1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/basictypes.h"
7 #include "base/bind_helpers.h"
8 #include "base/files/file.h"
9 #include "base/files/file_util.h"
10 #include "base/strings/string_util.h"
11 #include "base/strings/stringprintf.h"
12 #include "base/threading/platform_thread.h"
13 #include "base/timer/timer.h"
14 #include "net/base/completion_callback.h"
15 #include "net/base/io_buffer.h"
16 #include "net/base/net_errors.h"
17 #include "net/base/test_completion_callback.h"
18 #include "net/disk_cache/blockfile/backend_impl.h"
19 #include "net/disk_cache/blockfile/entry_impl.h"
20 #include "net/disk_cache/disk_cache_test_base.h"
21 #include "net/disk_cache/disk_cache_test_util.h"
22 #include "net/disk_cache/memory/mem_entry_impl.h"
23 #include "net/disk_cache/simple/simple_entry_format.h"
24 #include "net/disk_cache/simple/simple_entry_impl.h"
25 #include "net/disk_cache/simple/simple_synchronous_entry.h"
26 #include "net/disk_cache/simple/simple_test_util.h"
27 #include "net/disk_cache/simple/simple_util.h"
28 #include "testing/gtest/include/gtest/gtest.h"
31 using disk_cache::ScopedEntryPtr
;
33 // Tests that can run with different types of caches.
34 class DiskCacheEntryTest
: public DiskCacheTestWithCache
{
36 void InternalSyncIOBackground(disk_cache::Entry
* entry
);
37 void ExternalSyncIOBackground(disk_cache::Entry
* entry
);
40 void InternalSyncIO();
41 void InternalAsyncIO();
42 void ExternalSyncIO();
43 void ExternalAsyncIO();
44 void ReleaseBuffer(int stream_index
);
47 void GetTimes(int stream_index
);
48 void GrowData(int stream_index
);
49 void TruncateData(int stream_index
);
50 void ZeroLengthIO(int stream_index
);
53 void SizeChanges(int stream_index
);
54 void ReuseEntry(int size
, int stream_index
);
55 void InvalidData(int stream_index
);
56 void ReadWriteDestroyBuffer(int stream_index
);
57 void DoomNormalEntry();
58 void DoomEntryNextToOpenEntry();
59 void DoomedEntry(int stream_index
);
62 void GetAvailableRange();
64 void UpdateSparseEntry();
65 void DoomSparseEntry();
66 void PartialSparseEntry();
67 bool SimpleCacheMakeBadChecksumEntry(const std::string
& key
, int* data_size
);
68 bool SimpleCacheThirdStreamFileExists(const char* key
);
69 void SyncDoomEntry(const char* key
);
72 // This part of the test runs on the background thread.
73 void DiskCacheEntryTest::InternalSyncIOBackground(disk_cache::Entry
* entry
) {
74 const int kSize1
= 10;
75 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
76 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
79 entry
->ReadData(0, 0, buffer1
.get(), kSize1
, net::CompletionCallback()));
80 base::strlcpy(buffer1
->data(), "the data", kSize1
);
83 0, 0, buffer1
.get(), kSize1
, net::CompletionCallback(), false));
84 memset(buffer1
->data(), 0, kSize1
);
87 entry
->ReadData(0, 0, buffer1
.get(), kSize1
, net::CompletionCallback()));
88 EXPECT_STREQ("the data", buffer1
->data());
90 const int kSize2
= 5000;
91 const int kSize3
= 10000;
92 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize2
));
93 scoped_refptr
<net::IOBuffer
> buffer3(new net::IOBuffer(kSize3
));
94 memset(buffer3
->data(), 0, kSize3
);
95 CacheTestFillBuffer(buffer2
->data(), kSize2
, false);
96 base::strlcpy(buffer2
->data(), "The really big data goes here", kSize2
);
100 1, 1500, buffer2
.get(), kSize2
, net::CompletionCallback(), false));
101 memset(buffer2
->data(), 0, kSize2
);
104 1, 1511, buffer2
.get(), kSize2
, net::CompletionCallback()));
105 EXPECT_STREQ("big data goes here", buffer2
->data());
108 entry
->ReadData(1, 0, buffer2
.get(), kSize2
, net::CompletionCallback()));
109 EXPECT_EQ(0, memcmp(buffer2
->data(), buffer3
->data(), 1500));
112 1, 5000, buffer2
.get(), kSize2
, net::CompletionCallback()));
116 1, 6500, buffer2
.get(), kSize2
, net::CompletionCallback()));
119 entry
->ReadData(1, 0, buffer3
.get(), kSize3
, net::CompletionCallback()));
122 1, 0, buffer3
.get(), 8192, net::CompletionCallback(), false));
125 entry
->ReadData(1, 0, buffer3
.get(), kSize3
, net::CompletionCallback()));
126 EXPECT_EQ(8192, entry
->GetDataSize(1));
128 // We need to delete the memory buffer on this thread.
129 EXPECT_EQ(0, entry
->WriteData(
130 0, 0, NULL
, 0, net::CompletionCallback(), true));
131 EXPECT_EQ(0, entry
->WriteData(
132 1, 0, NULL
, 0, net::CompletionCallback(), true));
135 // We need to support synchronous IO even though it is not a supported operation
136 // from the point of view of the disk cache's public interface, because we use
137 // it internally, not just by a few tests, but as part of the implementation
138 // (see sparse_control.cc, for example).
139 void DiskCacheEntryTest::InternalSyncIO() {
140 disk_cache::Entry
* entry
= NULL
;
141 ASSERT_EQ(net::OK
, CreateEntry("the first key", &entry
));
142 ASSERT_TRUE(NULL
!= entry
);
144 // The bulk of the test runs from within the callback, on the cache thread.
145 RunTaskForTest(base::Bind(&DiskCacheEntryTest::InternalSyncIOBackground
,
146 base::Unretained(this),
153 EXPECT_EQ(0, cache_
->GetEntryCount());
156 TEST_F(DiskCacheEntryTest
, InternalSyncIO
) {
161 TEST_F(DiskCacheEntryTest
, MemoryOnlyInternalSyncIO
) {
167 void DiskCacheEntryTest::InternalAsyncIO() {
168 disk_cache::Entry
* entry
= NULL
;
169 ASSERT_EQ(net::OK
, CreateEntry("the first key", &entry
));
170 ASSERT_TRUE(NULL
!= entry
);
172 // Avoid using internal buffers for the test. We have to write something to
173 // the entry and close it so that we flush the internal buffer to disk. After
174 // that, IO operations will be really hitting the disk. We don't care about
175 // the content, so just extending the entry is enough (all extensions zero-
177 EXPECT_EQ(0, WriteData(entry
, 0, 15 * 1024, NULL
, 0, false));
178 EXPECT_EQ(0, WriteData(entry
, 1, 15 * 1024, NULL
, 0, false));
180 ASSERT_EQ(net::OK
, OpenEntry("the first key", &entry
));
182 MessageLoopHelper helper
;
183 // Let's verify that each IO goes to the right callback object.
184 CallbackTest
callback1(&helper
, false);
185 CallbackTest
callback2(&helper
, false);
186 CallbackTest
callback3(&helper
, false);
187 CallbackTest
callback4(&helper
, false);
188 CallbackTest
callback5(&helper
, false);
189 CallbackTest
callback6(&helper
, false);
190 CallbackTest
callback7(&helper
, false);
191 CallbackTest
callback8(&helper
, false);
192 CallbackTest
callback9(&helper
, false);
193 CallbackTest
callback10(&helper
, false);
194 CallbackTest
callback11(&helper
, false);
195 CallbackTest
callback12(&helper
, false);
196 CallbackTest
callback13(&helper
, false);
198 const int kSize1
= 10;
199 const int kSize2
= 5000;
200 const int kSize3
= 10000;
201 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
202 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize2
));
203 scoped_refptr
<net::IOBuffer
> buffer3(new net::IOBuffer(kSize3
));
204 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
205 CacheTestFillBuffer(buffer2
->data(), kSize2
, false);
206 CacheTestFillBuffer(buffer3
->data(), kSize3
, false);
214 base::Bind(&CallbackTest::Run
, base::Unretained(&callback1
))));
215 base::strlcpy(buffer1
->data(), "the data", kSize1
);
217 int ret
= entry
->WriteData(
222 base::Bind(&CallbackTest::Run
, base::Unretained(&callback2
)),
224 EXPECT_TRUE(10 == ret
|| net::ERR_IO_PENDING
== ret
);
225 if (net::ERR_IO_PENDING
== ret
)
228 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
229 memset(buffer2
->data(), 0, kSize2
);
230 ret
= entry
->ReadData(
235 base::Bind(&CallbackTest::Run
, base::Unretained(&callback3
)));
236 EXPECT_TRUE(10 == ret
|| net::ERR_IO_PENDING
== ret
);
237 if (net::ERR_IO_PENDING
== ret
)
240 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
241 EXPECT_STREQ("the data", buffer2
->data());
243 base::strlcpy(buffer2
->data(), "The really big data goes here", kSize2
);
244 ret
= entry
->WriteData(
249 base::Bind(&CallbackTest::Run
, base::Unretained(&callback4
)),
251 EXPECT_TRUE(5000 == ret
|| net::ERR_IO_PENDING
== ret
);
252 if (net::ERR_IO_PENDING
== ret
)
255 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
256 memset(buffer3
->data(), 0, kSize3
);
257 ret
= entry
->ReadData(
262 base::Bind(&CallbackTest::Run
, base::Unretained(&callback5
)));
263 EXPECT_TRUE(4989 == ret
|| net::ERR_IO_PENDING
== ret
);
264 if (net::ERR_IO_PENDING
== ret
)
267 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
268 EXPECT_STREQ("big data goes here", buffer3
->data());
269 ret
= entry
->ReadData(
274 base::Bind(&CallbackTest::Run
, base::Unretained(&callback6
)));
275 EXPECT_TRUE(5000 == ret
|| net::ERR_IO_PENDING
== ret
);
276 if (net::ERR_IO_PENDING
== ret
)
279 memset(buffer3
->data(), 0, kSize3
);
281 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
282 EXPECT_EQ(0, memcmp(buffer2
->data(), buffer3
->data(), 1500));
283 ret
= entry
->ReadData(
288 base::Bind(&CallbackTest::Run
, base::Unretained(&callback7
)));
289 EXPECT_TRUE(1500 == ret
|| net::ERR_IO_PENDING
== ret
);
290 if (net::ERR_IO_PENDING
== ret
)
293 ret
= entry
->ReadData(
298 base::Bind(&CallbackTest::Run
, base::Unretained(&callback9
)));
299 EXPECT_TRUE(6500 == ret
|| net::ERR_IO_PENDING
== ret
);
300 if (net::ERR_IO_PENDING
== ret
)
303 ret
= entry
->WriteData(
308 base::Bind(&CallbackTest::Run
, base::Unretained(&callback10
)),
310 EXPECT_TRUE(8192 == ret
|| net::ERR_IO_PENDING
== ret
);
311 if (net::ERR_IO_PENDING
== ret
)
314 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
315 ret
= entry
->ReadData(
320 base::Bind(&CallbackTest::Run
, base::Unretained(&callback11
)));
321 EXPECT_TRUE(8192 == ret
|| net::ERR_IO_PENDING
== ret
);
322 if (net::ERR_IO_PENDING
== ret
)
325 EXPECT_EQ(8192, entry
->GetDataSize(1));
327 ret
= entry
->ReadData(
332 base::Bind(&CallbackTest::Run
, base::Unretained(&callback12
)));
333 EXPECT_TRUE(10 == ret
|| net::ERR_IO_PENDING
== ret
);
334 if (net::ERR_IO_PENDING
== ret
)
337 ret
= entry
->ReadData(
342 base::Bind(&CallbackTest::Run
, base::Unretained(&callback13
)));
343 EXPECT_TRUE(5000 == ret
|| net::ERR_IO_PENDING
== ret
);
344 if (net::ERR_IO_PENDING
== ret
)
347 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
349 EXPECT_FALSE(helper
.callback_reused_error());
354 EXPECT_EQ(0, cache_
->GetEntryCount());
357 TEST_F(DiskCacheEntryTest
, InternalAsyncIO
) {
362 TEST_F(DiskCacheEntryTest
, MemoryOnlyInternalAsyncIO
) {
368 // This part of the test runs on the background thread.
