1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 #ifndef DOUBLE_CONVERSION_DOUBLE_H_
29 #define DOUBLE_CONVERSION_DOUBLE_H_
35 namespace double_conversion
{
37 // We assume that doubles and uint64_t have the same endianness.
38 static uint64_t double_to_uint64(double d
) { return BitCast
<uint64_t>(d
); }
39 static double uint64_to_double(uint64_t d64
) { return BitCast
<double>(d64
); }
41 // Helper functions for doubles.
44 static const uint64_t kSignMask
= UINT64_2PART_C(0x80000000, 00000000);
45 static const uint64_t kExponentMask
= UINT64_2PART_C(0x7FF00000, 00000000);
46 static const uint64_t kSignificandMask
= UINT64_2PART_C(0x000FFFFF, FFFFFFFF
);
47 static const uint64_t kHiddenBit
= UINT64_2PART_C(0x00100000, 00000000);
48 static const int kPhysicalSignificandSize
= 52; // Excludes the hidden bit.
49 static const int kSignificandSize
= 53;
52 explicit Double(double d
) : d64_(double_to_uint64(d
)) {}
53 explicit Double(uint64_t d64
) : d64_(d64
) {}
54 explicit Double(DiyFp diy_fp
)
55 : d64_(DiyFpToUint64(diy_fp
)) {}
57 // The value encoded by this Double must be greater or equal to +0.0.
58 // It must not be special (infinity, or NaN).
59 DiyFp
AsDiyFp() const {
62 return DiyFp(Significand(), Exponent());
65 // The value encoded by this Double must be strictly greater than 0.
66 DiyFp
AsNormalizedDiyFp() const {
67 ASSERT(value() > 0.0);
68 uint64_t f
= Significand();
71 // The current double could be a denormal.
72 while ((f
& kHiddenBit
) == 0) {
76 // Do the final shifts in one go.
77 f
<<= DiyFp::kSignificandSize
- kSignificandSize
;
78 e
-= DiyFp::kSignificandSize
- kSignificandSize
;
82 // Returns the double's bit as uint64.
83 uint64_t AsUint64() const {
87 // Returns the next greater double. Returns +infinity on input +infinity.
88 double NextDouble() const {
89 if (d64_
== kInfinity
) return Double(kInfinity
).value();
90 if (Sign() < 0 && Significand() == 0) {
95 return Double(d64_
- 1).value();
97 return Double(d64_
+ 1).value();
101 int Exponent() const {
102 if (IsDenormal()) return kDenormalExponent
;
104 uint64_t d64
= AsUint64();
106 static_cast<int>((d64
& kExponentMask
) >> kPhysicalSignificandSize
);
107 return biased_e
- kExponentBias
;
110 uint64_t Significand() const {
111 uint64_t d64
= AsUint64();
112 uint64_t significand
= d64
& kSignificandMask
;
114 return significand
+ kHiddenBit
;
120 // Returns true if the double is a denormal.
121 bool IsDenormal() const {
122 uint64_t d64
= AsUint64();
123 return (d64
& kExponentMask
) == 0;
126 // We consider denormals not to be special.
127 // Hence only Infinity and NaN are special.
128 bool IsSpecial() const {
129 uint64_t d64
= AsUint64();
130 return (d64
& kExponentMask
) == kExponentMask
;
134 uint64_t d64
= AsUint64();
135 return ((d64
& kExponentMask
) == kExponentMask
) &&
136 ((d64
& kSignificandMask
) != 0);
139 bool IsInfinite() const {
140 uint64_t d64
= AsUint64();
141 return ((d64
& kExponentMask
) == kExponentMask
) &&
142 ((d64
& kSignificandMask
) == 0);
146 uint64_t d64
= AsUint64();
147 return (d64
& kSignMask
) == 0? 1: -1;
150 // Precondition: the value encoded by this Double must be greater or equal
152 DiyFp
UpperBoundary() const {
154 return DiyFp(Significand() * 2 + 1, Exponent() - 1);
157 // Computes the two boundaries of this.
158 // The bigger boundary (m_plus) is normalized. The lower boundary has the same
159 // exponent as m_plus.
160 // Precondition: the value encoded by this Double must be greater than 0.
161 void NormalizedBoundaries(DiyFp
* out_m_minus
, DiyFp
* out_m_plus
) const {
162 ASSERT(value() > 0.0);
163 DiyFp v
= this->AsDiyFp();
164 bool significand_is_zero
= (v
.f() == kHiddenBit
);
165 DiyFp m_plus
= DiyFp::Normalize(DiyFp((v
.f() << 1) + 1, v
.e() - 1));
167 if (significand_is_zero
&& v
.e() != kDenormalExponent
) {
168 // The boundary is closer. Think of v = 1000e10 and v- = 9999e9.
169 // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
170 // at a distance of 1e8.
171 // The only exception is for the smallest normal: the largest denormal is
172 // at the same distance as its successor.
173 // Note: denormals have the same exponent as the smallest normals.
174 m_minus
= DiyFp((v
.f() << 2) - 1, v
.e() - 2);
176 m_minus
= DiyFp((v
.f() << 1) - 1, v
.e() - 1);
178 m_minus
.set_f(m_minus
.f() << (m_minus
.e() - m_plus
.e()));
179 m_minus
.set_e(m_plus
.e());
180 *out_m_plus
= m_plus
;
181 *out_m_minus
= m_minus
;
184 double value() const { return uint64_to_double(d64_
); }
186 // Returns the significand size for a given order of magnitude.
187 // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
188 // This function returns the number of significant binary digits v will have
189 // once it's encoded into a double. In almost all cases this is equal to
190 // kSignificandSize. The only exceptions are denormals. They start with
191 // leading zeroes and their effective significand-size is hence smaller.
192 static int SignificandSizeForOrderOfMagnitude(int order
) {
193 if (order
>= (kDenormalExponent
+ kSignificandSize
)) {
194 return kSignificandSize
;
196 if (order
<= kDenormalExponent
) return 0;
197 return order
- kDenormalExponent
;
200 static double Infinity() {
201 return Double(kInfinity
).value();
204 static double NaN() {
205 return Double(kNaN
).value();
209 static const int kExponentBias
= 0x3FF + kPhysicalSignificandSize
;
210 static const int kDenormalExponent
= -kExponentBias
+ 1;
211 static const int kMaxExponent
= 0x7FF - kExponentBias
;
212 static const uint64_t kInfinity
= UINT64_2PART_C(0x7FF00000, 00000000);
213 static const uint64_t kNaN
= UINT64_2PART_C(0x7FF80000, 00000000);
217 static uint64_t DiyFpToUint64(DiyFp diy_fp
) {
218 uint64_t significand
= diy_fp
.f();
219 int exponent
= diy_fp
.e();
220 while (significand
> kHiddenBit
+ kSignificandMask
) {
224 if (exponent
>= kMaxExponent
) {
227 if (exponent
< kDenormalExponent
) {
230 while (exponent
> kDenormalExponent
&& (significand
& kHiddenBit
) == 0) {
234 uint64_t biased_exponent
;
235 if (exponent
== kDenormalExponent
&& (significand
& kHiddenBit
) == 0) {
238 biased_exponent
= static_cast<uint64_t>(exponent
+ kExponentBias
);
240 return (significand
& kSignificandMask
) |
241 (biased_exponent
<< kPhysicalSignificandSize
);
245 } // namespace double_conversion
249 #endif // DOUBLE_CONVERSION_DOUBLE_H_