nRow
<1 ) nRow
= 1;
2963 /* Experiments run on real SQLite databases show that the time needed
2964 ** to do a binary search to locate a row in a table or index is roughly
2965 ** log10(N) times the time to move from one row to the next row within
2966 ** a table or index. The actual times can vary, with the size of
2967 ** records being an important factor. Both moves and searches are
2968 ** slower with larger records, presumably because fewer records fit
2969 ** on one page and hence more pages have to be fetched.
2971 ** The ANALYZE command and the sqlite_stat1 and sqlite_stat2 tables do
2972 ** not give us data on the relative sizes of table and index records.
2973 ** So this computation assumes table records are about twice as big
2976 if( (wsFlags
& WHERE_NOT_FULLSCAN
)==0 ){
2977 /* The cost of a full table scan is a number of move operations equal
2978 ** to the number of rows in the table.
2980 ** We add an additional 4x penalty to full table scans. This causes
2981 ** the cost function to err on the side of choosing an index over
2982 ** choosing a full scan. This 4x full-scan penalty is an arguable
2983 ** decision and one which we expect to revisit in the future. But
2984 ** it seems to be working well enough at the moment.
2986 cost
= aiRowEst
[0]*4;
2988 log10N
= estLog(aiRowEst
[0]);
2992 /* For an index lookup followed by a table lookup:
2993 ** nInMul index searches to find the start of each index range
2994 ** + nRow steps through the index
2995 ** + nRow table searches to lookup the table entry using the rowid
2997 cost
+= (nInMul
+ nRow
)*log10N
;
2999 /* For a covering index:
3000 ** nInMul index searches to find the initial entry
3001 ** + nRow steps through the index
3003 cost
+= nInMul
*log10N
;
3006 /* For a rowid primary key lookup:
3007 ** nInMult table searches to find the initial entry for each range
3008 ** + nRow steps through the table
3010 cost
+= nInMul
*log10N
;
3014 /* Add in the estimated cost of sorting the result. Actual experimental
3015 ** measurements of sorting performance in SQLite show that sorting time
3016 ** adds C*N*log10(N) to the cost, where N is the number of rows to be
3017 ** sorted and C is a factor between 1.95 and 4.3. We will split the
3018 ** difference and select C of 3.0.
3021 cost
+= nRow
*estLog(nRow
)*3;
3024 /**** Cost of using this index has now been computed ****/
3026 /* If there are additional constraints on this table that cannot
3027 ** be used with the current index, but which might lower the number
3028 ** of output rows, adjust the nRow value accordingly. This only
3029 ** matters if the current index is the least costly, so do not bother
3030 ** with this step if we already know this index will not be chosen.
3031 ** Also, never reduce the output row count below 2 using this step.
3033 ** It is critical that the notValid mask be used here instead of
3034 ** the notReady mask. When computing an "optimal" index, the notReady
3035 ** mask will only have one bit set - the bit for the current table.
3036 ** The notValid mask, on the other hand, always has all bits set for
3037 ** tables that are not in outer loops. If notReady is used here instead
3038 ** of notValid, then a optimal index that depends on inner joins loops
3039 ** might be selected even when there exists an optimal index that has
3040 ** no such dependency.
3042 if( nRow
>2 && cost
<=pCost
->rCost
){
3043 int k
; /* Loop counter */
3044 int nSkipEq
= nEq
; /* Number of == constraints to skip */
3045 int nSkipRange
= nBound
; /* Number of < constraints to skip */
3046 Bitmask thisTab
; /* Bitmap for pSrc */
3048 thisTab
= getMask(pWC
->pMaskSet
, iCur
);
3049 for(pTerm
=pWC
->a
, k
=pWC
->nTerm
; nRow
>2 && k
; k
--, pTerm
++){
3050 if( pTerm
->wtFlags
& TERM_VIRTUAL
) continue;
3051 if( (pTerm
->prereqAll
& notValid
)!=thisTab
) continue;
3052 if( pTerm
->eOperator
& (WO_EQ
|WO_IN
|WO_ISNULL
) ){
3054 /* Ignore the first nEq equality matches since the index
3055 ** has already accounted for these */
3058 /* Assume each additional equality match reduces the result
3059 ** set size by a factor of 10 */
3062 }else if( pTerm
->eOperator
& (WO_LT
|WO_LE
|WO_GT
|WO_GE
) ){
3064 /* Ignore the first nSkipRange range constraints since the index
3065 ** has already accounted for these */
3068 /* Assume each additional range constraint reduces the result
3069 ** set size by a factor of 3. Indexed range constraints reduce
3070 ** the search space by a larger factor: 4. We make indexed range
3071 ** more selective intentionally because of the subjective
3072 ** observation that indexed range constraints really are more
3073 ** selective in practice, on average. */
3076 }else if( pTerm
->eOperator
!=WO_NOOP
){
3077 /* Any other expression lowers the output row count by half */
3081 if( nRow
<2 ) nRow
= 2;
3086 "%s(%s): nEq=%d nInMul=%d estBound=%d bSort=%d bLookup=%d wsFlags=0x%x\n"
3087 " notReady=0x%llx log10N=%.1f nRow=%.1f cost=%.1f used=0x%llx\n",
3088 pSrc
->pTab
->zName
, (pIdx
? pIdx
->zName
: "ipk"),
3089 nEq
, nInMul
, estBound
, bSort
, bLookup
, wsFlags
,
3090 notReady
, log10N
, nRow
, cost
, used
3093 /* If this index is the best we have seen so far, then record this
3094 ** index and its cost in the pCost structure.
3096 if( (!pIdx
|| wsFlags
)
3097 && (cost
<pCost
->rCost
|| (cost
<=pCost
->rCost
&& nRow
<pCost
->plan
.nRow
))
3099 pCost
->rCost
= cost
;
3101 pCost
->plan
.nRow
= nRow
;
3102 pCost
->plan
.wsFlags
= (wsFlags
&wsFlagMask
);
3103 pCost
->plan
.nEq
= nEq
;
3104 pCost
->plan
.u
.pIdx
= pIdx
;
3107 /* If there was an INDEXED BY clause, then only that one index is
3109 if( pSrc
->pIndex
) break;
3111 /* Reset masks for the next index in the loop */
3112 wsFlagMask
= ~(WHERE_ROWID_EQ
|WHERE_ROWID_RANGE
);
3113 eqTermMask
= idxEqTermMask
;
3116 /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag
3117 ** is set, then reverse the order that the index will be scanned
3118 ** in. This is used for application testing, to help find cases
3119 ** where application behaviour depends on the (undefined) order that
3120 ** SQLite outputs rows in in the absence of an ORDER BY clause. */
3121 if( !pOrderBy
&& pParse
->db
->flags
& SQLITE_ReverseOrder
){
3122 pCost
->plan
.wsFlags
|= WHERE_REVERSE
;
3125 assert( pOrderBy
|| (pCost
->plan
.wsFlags
&WHERE_ORDERBY
)==0 );
3126 assert( pCost
->plan
.u
.pIdx
==0 || (pCost
->plan
.wsFlags
&WHERE_ROWID_EQ
)==0 );
3127 assert( pSrc
->pIndex
==0
3128 || pCost
->plan
.u
.pIdx
==0
3129 || pCost
->plan
.u
.pIdx
==pSrc
->pIndex
3132 WHERETRACE(("best index is: %s\n",
3133 ((pCost
->plan
.wsFlags
& WHERE_NOT_FULLSCAN
)==0 ? "none" :
3134 pCost
->plan
.u
.pIdx
? pCost
->plan
.u
.pIdx
->zName
: "ipk")
3137 bestOrClauseIndex(pParse
, pWC
, pSrc
, notReady
, notValid
, pOrderBy
, pCost
);
3138 bestAutomaticIndex(pParse
, pWC
, pSrc
, notReady
, pCost
);
3139 pCost
->plan
.wsFlags
|= eqTermMask
;
3143 ** Find the query plan for accessing table pSrc->pTab. Write the
3144 ** best query plan and its cost into the WhereCost object supplied
3145 ** as the last parameter. This function may calculate the cost of
3146 ** both real and virtual table scans.
3148 static void bestIndex(
3149 Parse
*pParse
, /* The parsing context */
3150 WhereClause
*pWC
, /* The WHERE clause */
3151 struct SrcList_item
*pSrc
, /* The FROM clause term to search */
3152 Bitmask notReady
, /* Mask of cursors not available for indexing */
3153 Bitmask notValid
, /* Cursors not available for any purpose */
3154 ExprList
*pOrderBy
, /* The ORDER BY clause */
3155 WhereCost
*pCost
/* Lowest cost query plan */
3157 #ifndef SQLITE_OMIT_VIRTUALTABLE
3158 if( IsVirtual(pSrc
->pTab
) ){
3159 sqlite3_index_info
*p
= 0;
3160 bestVirtualIndex(pParse
, pWC
, pSrc
, notReady
, notValid
, pOrderBy
, pCost
,&p
);
3161 if( p
->needToFreeIdxStr
){
3162 sqlite3_free(p
->idxStr
);
3164 sqlite3DbFree(pParse
->db
, p
);
3168 bestBtreeIndex(pParse
, pWC
, pSrc
, notReady
, notValid
, pOrderBy
, pCost
);
3173 ** Disable a term in the WHERE clause. Except, do not disable the term
3174 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
3175 ** or USING clause of that join.
3177 ** Consider the term t2.z='ok' in the following queries:
3179 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
3180 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
3181 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
3183 ** The t2.z='ok' is disabled in the in (2) because it originates
3184 ** in the ON clause. The term is disabled in (3) because it is not part
3185 ** of a LEFT OUTER JOIN. In (1), the term is not disabled.
3187 ** IMPLEMENTATION-OF: R-24597-58655 No tests are done for terms that are
3188 ** completely satisfied by indices.
3190 ** Disabling a term causes that term to not be tested in the inner loop
3191 ** of the join. Disabling is an optimization. When terms are satisfied
3192 ** by indices, we disable them to prevent redundant tests in the inner
3193 ** loop. We would get the correct results if nothing were ever disabled,
3194 ** but joins might run a little slower. The trick is to disable as much
3195 ** as we can without disabling too much. If we disabled in (1), we'd get
3196 ** the wrong answer. See ticket #813.
3198 static void disableTerm(WhereLevel
*pLevel
, WhereTerm
*pTerm
){
3200 && (pTerm
->wtFlags
& TERM_CODED
)==0
3201 && (pLevel
->iLeftJoin
==0 || ExprHasProperty(pTerm
->pExpr
, EP_FromJoin
))
3203 pTerm
->wtFlags
|= TERM_CODED
;
3204 if( pTerm
->iParent
>=0 ){
3205 WhereTerm
*pOther
= &pTerm
->pWC
->a
[pTerm
->iParent
];
3206 if( (--pOther
->nChild
)==0 ){
3207 disableTerm(pLevel
, pOther
);
3214 ** Code an OP_Affinity opcode to apply the column affinity string zAff
3215 ** to the n registers starting at base.
3217 ** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the
3218 ** beginning and end of zAff are ignored. If all entries in zAff are
3219 ** SQLITE_AFF_NONE, then no code gets generated.
3221 ** This routine makes its own copy of zAff so that the caller is free
3222 ** to modify zAff after this routine returns.
3224 static void codeApplyAffinity(Parse
*pParse
, int base
, int n
, char *zAff
){
3225 Vdbe
*v
= pParse
->pVdbe
;
3227 assert( pParse
->db
->mallocFailed
);
3232 /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning
3233 ** and end of the affinity string.
3235 while( n
>0 && zAff
[0]==SQLITE_AFF_NONE
){
3240 while( n
>1 && zAff
[n
-1]==SQLITE_AFF_NONE
){
3244 /* Code the OP_Affinity opcode if there is anything left to do. */
3246 sqlite3VdbeAddOp2(v
, OP_Affinity
, base
, n
);
3247 sqlite3VdbeChangeP4(v
, -1, zAff
, n
);
3248 sqlite3ExprCacheAffinityChange(pParse
, base
, n
);
3254 ** Generate code for a single equality term of the WHERE clause. An equality
3255 ** term can be either X=expr or X IN (...). pTerm is the term to be
3258 ** The current value for the constraint is left in register iReg.