369 void DiskCacheEntryTest::ExternalSyncIOBackground(disk_cache::Entry
* entry
) {
370 const int kSize1
= 17000;
371 const int kSize2
= 25000;
372 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
373 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize2
));
374 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
375 CacheTestFillBuffer(buffer2
->data(), kSize2
, false);
376 base::strlcpy(buffer1
->data(), "the data", kSize1
);
379 0, 0, buffer1
.get(), kSize1
, net::CompletionCallback(), false));
380 memset(buffer1
->data(), 0, kSize1
);
383 entry
->ReadData(0, 0, buffer1
.get(), kSize1
, net::CompletionCallback()));
384 EXPECT_STREQ("the data", buffer1
->data());
386 base::strlcpy(buffer2
->data(), "The really big data goes here", kSize2
);
390 1, 10000, buffer2
.get(), kSize2
, net::CompletionCallback(), false));
391 memset(buffer2
->data(), 0, kSize2
);
394 1, 10011, buffer2
.get(), kSize2
, net::CompletionCallback()));
395 EXPECT_STREQ("big data goes here", buffer2
->data());
398 entry
->ReadData(1, 0, buffer2
.get(), kSize2
, net::CompletionCallback()));
401 1, 30000, buffer2
.get(), kSize2
, net::CompletionCallback()));
405 1, 35000, buffer2
.get(), kSize2
, net::CompletionCallback()));
408 entry
->ReadData(1, 0, buffer1
.get(), kSize1
, net::CompletionCallback()));
412 1, 20000, buffer1
.get(), kSize1
, net::CompletionCallback(), false));
413 EXPECT_EQ(37000, entry
->GetDataSize(1));
415 // We need to delete the memory buffer on this thread.
416 EXPECT_EQ(0, entry
->WriteData(
417 0, 0, NULL
, 0, net::CompletionCallback(), true));
418 EXPECT_EQ(0, entry
->WriteData(
419 1, 0, NULL
, 0, net::CompletionCallback(), true));
422 void DiskCacheEntryTest::ExternalSyncIO() {
423 disk_cache::Entry
* entry
;
424 ASSERT_EQ(net::OK
, CreateEntry("the first key", &entry
));
426 // The bulk of the test runs from within the callback, on the cache thread.
427 RunTaskForTest(base::Bind(&DiskCacheEntryTest::ExternalSyncIOBackground
,
428 base::Unretained(this),
434 EXPECT_EQ(0, cache_
->GetEntryCount());
437 TEST_F(DiskCacheEntryTest
, ExternalSyncIO
) {
442 TEST_F(DiskCacheEntryTest
, ExternalSyncIONoBuffer
) {
444 cache_impl_
->SetFlags(disk_cache::kNoBuffering
);
448 TEST_F(DiskCacheEntryTest
, MemoryOnlyExternalSyncIO
) {
454 void DiskCacheEntryTest::ExternalAsyncIO() {
455 disk_cache::Entry
* entry
;
456 ASSERT_EQ(net::OK
, CreateEntry("the first key", &entry
));
460 MessageLoopHelper helper
;
461 // Let's verify that each IO goes to the right callback object.
462 CallbackTest
callback1(&helper
, false);
463 CallbackTest
callback2(&helper
, false);
464 CallbackTest
callback3(&helper
, false);
465 CallbackTest
callback4(&helper
, false);
466 CallbackTest
callback5(&helper
, false);
467 CallbackTest
callback6(&helper
, false);
468 CallbackTest
callback7(&helper
, false);
469 CallbackTest
callback8(&helper
, false);
470 CallbackTest
callback9(&helper
, false);
472 const int kSize1
= 17000;
473 const int kSize2
= 25000;
474 const int kSize3
= 25000;
475 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
476 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize2
));
477 scoped_refptr
<net::IOBuffer
> buffer3(new net::IOBuffer(kSize3
));
478 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
479 CacheTestFillBuffer(buffer2
->data(), kSize2
, false);
480 CacheTestFillBuffer(buffer3
->data(), kSize3
, false);
481 base::strlcpy(buffer1
->data(), "the data", kSize1
);
482 int ret
= entry
->WriteData(
487 base::Bind(&CallbackTest::Run
, base::Unretained(&callback1
)),
489 EXPECT_TRUE(17000 == ret
|| net::ERR_IO_PENDING
== ret
);
490 if (net::ERR_IO_PENDING
== ret
)
493 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
495 memset(buffer2
->data(), 0, kSize1
);
496 ret
= entry
->ReadData(
501 base::Bind(&CallbackTest::Run
, base::Unretained(&callback2
)));
502 EXPECT_TRUE(17000 == ret
|| net::ERR_IO_PENDING
== ret
);
503 if (net::ERR_IO_PENDING
== ret
)
506 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
507 EXPECT_STREQ("the data", buffer2
->data());
509 base::strlcpy(buffer2
->data(), "The really big data goes here", kSize2
);
510 ret
= entry
->WriteData(
515 base::Bind(&CallbackTest::Run
, base::Unretained(&callback3
)),
517 EXPECT_TRUE(25000 == ret
|| net::ERR_IO_PENDING
== ret
);
518 if (net::ERR_IO_PENDING
== ret
)
521 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
523 memset(buffer3
->data(), 0, kSize3
);
524 ret
= entry
->ReadData(
529 base::Bind(&CallbackTest::Run
, base::Unretained(&callback4
)));
530 EXPECT_TRUE(24989 == ret
|| net::ERR_IO_PENDING
== ret
);
531 if (net::ERR_IO_PENDING
== ret
)
534 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
535 EXPECT_STREQ("big data goes here", buffer3
->data());
536 ret
= entry
->ReadData(
541 base::Bind(&CallbackTest::Run
, base::Unretained(&callback5
)));
542 EXPECT_TRUE(25000 == ret
|| net::ERR_IO_PENDING
== ret
);
543 if (net::ERR_IO_PENDING
== ret
)
546 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
547 memset(buffer3
->data(), 0, kSize3
);
548 EXPECT_EQ(0, memcmp(buffer2
->data(), buffer3
->data(), 10000));
549 ret
= entry
->ReadData(
554 base::Bind(&CallbackTest::Run
, base::Unretained(&callback6
)));
555 EXPECT_TRUE(5000 == ret
|| net::ERR_IO_PENDING
== ret
);
556 if (net::ERR_IO_PENDING
== ret
)
565 base::Bind(&CallbackTest::Run
, base::Unretained(&callback7
))));
566 ret
= entry
->ReadData(
571 base::Bind(&CallbackTest::Run
, base::Unretained(&callback8
)));
572 EXPECT_TRUE(17000 == ret
|| net::ERR_IO_PENDING
== ret
);
573 if (net::ERR_IO_PENDING
== ret
)
575 ret
= entry
->WriteData(
580 base::Bind(&CallbackTest::Run
, base::Unretained(&callback9
)),
582 EXPECT_TRUE(17000 == ret
|| net::ERR_IO_PENDING
== ret
);
583 if (net::ERR_IO_PENDING
== ret
)
586 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
587 EXPECT_EQ(37000, entry
->GetDataSize(1));
589 EXPECT_FALSE(helper
.callback_reused_error());
594 EXPECT_EQ(0, cache_
->GetEntryCount());
597 TEST_F(DiskCacheEntryTest
, ExternalAsyncIO
) {
602 TEST_F(DiskCacheEntryTest
, ExternalAsyncIONoBuffer
) {
604 cache_impl_
->SetFlags(disk_cache::kNoBuffering
);
608 TEST_F(DiskCacheEntryTest
, MemoryOnlyExternalAsyncIO
) {
614 // Tests that IOBuffers are not referenced after IO completes.
615 void DiskCacheEntryTest::ReleaseBuffer(int stream_index
) {
616 disk_cache::Entry
* entry
= NULL
;
617 ASSERT_EQ(net::OK
, CreateEntry("the first key", &entry
));
618 ASSERT_TRUE(NULL
!= entry
);
620 const int kBufferSize
= 1024;
621 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kBufferSize
));
622 CacheTestFillBuffer(buffer
->data(), kBufferSize
, false);
624 net::ReleaseBufferCompletionCallback
cb(buffer
.get());
625 int rv
= entry
->WriteData(
626 stream_index
, 0, buffer
.get(), kBufferSize
, cb
.callback(), false);
627 EXPECT_EQ(kBufferSize
, cb
.GetResult(rv
));
631 TEST_F(DiskCacheEntryTest
, ReleaseBuffer
) {
633 cache_impl_
->SetFlags(disk_cache::kNoBuffering
);
637 TEST_F(DiskCacheEntryTest
, MemoryOnlyReleaseBuffer
) {
643 void DiskCacheEntryTest::StreamAccess() {
644 disk_cache::Entry
* entry
= NULL
;
645 ASSERT_EQ(net::OK
, CreateEntry("the first key", &entry
));
646 ASSERT_TRUE(NULL
!= entry
);
648 const int kBufferSize
= 1024;
649 const int kNumStreams
= 3;
650 scoped_refptr
<net::IOBuffer
> reference_buffers
[kNumStreams
];
651 for (int i
= 0; i
< kNumStreams
; i
++) {
652 reference_buffers
[i
] = new net::IOBuffer(kBufferSize
);
653 CacheTestFillBuffer(reference_buffers
[i
]->data(), kBufferSize
, false);
655 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kBufferSize
));
656 for (int i
= 0; i
< kNumStreams
; i
++) {
659 WriteData(entry
, i
, 0, reference_buffers
[i
].get(), kBufferSize
, false));
660 memset(buffer1
->data(), 0, kBufferSize
);
661 EXPECT_EQ(kBufferSize
, ReadData(entry
, i
, 0, buffer1
.get(), kBufferSize
));
663 0, memcmp(reference_buffers
[i
]->data(), buffer1
->data(), kBufferSize
));
665 EXPECT_EQ(net::ERR_INVALID_ARGUMENT
,
666 ReadData(entry
, kNumStreams
, 0, buffer1
.get(), kBufferSize
));
669 // Open the entry and read it in chunks, including a read past the end.