3260 ** For a constraint of the form X=expr, the expression is evaluated and its
3261 ** result is left on the stack. For constraints of the form X IN (...)
3262 ** this routine sets up a loop that will iterate over all values of X.
3264 static int codeEqualityTerm(
3265 Parse
*pParse
, /* The parsing context */
3266 WhereTerm
*pTerm
, /* The term of the WHERE clause to be coded */
3267 WhereLevel
*pLevel
, /* When level of the FROM clause we are working on */
3268 int iTarget
/* Attempt to leave results in this register */
3270 Expr
*pX
= pTerm
->pExpr
;
3271 Vdbe
*v
= pParse
->pVdbe
;
3272 int iReg
; /* Register holding results */
3274 assert( iTarget
>0 );
3275 if( pX
->op
==TK_EQ
){
3276 iReg
= sqlite3ExprCodeTarget(pParse
, pX
->pRight
, iTarget
);
3277 }else if( pX
->op
==TK_ISNULL
){
3279 sqlite3VdbeAddOp2(v
, OP_Null
, 0, iReg
);
3280 #ifndef SQLITE_OMIT_SUBQUERY
3286 assert( pX
->op
==TK_IN
);
3288 eType
= sqlite3FindInIndex(pParse
, pX
, 0);
3290 sqlite3VdbeAddOp2(v
, OP_Rewind
, iTab
, 0);
3291 assert( pLevel
->plan
.wsFlags
& WHERE_IN_ABLE
);
3292 if( pLevel
->u
.in
.nIn
==0 ){
3293 pLevel
->addrNxt
= sqlite3VdbeMakeLabel(v
);
3296 pLevel
->u
.in
.aInLoop
=
3297 sqlite3DbReallocOrFree(pParse
->db
, pLevel
->u
.in
.aInLoop
,
3298 sizeof(pLevel
->u
.in
.aInLoop
[0])*pLevel
->u
.in
.nIn
);
3299 pIn
= pLevel
->u
.in
.aInLoop
;
3301 pIn
+= pLevel
->u
.in
.nIn
- 1;
3303 if( eType
==IN_INDEX_ROWID
){
3304 pIn
->addrInTop
= sqlite3VdbeAddOp2(v
, OP_Rowid
, iTab
, iReg
);
3306 pIn
->addrInTop
= sqlite3VdbeAddOp3(v
, OP_Column
, iTab
, 0, iReg
);
3308 sqlite3VdbeAddOp1(v
, OP_IsNull
, iReg
);
3310 pLevel
->u
.in
.nIn
= 0;
3314 disableTerm(pLevel
, pTerm
);
3319 ** Generate code that will evaluate all == and IN constraints for an
3322 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
3323 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
3324 ** The index has as many as three equality constraints, but in this
3325 ** example, the third "c" value is an inequality. So only two
3326 ** constraints are coded. This routine will generate code to evaluate
3327 ** a==5 and b IN (1,2,3). The current values for a and b will be stored
3328 ** in consecutive registers and the index of the first register is returned.
3330 ** In the example above nEq==2. But this subroutine works for any value
3331 ** of nEq including 0. If nEq==0, this routine is nearly a no-op.
3332 ** The only thing it does is allocate the pLevel->iMem memory cell and
3333 ** compute the affinity string.
3335 ** This routine always allocates at least one memory cell and returns
3336 ** the index of that memory cell. The code that
3337 ** calls this routine will use that memory cell to store the termination
3338 ** key value of the loop. If one or more IN operators appear, then
3339 ** this routine allocates an additional nEq memory cells for internal
3342 ** Before returning, *pzAff is set to point to a buffer containing a
3343 ** copy of the column affinity string of the index allocated using
3344 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
3345 ** with equality constraints that use NONE affinity are set to
3346 ** SQLITE_AFF_NONE. This is to deal with SQL such as the following:
3348 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
3349 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
3351 ** In the example above, the index on t1(a) has TEXT affinity. But since
3352 ** the right hand side of the equality constraint (t2.b) has NONE affinity,
3353 ** no conversion should be attempted before using a t2.b value as part of
3354 ** a key to search the index. Hence the first byte in the returned affinity
3355 ** string in this example would be set to SQLITE_AFF_NONE.
3357 static int codeAllEqualityTerms(
3358 Parse
*pParse
, /* Parsing context */
3359 WhereLevel
*pLevel
, /* Which nested loop of the FROM we are coding */
3360 WhereClause
*pWC
, /* The WHERE clause */
3361 Bitmask notReady
, /* Which parts of FROM have not yet been coded */
3362 int nExtraReg
, /* Number of extra registers to allocate */
3363 char **pzAff
/* OUT: Set to point to affinity string */
3365 int nEq
= pLevel
->plan
.nEq
; /* The number of == or IN constraints to code */
3366 Vdbe
*v
= pParse
->pVdbe
; /* The vm under construction */
3367 Index
*pIdx
; /* The index being used for this loop */
3368 int iCur
= pLevel
->iTabCur
; /* The cursor of the table */
3369 WhereTerm
*pTerm
; /* A single constraint term */
3370 int j
; /* Loop counter */
3371 int regBase
; /* Base register */
3372 int nReg
; /* Number of registers to allocate */
3373 char *zAff
; /* Affinity string to return */
3375 /* This module is only called on query plans that use an index. */
3376 assert( pLevel
->plan
.wsFlags
& WHERE_INDEXED
);
3377 pIdx
= pLevel
->plan
.u
.pIdx
;
3379 /* Figure out how many memory cells we will need then allocate them.
3381 regBase
= pParse
->nMem
+ 1;
3382 nReg
= pLevel
->plan
.nEq
+ nExtraReg
;
3383 pParse
->nMem
+= nReg
;
3385 zAff
= sqlite3DbStrDup(pParse
->db
, sqlite3IndexAffinityStr(v
, pIdx
));
3387 pParse
->db
->mallocFailed
= 1;
3390 /* Evaluate the equality constraints
3392 assert( pIdx
->nColumn
>=nEq
);
3393 for(j
=0; j
<nEq
; j
++){
3395 int k
= pIdx
->aiColumn
[j
];
3396 pTerm
= findTerm(pWC
, iCur
, k
, notReady
, pLevel
->plan
.wsFlags
, pIdx
);
3397 if( NEVER(pTerm
==0) ) break;
3398 /* The following true for indices with redundant columns.
3399 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
3400 testcase( (pTerm
->wtFlags
& TERM_CODED
)!=0 );
3401 testcase( pTerm
->wtFlags
& TERM_VIRTUAL
); /* EV: R-30575-11662 */
3402 r1
= codeEqualityTerm(pParse
, pTerm
, pLevel
, regBase
+j
);
3403 if( r1
!=regBase
+j
){
3405 sqlite3ReleaseTempReg(pParse
, regBase
);
3408 sqlite3VdbeAddOp2(v
, OP_SCopy
, r1
, regBase
+j
);
3411 testcase( pTerm
->eOperator
& WO_ISNULL
);
3412 testcase( pTerm
->eOperator
& WO_IN
);
3413 if( (pTerm
->eOperator
& (WO_ISNULL
|WO_IN
))==0 ){
3414 Expr
*pRight
= pTerm
->pExpr
->pRight
;
3415 sqlite3ExprCodeIsNullJump(v
, pRight
, regBase
+j
, pLevel
->addrBrk
);
3417 if( sqlite3CompareAffinity(pRight
, zAff
[j
])==SQLITE_AFF_NONE
){
3418 zAff
[j
] = SQLITE_AFF_NONE
;
3420 if( sqlite3ExprNeedsNoAffinityChange(pRight
, zAff
[j
]) ){
3421 zAff
[j
] = SQLITE_AFF_NONE
;
3430 #ifndef SQLITE_OMIT_EXPLAIN
3432 ** This routine is a helper for explainIndexRange() below
3434 ** pStr holds the text of an expression that we are building up one term
3435 ** at a time. This routine adds a new term to the end of the expression.
3436 ** Terms are separated by AND so add the "AND" text for second and subsequent
3439 static void explainAppendTerm(
3440 StrAccum
*pStr
, /* The text expression being built */
3441 int iTerm
, /* Index of this term. First is zero */
3442 const char *zColumn
, /* Name of the column */
3443 const char *zOp
/* Name of the operator */
3445 if( iTerm
) sqlite3StrAccumAppend(pStr
, " AND ", 5);
3446 sqlite3StrAccumAppend(pStr
, zColumn
, -1);
3447 sqlite3StrAccumAppend(pStr
, zOp
, 1);
3448 sqlite3StrAccumAppend(pStr
, "?", 1);
3452 ** Argument pLevel describes a strategy for scanning table pTab. This
3453 ** function returns a pointer to a string buffer containing a description
3454 ** of the subset of table rows scanned by the strategy in the form of an
3455 ** SQL expression. Or, if all rows are scanned, NULL is returned.
3457 ** For example, if the query:
3459 ** SELECT * FROM t1 WHERE a=1 AND b>2;
3461 ** is run and there is an index on (a, b), then this function returns a
3462 ** string similar to:
3466 ** The returned pointer points to memory obtained from sqlite3DbMalloc().
3467 ** It is the responsibility of the caller to free the buffer when it is
3468 ** no longer required.
3470 static char *explainIndexRange(sqlite3
*db
, WhereLevel
*pLevel
, Table
*pTab
){
3471 WherePlan
*pPlan
= &pLevel
->plan
;
3472 Index
*pIndex
= pPlan
->u
.pIdx
;
3473 int nEq
= pPlan
->nEq
;
3475 Column
*aCol
= pTab
->aCol
;
3476 int *aiColumn
= pIndex
->aiColumn
;
3479 if( nEq
==0 && (pPlan
->wsFlags
& (WHERE_BTM_LIMIT
|WHERE_TOP_LIMIT
))==0 ){
3482 sqlite3StrAccumInit(&txt
, 0, 0, SQLITE_MAX_LENGTH
);
3484 sqlite3StrAccumAppend(&txt
, " (", 2);
3485 for(i
=0; i
<nEq
; i
++){
3486 explainAppendTerm(&txt
, i
, aCol
[aiColumn
[i
]].zName
, "=");
3490 if( pPlan
->wsFlags
&WHERE_BTM_LIMIT
){
3491 explainAppendTerm(&txt
, i
++, aCol
[aiColumn
[j
]].zName
, ">");
3493 if( pPlan
->wsFlags
&WHERE_TOP_LIMIT
){
3494 explainAppendTerm(&txt
, i
, aCol
[aiColumn
[j
]].zName
, "<");
3496 sqlite3StrAccumAppend(&txt
, ")", 1);
3497 return sqlite3StrAccumFinish(&txt
);
3501 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
3502 ** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single
3503 ** record is added to the output to describe the table scan strategy in
3506 static void explainOneScan(
3507 Parse
*pParse
, /* Parse context */
3508 SrcList
*pTabList
, /* Table list this loop refers to */
3509 WhereLevel
*pLevel
, /* Scan to write OP_Explain opcode for */
3510 int iLevel
, /* Value for "level" column of output */
3511 int iFrom
, /* Value for "from" column of output */
3512 u16 wctrlFlags
/* Flags passed to sqlite3WhereBegin() */
3514 if( pParse
->explain
==2 ){
3515 u32 flags
= pLevel
->plan
.wsFlags
;
3516 struct SrcList_item
*pItem
= &pTabList
->a
[pLevel
->iFrom
];
3517 Vdbe
*v
= pParse
->pVdbe
; /* VM being constructed */
3518 sqlite3
*db
= pParse
->db
; /* Database handle */
3519 char *zMsg
; /* Text to add to EQP output */
3520 sqlite3_int64 nRow
; /* Expected number of rows visited by scan */
3521 int iId
= pParse
->iSelectId
; /* Select id (left-most output column) */
3522 int isSearch
; /* True for a SEARCH. False for SCAN. */
3524 if( (flags
&WHERE_MULTI_OR
) || (wctrlFlags
&WHERE_ONETABLE_ONLY
) ) return;
3526 isSearch
= (pLevel
->plan
.nEq
>0)
3527 || (flags
&(WHERE_BTM_LIMIT
|WHERE_TOP_LIMIT
))!=0
3528 || (wctrlFlags
&(WHERE_ORDERBY_MIN
|WHERE_ORDERBY_MAX
));
3530 zMsg
= sqlite3MPrintf(db
, "%s", isSearch
?"SEARCH":"SCAN");
3531 if( pItem
->pSelect
){
3532 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s SUBQUERY %d", zMsg
,pItem
->iSelectId
);
3534 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s TABLE %s", zMsg
, pItem
->zName
);
3537 if( pItem
->zAlias
){
3538 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s AS %s", zMsg
, pItem
->zAlias
);
3540 if( (flags
& WHERE_INDEXED
)!=0 ){
3541 char *zWhere
= explainIndexRange(db
, pLevel
, pItem
->pTab
);
3542 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s USING %s%sINDEX%s%s%s", zMsg
,
3543 ((flags
& WHERE_TEMP_INDEX
)?"AUTOMATIC ":""),
3544 ((flags
& WHERE_IDX_ONLY
)?"COVERING ":""),
3545 ((flags
& WHERE_TEMP_INDEX
)?"":" "),
3546 ((flags
& WHERE_TEMP_INDEX
)?"": pLevel
->plan
.u
.pIdx
->zName
),
3549 sqlite3DbFree(db
, zWhere
);
3550 }else if( flags
& (WHERE_ROWID_EQ
|WHERE_ROWID_RANGE
) ){
3551 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s USING INTEGER PRIMARY KEY", zMsg
);
3553 if( flags
&WHERE_ROWID_EQ
){
3554 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s (rowid=?)", zMsg
);
3555 }else if( (flags
&WHERE_BOTH_LIMIT
)==WHERE_BOTH_LIMIT
){
3556 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s (rowid>? AND rowid<?)", zMsg
);
3557 }else if( flags
&WHERE_BTM_LIMIT
){
3558 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s (rowid>?)", zMsg
);
3559 }else if( flags
&WHERE_TOP_LIMIT
){
3560 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s (rowid<?)", zMsg
);
3563 #ifndef SQLITE_OMIT_VIRTUALTABLE
3564 else if( (flags
& WHERE_VIRTUALTABLE
)!=0 ){
3565 sqlite3_index_info
*pVtabIdx
= pLevel
->plan
.u
.pVtabIdx
;
3566 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s VIRTUAL TABLE INDEX %d:%s", zMsg
,
3567 pVtabIdx
->idxNum
, pVtabIdx
->idxStr
);
3570 if( wctrlFlags
&(WHERE_ORDERBY_MIN
|WHERE_ORDERBY_MAX
) ){
3571 testcase( wctrlFlags
& WHERE_ORDERBY_MIN
);
3574 nRow
= (sqlite3_int64
)pLevel
->plan
.nRow
;
3576 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s (~%lld rows)", zMsg
, nRow
);
3577 sqlite3VdbeAddOp4(v
, OP_Explain
, iId
, iLevel
, iFrom
, zMsg
, P4_DYNAMIC
);
3581 # define explainOneScan(u,v,w,x,y,z)
3582 #endif /* SQLITE_OMIT_EXPLAIN */
3586 ** Generate code for the start of the iLevel-th loop in the WHERE clause
3587 ** implementation described by pWInfo.
3589 static Bitmask
codeOneLoopStart(
3590 WhereInfo
*pWInfo
, /* Complete information about the WHERE clause */
3591 int iLevel
, /* Which level of pWInfo->a[] should be coded */
3592 u16 wctrlFlags
, /* One of the WHERE_* flags defined in sqliteInt.h */
3593 Bitmask notReady
/* Which tables are currently available */
3595 int j
, k
; /* Loop counters */
3596 int iCur
; /* The VDBE cursor for the table */
3597 int addrNxt
; /* Where to jump to continue with the next IN case */
3598 int omitTable
; /* True if we use the index only */
3599 int bRev
; /* True if we need to scan in reverse order */
3600 WhereLevel
*pLevel
; /* The where level to be coded */
3601 WhereClause
*pWC
; /* Decomposition of the entire WHERE clause */
3602 WhereTerm
*pTerm
; /* A WHERE clause term */
3603 Parse
*pParse
; /* Parsing context */
3604 Vdbe
*v
; /* The prepared stmt under constructions */
3605 struct SrcList_item
*pTabItem
; /* FROM clause term being coded */
3606 int addrBrk
; /* Jump here to break out of the loop */
3607 int addrCont
; /* Jump here to continue with next cycle */
3608 int iRowidReg
= 0; /* Rowid is stored in this register, if not zero */
3609 int iReleaseReg
= 0; /* Temp register to free before returning */
3611 pParse
= pWInfo
->pParse
;
3614 pLevel
= &pWInfo
->a
[iLevel
];
3615 pTabItem
= &pWInfo
->pTabList
->a
[pLevel
->iFrom
];
3616 iCur
= pTabItem
->iCursor
;
3617 bRev
= (pLevel
->plan
.wsFlags
& WHERE_REVERSE
)!=0;
3618 omitTable
= (pLevel
->plan
.wsFlags
& WHERE_IDX_ONLY
)!=0
3619 && (wctrlFlags
& WHERE_FORCE_TABLE
)==0;
3621 /* Create labels for the "break" and "continue" instructions
3622 ** for the current loop. Jump to addrBrk to break out of a loop.
3623 ** Jump to cont to go immediately to the next iteration of the
3626 ** When there is an IN operator, we also have a "addrNxt" label that
3627 ** means to continue with the next IN value combination. When
3628 ** there are no IN operators in the constraints, the "addrNxt" label
3629 ** is the same as "addrBrk".
3631 addrBrk
= pLevel
->addrBrk
= pLevel
->addrNxt
= sqlite3VdbeMakeLabel(v
);
3632 addrCont
= pLevel
->addrCont
= sqlite3VdbeMakeLabel(v
);
3634 /* If this is the right table of a LEFT OUTER JOIN, allocate and
3635 ** initialize a memory cell that records if this table matches any
3636 ** row of the left table of the join.
3638 if( pLevel
->iFrom
>0 && (pTabItem
[0].jointype
& JT_LEFT
)!=0 ){
3639 pLevel
->iLeftJoin
= ++pParse
->nMem
;
3640 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, pLevel
->iLeftJoin
);
3641 VdbeComment((v
, "init LEFT JOIN no-match flag"));
3644 #ifndef SQLITE_OMIT_VIRTUALTABLE
3645 if( (pLevel
->plan
.wsFlags
& WHERE_VIRTUALTABLE
)!=0 ){
3646 /* Case 0: The table is a virtual-table. Use the VFilter and VNext
3647 ** to access the data.
3649 int iReg
; /* P3 Value for OP_VFilter */
3650 sqlite3_index_info
*pVtabIdx
= pLevel
->plan
.u
.pVtabIdx
;
3651 int nConstraint
= pVtabIdx
->nConstraint
;
3652 struct sqlite3_index_constraint_usage
*aUsage
=
3653 pVtabIdx
->aConstraintUsage
;
3654 const struct sqlite3_index_constraint
*aConstraint
=
3655 pVtabIdx
->aConstraint
;
3657 sqlite3ExprCachePush(pParse
);
3658 iReg
= sqlite3GetTempRange(pParse
, nConstraint
+2);
3659 for(j
=1; j
<=nConstraint
; j
++){
3660 for(k
=0; k
<nConstraint
; k
++){
3661 if( aUsage
[k
].argvIndex
==j
){
3662 int iTerm
= aConstraint
[k
].iTermOffset
;
3663 sqlite3ExprCode(pParse
, pWC
->a
[iTerm
].pExpr
->pRight
, iReg
+j
+1);
3667 if( k
==nConstraint
) break;
3669 sqlite3VdbeAddOp2(v
, OP_Integer
, pVtabIdx
->idxNum
, iReg
);
3670 sqlite3VdbeAddOp2(v
, OP_Integer
, j
-1, iReg
+1);
3671 sqlite3VdbeAddOp4(v
, OP_VFilter
, iCur
, addrBrk
, iReg
, pVtabIdx
->idxStr
,
3672 pVtabIdx
->needToFreeIdxStr
? P4_MPRINTF
: P4_STATIC
);
3673 pVtabIdx
->needToFreeIdxStr
= 0;
3674 for(j
=0; j
<nConstraint
; j
++){
3675 if( aUsage
[j
].omit
){
3676 int iTerm
= aConstraint
[j
].iTermOffset
;
3677 disableTerm(pLevel
, &pWC
->a
[iTerm
]);
3680 pLevel
->op
= OP_VNext
;
3682 pLevel
->p2
= sqlite3VdbeCurrentAddr(v
);
3683 sqlite3ReleaseTempRange(pParse
, iReg
, nConstraint
+2);
3684 sqlite3ExprCachePop(pParse
, 1);
3686 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3688 if( pLevel
->plan
.wsFlags
& WHERE_ROWID_EQ
){
3689 /* Case 1: We can directly reference a single row using an
3690 ** equality comparison against the ROWID field. Or
3691 ** we reference multiple rows using a "rowid IN (...)"
3694 iReleaseReg
= sqlite3GetTempReg(pParse
);
3695 pTerm
= findTerm(pWC
, iCur
, -1, notReady
, WO_EQ
|WO_IN
, 0);
3697 assert( pTerm
->pExpr
!=0 );
3698 assert( pTerm
->leftCursor
==iCur
);
3699 assert( omitTable
==0 );
3700 testcase( pTerm
->wtFlags
& TERM_VIRTUAL
); /* EV: R-30575-11662 */
3701 iRowidReg
= codeEqualityTerm(pParse
, pTerm
, pLevel
, iReleaseReg
);
3702 addrNxt
= pLevel
->addrNxt
;
3703 sqlite3VdbeAddOp2(v
, OP_MustBeInt
, iRowidReg
, addrNxt
);
3704 sqlite3VdbeAddOp3(v
, OP_NotExists
, iCur
, addrNxt
, iRowidReg
);
3705 sqlite3ExprCacheStore(pParse
, iCur
, -1, iRowidReg
);
3706 VdbeComment((v
, "pk"));
3707 pLevel
->op
= OP_Noop
;
3708 }else if( pLevel
->plan
.wsFlags
& WHERE_ROWID_RANGE
){
3709 /* Case 2: We have an inequality comparison against the ROWID field.