670 ASSERT_EQ(net::OK
, OpenEntry("the first key", &entry
));
671 ASSERT_TRUE(NULL
!= entry
);
672 const int kReadBufferSize
= 600;
673 const int kFinalReadSize
= kBufferSize
- kReadBufferSize
;
674 COMPILE_ASSERT(kFinalReadSize
< kReadBufferSize
, should_be_exactly_two_reads
);
675 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kReadBufferSize
));
676 for (int i
= 0; i
< kNumStreams
; i
++) {
677 memset(buffer2
->data(), 0, kReadBufferSize
);
678 EXPECT_EQ(kReadBufferSize
,
679 ReadData(entry
, i
, 0, buffer2
.get(), kReadBufferSize
));
682 memcmp(reference_buffers
[i
]->data(), buffer2
->data(), kReadBufferSize
));
684 memset(buffer2
->data(), 0, kReadBufferSize
);
687 ReadData(entry
, i
, kReadBufferSize
, buffer2
.get(), kReadBufferSize
));
689 memcmp(reference_buffers
[i
]->data() + kReadBufferSize
,
697 TEST_F(DiskCacheEntryTest
, StreamAccess
) {
702 TEST_F(DiskCacheEntryTest
, MemoryOnlyStreamAccess
) {
708 void DiskCacheEntryTest::GetKey() {
709 std::string
key("the first key");
710 disk_cache::Entry
* entry
;
711 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
712 EXPECT_EQ(key
, entry
->GetKey()) << "short key";
715 int seed
= static_cast<int>(Time::Now().ToInternalValue());
717 char key_buffer
[20000];
719 CacheTestFillBuffer(key_buffer
, 3000, true);
720 key_buffer
[1000] = '\0';
723 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
724 EXPECT_TRUE(key
== entry
->GetKey()) << "1000 bytes key";
727 key_buffer
[1000] = 'p';
728 key_buffer
[3000] = '\0';
730 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
731 EXPECT_TRUE(key
== entry
->GetKey()) << "medium size key";
734 CacheTestFillBuffer(key_buffer
, sizeof(key_buffer
), true);
735 key_buffer
[19999] = '\0';
738 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
739 EXPECT_TRUE(key
== entry
->GetKey()) << "long key";
742 CacheTestFillBuffer(key_buffer
, 0x4000, true);
743 key_buffer
[0x4000] = '\0';
746 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
747 EXPECT_TRUE(key
== entry
->GetKey()) << "16KB key";
751 TEST_F(DiskCacheEntryTest
, GetKey
) {
756 TEST_F(DiskCacheEntryTest
, MemoryOnlyGetKey
) {
762 void DiskCacheEntryTest::GetTimes(int stream_index
) {
763 std::string
key("the first key");
764 disk_cache::Entry
* entry
;
766 Time t1
= Time::Now();
767 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
768 EXPECT_TRUE(entry
->GetLastModified() >= t1
);
769 EXPECT_TRUE(entry
->GetLastModified() == entry
->GetLastUsed());
772 Time t2
= Time::Now();
773 EXPECT_TRUE(t2
> t1
);
774 EXPECT_EQ(0, WriteData(entry
, stream_index
, 200, NULL
, 0, false));
775 if (type_
== net::APP_CACHE
) {
776 EXPECT_TRUE(entry
->GetLastModified() < t2
);
778 EXPECT_TRUE(entry
->GetLastModified() >= t2
);
780 EXPECT_TRUE(entry
->GetLastModified() == entry
->GetLastUsed());
783 Time t3
= Time::Now();
784 EXPECT_TRUE(t3
> t2
);
785 const int kSize
= 200;
786 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kSize
));
787 EXPECT_EQ(kSize
, ReadData(entry
, stream_index
, 0, buffer
.get(), kSize
));
788 if (type_
== net::APP_CACHE
) {
789 EXPECT_TRUE(entry
->GetLastUsed() < t2
);
790 EXPECT_TRUE(entry
->GetLastModified() < t2
);
791 } else if (type_
== net::SHADER_CACHE
) {
792 EXPECT_TRUE(entry
->GetLastUsed() < t3
);
793 EXPECT_TRUE(entry
->GetLastModified() < t3
);
795 EXPECT_TRUE(entry
->GetLastUsed() >= t3
);
796 EXPECT_TRUE(entry
->GetLastModified() < t3
);
801 TEST_F(DiskCacheEntryTest
, GetTimes
) {
806 TEST_F(DiskCacheEntryTest
, MemoryOnlyGetTimes
) {
812 TEST_F(DiskCacheEntryTest
, AppCacheGetTimes
) {
813 SetCacheType(net::APP_CACHE
);
818 TEST_F(DiskCacheEntryTest
, ShaderCacheGetTimes
) {
819 SetCacheType(net::SHADER_CACHE
);
824 void DiskCacheEntryTest::GrowData(int stream_index
) {
825 std::string
key1("the first key");
826 disk_cache::Entry
* entry
;
827 ASSERT_EQ(net::OK
, CreateEntry(key1
, &entry
));
829 const int kSize
= 20000;
830 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize
));
831 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize
));
832 CacheTestFillBuffer(buffer1
->data(), kSize
, false);
833 memset(buffer2
->data(), 0, kSize
);
835 base::strlcpy(buffer1
->data(), "the data", kSize
);
836 EXPECT_EQ(10, WriteData(entry
, stream_index
, 0, buffer1
.get(), 10, false));
837 EXPECT_EQ(10, ReadData(entry
, stream_index
, 0, buffer2
.get(), 10));
838 EXPECT_STREQ("the data", buffer2
->data());
839 EXPECT_EQ(10, entry
->GetDataSize(stream_index
));
842 WriteData(entry
, stream_index
, 0, buffer1
.get(), 2000, false));
843 EXPECT_EQ(2000, entry
->GetDataSize(stream_index
));
844 EXPECT_EQ(2000, ReadData(entry
, stream_index
, 0, buffer2
.get(), 2000));
845 EXPECT_TRUE(!memcmp(buffer1
->data(), buffer2
->data(), 2000));
848 WriteData(entry
, stream_index
, 0, buffer1
.get(), kSize
, false));
849 EXPECT_EQ(20000, entry
->GetDataSize(stream_index
));
850 EXPECT_EQ(20000, ReadData(entry
, stream_index
, 0, buffer2
.get(), kSize
));
851 EXPECT_TRUE(!memcmp(buffer1
->data(), buffer2
->data(), kSize
));
854 memset(buffer2
->data(), 0, kSize
);
855 std::string
key2("Second key");
856 ASSERT_EQ(net::OK
, CreateEntry(key2
, &entry
));
857 EXPECT_EQ(10, WriteData(entry
, stream_index
, 0, buffer1
.get(), 10, false));
858 EXPECT_EQ(10, entry
->GetDataSize(stream_index
));
861 // Go from an internal address to a bigger block size.
862 ASSERT_EQ(net::OK
, OpenEntry(key2
, &entry
));
864 WriteData(entry
, stream_index
, 0, buffer1
.get(), 2000, false));
865 EXPECT_EQ(2000, entry
->GetDataSize(stream_index
));
866 EXPECT_EQ(2000, ReadData(entry
, stream_index
, 0, buffer2
.get(), 2000));
867 EXPECT_TRUE(!memcmp(buffer1
->data(), buffer2
->data(), 2000));
869 memset(buffer2
->data(), 0, kSize
);
871 // Go from an internal address to an external one.
872 ASSERT_EQ(net::OK
, OpenEntry(key2
, &entry
));
874 WriteData(entry
, stream_index
, 0, buffer1
.get(), kSize
, false));
875 EXPECT_EQ(20000, entry
->GetDataSize(stream_index
));
876 EXPECT_EQ(20000, ReadData(entry
, stream_index
, 0, buffer2
.get(), kSize
));
877 EXPECT_TRUE(!memcmp(buffer1
->data(), buffer2
->data(), kSize
));
880 // Double check the size from disk.
881 ASSERT_EQ(net::OK
, OpenEntry(key2
, &entry
));
882 EXPECT_EQ(20000, entry
->GetDataSize(stream_index
));
884 // Now extend the entry without actual data.
885 EXPECT_EQ(0, WriteData(entry
, stream_index
, 45500, buffer1
.get(), 0, false));
888 // And check again from disk.
889 ASSERT_EQ(net::OK
, OpenEntry(key2
, &entry
));
890 EXPECT_EQ(45500, entry
->GetDataSize(stream_index
));
894 TEST_F(DiskCacheEntryTest
, GrowData
) {
899 TEST_F(DiskCacheEntryTest
, GrowDataNoBuffer
) {
901 cache_impl_
->SetFlags(disk_cache::kNoBuffering
);
905 TEST_F(DiskCacheEntryTest
, MemoryOnlyGrowData
) {
911 void DiskCacheEntryTest::TruncateData(int stream_index
) {
912 std::string
key("the first key");
913 disk_cache::Entry
* entry
;
914 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
916 const int kSize1
= 20000;
917 const int kSize2
= 20000;
918 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
919 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize2
));
921 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
922 memset(buffer2
->data(), 0, kSize2
);
924 // Simple truncation:
925 EXPECT_EQ(200, WriteData(entry
, stream_index
, 0, buffer1
.get(), 200, false));
926 EXPECT_EQ(200, entry
->GetDataSize(stream_index
));
927 EXPECT_EQ(100, WriteData(entry
, stream_index
, 0, buffer1
.get(), 100, false));
928 EXPECT_EQ(200, entry
->GetDataSize(stream_index
));
929 EXPECT_EQ(100, WriteData(entry
, stream_index
, 0, buffer1
.get(), 100, true));
930 EXPECT_EQ(100, entry
->GetDataSize(stream_index
));
931 EXPECT_EQ(0, WriteData(entry
, stream_index
, 50, buffer1
.get(), 0, true));
932 EXPECT_EQ(50, entry
->GetDataSize(stream_index
));
933 EXPECT_EQ(0, WriteData(entry
, stream_index
, 0, buffer1
.get(), 0, true));
934 EXPECT_EQ(0, entry
->GetDataSize(stream_index
));
936 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
938 // Go to an external file.
940 WriteData(entry
, stream_index
, 0, buffer1
.get(), 20000, true));
941 EXPECT_EQ(20000, entry
->GetDataSize(stream_index
));
942 EXPECT_EQ(20000, ReadData(entry
, stream_index
, 0, buffer2
.get(), 20000));
943 EXPECT_TRUE(!memcmp(buffer1
->data(), buffer2
->data(), 20000));
944 memset(buffer2
->data(), 0, kSize2
);
946 // External file truncation
948 WriteData(entry
, stream_index
, 0, buffer1
.get(), 18000, false));
949 EXPECT_EQ(20000, entry
->GetDataSize(stream_index
));
951 WriteData(entry
, stream_index
, 0, buffer1
.get(), 18000, true));
952 EXPECT_EQ(18000, entry
->GetDataSize(stream_index
));
953 EXPECT_EQ(0, WriteData(entry
, stream_index
, 17500, buffer1
.get(), 0, true));
954 EXPECT_EQ(17500, entry
->GetDataSize(stream_index
));
956 // And back to an internal block.
958 WriteData(entry
, stream_index
, 1000, buffer1
.get(), 600, true));
959 EXPECT_EQ(1600, entry
->GetDataSize(stream_index
));
960 EXPECT_EQ(600, ReadData(entry
, stream_index
, 1000, buffer2
.get(), 600));
961 EXPECT_TRUE(!memcmp(buffer1
->data(), buffer2
->data(), 600));
962 EXPECT_EQ(1000, ReadData(entry
, stream_index
, 0, buffer2
.get(), 1000));
963 EXPECT_TRUE(!memcmp(buffer1
->data(), buffer2
->data(), 1000))
964 << "Preserves previous data";
966 // Go from external file to zero length.
968 WriteData(entry
, stream_index
, 0, buffer1
.get(), 20000, true));
969 EXPECT_EQ(20000, entry
->GetDataSize(stream_index
));
970 EXPECT_EQ(0, WriteData(entry
, stream_index
, 0, buffer1
.get(), 0, true));
971 EXPECT_EQ(0, entry
->GetDataSize(stream_index
));
976 TEST_F(DiskCacheEntryTest
, TruncateData
) {
981 TEST_F(DiskCacheEntryTest
, TruncateDataNoBuffer
) {
983 cache_impl_
->SetFlags(disk_cache::kNoBuffering
);
987 TEST_F(DiskCacheEntryTest
, MemoryOnlyTruncateData
) {
993 void DiskCacheEntryTest::ZeroLengthIO(int stream_index
) {
994 std::string
key("the first key");
995 disk_cache::Entry
* entry
;
996 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
998 EXPECT_EQ(0, ReadData(entry
, stream_index
, 0, NULL
, 0));
999 EXPECT_EQ(0, WriteData(entry
, stream_index
, 0, NULL
, 0, false));
1001 // This write should extend the entry.
1002 EXPECT_EQ(0, WriteData(entry
, stream_index
, 1000, NULL
, 0, false));
1003 EXPECT_EQ(0, ReadData(entry
, stream_index
, 500, NULL
, 0));
1004 EXPECT_EQ(0, ReadData(entry
, stream_index
, 2000, NULL
, 0));
1005 EXPECT_EQ(1000, entry
->GetDataSize(stream_index
));
1007 EXPECT_EQ(0, WriteData(entry
, stream_index
, 100000, NULL
, 0, true));
1008 EXPECT_EQ(0, ReadData(entry
, stream_index
, 50000, NULL
, 0));
1009 EXPECT_EQ(100000, entry
->GetDataSize(stream_index
));
1011 // Let's verify the actual content.
1012 const int kSize
= 20;
1013 const char zeros
[kSize
] = {};
1014 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kSize
));
1016 CacheTestFillBuffer(buffer
->data(), kSize
, false);
1017 EXPECT_EQ(kSize
, ReadData(entry
, stream_index
, 500, buffer
.get(), kSize
));
1018 EXPECT_TRUE(!memcmp(buffer
->data(), zeros
, kSize
));
1020 CacheTestFillBuffer(buffer
->data(), kSize
, false);
1021 EXPECT_EQ(kSize
, ReadData(entry
, stream_index
, 5000, buffer
.get(), kSize
));
1022 EXPECT_TRUE(!memcmp(buffer
->data(), zeros
, kSize
));
1024 CacheTestFillBuffer(buffer
->data(), kSize
, false);
1025 EXPECT_EQ(kSize
, ReadData(entry
, stream_index
, 50000, buffer
.get(), kSize
));
1026 EXPECT_TRUE(!memcmp(buffer
->data(), zeros
, kSize
));
1031 TEST_F(DiskCacheEntryTest
, ZeroLengthIO
) {
1036 TEST_F(DiskCacheEntryTest
, ZeroLengthIONoBuffer
) {
1038 cache_impl_
->SetFlags(disk_cache::kNoBuffering
);
1042 TEST_F(DiskCacheEntryTest
, MemoryOnlyZeroLengthIO
) {
1043 SetMemoryOnlyMode();
1048 // Tests that we handle the content correctly when buffering, a feature of the
1049 // standard cache that permits fast responses to certain reads.
1050 void DiskCacheEntryTest::Buffering() {
1051 std::string
key("the first key");
1052 disk_cache::Entry
* entry
;
1053 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1055 const int kSize
= 200;
1056 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize
));
1057 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize
));
1058 CacheTestFillBuffer(buffer1
->data(), kSize
, true);
1059 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1061 EXPECT_EQ(kSize
, WriteData(entry
, 1, 0, buffer1
.get(), kSize
, false));
1064 // Write a little more and read what we wrote before.
1065 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1066 EXPECT_EQ(kSize
, WriteData(entry
, 1, 5000, buffer1
.get(), kSize
, false));
1067 EXPECT_EQ(kSize
, ReadData(entry
, 1, 0, buffer2
.get(), kSize
));
1068 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data(), kSize
));
1070 // Now go to an external file.
1071 EXPECT_EQ(kSize
, WriteData(entry
, 1, 18000, buffer1
.get(), kSize
, false));
1074 // Write something else and verify old data.
1075 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1076 EXPECT_EQ(kSize
, WriteData(entry
, 1, 10000, buffer1
.get(), kSize
, false));
1077 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1078 EXPECT_EQ(kSize
, ReadData(entry
, 1, 5000, buffer2
.get(), kSize
));
1079 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data(), kSize
));
1080 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1081 EXPECT_EQ(kSize
, ReadData(entry
, 1, 0, buffer2
.get(), kSize
));
1082 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data(), kSize
));
1083 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1084 EXPECT_EQ(kSize
, ReadData(entry
, 1, 18000, buffer2
.get(), kSize
));
1085 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data(), kSize
));
1087 // Extend the file some more.
1088 EXPECT_EQ(kSize
, WriteData(entry
, 1, 23000, buffer1
.get(), kSize
, false));
1091 // And now make sure that we can deal with data in both places (ram/disk).
1092 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1093 EXPECT_EQ(kSize
, WriteData(entry
, 1, 17000, buffer1
.get(), kSize
, false));
1095 // We should not overwrite the data at 18000 with this.
1096 EXPECT_EQ(kSize
, WriteData(entry
, 1, 19000, buffer1
.get(), kSize
, false));
1097 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1098 EXPECT_EQ(kSize
, ReadData(entry
, 1, 18000, buffer2
.get(), kSize
));
1099 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data(), kSize
));
1100 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1101 EXPECT_EQ(kSize
, ReadData(entry
, 1, 17000, buffer2
.get(), kSize
));
1102 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data(), kSize
));
1104 EXPECT_EQ(kSize
, WriteData(entry
, 1, 22900, buffer1
.get(), kSize
, false));
1105 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1106 EXPECT_EQ(100, ReadData(entry
, 1, 23000, buffer2
.get(), kSize
));
1107 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data() + 100, 100));
1109 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1110 EXPECT_EQ(100, ReadData(entry
, 1, 23100, buffer2
.get(), kSize
));
1111 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data() + 100, 100));
1113 // Extend the file again and read before without closing the entry.
1114 EXPECT_EQ(kSize
, WriteData(entry
, 1, 25000, buffer1
.get(), kSize
, false));
1115 EXPECT_EQ(kSize
, WriteData(entry
, 1, 45000, buffer1
.get(), kSize
, false));
1116 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1117 EXPECT_EQ(kSize
, ReadData(entry
, 1, 25000, buffer2
.get(), kSize
));
1118 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data(), kSize
));
1119 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1120 EXPECT_EQ(kSize
, ReadData(entry
, 1, 45000, buffer2
.get(), kSize
));
1121 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data(), kSize
));
1126 TEST_F(DiskCacheEntryTest
, Buffering
) {
1131 TEST_F(DiskCacheEntryTest
, BufferingNoBuffer
) {
1133 cache_impl_
->SetFlags(disk_cache::kNoBuffering
);
1137 // Checks that entries are zero length when created.
1138 void DiskCacheEntryTest::SizeAtCreate() {
1139 const char key
[] = "the first key";
1140 disk_cache::Entry
* entry
;
1141 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1143 const int kNumStreams
= 3;
1144 for (int i
= 0; i
< kNumStreams
; ++i
)
1145 EXPECT_EQ(0, entry
->GetDataSize(i
));
1149 TEST_F(DiskCacheEntryTest
, SizeAtCreate
) {
1154 TEST_F(DiskCacheEntryTest
, MemoryOnlySizeAtCreate
) {
1155 SetMemoryOnlyMode();
1160 // Some extra tests to make sure that buffering works properly when changing
1162 void DiskCacheEntryTest::SizeChanges(int stream_index
) {
1163 std::string
key("the first key");
1164 disk_cache::Entry
* entry
;
1165 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1167 const int kSize
= 200;
1168 const char zeros
[kSize
] = {};
1169 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize
));
1170 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize
));
1171 CacheTestFillBuffer(buffer1
->data(), kSize
, true);
1172 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1175 WriteData(entry
, stream_index
, 0, buffer1
.get(), kSize
, true));
1177 WriteData(entry
, stream_index
, 17000, buffer1
.get(), kSize
, true));
1179 WriteData(entry
, stream_index
, 23000, buffer1
.get(), kSize
, true));
1182 // Extend the file and read between the old size and the new write.
1183 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1184 EXPECT_EQ(23000 + kSize
, entry
->GetDataSize(stream_index
));
1186 WriteData(entry
, stream_index
, 25000, buffer1
.get(), kSize
, true));
1187 EXPECT_EQ(25000 + kSize
, entry
->GetDataSize(stream_index
));
1188 EXPECT_EQ(kSize
, ReadData(entry
, stream_index
, 24000, buffer2
.get(), kSize
));
1189 EXPECT_TRUE(!memcmp(buffer2
->data(), zeros
, kSize
));
1191 // Read at the end of the old file size.
1194 ReadData(entry
, stream_index
, 23000 + kSize
- 35, buffer2
.get(), kSize
));
1195 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data() + kSize
- 35, 35));
1197 // Read slightly before the last write.
1198 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1199 EXPECT_EQ(kSize
, ReadData(entry
, stream_index
, 24900, buffer2
.get(), kSize
));
1200 EXPECT_TRUE(!memcmp(buffer2
->data(), zeros
, 100));
1201 EXPECT_TRUE(!memcmp(buffer2
->data() + 100, buffer1
->data(), kSize
- 100));
1203 // Extend the entry a little more.