3711 int testOp
= OP_Noop
;
3713 int memEndValue
= 0;
3714 WhereTerm
*pStart
, *pEnd
;
3716 assert( omitTable
==0 );
3717 pStart
= findTerm(pWC
, iCur
, -1, notReady
, WO_GT
|WO_GE
, 0);
3718 pEnd
= findTerm(pWC
, iCur
, -1, notReady
, WO_LT
|WO_LE
, 0);
3725 Expr
*pX
; /* The expression that defines the start bound */
3726 int r1
, rTemp
; /* Registers for holding the start boundary */
3728 /* The following constant maps TK_xx codes into corresponding
3729 ** seek opcodes. It depends on a particular ordering of TK_xx
3731 const u8 aMoveOp
[] = {
3732 /* TK_GT */ OP_SeekGt
,
3733 /* TK_LE */ OP_SeekLe
,
3734 /* TK_LT */ OP_SeekLt
,
3735 /* TK_GE */ OP_SeekGe
3737 assert( TK_LE
==TK_GT
+1 ); /* Make sure the ordering.. */
3738 assert( TK_LT
==TK_GT
+2 ); /* ... of the TK_xx values... */
3739 assert( TK_GE
==TK_GT
+3 ); /* ... is correcct. */
3741 testcase( pStart
->wtFlags
& TERM_VIRTUAL
); /* EV: R-30575-11662 */
3744 assert( pStart
->leftCursor
==iCur
);
3745 r1
= sqlite3ExprCodeTemp(pParse
, pX
->pRight
, &rTemp
);
3746 sqlite3VdbeAddOp3(v
, aMoveOp
[pX
->op
-TK_GT
], iCur
, addrBrk
, r1
);
3747 VdbeComment((v
, "pk"));
3748 sqlite3ExprCacheAffinityChange(pParse
, r1
, 1);
3749 sqlite3ReleaseTempReg(pParse
, rTemp
);
3750 disableTerm(pLevel
, pStart
);
3752 sqlite3VdbeAddOp2(v
, bRev
? OP_Last
: OP_Rewind
, iCur
, addrBrk
);
3758 assert( pEnd
->leftCursor
==iCur
);
3759 testcase( pEnd
->wtFlags
& TERM_VIRTUAL
); /* EV: R-30575-11662 */
3760 memEndValue
= ++pParse
->nMem
;
3761 sqlite3ExprCode(pParse
, pX
->pRight
, memEndValue
);
3762 if( pX
->op
==TK_LT
|| pX
->op
==TK_GT
){
3763 testOp
= bRev
? OP_Le
: OP_Ge
;
3765 testOp
= bRev
? OP_Lt
: OP_Gt
;
3767 disableTerm(pLevel
, pEnd
);
3769 start
= sqlite3VdbeCurrentAddr(v
);
3770 pLevel
->op
= bRev
? OP_Prev
: OP_Next
;
3773 if( pStart
==0 && pEnd
==0 ){
3774 pLevel
->p5
= SQLITE_STMTSTATUS_FULLSCAN_STEP
;
3776 assert( pLevel
->p5
==0 );
3778 if( testOp
!=OP_Noop
){
3779 iRowidReg
= iReleaseReg
= sqlite3GetTempReg(pParse
);
3780 sqlite3VdbeAddOp2(v
, OP_Rowid
, iCur
, iRowidReg
);
3781 sqlite3ExprCacheStore(pParse
, iCur
, -1, iRowidReg
);
3782 sqlite3VdbeAddOp3(v
, testOp
, memEndValue
, addrBrk
, iRowidReg
);
3783 sqlite3VdbeChangeP5(v
, SQLITE_AFF_NUMERIC
| SQLITE_JUMPIFNULL
);
3785 }else if( pLevel
->plan
.wsFlags
& (WHERE_COLUMN_RANGE
|WHERE_COLUMN_EQ
) ){
3786 /* Case 3: A scan using an index.
3788 ** The WHERE clause may contain zero or more equality
3789 ** terms ("==" or "IN" operators) that refer to the N
3790 ** left-most columns of the index. It may also contain
3791 ** inequality constraints (>, <, >= or <=) on the indexed
3792 ** column that immediately follows the N equalities. Only
3793 ** the right-most column can be an inequality - the rest must
3794 ** use the "==" and "IN" operators. For example, if the
3795 ** index is on (x,y,z), then the following clauses are all
3801 ** x=5 AND y>5 AND y<10
3802 ** x=5 AND y=5 AND z<=10
3804 ** The z<10 term of the following cannot be used, only
3809 ** N may be zero if there are inequality constraints.
3810 ** If there are no inequality constraints, then N is at
3813 ** This case is also used when there are no WHERE clause
3814 ** constraints but an index is selected anyway, in order
3815 ** to force the output order to conform to an ORDER BY.
3817 static const u8 aStartOp
[] = {
3820 OP_Rewind
, /* 2: (!start_constraints && startEq && !bRev) */
3821 OP_Last
, /* 3: (!start_constraints && startEq && bRev) */
3822 OP_SeekGt
, /* 4: (start_constraints && !startEq && !bRev) */
3823 OP_SeekLt
, /* 5: (start_constraints && !startEq && bRev) */
3824 OP_SeekGe
, /* 6: (start_constraints && startEq && !bRev) */
3825 OP_SeekLe
/* 7: (start_constraints && startEq && bRev) */
3827 static const u8 aEndOp
[] = {
3828 OP_Noop
, /* 0: (!end_constraints) */
3829 OP_IdxGE
, /* 1: (end_constraints && !bRev) */
3830 OP_IdxLT
/* 2: (end_constraints && bRev) */
3832 int nEq
= pLevel
->plan
.nEq
; /* Number of == or IN terms */
3833 int isMinQuery
= 0; /* If this is an optimized SELECT min(x).. */
3834 int regBase
; /* Base register holding constraint values */
3835 int r1
; /* Temp register */
3836 WhereTerm
*pRangeStart
= 0; /* Inequality constraint at range start */
3837 WhereTerm
*pRangeEnd
= 0; /* Inequality constraint at range end */
3838 int startEq
; /* True if range start uses ==, >= or <= */
3839 int endEq
; /* True if range end uses ==, >= or <= */
3840 int start_constraints
; /* Start of range is constrained */
3841 int nConstraint
; /* Number of constraint terms */
3842 Index
*pIdx
; /* The index we will be using */
3843 int iIdxCur
; /* The VDBE cursor for the index */
3844 int nExtraReg
= 0; /* Number of extra registers needed */
3845 int op
; /* Instruction opcode */
3846 char *zStartAff
; /* Affinity for start of range constraint */
3847 char *zEndAff
; /* Affinity for end of range constraint */
3849 pIdx
= pLevel
->plan
.u
.pIdx
;
3850 iIdxCur
= pLevel
->iIdxCur
;
3851 k
= pIdx
->aiColumn
[nEq
]; /* Column for inequality constraints */
3853 /* If this loop satisfies a sort order (pOrderBy) request that
3854 ** was passed to this function to implement a "SELECT min(x) ..."
3855 ** query, then the caller will only allow the loop to run for
3856 ** a single iteration. This means that the first row returned
3857 ** should not have a NULL value stored in 'x'. If column 'x' is
3858 ** the first one after the nEq equality constraints in the index,
3859 ** this requires some special handling.
3861 if( (wctrlFlags
&WHERE_ORDERBY_MIN
)!=0
3862 && (pLevel
->plan
.wsFlags
&WHERE_ORDERBY
)
3863 && (pIdx
->nColumn
>nEq
)
3865 /* assert( pOrderBy->nExpr==1 ); */
3866 /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */
3871 /* Find any inequality constraint terms for the start and end
3874 if( pLevel
->plan
.wsFlags
& WHERE_TOP_LIMIT
){
3875 pRangeEnd
= findTerm(pWC
, iCur
, k
, notReady
, (WO_LT
|WO_LE
), pIdx
);
3878 if( pLevel
->plan
.wsFlags
& WHERE_BTM_LIMIT
){
3879 pRangeStart
= findTerm(pWC
, iCur
, k
, notReady
, (WO_GT
|WO_GE
), pIdx
);
3883 /* Generate code to evaluate all constraint terms using == or IN
3884 ** and store the values of those terms in an array of registers
3885 ** starting at regBase.
3887 regBase
= codeAllEqualityTerms(
3888 pParse
, pLevel
, pWC
, notReady
, nExtraReg
, &zStartAff
3890 zEndAff
= sqlite3DbStrDup(pParse
->db
, zStartAff
);
3891 addrNxt
= pLevel
->addrNxt
;
3893 /* If we are doing a reverse order scan on an ascending index, or
3894 ** a forward order scan on a descending index, interchange the
3895 ** start and end terms (pRangeStart and pRangeEnd).
3897 if( nEq
<pIdx
->nColumn
&& bRev
==(pIdx
->aSortOrder
[nEq
]==SQLITE_SO_ASC
) ){
3898 SWAP(WhereTerm
*, pRangeEnd
, pRangeStart
);
3901 testcase( pRangeStart
&& pRangeStart
->eOperator
& WO_LE
);
3902 testcase( pRangeStart
&& pRangeStart
->eOperator
& WO_GE
);
3903 testcase( pRangeEnd
&& pRangeEnd
->eOperator
& WO_LE
);
3904 testcase( pRangeEnd
&& pRangeEnd
->eOperator
& WO_GE
);
3905 startEq
= !pRangeStart
|| pRangeStart
->eOperator
& (WO_LE
|WO_GE
);
3906 endEq
= !pRangeEnd
|| pRangeEnd
->eOperator
& (WO_LE
|WO_GE
);
3907 start_constraints
= pRangeStart
|| nEq
>0;
3909 /* Seek the index cursor to the start of the range. */
3912 Expr
*pRight
= pRangeStart
->pExpr
->pRight
;
3913 sqlite3ExprCode(pParse
, pRight
, regBase
+nEq
);
3914 if( (pRangeStart
->wtFlags
& TERM_VNULL
)==0 ){
3915 sqlite3ExprCodeIsNullJump(v
, pRight
, regBase
+nEq
, addrNxt
);
3918 if( sqlite3CompareAffinity(pRight
, zStartAff
[nEq
])==SQLITE_AFF_NONE
){
3919 /* Since the comparison is to be performed with no conversions
3920 ** applied to the operands, set the affinity to apply to pRight to
3921 ** SQLITE_AFF_NONE. */
3922 zStartAff
[nEq
] = SQLITE_AFF_NONE
;
3924 if( sqlite3ExprNeedsNoAffinityChange(pRight
, zStartAff
[nEq
]) ){
3925 zStartAff
[nEq
] = SQLITE_AFF_NONE
;
3929 testcase( pRangeStart
->wtFlags
& TERM_VIRTUAL
); /* EV: R-30575-11662 */
3930 }else if( isMinQuery
){
3931 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regBase
+nEq
);
3934 start_constraints
= 1;
3936 codeApplyAffinity(pParse
, regBase
, nConstraint
, zStartAff
);
3937 op
= aStartOp
[(start_constraints
<<2) + (startEq
<<1) + bRev
];
3939 testcase( op
==OP_Rewind
);
3940 testcase( op
==OP_Last
);
3941 testcase( op
==OP_SeekGt
);
3942 testcase( op
==OP_SeekGe
);
3943 testcase( op
==OP_SeekLe
);
3944 testcase( op
==OP_SeekLt
);
3945 sqlite3VdbeAddOp4Int(v
, op
, iIdxCur
, addrNxt
, regBase
, nConstraint
);
3947 /* Load the value for the inequality constraint at the end of the
3952 Expr
*pRight
= pRangeEnd
->pExpr
->pRight
;
3953 sqlite3ExprCacheRemove(pParse
, regBase
+nEq
, 1);
3954 sqlite3ExprCode(pParse
, pRight
, regBase
+nEq
);
3955 if( (pRangeEnd
->wtFlags
& TERM_VNULL
)==0 ){
3956 sqlite3ExprCodeIsNullJump(v
, pRight
, regBase
+nEq
, addrNxt
);
3959 if( sqlite3CompareAffinity(pRight
, zEndAff
[nEq
])==SQLITE_AFF_NONE
){
3960 /* Since the comparison is to be performed with no conversions
3961 ** applied to the operands, set the affinity to apply to pRight to
3962 ** SQLITE_AFF_NONE. */
3963 zEndAff
[nEq
] = SQLITE_AFF_NONE
;
3965 if( sqlite3ExprNeedsNoAffinityChange(pRight
, zEndAff
[nEq
]) ){
3966 zEndAff
[nEq
] = SQLITE_AFF_NONE
;
3969 codeApplyAffinity(pParse
, regBase
, nEq
+1, zEndAff
);
3971 testcase( pRangeEnd
->wtFlags
& TERM_VIRTUAL
); /* EV: R-30575-11662 */
3973 sqlite3DbFree(pParse
->db
, zStartAff
);
3974 sqlite3DbFree(pParse
->db
, zEndAff
);
3976 /* Top of the loop body */
3977 pLevel
->p2
= sqlite3VdbeCurrentAddr(v
);
3979 /* Check if the index cursor is past the end of the range. */
3980 op
= aEndOp
[(pRangeEnd
|| nEq
) * (1 + bRev
)];
3981 testcase( op
==OP_Noop
);
3982 testcase( op
==OP_IdxGE
);
3983 testcase( op
==OP_IdxLT
);
3985 sqlite3VdbeAddOp4Int(v
, op
, iIdxCur
, addrNxt
, regBase
, nConstraint
);
3986 sqlite3VdbeChangeP5(v
, endEq
!=bRev
?1:0);
3989 /* If there are inequality constraints, check that the value
3990 ** of the table column that the inequality contrains is not NULL.