1205 WriteData(entry
, stream_index
, 26000, buffer1
.get(), kSize
, true));
1206 EXPECT_EQ(26000 + kSize
, entry
->GetDataSize(stream_index
));
1207 CacheTestFillBuffer(buffer2
->data(), kSize
, true);
1208 EXPECT_EQ(kSize
, ReadData(entry
, stream_index
, 25900, buffer2
.get(), kSize
));
1209 EXPECT_TRUE(!memcmp(buffer2
->data(), zeros
, 100));
1210 EXPECT_TRUE(!memcmp(buffer2
->data() + 100, buffer1
->data(), kSize
- 100));
1212 // And now reduce the size.
1214 WriteData(entry
, stream_index
, 25000, buffer1
.get(), kSize
, true));
1215 EXPECT_EQ(25000 + kSize
, entry
->GetDataSize(stream_index
));
1218 ReadData(entry
, stream_index
, 25000 + kSize
- 28, buffer2
.get(), kSize
));
1219 EXPECT_TRUE(!memcmp(buffer2
->data(), buffer1
->data() + kSize
- 28, 28));
1221 // Reduce the size with a buffer that is not extending the size.
1223 WriteData(entry
, stream_index
, 24000, buffer1
.get(), kSize
, false));
1224 EXPECT_EQ(25000 + kSize
, entry
->GetDataSize(stream_index
));
1226 WriteData(entry
, stream_index
, 24500, buffer1
.get(), kSize
, true));
1227 EXPECT_EQ(24500 + kSize
, entry
->GetDataSize(stream_index
));
1228 EXPECT_EQ(kSize
, ReadData(entry
, stream_index
, 23900, buffer2
.get(), kSize
));
1229 EXPECT_TRUE(!memcmp(buffer2
->data(), zeros
, 100));
1230 EXPECT_TRUE(!memcmp(buffer2
->data() + 100, buffer1
->data(), kSize
- 100));
1232 // And now reduce the size below the old size.
1234 WriteData(entry
, stream_index
, 19000, buffer1
.get(), kSize
, true));
1235 EXPECT_EQ(19000 + kSize
, entry
->GetDataSize(stream_index
));
1236 EXPECT_EQ(kSize
, ReadData(entry
, stream_index
, 18900, buffer2
.get(), kSize
));
1237 EXPECT_TRUE(!memcmp(buffer2
->data(), zeros
, 100));
1238 EXPECT_TRUE(!memcmp(buffer2
->data() + 100, buffer1
->data(), kSize
- 100));
1240 // Verify that the actual file is truncated.
1242 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1243 EXPECT_EQ(19000 + kSize
, entry
->GetDataSize(stream_index
));
1245 // Extend the newly opened file with a zero length write, expect zero fill.
1248 WriteData(entry
, stream_index
, 20000 + kSize
, buffer1
.get(), 0, false));
1250 ReadData(entry
, stream_index
, 19000 + kSize
, buffer1
.get(), kSize
));
1251 EXPECT_EQ(0, memcmp(buffer1
->data(), zeros
, kSize
));
1256 TEST_F(DiskCacheEntryTest
, SizeChanges
) {
1261 TEST_F(DiskCacheEntryTest
, SizeChangesNoBuffer
) {
1263 cache_impl_
->SetFlags(disk_cache::kNoBuffering
);
1267 // Write more than the total cache capacity but to a single entry. |size| is the
1268 // amount of bytes to write each time.
1269 void DiskCacheEntryTest::ReuseEntry(int size
, int stream_index
) {
1270 std::string
key1("the first key");
1271 disk_cache::Entry
* entry
;
1272 ASSERT_EQ(net::OK
, CreateEntry(key1
, &entry
));
1275 std::string
key2("the second key");
1276 ASSERT_EQ(net::OK
, CreateEntry(key2
, &entry
));
1278 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(size
));
1279 CacheTestFillBuffer(buffer
->data(), size
, false);
1281 for (int i
= 0; i
< 15; i
++) {
1282 EXPECT_EQ(0, WriteData(entry
, stream_index
, 0, buffer
.get(), 0, true));
1284 WriteData(entry
, stream_index
, 0, buffer
.get(), size
, false));
1286 ASSERT_EQ(net::OK
, OpenEntry(key2
, &entry
));
1290 ASSERT_EQ(net::OK
, OpenEntry(key1
, &entry
)) << "have not evicted this entry";
1294 TEST_F(DiskCacheEntryTest
, ReuseExternalEntry
) {
1295 SetMaxSize(200 * 1024);
1297 ReuseEntry(20 * 1024, 0);
1300 TEST_F(DiskCacheEntryTest
, MemoryOnlyReuseExternalEntry
) {
1301 SetMemoryOnlyMode();
1302 SetMaxSize(200 * 1024);
1304 ReuseEntry(20 * 1024, 0);
1307 TEST_F(DiskCacheEntryTest
, ReuseInternalEntry
) {
1308 SetMaxSize(100 * 1024);
1310 ReuseEntry(10 * 1024, 0);
1313 TEST_F(DiskCacheEntryTest
, MemoryOnlyReuseInternalEntry
) {
1314 SetMemoryOnlyMode();
1315 SetMaxSize(100 * 1024);
1317 ReuseEntry(10 * 1024, 0);
1320 // Reading somewhere that was not written should return zeros.
1321 void DiskCacheEntryTest::InvalidData(int stream_index
) {
1322 std::string
key("the first key");
1323 disk_cache::Entry
* entry
;
1324 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1326 const int kSize1
= 20000;
1327 const int kSize2
= 20000;
1328 const int kSize3
= 20000;
1329 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
1330 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize2
));
1331 scoped_refptr
<net::IOBuffer
> buffer3(new net::IOBuffer(kSize3
));
1333 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
1334 memset(buffer2
->data(), 0, kSize2
);
1336 // Simple data grow:
1338 WriteData(entry
, stream_index
, 400, buffer1
.get(), 200, false));
1339 EXPECT_EQ(600, entry
->GetDataSize(stream_index
));
1340 EXPECT_EQ(100, ReadData(entry
, stream_index
, 300, buffer3
.get(), 100));
1341 EXPECT_TRUE(!memcmp(buffer3
->data(), buffer2
->data(), 100));
1343 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1345 // The entry is now on disk. Load it and extend it.
1347 WriteData(entry
, stream_index
, 800, buffer1
.get(), 200, false));
1348 EXPECT_EQ(1000, entry
->GetDataSize(stream_index
));
1349 EXPECT_EQ(100, ReadData(entry
, stream_index
, 700, buffer3
.get(), 100));
1350 EXPECT_TRUE(!memcmp(buffer3
->data(), buffer2
->data(), 100));
1352 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1354 // This time using truncate.
1356 WriteData(entry
, stream_index
, 1800, buffer1
.get(), 200, true));
1357 EXPECT_EQ(2000, entry
->GetDataSize(stream_index
));
1358 EXPECT_EQ(100, ReadData(entry
, stream_index
, 1500, buffer3
.get(), 100));
1359 EXPECT_TRUE(!memcmp(buffer3
->data(), buffer2
->data(), 100));
1361 // Go to an external file.
1363 WriteData(entry
, stream_index
, 19800, buffer1
.get(), 200, false));
1364 EXPECT_EQ(20000, entry
->GetDataSize(stream_index
));
1365 EXPECT_EQ(4000, ReadData(entry
, stream_index
, 14000, buffer3
.get(), 4000));
1366 EXPECT_TRUE(!memcmp(buffer3
->data(), buffer2
->data(), 4000));
1368 // And back to an internal block.
1370 WriteData(entry
, stream_index
, 1000, buffer1
.get(), 600, true));
1371 EXPECT_EQ(1600, entry
->GetDataSize(stream_index
));
1372 EXPECT_EQ(600, ReadData(entry
, stream_index
, 1000, buffer3
.get(), 600));
1373 EXPECT_TRUE(!memcmp(buffer3
->data(), buffer1
->data(), 600));
1377 WriteData(entry
, stream_index
, 2000, buffer1
.get(), 600, false));
1378 EXPECT_EQ(2600, entry
->GetDataSize(stream_index
));
1379 EXPECT_EQ(200, ReadData(entry
, stream_index
, 1800, buffer3
.get(), 200));
1380 EXPECT_TRUE(!memcmp(buffer3
->data(), buffer2
->data(), 200));
1382 // And again (with truncation flag).
1384 WriteData(entry
, stream_index
, 3000, buffer1
.get(), 600, true));
1385 EXPECT_EQ(3600, entry
->GetDataSize(stream_index
));
1386 EXPECT_EQ(200, ReadData(entry
, stream_index
, 2800, buffer3
.get(), 200));
1387 EXPECT_TRUE(!memcmp(buffer3
->data(), buffer2
->data(), 200));
1392 TEST_F(DiskCacheEntryTest
, InvalidData
) {
1397 TEST_F(DiskCacheEntryTest
, InvalidDataNoBuffer
) {
1399 cache_impl_
->SetFlags(disk_cache::kNoBuffering
);
1403 TEST_F(DiskCacheEntryTest
, MemoryOnlyInvalidData
) {
1404 SetMemoryOnlyMode();
1409 // Tests that the cache preserves the buffer of an IO operation.
1410 void DiskCacheEntryTest::ReadWriteDestroyBuffer(int stream_index
) {
1411 std::string
key("the first key");
1412 disk_cache::Entry
* entry
;
1413 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1415 const int kSize
= 200;
1416 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kSize
));
1417 CacheTestFillBuffer(buffer
->data(), kSize
, false);
1419 net::TestCompletionCallback cb
;
1420 EXPECT_EQ(net::ERR_IO_PENDING
,
1422 stream_index
, 0, buffer
.get(), kSize
, cb
.callback(), false));
1424 // Release our reference to the buffer.
1426 EXPECT_EQ(kSize
, cb
.WaitForResult());
1428 // And now test with a Read().
1429 buffer
= new net::IOBuffer(kSize
);
1430 CacheTestFillBuffer(buffer
->data(), kSize
, false);
1433 net::ERR_IO_PENDING
,
1434 entry
->ReadData(stream_index
, 0, buffer
.get(), kSize
, cb
.callback()));
1436 EXPECT_EQ(kSize
, cb
.WaitForResult());
1441 TEST_F(DiskCacheEntryTest
, ReadWriteDestroyBuffer
) {
1443 ReadWriteDestroyBuffer(0);
1446 void DiskCacheEntryTest::DoomNormalEntry() {
1447 std::string
key("the first key");
1448 disk_cache::Entry
* entry
;
1449 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1453 const int kSize
= 20000;
1454 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kSize
));
1455 CacheTestFillBuffer(buffer
->data(), kSize
, true);
1456 buffer
->data()[19999] = '\0';
1458 key
= buffer
->data();
1459 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1460 EXPECT_EQ(20000, WriteData(entry
, 0, 0, buffer
.get(), kSize
, false));
1461 EXPECT_EQ(20000, WriteData(entry
, 1, 0, buffer
.get(), kSize
, false));
1465 FlushQueueForTest();
1466 EXPECT_EQ(0, cache_
->GetEntryCount());
1469 TEST_F(DiskCacheEntryTest
, DoomEntry
) {
1474 TEST_F(DiskCacheEntryTest
, MemoryOnlyDoomEntry
) {
1475 SetMemoryOnlyMode();
1480 // Tests dooming an entry that's linked to an open entry.
1481 void DiskCacheEntryTest::DoomEntryNextToOpenEntry() {
1482 disk_cache::Entry
* entry1
;
1483 disk_cache::Entry
* entry2
;
1484 ASSERT_EQ(net::OK
, CreateEntry("fixed", &entry1
));
1486 ASSERT_EQ(net::OK
, CreateEntry("foo", &entry1
));
1488 ASSERT_EQ(net::OK
, CreateEntry("bar", &entry1
));
1491 ASSERT_EQ(net::OK
, OpenEntry("foo", &entry1
));
1492 ASSERT_EQ(net::OK
, OpenEntry("bar", &entry2
));
1496 ASSERT_EQ(net::OK
, OpenEntry("foo", &entry2
));
1501 ASSERT_EQ(net::OK
, OpenEntry("fixed", &entry1
));
1505 TEST_F(DiskCacheEntryTest
, DoomEntryNextToOpenEntry
) {
1507 DoomEntryNextToOpenEntry();
1510 TEST_F(DiskCacheEntryTest
, NewEvictionDoomEntryNextToOpenEntry
) {
1513 DoomEntryNextToOpenEntry();
1516 TEST_F(DiskCacheEntryTest
, AppCacheDoomEntryNextToOpenEntry
) {
1517 SetCacheType(net::APP_CACHE
);
1519 DoomEntryNextToOpenEntry();
1522 // Verify that basic operations work as expected with doomed entries.
1523 void DiskCacheEntryTest::DoomedEntry(int stream_index
) {
1524 std::string
key("the first key");
1525 disk_cache::Entry
* entry
;
1526 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1529 FlushQueueForTest();
1530 EXPECT_EQ(0, cache_
->GetEntryCount());
1531 Time initial
= Time::Now();
1534 const int kSize1
= 2000;
1535 const int kSize2
= 2000;
1536 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
1537 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize2
));
1538 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
1539 memset(buffer2
->data(), 0, kSize2
);
1542 WriteData(entry
, stream_index
, 0, buffer1
.get(), 2000, false));
1543 EXPECT_EQ(2000, ReadData(entry
, stream_index
, 0, buffer2
.get(), 2000));
1544 EXPECT_EQ(0, memcmp(buffer1
->data(), buffer2
->data(), kSize1
));
1545 EXPECT_EQ(key
, entry
->GetKey());
1546 EXPECT_TRUE(initial
< entry
->GetLastModified());
1547 EXPECT_TRUE(initial
< entry
->GetLastUsed());
1552 TEST_F(DiskCacheEntryTest
, DoomedEntry
) {
1557 TEST_F(DiskCacheEntryTest
, MemoryOnlyDoomedEntry
) {
1558 SetMemoryOnlyMode();
1563 // Tests that we discard entries if the data is missing.
1564 TEST_F(DiskCacheEntryTest
, MissingData
) {
1567 std::string
key("the first key");
1568 disk_cache::Entry
* entry
;
1569 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1571 // Write to an external file.
1572 const int kSize
= 20000;
1573 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kSize
));
1574 CacheTestFillBuffer(buffer
->data(), kSize
, false);
1575 EXPECT_EQ(kSize
, WriteData(entry
, 0, 0, buffer
.get(), kSize
, false));
1577 FlushQueueForTest();
1579 disk_cache::Addr
address(0x80000001);
1580 base::FilePath name
= cache_impl_
->GetFileName(address
);
1581 EXPECT_TRUE(base::DeleteFile(name
, false));
1583 // Attempt to read the data.
1584 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1585 EXPECT_EQ(net::ERR_FILE_NOT_FOUND
,
1586 ReadData(entry
, 0, 0, buffer
.get(), kSize
));
1589 // The entry should be gone.
1590 ASSERT_NE(net::OK
, OpenEntry(key
, &entry
));
1593 // Test that child entries in a memory cache backend are not visible from
1595 TEST_F(DiskCacheEntryTest
, MemoryOnlyEnumerationWithSparseEntries
) {
1596 SetMemoryOnlyMode();
1599 const int kSize
= 4096;
1600 scoped_refptr
<net::IOBuffer
> buf(new net::IOBuffer(kSize
));
1601 CacheTestFillBuffer(buf
->data(), kSize
, false);
1603 std::string
key("the first key");
1604 disk_cache::Entry
* parent_entry
;
1605 ASSERT_EQ(net::OK
, CreateEntry(key
, &parent_entry
));
1607 // Writes to the parent entry.
1609 parent_entry
->WriteSparseData(
1610 0, buf
.get(), kSize
, net::CompletionCallback()));
1612 // This write creates a child entry and writes to it.
1614 parent_entry
->WriteSparseData(
1615 8192, buf
.get(), kSize
, net::CompletionCallback()));
1617 parent_entry
->Close();
1619 // Perform the enumerations.
1620 scoped_ptr
<TestIterator
> iter
= CreateIterator();
1621 disk_cache::Entry
* entry
= NULL
;
1623 while (iter
->OpenNextEntry(&entry
) == net::OK
) {
1624 ASSERT_TRUE(entry
!= NULL
);
1626 disk_cache::MemEntryImpl
* mem_entry
=
1627 reinterpret_cast<disk_cache::MemEntryImpl
*>(entry
);
1628 EXPECT_EQ(disk_cache::MemEntryImpl::kParentEntry
, mem_entry
->type());
1631 EXPECT_EQ(1, count
);
1634 // Writes |buf_1| to offset and reads it back as |buf_2|.
1635 void VerifySparseIO(disk_cache::Entry
* entry
, int64 offset
,
1636 net::IOBuffer
* buf_1
, int size
, net::IOBuffer
* buf_2
) {
1637 net::TestCompletionCallback cb
;
1639 memset(buf_2
->data(), 0, size
);
1640 int ret
= entry
->ReadSparseData(offset
, buf_2
, size
, cb
.callback());
1641 EXPECT_EQ(0, cb
.GetResult(ret
));
1643 ret
= entry
->WriteSparseData(offset
, buf_1
, size
, cb
.callback());
1644 EXPECT_EQ(size
, cb
.GetResult(ret
));
1646 ret
= entry
->ReadSparseData(offset
, buf_2
, size
, cb
.callback());
1647 EXPECT_EQ(size
, cb
.GetResult(ret
));
1649 EXPECT_EQ(0, memcmp(buf_1
->data(), buf_2
->data(), size
));
1652 // Reads |size| bytes from |entry| at |offset| and verifies that they are the
1653 // same as the content of the provided |buffer|.
1654 void VerifyContentSparseIO(disk_cache::Entry
* entry
, int64 offset
, char* buffer
,
1656 net::TestCompletionCallback cb
;
1658 scoped_refptr
<net::IOBuffer
> buf_1(new net::IOBuffer(size
));
1659 memset(buf_1
->data(), 0, size
);
1660 int ret
= entry
->ReadSparseData(offset
, buf_1
.get(), size
, cb
.callback());
1661 EXPECT_EQ(size
, cb
.GetResult(ret
));
1662 EXPECT_EQ(0, memcmp(buf_1
->data(), buffer
, size
));
1665 void DiskCacheEntryTest::BasicSparseIO() {
1666 std::string
key("the first key");
1667 disk_cache::Entry
* entry
;
1668 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1670 const int kSize
= 2048;
1671 scoped_refptr
<net::IOBuffer
> buf_1(new net::IOBuffer(kSize
));
1672 scoped_refptr
<net::IOBuffer
> buf_2(new net::IOBuffer(kSize
));
1673 CacheTestFillBuffer(buf_1
->data(), kSize
, false);
1675 // Write at offset 0.
1676 VerifySparseIO(entry
, 0, buf_1
.get(), kSize
, buf_2
.get());
1678 // Write at offset 0x400000 (4 MB).
1679 VerifySparseIO(entry
, 0x400000, buf_1
.get(), kSize
, buf_2
.get());
1681 // Write at offset 0x800000000 (32 GB).
1682 VerifySparseIO(entry
, 0x800000000LL
, buf_1
.get(), kSize
, buf_2
.get());
1686 // Check everything again.
1687 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1688 VerifyContentSparseIO(entry
, 0, buf_1
->data(), kSize
);
1689 VerifyContentSparseIO(entry
, 0x400000, buf_1
->data(), kSize
);
1690 VerifyContentSparseIO(entry
, 0x800000000LL
, buf_1
->data(), kSize
);
1694 TEST_F(DiskCacheEntryTest
, BasicSparseIO
) {
1699 TEST_F(DiskCacheEntryTest
, MemoryOnlyBasicSparseIO
) {
1700 SetMemoryOnlyMode();
1705 void DiskCacheEntryTest::HugeSparseIO() {
1706 std::string
key("the first key");
1707 disk_cache::Entry
* entry
;
1708 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1710 // Write 1.2 MB so that we cover multiple entries.
1711 const int kSize
= 1200 * 1024;
1712 scoped_refptr
<net::IOBuffer
> buf_1(new net::IOBuffer(kSize
));
1713 scoped_refptr
<net::IOBuffer
> buf_2(new net::IOBuffer(kSize
));
1714 CacheTestFillBuffer(buf_1
->data(), kSize
, false);
1716 // Write at offset 0x20F0000 (33 MB - 64 KB).
1717 VerifySparseIO(entry
, 0x20F0000, buf_1
.get(), kSize
, buf_2
.get());
1721 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1722 VerifyContentSparseIO(entry
, 0x20F0000, buf_1
->data(), kSize
);
1726 TEST_F(DiskCacheEntryTest
, HugeSparseIO
) {
1731 TEST_F(DiskCacheEntryTest
, MemoryOnlyHugeSparseIO
) {
1732 SetMemoryOnlyMode();
1737 void DiskCacheEntryTest::GetAvailableRange() {
1738 std::string
key("the first key");
1739 disk_cache::Entry
* entry
;
1740 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1742 const int kSize
= 16 * 1024;
1743 scoped_refptr
<net::IOBuffer
> buf(new net::IOBuffer(kSize
));
1744 CacheTestFillBuffer(buf
->data(), kSize
, false);
1746 // Write at offset 0x20F0000 (33 MB - 64 KB), and 0x20F4400 (33 MB - 47 KB).
1747 EXPECT_EQ(kSize
, WriteSparseData(entry
, 0x20F0000, buf
.get(), kSize
));
1748 EXPECT_EQ(kSize
, WriteSparseData(entry
, 0x20F4400, buf
.get(), kSize
));
1750 // We stop at the first empty block.