3991 ** If it is, jump to the next iteration of the loop.
3993 r1
= sqlite3GetTempReg(pParse
);
3994 testcase( pLevel
->plan
.wsFlags
& WHERE_BTM_LIMIT
);
3995 testcase( pLevel
->plan
.wsFlags
& WHERE_TOP_LIMIT
);
3996 if( (pLevel
->plan
.wsFlags
& (WHERE_BTM_LIMIT
|WHERE_TOP_LIMIT
))!=0 ){
3997 sqlite3VdbeAddOp3(v
, OP_Column
, iIdxCur
, nEq
, r1
);
3998 sqlite3VdbeAddOp2(v
, OP_IsNull
, r1
, addrCont
);
4000 sqlite3ReleaseTempReg(pParse
, r1
);
4002 /* Seek the table cursor, if required */
4003 disableTerm(pLevel
, pRangeStart
);
4004 disableTerm(pLevel
, pRangeEnd
);
4006 iRowidReg
= iReleaseReg
= sqlite3GetTempReg(pParse
);
4007 sqlite3VdbeAddOp2(v
, OP_IdxRowid
, iIdxCur
, iRowidReg
);
4008 sqlite3ExprCacheStore(pParse
, iCur
, -1, iRowidReg
);
4009 sqlite3VdbeAddOp2(v
, OP_Seek
, iCur
, iRowidReg
); /* Deferred seek */
4012 /* Record the instruction used to terminate the loop. Disable
4013 ** WHERE clause terms made redundant by the index range scan.
4015 if( pLevel
->plan
.wsFlags
& WHERE_UNIQUE
){
4016 pLevel
->op
= OP_Noop
;
4018 pLevel
->op
= OP_Prev
;
4020 pLevel
->op
= OP_Next
;
4022 pLevel
->p1
= iIdxCur
;
4025 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
4026 if( pLevel
->plan
.wsFlags
& WHERE_MULTI_OR
){
4027 /* Case 4: Two or more separately indexed terms connected by OR
4031 ** CREATE TABLE t1(a,b,c,d);
4032 ** CREATE INDEX i1 ON t1(a);
4033 ** CREATE INDEX i2 ON t1(b);
4034 ** CREATE INDEX i3 ON t1(c);
4036 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
4038 ** In the example, there are three indexed terms connected by OR.
4039 ** The top of the loop looks like this:
4041 ** Null 1 # Zero the rowset in reg 1
4043 ** Then, for each indexed term, the following. The arguments to
4044 ** RowSetTest are such that the rowid of the current row is inserted
4045 ** into the RowSet. If it is already present, control skips the
4046 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
4048 ** sqlite3WhereBegin(<term>)
4049 ** RowSetTest # Insert rowid into rowset
4051 ** sqlite3WhereEnd()
4053 ** Following the above, code to terminate the loop. Label A, the target
4054 ** of the Gosub above, jumps to the instruction right after the Goto.
4056 ** Null 1 # Zero the rowset in reg 1
4057 ** Goto B # The loop is finished.
4059 ** A: <loop body> # Return data, whatever.
4061 ** Return 2 # Jump back to the Gosub
4063 ** B: <after the loop>
4066 WhereClause
*pOrWc
; /* The OR-clause broken out into subterms */
4067 SrcList
*pOrTab
; /* Shortened table list or OR-clause generation */
4069 int regReturn
= ++pParse
->nMem
; /* Register used with OP_Gosub */
4070 int regRowset
= 0; /* Register for RowSet object */
4071 int regRowid
= 0; /* Register holding rowid */
4072 int iLoopBody
= sqlite3VdbeMakeLabel(v
); /* Start of loop body */
4073 int iRetInit
; /* Address of regReturn init */
4074 int untestedTerms
= 0; /* Some terms not completely tested */
4077 pTerm
= pLevel
->plan
.u
.pTerm
;
4079 assert( pTerm
->eOperator
==WO_OR
);
4080 assert( (pTerm
->wtFlags
& TERM_ORINFO
)!=0 );
4081 pOrWc
= &pTerm
->u
.pOrInfo
->wc
;
4082 pLevel
->op
= OP_Return
;
4083 pLevel
->p1
= regReturn
;
4085 /* Set up a new SrcList ni pOrTab containing the table being scanned
4086 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
4087 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
4089 if( pWInfo
->nLevel
>1 ){
4090 int nNotReady
; /* The number of notReady tables */
4091 struct SrcList_item
*origSrc
; /* Original list of tables */
4092 nNotReady
= pWInfo
->nLevel
- iLevel
- 1;
4093 pOrTab
= sqlite3StackAllocRaw(pParse
->db
,
4094 sizeof(*pOrTab
)+ nNotReady
*sizeof(pOrTab
->a
[0]));
4095 if( pOrTab
==0 ) return notReady
;
4096 pOrTab
->nAlloc
= (i16
)(nNotReady
+ 1);
4097 pOrTab
->nSrc
= pOrTab
->nAlloc
;
4098 memcpy(pOrTab
->a
, pTabItem
, sizeof(*pTabItem
));
4099 origSrc
= pWInfo
->pTabList
->a
;
4100 for(k
=1; k
<=nNotReady
; k
++){
4101 memcpy(&pOrTab
->a
[k
], &origSrc
[pLevel
[k
].iFrom
], sizeof(pOrTab
->a
[k
]));
4104 pOrTab
= pWInfo
->pTabList
;
4107 /* Initialize the rowset register to contain NULL. An SQL NULL is
4108 ** equivalent to an empty rowset.
4110 ** Also initialize regReturn to contain the address of the instruction
4111 ** immediately following the OP_Return at the bottom of the loop. This
4112 ** is required in a few obscure LEFT JOIN cases where control jumps
4113 ** over the top of the loop into the body of it. In this case the
4114 ** correct response for the end-of-loop code (the OP_Return) is to
4115 ** fall through to the next instruction, just as an OP_Next does if
4116 ** called on an uninitialized cursor.
4118 if( (wctrlFlags
& WHERE_DUPLICATES_OK
)==0 ){
4119 regRowset
= ++pParse
->nMem
;
4120 regRowid
= ++pParse
->nMem
;
4121 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regRowset
);
4123 iRetInit
= sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regReturn
);
4125 for(ii
=0; ii
<pOrWc
->nTerm
; ii
++){
4126 WhereTerm
*pOrTerm
= &pOrWc
->a
[ii
];
4127 if( pOrTerm
->leftCursor
==iCur
|| pOrTerm
->eOperator
==WO_AND
){
4128 WhereInfo
*pSubWInfo
; /* Info for single OR-term scan */
4129 /* Loop through table entries that match term pOrTerm. */
4130 pSubWInfo
= sqlite3WhereBegin(pParse
, pOrTab
, pOrTerm
->pExpr
, 0,
4131 WHERE_OMIT_OPEN
| WHERE_OMIT_CLOSE
|
4132 WHERE_FORCE_TABLE
| WHERE_ONETABLE_ONLY
);
4135 pParse
, pOrTab
, &pSubWInfo
->a
[0], iLevel
, pLevel
->iFrom
, 0
4137 if( (wctrlFlags
& WHERE_DUPLICATES_OK
)==0 ){
4138 int iSet
= ((ii
==pOrWc
->nTerm
-1)?-1:ii
);
4140 r
= sqlite3ExprCodeGetColumn(pParse
, pTabItem
->pTab
, -1, iCur
,
4142 sqlite3VdbeAddOp4Int(v
, OP_RowSetTest
, regRowset
,
4143 sqlite3VdbeCurrentAddr(v
)+2, r
, iSet
);
4145 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReturn
, iLoopBody
);
4147 /* The pSubWInfo->untestedTerms flag means that this OR term
4148 ** contained one or more AND term from a notReady table. The
4149 ** terms from the notReady table could not be tested and will
4150 ** need to be tested later.
4152 if( pSubWInfo
->untestedTerms
) untestedTerms
= 1;
4154 /* Finish the loop through table entries that match term pOrTerm. */
4155 sqlite3WhereEnd(pSubWInfo
);
4159 sqlite3VdbeChangeP1(v
, iRetInit
, sqlite3VdbeCurrentAddr(v
));
4160 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, pLevel
->addrBrk
);
4161 sqlite3VdbeResolveLabel(v
, iLoopBody
);
4163 if( pWInfo
->nLevel
>1 ) sqlite3StackFree(pParse
->db
, pOrTab
);
4164 if( !untestedTerms
) disableTerm(pLevel
, pTerm
);
4166 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
4169 /* Case 5: There is no usable index. We must do a complete
4170 ** scan of the entire table.
4172 static const u8 aStep
[] = { OP_Next
, OP_Prev
};
4173 static const u8 aStart
[] = { OP_Rewind
, OP_Last
};
4174 assert( bRev
==0 || bRev
==1 );
4175 assert( omitTable
==0 );
4176 pLevel
->op
= aStep
[bRev
];
4178 pLevel
->p2
= 1 + sqlite3VdbeAddOp2(v
, aStart
[bRev
], iCur
, addrBrk
);
4179 pLevel
->p5
= SQLITE_STMTSTATUS_FULLSCAN_STEP
;
4181 notReady
&= ~getMask(pWC
->pMaskSet
, iCur
);
4183 /* Insert code to test every subexpression that can be completely
4184 ** computed using the current set of tables.
4186 ** IMPLEMENTATION-OF: R-49525-50935 Terms that cannot be satisfied through
4187 ** the use of indices become tests that are evaluated against each row of
4188 ** the relevant input tables.
4190 for(pTerm
=pWC
->a
, j
=pWC
->nTerm
; j
>0; j
--, pTerm
++){
4192 testcase( pTerm
->wtFlags
& TERM_VIRTUAL
); /* IMP: R-30575-11662 */
4193 testcase( pTerm
->wtFlags
& TERM_CODED
);
4194 if( pTerm
->wtFlags
& (TERM_VIRTUAL
|TERM_CODED
) ) continue;
4195 if( (pTerm
->prereqAll
& notReady
)!=0 ){
4196 testcase( pWInfo
->untestedTerms
==0
4197 && (pWInfo
->wctrlFlags
& WHERE_ONETABLE_ONLY
)!=0 );
4198 pWInfo
->untestedTerms
= 1;
4203 if( pLevel
->iLeftJoin
&& !ExprHasProperty(pE
, EP_FromJoin
) ){
4206 sqlite3ExprIfFalse(pParse
, pE
, addrCont
, SQLITE_JUMPIFNULL
);
4207 pTerm
->wtFlags
|= TERM_CODED
;
4210 /* For a LEFT OUTER JOIN, generate code that will record the fact that
4211 ** at least one row of the right table has matched the left table.