1752 net::TestCompletionCallback cb
;
1753 int rv
= entry
->GetAvailableRange(
1754 0x20F0000, kSize
* 2, &start
, cb
.callback());
1755 EXPECT_EQ(kSize
, cb
.GetResult(rv
));
1756 EXPECT_EQ(0x20F0000, start
);
1759 rv
= entry
->GetAvailableRange(0, kSize
, &start
, cb
.callback());
1760 EXPECT_EQ(0, cb
.GetResult(rv
));
1761 rv
= entry
->GetAvailableRange(
1762 0x20F0000 - kSize
, kSize
, &start
, cb
.callback());
1763 EXPECT_EQ(0, cb
.GetResult(rv
));
1764 rv
= entry
->GetAvailableRange(0, 0x2100000, &start
, cb
.callback());
1765 EXPECT_EQ(kSize
, cb
.GetResult(rv
));
1766 EXPECT_EQ(0x20F0000, start
);
1768 // We should be able to Read based on the results of GetAvailableRange.
1770 rv
= entry
->GetAvailableRange(0x2100000, kSize
, &start
, cb
.callback());
1771 EXPECT_EQ(0, cb
.GetResult(rv
));
1772 rv
= entry
->ReadSparseData(start
, buf
.get(), kSize
, cb
.callback());
1773 EXPECT_EQ(0, cb
.GetResult(rv
));
1776 rv
= entry
->GetAvailableRange(0x20F2000, kSize
, &start
, cb
.callback());
1777 EXPECT_EQ(0x2000, cb
.GetResult(rv
));
1778 EXPECT_EQ(0x20F2000, start
);
1779 EXPECT_EQ(0x2000, ReadSparseData(entry
, start
, buf
.get(), kSize
));
1781 // Make sure that we respect the |len| argument.
1783 rv
= entry
->GetAvailableRange(
1784 0x20F0001 - kSize
, kSize
, &start
, cb
.callback());
1785 EXPECT_EQ(1, cb
.GetResult(rv
));
1786 EXPECT_EQ(0x20F0000, start
);
1791 TEST_F(DiskCacheEntryTest
, GetAvailableRange
) {
1793 GetAvailableRange();
1796 TEST_F(DiskCacheEntryTest
, MemoryOnlyGetAvailableRange
) {
1797 SetMemoryOnlyMode();
1799 GetAvailableRange();
1802 void DiskCacheEntryTest::CouldBeSparse() {
1803 std::string
key("the first key");
1804 disk_cache::Entry
* entry
;
1805 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1807 const int kSize
= 16 * 1024;
1808 scoped_refptr
<net::IOBuffer
> buf(new net::IOBuffer(kSize
));
1809 CacheTestFillBuffer(buf
->data(), kSize
, false);
1811 // Write at offset 0x20F0000 (33 MB - 64 KB).
1812 EXPECT_EQ(kSize
, WriteSparseData(entry
, 0x20F0000, buf
.get(), kSize
));
1814 EXPECT_TRUE(entry
->CouldBeSparse());
1817 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1818 EXPECT_TRUE(entry
->CouldBeSparse());
1821 // Now verify a regular entry.
1822 key
.assign("another key");
1823 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1824 EXPECT_FALSE(entry
->CouldBeSparse());
1826 EXPECT_EQ(kSize
, WriteData(entry
, 0, 0, buf
.get(), kSize
, false));
1827 EXPECT_EQ(kSize
, WriteData(entry
, 1, 0, buf
.get(), kSize
, false));
1828 EXPECT_EQ(kSize
, WriteData(entry
, 2, 0, buf
.get(), kSize
, false));
1830 EXPECT_FALSE(entry
->CouldBeSparse());
1833 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
1834 EXPECT_FALSE(entry
->CouldBeSparse());
1838 TEST_F(DiskCacheEntryTest
, CouldBeSparse
) {
1843 TEST_F(DiskCacheEntryTest
, MemoryCouldBeSparse
) {
1844 SetMemoryOnlyMode();
1849 TEST_F(DiskCacheEntryTest
, MemoryOnlyMisalignedSparseIO
) {
1850 SetMemoryOnlyMode();
1853 const int kSize
= 8192;
1854 scoped_refptr
<net::IOBuffer
> buf_1(new net::IOBuffer(kSize
));
1855 scoped_refptr
<net::IOBuffer
> buf_2(new net::IOBuffer(kSize
));
1856 CacheTestFillBuffer(buf_1
->data(), kSize
, false);
1858 std::string
key("the first key");
1859 disk_cache::Entry
* entry
;
1860 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1862 // This loop writes back to back starting from offset 0 and 9000.
1863 for (int i
= 0; i
< kSize
; i
+= 1024) {
1864 scoped_refptr
<net::WrappedIOBuffer
> buf_3(
1865 new net::WrappedIOBuffer(buf_1
->data() + i
));
1866 VerifySparseIO(entry
, i
, buf_3
.get(), 1024, buf_2
.get());
1867 VerifySparseIO(entry
, 9000 + i
, buf_3
.get(), 1024, buf_2
.get());
1870 // Make sure we have data written.
1871 VerifyContentSparseIO(entry
, 0, buf_1
->data(), kSize
);
1872 VerifyContentSparseIO(entry
, 9000, buf_1
->data(), kSize
);
1874 // This tests a large write that spans 3 entries from a misaligned offset.
1875 VerifySparseIO(entry
, 20481, buf_1
.get(), 8192, buf_2
.get());
1880 TEST_F(DiskCacheEntryTest
, MemoryOnlyMisalignedGetAvailableRange
) {
1881 SetMemoryOnlyMode();
1884 const int kSize
= 8192;
1885 scoped_refptr
<net::IOBuffer
> buf(new net::IOBuffer(kSize
));
1886 CacheTestFillBuffer(buf
->data(), kSize
, false);
1888 disk_cache::Entry
* entry
;
1889 std::string
key("the first key");
1890 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
1892 // Writes in the middle of an entry.
1895 entry
->WriteSparseData(0, buf
.get(), 1024, net::CompletionCallback()));
1898 entry
->WriteSparseData(5120, buf
.get(), 1024, net::CompletionCallback()));
1900 entry
->WriteSparseData(
1901 10000, buf
.get(), 1024, net::CompletionCallback()));
1903 // Writes in the middle of an entry and spans 2 child entries.
1905 entry
->WriteSparseData(
1906 50000, buf
.get(), 8192, net::CompletionCallback()));
1909 net::TestCompletionCallback cb
;
1910 // Test that we stop at a discontinuous child at the second block.
1911 int rv
= entry
->GetAvailableRange(0, 10000, &start
, cb
.callback());
1912 EXPECT_EQ(1024, cb
.GetResult(rv
));
1913 EXPECT_EQ(0, start
);
1915 // Test that number of bytes is reported correctly when we start from the
1916 // middle of a filled region.
1917 rv
= entry
->GetAvailableRange(512, 10000, &start
, cb
.callback());
1918 EXPECT_EQ(512, cb
.GetResult(rv
));
1919 EXPECT_EQ(512, start
);
1921 // Test that we found bytes in the child of next block.
1922 rv
= entry
->GetAvailableRange(1024, 10000, &start
, cb
.callback());
1923 EXPECT_EQ(1024, cb
.GetResult(rv
));
1924 EXPECT_EQ(5120, start
);
1926 // Test that the desired length is respected. It starts within a filled
1928 rv
= entry
->GetAvailableRange(5500, 512, &start
, cb
.callback());
1929 EXPECT_EQ(512, cb
.GetResult(rv
));
1930 EXPECT_EQ(5500, start
);
1932 // Test that the desired length is respected. It starts before a filled
1934 rv
= entry
->GetAvailableRange(5000, 620, &start
, cb
.callback());
1935 EXPECT_EQ(500, cb
.GetResult(rv
));
1936 EXPECT_EQ(5120, start
);
1938 // Test that multiple blocks are scanned.
1939 rv
= entry
->GetAvailableRange(40000, 20000, &start
, cb
.callback());
1940 EXPECT_EQ(8192, cb
.GetResult(rv
));
1941 EXPECT_EQ(50000, start
);
1946 void DiskCacheEntryTest::UpdateSparseEntry() {
1947 std::string
key("the first key");
1948 disk_cache::Entry
* entry1
;
1949 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry1
));
1951 const int kSize
= 2048;
1952 scoped_refptr
<net::IOBuffer
> buf_1(new net::IOBuffer(kSize
));
1953 scoped_refptr
<net::IOBuffer
> buf_2(new net::IOBuffer(kSize
));
1954 CacheTestFillBuffer(buf_1
->data(), kSize
, false);
1956 // Write at offset 0.
1957 VerifySparseIO(entry1
, 0, buf_1
.get(), kSize
, buf_2
.get());
1960 // Write at offset 2048.
1961 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry1
));
1962 VerifySparseIO(entry1
, 2048, buf_1
.get(), kSize
, buf_2
.get());
1964 disk_cache::Entry
* entry2
;
1965 ASSERT_EQ(net::OK
, CreateEntry("the second key", &entry2
));
1969 FlushQueueForTest();
1970 if (memory_only_
|| simple_cache_mode_
)
1971 EXPECT_EQ(2, cache_
->GetEntryCount());
1973 EXPECT_EQ(3, cache_
->GetEntryCount());
1976 TEST_F(DiskCacheEntryTest
, UpdateSparseEntry
) {
1977 SetCacheType(net::MEDIA_CACHE
);
1979 UpdateSparseEntry();
1982 TEST_F(DiskCacheEntryTest
, MemoryOnlyUpdateSparseEntry
) {
1983 SetMemoryOnlyMode();
1984 SetCacheType(net::MEDIA_CACHE
);
1986 UpdateSparseEntry();
1989 void DiskCacheEntryTest::DoomSparseEntry() {
1990 std::string
key1("the first key");
1991 std::string
key2("the second key");
1992 disk_cache::Entry
*entry1
, *entry2
;
1993 ASSERT_EQ(net::OK
, CreateEntry(key1
, &entry1
));
1994 ASSERT_EQ(net::OK
, CreateEntry(key2
, &entry2
));
1996 const int kSize
= 4 * 1024;
1997 scoped_refptr
<net::IOBuffer
> buf(new net::IOBuffer(kSize
));
1998 CacheTestFillBuffer(buf
->data(), kSize
, false);
2000 int64 offset
= 1024;
2001 // Write to a bunch of ranges.
2002 for (int i
= 0; i
< 12; i
++) {
2003 EXPECT_EQ(kSize
, WriteSparseData(entry1
, offset
, buf
.get(), kSize
));
2004 // Keep the second map under the default size.
2006 EXPECT_EQ(kSize
, WriteSparseData(entry2
, offset
, buf
.get(), kSize
));
2011 if (memory_only_
|| simple_cache_mode_
)
2012 EXPECT_EQ(2, cache_
->GetEntryCount());
2014 EXPECT_EQ(15, cache_
->GetEntryCount());
2016 // Doom the first entry while it's still open.
2021 // Doom the second entry after it's fully saved.