4213 if( pLevel
->iLeftJoin
){
4214 pLevel
->addrFirst
= sqlite3VdbeCurrentAddr(v
);
4215 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, pLevel
->iLeftJoin
);
4216 VdbeComment((v
, "record LEFT JOIN hit"));
4217 sqlite3ExprCacheClear(pParse
);
4218 for(pTerm
=pWC
->a
, j
=0; j
<pWC
->nTerm
; j
++, pTerm
++){
4219 testcase( pTerm
->wtFlags
& TERM_VIRTUAL
); /* IMP: R-30575-11662 */
4220 testcase( pTerm
->wtFlags
& TERM_CODED
);
4221 if( pTerm
->wtFlags
& (TERM_VIRTUAL
|TERM_CODED
) ) continue;
4222 if( (pTerm
->prereqAll
& notReady
)!=0 ){
4223 assert( pWInfo
->untestedTerms
);
4226 assert( pTerm
->pExpr
);
4227 sqlite3ExprIfFalse(pParse
, pTerm
->pExpr
, addrCont
, SQLITE_JUMPIFNULL
);
4228 pTerm
->wtFlags
|= TERM_CODED
;
4231 sqlite3ReleaseTempReg(pParse
, iReleaseReg
);
4236 #if defined(SQLITE_TEST)
4238 ** The following variable holds a text description of query plan generated
4239 ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin
4240 ** overwrites the previous. This information is used for testing and
4243 char sqlite3_query_plan
[BMS
*2*40]; /* Text of the join */
4244 static int nQPlan
= 0; /* Next free slow in _query_plan[] */
4246 #endif /* SQLITE_TEST */
4250 ** Free a WhereInfo structure
4252 static void whereInfoFree(sqlite3
*db
, WhereInfo
*pWInfo
){
4253 if( ALWAYS(pWInfo
) ){
4255 for(i
=0; i
<pWInfo
->nLevel
; i
++){
4256 sqlite3_index_info
*pInfo
= pWInfo
->a
[i
].pIdxInfo
;
4258 /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */
4259 if( pInfo
->needToFreeIdxStr
){
4260 sqlite3_free(pInfo
->idxStr
);
4262 sqlite3DbFree(db
, pInfo
);
4264 if( pWInfo
->a
[i
].plan
.wsFlags
& WHERE_TEMP_INDEX
){
4265 Index
*pIdx
= pWInfo
->a
[i
].plan
.u
.pIdx
;
4267 sqlite3DbFree(db
, pIdx
->zColAff
);
4268 sqlite3DbFree(db
, pIdx
);
4272 whereClauseClear(pWInfo
->pWC
);
4273 sqlite3DbFree(db
, pWInfo
);
4279 ** Generate the beginning of the loop used for WHERE clause processing.
4280 ** The return value is a pointer to an opaque structure that contains
4281 ** information needed to terminate the loop. Later, the calling routine
4282 ** should invoke sqlite3WhereEnd() with the return value of this function
4283 ** in order to complete the WHERE clause processing.
4285 ** If an error occurs, this routine returns NULL.
4287 ** The basic idea is to do a nested loop, one loop for each table in
4288 ** the FROM clause of a select. (INSERT and UPDATE statements are the
4289 ** same as a SELECT with only a single table in the FROM clause.) For
4290 ** example, if the SQL is this:
4292 ** SELECT * FROM t1, t2, t3 WHERE ...;
4294 ** Then the code generated is conceptually like the following:
4296 ** foreach row1 in t1 do \ Code generated
4297 ** foreach row2 in t2 do |-- by sqlite3WhereBegin()
4298 ** foreach row3 in t3 do /
4300 ** end \ Code generated
4301 ** end |-- by sqlite3WhereEnd()
4304 ** Note that the loops might not be nested in the order in which they
4305 ** appear in the FROM clause if a different order is better able to make
4306 ** use of indices. Note also that when the IN operator appears in
4307 ** the WHERE clause, it might result in additional nested loops for
4308 ** scanning through all values on the right-hand side of the IN.
4310 ** There are Btree cursors associated with each table. t1 uses cursor
4311 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
4312 ** And so forth. This routine generates code to open those VDBE cursors
4313 ** and sqlite3WhereEnd() generates the code to close them.
4315 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4316 ** in pTabList pointing at their appropriate entries. The [...] code
4317 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4318 ** data from the various tables of the loop.
4320 ** If the WHERE clause is empty, the foreach loops must each scan their
4321 ** entire tables. Thus a three-way join is an O(N^3) operation. But if
4322 ** the tables have indices and there are terms in the WHERE clause that
4323 ** refer to those indices, a complete table scan can be avoided and the
4324 ** code will run much faster. Most of the work of this routine is checking
4325 ** to see if there are indices that can be used to speed up the loop.
4327 ** Terms of the WHERE clause are also used to limit which rows actually
4328 ** make it to the "..." in the middle of the loop. After each "foreach",
4329 ** terms of the WHERE clause that use only terms in that loop and outer
4330 ** loops are evaluated and if false a jump is made around all subsequent
4331 ** inner loops (or around the "..." if the test occurs within the inner-
4336 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4338 ** foreach row1 in t1 do
4340 ** foreach row2 in t2 do
4346 ** move the row2 cursor to a null row
4351 ** ORDER BY CLAUSE PROCESSING
4353 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
4354 ** if there is one. If there is no ORDER BY clause or if this routine
4355 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
4357 ** If an index can be used so that the natural output order of the table
4358 ** scan is correct for the ORDER BY clause, then that index is used and
4359 ** *ppOrderBy is set to NULL. This is an optimization that prevents an
4360 ** unnecessary sort of the result set if an index appropriate for the
4361 ** ORDER BY clause already exists.
4363 ** If the where clause loops cannot be arranged to provide the correct
4364 ** output order, then the *ppOrderBy is unchanged.
4366 WhereInfo
*sqlite3WhereBegin(
4367 Parse
*pParse
, /* The parser context */
4368 SrcList
*pTabList
, /* A list of all tables to be scanned */
4369 Expr
*pWhere
, /* The WHERE clause */
4370 ExprList
**ppOrderBy
, /* An ORDER BY clause, or NULL */
4371 u16 wctrlFlags
/* One of the WHERE_* flags defined in sqliteInt.h */
4373 int i
; /* Loop counter */
4374 int nByteWInfo
; /* Num. bytes allocated for WhereInfo struct */
4375 int nTabList
; /* Number of elements in pTabList */
4376 WhereInfo
*pWInfo
; /* Will become the return value of this function */
4377 Vdbe
*v
= pParse
->pVdbe
; /* The virtual database engine */
4378 Bitmask notReady
; /* Cursors that are not yet positioned */
4379 WhereMaskSet
*pMaskSet
; /* The expression mask set */
4380 WhereClause
*pWC
; /* Decomposition of the WHERE clause */
4381 struct SrcList_item
*pTabItem
; /* A single entry from pTabList */
4382 WhereLevel
*pLevel
; /* A single level in the pWInfo list */
4383 int iFrom
; /* First unused FROM clause element */
4384 int andFlags
; /* AND-ed combination of all pWC->a[].wtFlags */
4385 sqlite3
*db
; /* Database connection */
4387 /* The number of tables in the FROM clause is limited by the number of
4388 ** bits in a Bitmask
4390 testcase( pTabList
->nSrc
==BMS
);
4391 if( pTabList
->nSrc
>BMS
){
4392 sqlite3ErrorMsg(pParse
, "at most %d tables in a join", BMS
);
4396 /* This function normally generates a nested loop for all tables in
4397 ** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should
4398 ** only generate code for the first table in pTabList and assume that
4399 ** any cursors associated with subsequent tables are uninitialized.
4401 nTabList
= (wctrlFlags
& WHERE_ONETABLE_ONLY
) ? 1 : pTabList
->nSrc
;
4403 /* Allocate and initialize the WhereInfo structure that will become the
4404 ** return value. A single allocation is used to store the WhereInfo
4405 ** struct, the contents of WhereInfo.a[], the WhereClause structure
4406 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4407 ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4408 ** some architectures. Hence the ROUND8() below.
4411 nByteWInfo
= ROUND8(sizeof(WhereInfo
)+(nTabList
-1)*sizeof(WhereLevel
));
4412 pWInfo
= sqlite3DbMallocZero(db
,
4414 sizeof(WhereClause
) +
4415 sizeof(WhereMaskSet
)
4417 if( db
->mallocFailed
){
4418 sqlite3DbFree(db
, pWInfo
);
4420 goto whereBeginError
;
4422 pWInfo
->nLevel
= nTabList
;
4423 pWInfo
->pParse
= pParse
;
4424 pWInfo
->pTabList
= pTabList
;
4425 pWInfo
->iBreak
= sqlite3VdbeMakeLabel(v
);
4426 pWInfo
->pWC
= pWC
= (WhereClause
*)&((u8
*)pWInfo
)[nByteWInfo
];
4427 pWInfo
->wctrlFlags
= wctrlFlags
;
4428 pWInfo
->savedNQueryLoop
= pParse
->nQueryLoop
;
4429 pMaskSet
= (WhereMaskSet
*)&pWC
[1];
4431 /* Split the WHERE clause into separate subexpressions where each
4432 ** subexpression is separated by an AND operator.
4434 initMaskSet(pMaskSet
);
4435 whereClauseInit(pWC
, pParse
, pMaskSet
);
4436 sqlite3ExprCodeConstants(pParse
, pWhere
);
4437 whereSplit(pWC
, pWhere
, TK_AND
); /* IMP: R-15842-53296 */
4439 /* Special case: a WHERE clause that is constant. Evaluate the
4440 ** expression and either jump over all of the code or fall thru.
4442 if( pWhere
&& (nTabList
==0 || sqlite3ExprIsConstantNotJoin(pWhere
)) ){
4443 sqlite3ExprIfFalse(pParse
, pWhere
, pWInfo
->iBreak
, SQLITE_JUMPIFNULL
);
4447 /* Assign a bit from the bitmask to every term in the FROM clause.
4449 ** When assigning bitmask values to FROM clause cursors, it must be
4450 ** the case that if X is the bitmask for the N-th FROM clause term then
4451 ** the bitmask for all FROM clause terms to the left of the N-th term
4452 ** is (X-1). An expression from the ON clause of a LEFT JOIN can use
4453 ** its Expr.iRightJoinTable value to find the bitmask of the right table
4454 ** of the join. Subtracting one from the right table bitmask gives a
4455 ** bitmask for all tables to the left of the join. Knowing the bitmask
4456 ** for all tables to the left of a left join is important. Ticket #3015.
4458 ** Configure the WhereClause.vmask variable so that bits that correspond
4459 ** to virtual table cursors are set. This is used to selectively disable
4460 ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful
4461 ** with virtual tables.
4463 ** Note that bitmasks are created for all pTabList->nSrc tables in
4464 ** pTabList, not just the first nTabList tables. nTabList is normally
4465 ** equal to pTabList->nSrc but might be shortened to 1 if the
4466 ** WHERE_ONETABLE_ONLY flag is set.
4468 assert( pWC
->vmask
==0 && pMaskSet
->n
==0 );
4469 for(i
=0; i
<pTabList
->nSrc
; i
++){
4470 createMask(pMaskSet
, pTabList
->a
[i
].iCursor
);
4471 #ifndef SQLITE_OMIT_VIRTUALTABLE
4472 if( ALWAYS(pTabList
->a
[i
].pTab
) && IsVirtual(pTabList
->a
[i
].pTab
) ){
4473 pWC
->vmask
|= ((Bitmask
)1 << i
);
4479 Bitmask toTheLeft
= 0;
4480 for(i
=0; i
<pTabList
->nSrc
; i
++){
4481 Bitmask m
= getMask(pMaskSet
, pTabList
->a
[i
].iCursor
);
4482 assert( (m
-1)==toTheLeft
);
4488 /* Analyze all of the subexpressions. Note that exprAnalyze() might
4489 ** add new virtual terms onto the end of the WHERE clause. We do not
4490 ** want to analyze these virtual terms, so start analyzing at the end
4491 ** and work forward so that the added virtual terms are never processed.
4493 exprAnalyzeAll(pTabList
, pWC
);
4494 if( db
->mallocFailed
){
4495 goto whereBeginError
;
4498 /* Chose the best index to use for each table in the FROM clause.
4500 ** This loop fills in the following fields:
4502 ** pWInfo->a[].pIdx The index to use for this level of the loop.
4503 ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx
4504 ** pWInfo->a[].nEq The number of == and IN constraints
4505 ** pWInfo->a[].iFrom Which term of the FROM clause is being coded
4506 ** pWInfo->a[].iTabCur The VDBE cursor for the database table
4507 ** pWInfo->a[].iIdxCur The VDBE cursor for the index
4508 ** pWInfo->a[].pTerm When wsFlags==WO_OR, the OR-clause term
4510 ** This loop also figures out the nesting order of tables in the FROM
4513 notReady
= ~(Bitmask
)0;
4515 WHERETRACE(("*** Optimizer Start ***\n"));
4516 for(i
=iFrom
=0, pLevel
=pWInfo
->a
; i
<nTabList
; i
++, pLevel
++){
4517 WhereCost bestPlan
; /* Most efficient plan seen so far */
4518 Index
*pIdx
; /* Index for FROM table at pTabItem */
4519 int j
; /* For looping over FROM tables */
4520 int bestJ
= -1; /* The value of j */
4521 Bitmask m
; /* Bitmask value for j or bestJ */
4522 int isOptimal
; /* Iterator for optimal/non-optimal search */
4523 int nUnconstrained
; /* Number tables without INDEXED BY */
4524 Bitmask notIndexed
; /* Mask of tables that cannot use an index */
4526 memset(&bestPlan
, 0, sizeof(bestPlan
));
4527 bestPlan
.rCost
= SQLITE_BIG_DBL
;
4528 WHERETRACE(("*** Begin search for loop %d ***\n", i
));
4530 /* Loop through the remaining entries in the FROM clause to find the
4531 ** next nested loop. The loop tests all FROM clause entries
4532 ** either once or twice.
4534 ** The first test is always performed if there are two or more entries
4535 ** remaining and never performed if there is only one FROM clause entry
4536 ** to choose from. The first test looks for an "optimal" scan. In
4537 ** this context an optimal scan is one that uses the same strategy
4538 ** for the given FROM clause entry as would be selected if the entry
4539 ** were used as the innermost nested loop. In other words, a table
4540 ** is chosen such that the cost of running that table cannot be reduced
4541 ** by waiting for other tables to run first. This "optimal" test works
4542 ** by first assuming that the FROM clause is on the inner loop and finding
4543 ** its query plan, then checking to see if that query plan uses any
4544 ** other FROM clause terms that are notReady. If no notReady terms are
4545 ** used then the "optimal" query plan works.
4547 ** Note that the WhereCost.nRow parameter for an optimal scan might
4548 ** not be as small as it would be if the table really were the innermost
4549 ** join. The nRow value can be reduced by WHERE clause constraints
4550 ** that do not use indices. But this nRow reduction only happens if the
4551 ** table really is the innermost join.
4553 ** The second loop iteration is only performed if no optimal scan
4554 ** strategies were found by the first iteration. This second iteration
4555 ** is used to search for the lowest cost scan overall.
4557 ** Previous versions of SQLite performed only the second iteration -
4558 ** the next outermost loop was always that with the lowest overall
4559 ** cost. However, this meant that SQLite could select the wrong plan
4560 ** for scripts such as the following:
4562 ** CREATE TABLE t1(a, b);
4563 ** CREATE TABLE t2(c, d);
4564 ** SELECT * FROM t2, t1 WHERE t2.rowid = t1.a;
4566 ** The best strategy is to iterate through table t1 first. However it
4567 ** is not possible to determine this with a simple greedy algorithm.
4568 ** Since the cost of a linear scan through table t2 is the same
4569 ** as the cost of a linear scan through table t1, a simple greedy
4570 ** algorithm may choose to use t2 for the outer loop, which is a much
4571 ** costlier approach.
4575 for(isOptimal
=(iFrom
<nTabList
-1); isOptimal
>=0 && bestJ
<0; isOptimal
--){
4576 Bitmask mask
; /* Mask of tables not yet ready */
4577 for(j
=iFrom
, pTabItem
=&pTabList
->a
[j
]; j
<nTabList
; j
++, pTabItem
++){
4578 int doNotReorder
; /* True if this table should not be reordered */
4579 WhereCost sCost
; /* Cost information from best[Virtual]Index() */
4580 ExprList
*pOrderBy
; /* ORDER BY clause for index to optimize */
4582 doNotReorder
= (pTabItem
->jointype
& (JT_LEFT
|JT_CROSS
))!=0;
4583 if( j
!=iFrom
&& doNotReorder
) break;
4584 m
= getMask(pMaskSet
, pTabItem
->iCursor
);
4585 if( (m
& notReady
)==0 ){
4586 if( j
==iFrom
) iFrom
++;
4589 mask
= (isOptimal
? m
: notReady
);
4590 pOrderBy
= ((i
==0 && ppOrderBy
)?*ppOrderBy
:0);
4591 if( pTabItem
->pIndex
==0 ) nUnconstrained
++;
4593 WHERETRACE(("=== trying table %d with isOptimal=%d ===\n",
4595 assert( pTabItem
->pTab
);
4596 #ifndef SQLITE_OMIT_VIRTUALTABLE
4597 if( IsVirtual(pTabItem
->pTab
) ){
4598 sqlite3_index_info
**pp
= &pWInfo
->a
[j
].pIdxInfo
;
4599 bestVirtualIndex(pParse
, pWC
, pTabItem
, mask
, notReady
, pOrderBy
,
4604 bestBtreeIndex(pParse
, pWC
, pTabItem
, mask
, notReady
, pOrderBy
,
4607 assert( isOptimal
|| (sCost
.used
¬Ready
)==0 );
4609 /* If an INDEXED BY clause is present, then the plan must use that
4610 ** index if it uses any index at all */
4611 assert( pTabItem
->pIndex
==0
4612 || (sCost
.plan
.wsFlags
& WHERE_NOT_FULLSCAN
)==0
4613 || sCost
.plan
.u
.pIdx
==pTabItem
->pIndex
);
4615 if( isOptimal
&& (sCost
.plan
.wsFlags
& WHERE_NOT_FULLSCAN
)==0 ){
4619 /* Conditions under which this table becomes the best so far:
4621 ** (1) The table must not depend on other tables that have not
4624 ** (2) A full-table-scan plan cannot supercede indexed plan unless
4625 ** the full-table-scan is an "optimal" plan as defined above.
4627 ** (3) All tables have an INDEXED BY clause or this table lacks an
4628 ** INDEXED BY clause or this table uses the specific
4629 ** index specified by its INDEXED BY clause. This rule ensures
4630 ** that a best-so-far is always selected even if an impossible
4631 ** combination of INDEXED BY clauses are given. The error
4632 ** will be detected and relayed back to the application later.
4633 ** The NEVER() comes about because rule (2) above prevents
4634 ** An indexable full-table-scan from reaching rule (3).
4636 ** (4) The plan cost must be lower than prior plans or else the
4637 ** cost must be the same and the number of rows must be lower.
4639 if( (sCost
.used
¬Ready
)==0 /* (1) */
4640 && (bestJ
<0 || (notIndexed
&m
)!=0 /* (2) */
4641 || (bestPlan
.plan
.wsFlags
& WHERE_NOT_FULLSCAN
)==0
4642 || (sCost
.plan
.wsFlags
& WHERE_NOT_FULLSCAN
)!=0)
4643 && (nUnconstrained
==0 || pTabItem
->pIndex
==0 /* (3) */
4644 || NEVER((sCost
.plan
.wsFlags
& WHERE_NOT_FULLSCAN
)!=0))
4645 && (bestJ
<0 || sCost
.rCost
<bestPlan
.rCost
/* (4) */
4646 || (sCost
.rCost
<=bestPlan
.rCost
4647 && sCost
.plan
.nRow
<bestPlan
.plan
.nRow
))
4649 WHERETRACE(("=== table %d is best so far"
4650 " with cost=%g and nRow=%g\n",
4651 j
, sCost
.rCost
, sCost
.plan
.nRow
));
4655 if( doNotReorder
) break;
4659 assert( notReady
& getMask(pMaskSet
, pTabList
->a
[bestJ
].iCursor
) );
4660 WHERETRACE(("*** Optimizer selects table %d for loop %d"
4661 " with cost=%g and nRow=%g\n",
4662 bestJ
, pLevel
-pWInfo
->a
, bestPlan
.rCost
, bestPlan
.plan
.nRow
));
4663 if( (bestPlan
.plan
.wsFlags
& WHERE_ORDERBY
)!=0 ){
4666 andFlags
&= bestPlan
.plan
.wsFlags
;
4667 pLevel
->plan
= bestPlan
.plan
;
4668 testcase( bestPlan
.plan
.wsFlags
& WHERE_INDEXED
);
4669 testcase( bestPlan
.plan
.wsFlags
& WHERE_TEMP_INDEX
);
4670 if( bestPlan
.plan
.wsFlags
& (WHERE_INDEXED
|WHERE_TEMP_INDEX
) ){
4671 pLevel
->iIdxCur
= pParse
->nTab
++;
4673 pLevel
->iIdxCur
= -1;
4675 notReady
&= ~getMask(pMaskSet
, pTabList
->a
[bestJ
].iCursor
);
4676 pLevel
->iFrom
= (u8
)bestJ
;
4677 if( bestPlan
.plan
.nRow
>=(double)1 ){
4678 pParse
->nQueryLoop
*= bestPlan
.plan
.nRow
;
4681 /* Check that if the table scanned by this loop iteration had an
4682 ** INDEXED BY clause attached to it, that the named index is being
4683 ** used for the scan. If not, then query compilation has failed.
4686 pIdx
= pTabList
->a
[bestJ
].pIndex
;
4688 if( (bestPlan
.plan
.wsFlags
& WHERE_INDEXED
)==0 ){
4689 sqlite3ErrorMsg(pParse
, "cannot use index: %s", pIdx
->zName
);
4690 goto whereBeginError
;
4692 /* If an INDEXED BY clause is used, the bestIndex() function is
4693 ** guaranteed to find the index specified in the INDEXED BY clause
4694 ** if it find an index at all. */
4695 assert( bestPlan
.plan
.u
.pIdx
==pIdx
);
4699 WHERETRACE(("*** Optimizer Finished ***\n"));
4700 if( pParse
->nErr
|| db
->mallocFailed
){
4701 goto whereBeginError
;
4704 /* If the total query only selects a single row, then the ORDER BY
4705 ** clause is irrelevant.
4707 if( (andFlags
& WHERE_UNIQUE
)!=0 && ppOrderBy
){
4711 /* If the caller is an UPDATE or DELETE statement that is requesting
4712 ** to use a one-pass algorithm, determine if this is appropriate.
4713 ** The one-pass algorithm only works if the WHERE clause constraints
4714 ** the statement to update a single row.
4716 assert( (wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0 || pWInfo
->nLevel
==1 );
4717 if( (wctrlFlags
& WHERE_ONEPASS_DESIRED
)!=0 && (andFlags
& WHERE_UNIQUE
)!=0 ){
4718 pWInfo
->okOnePass
= 1;
4719 pWInfo
->a
[0].plan
.wsFlags
&= ~WHERE_IDX_ONLY
;
4722 /* Open all tables in the pTabList and any indices selected for
4723 ** searching those tables.
4725 sqlite3CodeVerifySchema(pParse
, -1); /* Insert the cookie verifier Goto */
4726 notReady
= ~(Bitmask
)0;
4727 pWInfo
->nRowOut
= (double)1;
4728 for(i
=0, pLevel
=pWInfo
->a
; i
<nTabList
; i
++, pLevel
++){
4729 Table
*pTab
; /* Table to open */
4730 int iDb
; /* Index of database containing table/index */
4732 pTabItem
= &pTabList
->a
[pLevel
->iFrom
];
4733 pTab
= pTabItem
->pTab
;
4734 pLevel
->iTabCur
= pTabItem
->iCursor
;
4735 pWInfo
->nRowOut
*= pLevel
->plan
.nRow
;
4736 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
4737 if( (pTab
->tabFlags
& TF_Ephemeral
)!=0 || pTab
->pSelect
){
4740 #ifndef SQLITE_OMIT_VIRTUALTABLE
4741 if( (pLevel
->plan
.wsFlags
& WHERE_VIRTUALTABLE
)!=0 ){
4742 const char *pVTab
= (const char *)sqlite3GetVTable(db
, pTab
);
4743 int iCur
= pTabItem
->iCursor
;
4744 sqlite3VdbeAddOp4(v
, OP_VOpen
, iCur
, 0, 0, pVTab
, P4_VTAB
);
4747 if( (pLevel
->plan
.wsFlags
& WHERE_IDX_ONLY
)==0
4748 && (wctrlFlags
& WHERE_OMIT_OPEN
)==0 ){
4749 int op
= pWInfo
->okOnePass
? OP_OpenWrite
: OP_OpenRead
;
4750 sqlite3OpenTable(pParse
, pTabItem
->iCursor
, iDb
, pTab
, op
);
4751 testcase( pTab
->nCol
==BMS
-1 );
4752 testcase( pTab
->nCol
==BMS
);
4753 if( !pWInfo
->okOnePass
&& pTab
->nCol
<BMS
){
4754 Bitmask b
= pTabItem
->colUsed
;
4756 for(; b
; b
=b
>>1, n
++){}
4757 sqlite3VdbeChangeP4(v
, sqlite3VdbeCurrentAddr(v
)-1,
4758 SQLITE_INT_TO_PTR(n
), P4_INT32
);
4759 assert( n
<=pTab
->nCol
);
4762 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
4764 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
4765 if( (pLevel
->plan
.wsFlags
& WHERE_TEMP_INDEX
)!=0 ){
4766 constructAutomaticIndex(pParse
, pWC
, pTabItem
, notReady
, pLevel
);
4769 if( (pLevel
->plan
.wsFlags
& WHERE_INDEXED
)!=0 ){
4770 Index
*pIx
= pLevel
->plan
.u
.pIdx
;
4771 KeyInfo
*pKey
= sqlite3IndexKeyinfo(pParse
, pIx
);
4772 int iIdxCur
= pLevel
->iIdxCur
;
4773 assert( pIx
->pSchema
==pTab
->pSchema
);
4774 assert( iIdxCur
>=0 );
4775 sqlite3VdbeAddOp4(v
, OP_OpenRead
, iIdxCur
, pIx
->tnum
, iDb
,
4776 (char*)pKey
, P4_KEYINFO_HANDOFF
);
4777 VdbeComment((v
, "%s", pIx
->zName
));
4779 sqlite3CodeVerifySchema(pParse
, iDb
);
4780 notReady
&= ~getMask(pWC
->pMaskSet
, pTabItem
->iCursor
);
4782 pWInfo
->iTop
= sqlite3VdbeCurrentAddr(v
);
4783 if( db
->mallocFailed
) goto whereBeginError
;
4785 /* Generate the code to do the search. Each iteration of the for
4786 ** loop below generates code for a single nested loop of the VM
4789 notReady
= ~(Bitmask
)0;
4790 for(i
=0; i
<nTabList
; i
++){
4791 pLevel
= &pWInfo
->a
[i
];
4792 explainOneScan(pParse
, pTabList
, pLevel
, i
, pLevel
->iFrom
, wctrlFlags
);
4793 notReady
= codeOneLoopStart(pWInfo
, i
, wctrlFlags
, notReady
);
4794 pWInfo
->iContinue
= pLevel
->addrCont
;
4797 #ifdef SQLITE_TEST /* For testing and debugging use only */
4798 /* Record in the query plan information about the current table
4799 ** and the index used to access it (if any). If the table itself
4800 ** is not used, its name is just '{}'. If no index is used
4801 ** the index is listed as "{}". If the primary key is used the
4802 ** index name is '*'.
4804 for(i
=0; i
<nTabList
; i
++){
4807 pLevel
= &pWInfo
->a
[i
];
4808 pTabItem
= &pTabList
->a
[pLevel
->iFrom
];
4809 z
= pTabItem
->zAlias
;
4810 if( z
==0 ) z
= pTabItem
->pTab
->zName
;
4811 n
= sqlite3Strlen30(z
);
4812 if( n
+nQPlan
< sizeof(sqlite3_query_plan
)-10 ){
4813 if( pLevel
->plan
.wsFlags
& WHERE_IDX_ONLY
){
4814 memcpy(&sqlite3_query_plan
[nQPlan
], "{}", 2);
4817 memcpy(&sqlite3_query_plan
[nQPlan
], z
, n
);
4820 sqlite3_query_plan
[nQPlan
++] = ' ';
4822 testcase( pLevel
->plan
.wsFlags
& WHERE_ROWID_EQ
);
4823 testcase( pLevel
->plan
.wsFlags
& WHERE_ROWID_RANGE
);
4824 if( pLevel
->plan
.wsFlags
& (WHERE_ROWID_EQ
|WHERE_ROWID_RANGE
) ){
4825 memcpy(&sqlite3_query_plan
[nQPlan
], "* ", 2);
4827 }else if( (pLevel
->plan
.wsFlags
& WHERE_INDEXED
)!=0 ){
4828 n
= sqlite3Strlen30(pLevel
->plan
.u
.pIdx
->zName
);
4829 if( n
+nQPlan
< sizeof(sqlite3_query_plan
)-2 ){
4830 memcpy(&sqlite3_query_plan
[nQPlan
], pLevel
->plan
.u
.pIdx
->zName
, n
);
4832 sqlite3_query_plan
[nQPlan
++] = ' ';
4835 memcpy(&sqlite3_query_plan
[nQPlan
], "{} ", 3);
4839 while( nQPlan
>0 && sqlite3_query_plan
[nQPlan
-1]==' ' ){
4840 sqlite3_query_plan
[--nQPlan
] = 0;
4842 sqlite3_query_plan
[nQPlan
] = 0;
4844 #endif /* SQLITE_TEST // Testing and debugging use only */
4846 /* Record the continuation address in the WhereInfo structure. Then
4847 ** clean up and return.
4851 /* Jump here if malloc fails */
4854 pParse
->nQueryLoop
= pWInfo
->savedNQueryLoop
;
4855 whereInfoFree(db
, pWInfo
);
4861 ** Generate the end of the WHERE loop. See comments on
4862 ** sqlite3WhereBegin() for additional information.
4864 void sqlite3WhereEnd(WhereInfo
*pWInfo
){
4865 Parse
*pParse
= pWInfo
->pParse
;
4866 Vdbe
*v
= pParse
->pVdbe
;
4869 SrcList
*pTabList
= pWInfo
->pTabList
;
4870 sqlite3
*db
= pParse
->db
;
4872 /* Generate loop termination code.
4874 sqlite3ExprCacheClear(pParse
);
4875 for(i
=pWInfo
->nLevel
-1; i
>=0; i
--){
4876 pLevel
= &pWInfo
->a
[i
];
4877 sqlite3VdbeResolveLabel(v
, pLevel
->addrCont
);
4878 if( pLevel
->op
!=OP_Noop
){
4879 sqlite3VdbeAddOp2(v
, pLevel
->op
, pLevel
->p1
, pLevel
->p2
);
4880 sqlite3VdbeChangeP5(v
, pLevel
->p5
);
4882 if( pLevel
->plan
.wsFlags
& WHERE_IN_ABLE
&& pLevel
->u
.in
.nIn
>0 ){
4885 sqlite3VdbeResolveLabel(v
, pLevel
->addrNxt
);
4886 for(j
=pLevel
->u
.in
.nIn
, pIn
=&pLevel
->u
.in
.aInLoop
[j
-1]; j
>0; j
--, pIn
--){
4887 sqlite3VdbeJumpHere(v
, pIn
->addrInTop
+1);
4888 sqlite3VdbeAddOp2(v
, OP_Next
, pIn
->iCur
, pIn
->addrInTop
);
4889 sqlite3VdbeJumpHere(v
, pIn
->addrInTop
-1);
4891 sqlite3DbFree(db
, pLevel
->u
.in
.aInLoop
);
4893 sqlite3VdbeResolveLabel(v
, pLevel
->addrBrk
);
4894 if( pLevel
->iLeftJoin
){
4896 addr
= sqlite3VdbeAddOp1(v
, OP_IfPos
, pLevel
->iLeftJoin
);
4897 assert( (pLevel
->plan
.wsFlags
& WHERE_IDX_ONLY
)==0
4898 || (pLevel
->plan
.wsFlags
& WHERE_INDEXED
)!=0 );
4899 if( (pLevel
->plan
.wsFlags
& WHERE_IDX_ONLY
)==0 ){
4900 sqlite3VdbeAddOp1(v
, OP_NullRow
, pTabList
->a
[i
].iCursor
);
4902 if( pLevel
->iIdxCur
>=0 ){
4903 sqlite3VdbeAddOp1(v
, OP_NullRow
, pLevel
->iIdxCur
);
4905 if( pLevel
->op
==OP_Return
){
4906 sqlite3VdbeAddOp2(v
, OP_Gosub
, pLevel
->p1
, pLevel
->addrFirst
);
4908 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, pLevel
->addrFirst
);
4910 sqlite3VdbeJumpHere(v
, addr
);
4914 /* The "break" point is here, just past the end of the outer loop.
4917 sqlite3VdbeResolveLabel(v
, pWInfo
->iBreak
);
4919 /* Close all of the cursors that were opened by sqlite3WhereBegin.
4921 assert( pWInfo
->nLevel
==1 || pWInfo
->nLevel
==pTabList
->nSrc
);
4922 for(i
=0, pLevel
=pWInfo
->a
; i
<pWInfo
->nLevel
; i
++, pLevel
++){
4923 struct SrcList_item
*pTabItem
= &pTabList
->a
[pLevel
->iFrom
];
4924 Table
*pTab
= pTabItem
->pTab
;
4926 if( (pTab
->tabFlags
& TF_Ephemeral
)==0
4928 && (pWInfo
->wctrlFlags
& WHERE_OMIT_CLOSE
)==0
4930 int ws
= pLevel
->plan
.wsFlags
;
4931 if( !pWInfo
->okOnePass
&& (ws
& WHERE_IDX_ONLY
)==0 ){
4932 sqlite3VdbeAddOp1(v
, OP_Close
, pTabItem
->iCursor
);
4934 if( (ws
& WHERE_INDEXED
)!=0 && (ws
& WHERE_TEMP_INDEX
)==0 ){
4935 sqlite3VdbeAddOp1(v
, OP_Close
, pLevel
->iIdxCur
);
4939 /* If this scan uses an index, make code substitutions to read data
4940 ** from the index in preference to the table. Sometimes, this means
4941 ** the table need never be read from. This is a performance boost,
4942 ** as the vdbe level waits until the table is read before actually
4943 ** seeking the table cursor to the record corresponding to the current
4944 ** position in the index.
4946 ** Calls to the code generator in between sqlite3WhereBegin and
4947 ** sqlite3WhereEnd will have created code that references the table
4948 ** directly. This loop scans all that code looking for opcodes
4949 ** that reference the table and converts them into opcodes that
4950 ** reference the index.
4952 if( (pLevel
->plan
.wsFlags
& WHERE_INDEXED
)!=0 && !db
->mallocFailed
){
4955 Index
*pIdx
= pLevel
->plan
.u
.pIdx
;
4958 pOp
= sqlite3VdbeGetOp(v
, pWInfo
->iTop
);
4959 last
= sqlite3VdbeCurrentAddr(v
);
4960 for(k
=pWInfo
->iTop
; k
<last
; k
++, pOp
++){
4961 if( pOp
->p1
!=pLevel
->iTabCur
) continue;
4962 if( pOp
->opcode
==OP_Column
){
4963 for(j
=0; j
<pIdx
->nColumn
; j
++){
4964 if( pOp
->p2
==pIdx
->aiColumn
[j
] ){
4966 pOp
->p1
= pLevel
->iIdxCur
;
4970 assert( (pLevel
->plan
.wsFlags
& WHERE_IDX_ONLY
)==0
4971 || j
<pIdx
->nColumn
);
4972 }else if( pOp
->opcode
==OP_Rowid
){
4973 pOp
->p1
= pLevel
->iIdxCur
;
4974 pOp
->opcode
= OP_IdxRowid
;
4982 pParse
->nQueryLoop
= pWInfo
->savedNQueryLoop
;
4983 whereInfoFree(db
, pWInfo
);