2022 EXPECT_EQ(net::OK
, DoomEntry(key2
));
2024 // Make sure we do all needed work. This may fail for entry2 if between Close
2025 // and DoomEntry the system decides to remove all traces of the file from the
2026 // system cache so we don't see that there is pending IO.
2027 base::MessageLoop::current()->RunUntilIdle();
2030 EXPECT_EQ(0, cache_
->GetEntryCount());
2032 if (5 == cache_
->GetEntryCount()) {
2033 // Most likely we are waiting for the result of reading the sparse info
2034 // (it's always async on Posix so it is easy to miss). Unfortunately we
2035 // don't have any signal to watch for so we can only wait.
2036 base::PlatformThread::Sleep(base::TimeDelta::FromMilliseconds(500));
2037 base::MessageLoop::current()->RunUntilIdle();
2039 EXPECT_EQ(0, cache_
->GetEntryCount());
2043 TEST_F(DiskCacheEntryTest
, DoomSparseEntry
) {
2049 TEST_F(DiskCacheEntryTest
, MemoryOnlyDoomSparseEntry
) {
2050 SetMemoryOnlyMode();
2055 // A CompletionCallback wrapper that deletes the cache from within the callback.
2056 // The way a CompletionCallback works means that all tasks (even new ones)
2057 // are executed by the message loop before returning to the caller so the only
2058 // way to simulate a race is to execute what we want on the callback.
2059 class SparseTestCompletionCallback
: public net::TestCompletionCallback
{
2061 explicit SparseTestCompletionCallback(scoped_ptr
<disk_cache::Backend
> cache
)
2062 : cache_(cache
.Pass()) {
2066 virtual void SetResult(int result
) override
{
2068 TestCompletionCallback::SetResult(result
);
2071 scoped_ptr
<disk_cache::Backend
> cache_
;
2072 DISALLOW_COPY_AND_ASSIGN(SparseTestCompletionCallback
);
2075 // Tests that we don't crash when the backend is deleted while we are working
2076 // deleting the sub-entries of a sparse entry.
2077 TEST_F(DiskCacheEntryTest
, DoomSparseEntry2
) {
2080 std::string
key("the key");
2081 disk_cache::Entry
* entry
;
2082 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
2084 const int kSize
= 4 * 1024;
2085 scoped_refptr
<net::IOBuffer
> buf(new net::IOBuffer(kSize
));
2086 CacheTestFillBuffer(buf
->data(), kSize
, false);
2088 int64 offset
= 1024;
2089 // Write to a bunch of ranges.
2090 for (int i
= 0; i
< 12; i
++) {
2092 entry
->WriteSparseData(
2093 offset
, buf
.get(), kSize
, net::CompletionCallback()));
2096 EXPECT_EQ(9, cache_
->GetEntryCount());
2099 disk_cache::Backend
* cache
= cache_
.get();
2100 SparseTestCompletionCallback
cb(cache_
.Pass());
2101 int rv
= cache
->DoomEntry(key
, cb
.callback());
2102 EXPECT_EQ(net::ERR_IO_PENDING
, rv
);
2103 EXPECT_EQ(net::OK
, cb
.WaitForResult());
2106 void DiskCacheEntryTest::PartialSparseEntry() {
2107 std::string
key("the first key");
2108 disk_cache::Entry
* entry
;
2109 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
2111 // We should be able to deal with IO that is not aligned to the block size
2112 // of a sparse entry, at least to write a big range without leaving holes.
2113 const int kSize
= 4 * 1024;
2114 const int kSmallSize
= 128;
2115 scoped_refptr
<net::IOBuffer
> buf1(new net::IOBuffer(kSize
));
2116 CacheTestFillBuffer(buf1
->data(), kSize
, false);
2118 // The first write is just to extend the entry. The third write occupies
2119 // a 1KB block partially, it may not be written internally depending on the
2121 EXPECT_EQ(kSize
, WriteSparseData(entry
, 20000, buf1
.get(), kSize
));
2122 EXPECT_EQ(kSize
, WriteSparseData(entry
, 500, buf1
.get(), kSize
));
2123 EXPECT_EQ(kSmallSize
,
2124 WriteSparseData(entry
, 1080321, buf1
.get(), kSmallSize
));
2126 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
2128 scoped_refptr
<net::IOBuffer
> buf2(new net::IOBuffer(kSize
));
2129 memset(buf2
->data(), 0, kSize
);
2130 EXPECT_EQ(0, ReadSparseData(entry
, 8000, buf2
.get(), kSize
));
2132 EXPECT_EQ(500, ReadSparseData(entry
, kSize
, buf2
.get(), kSize
));
2133 EXPECT_EQ(0, memcmp(buf2
->data(), buf1
->data() + kSize
- 500, 500));
2134 EXPECT_EQ(0, ReadSparseData(entry
, 0, buf2
.get(), kSize
));
2136 // This read should not change anything.
2137 EXPECT_EQ(96, ReadSparseData(entry
, 24000, buf2
.get(), kSize
));
2138 EXPECT_EQ(500, ReadSparseData(entry
, kSize
, buf2
.get(), kSize
));
2139 EXPECT_EQ(0, ReadSparseData(entry
, 99, buf2
.get(), kSize
));
2143 net::TestCompletionCallback cb
;
2144 if (memory_only_
|| simple_cache_mode_
) {
2145 rv
= entry
->GetAvailableRange(0, 600, &start
, cb
.callback());
2146 EXPECT_EQ(100, cb
.GetResult(rv
));
2147 EXPECT_EQ(500, start
);
2149 rv
= entry
->GetAvailableRange(0, 2048, &start
, cb
.callback());
2150 EXPECT_EQ(1024, cb
.GetResult(rv
));
2151 EXPECT_EQ(1024, start
);
2153 rv
= entry
->GetAvailableRange(kSize
, kSize
, &start
, cb
.callback());
2154 EXPECT_EQ(500, cb
.GetResult(rv
));
2155 EXPECT_EQ(kSize
, start
);
2156 rv
= entry
->GetAvailableRange(20 * 1024, 10000, &start
, cb
.callback());
2157 EXPECT_EQ(3616, cb
.GetResult(rv
));
2158 EXPECT_EQ(20 * 1024, start
);
2160 // 1. Query before a filled 1KB block.
2161 // 2. Query within a filled 1KB block.
2162 // 3. Query beyond a filled 1KB block.
2163 if (memory_only_
|| simple_cache_mode_
) {
2164 rv
= entry
->GetAvailableRange(19400, kSize
, &start
, cb
.callback());
2165 EXPECT_EQ(3496, cb
.GetResult(rv
));
2166 EXPECT_EQ(20000, start
);
2168 rv
= entry
->GetAvailableRange(19400, kSize
, &start
, cb
.callback());
2169 EXPECT_EQ(3016, cb
.GetResult(rv
));
2170 EXPECT_EQ(20480, start
);
2172 rv
= entry
->GetAvailableRange(3073, kSize
, &start
, cb
.callback());
2173 EXPECT_EQ(1523, cb
.GetResult(rv
));
2174 EXPECT_EQ(3073, start
);
2175 rv
= entry
->GetAvailableRange(4600, kSize
, &start
, cb
.callback());
2176 EXPECT_EQ(0, cb
.GetResult(rv
));
2177 EXPECT_EQ(4600, start
);
2179 // Now make another write and verify that there is no hole in between.
2180 EXPECT_EQ(kSize
, WriteSparseData(entry
, 500 + kSize
, buf1
.get(), kSize
));
2181 rv
= entry
->GetAvailableRange(1024, 10000, &start
, cb
.callback());
2182 EXPECT_EQ(7 * 1024 + 500, cb
.GetResult(rv
));
2183 EXPECT_EQ(1024, start
);
2184 EXPECT_EQ(kSize
, ReadSparseData(entry
, kSize
, buf2
.get(), kSize
));
2185 EXPECT_EQ(0, memcmp(buf2
->data(), buf1
->data() + kSize
- 500, 500));
2186 EXPECT_EQ(0, memcmp(buf2
->data() + 500, buf1
->data(), kSize
- 500));
2191 TEST_F(DiskCacheEntryTest
, PartialSparseEntry
) {
2193 PartialSparseEntry();
2196 TEST_F(DiskCacheEntryTest
, MemoryPartialSparseEntry
) {
2197 SetMemoryOnlyMode();
2199 PartialSparseEntry();
2202 // Tests that corrupt sparse children are removed automatically.
2203 TEST_F(DiskCacheEntryTest
, CleanupSparseEntry
) {
2205 std::string
key("the first key");
2206 disk_cache::Entry
* entry
;
2207 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
2209 const int kSize
= 4 * 1024;
2210 scoped_refptr
<net::IOBuffer
> buf1(new net::IOBuffer(kSize
));
2211 CacheTestFillBuffer(buf1
->data(), kSize
, false);
2213 const int k1Meg
= 1024 * 1024;
2214 EXPECT_EQ(kSize
, WriteSparseData(entry
, 8192, buf1
.get(), kSize
));
2215 EXPECT_EQ(kSize
, WriteSparseData(entry
, k1Meg
+ 8192, buf1
.get(), kSize
));
2216 EXPECT_EQ(kSize
, WriteSparseData(entry
, 2 * k1Meg
+ 8192, buf1
.get(), kSize
));
2218 EXPECT_EQ(4, cache_
->GetEntryCount());
2220 scoped_ptr
<TestIterator
> iter
= CreateIterator();
2222 std::string child_key
[2];
2223 while (iter
->OpenNextEntry(&entry
) == net::OK
) {
2224 ASSERT_TRUE(entry
!= NULL
);
2225 // Writing to an entry will alter the LRU list and invalidate the iterator.
2226 if (entry
->GetKey() != key
&& count
< 2)
2227 child_key
[count
++] = entry
->GetKey();
2230 for (int i
= 0; i
< 2; i
++) {
2231 ASSERT_EQ(net::OK
, OpenEntry(child_key
[i
], &entry
));
2232 // Overwrite the header's magic and signature.
2233 EXPECT_EQ(12, WriteData(entry
, 2, 0, buf1
.get(), 12, false));
2237 EXPECT_EQ(4, cache_
->GetEntryCount());
2238 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
2240 // Two children should be gone. One while reading and one while writing.
2241 EXPECT_EQ(0, ReadSparseData(entry
, 2 * k1Meg
+ 8192, buf1
.get(), kSize
));
2242 EXPECT_EQ(kSize
, WriteSparseData(entry
, k1Meg
+ 16384, buf1
.get(), kSize
));
2243 EXPECT_EQ(0, ReadSparseData(entry
, k1Meg
+ 8192, buf1
.get(), kSize
));
2245 // We never touched this one.
2246 EXPECT_EQ(kSize
, ReadSparseData(entry
, 8192, buf1
.get(), kSize
));
2249 // We re-created one of the corrupt children.
2250 EXPECT_EQ(3, cache_
->GetEntryCount());
2253 TEST_F(DiskCacheEntryTest
, CancelSparseIO
) {
2256 std::string
key("the first key");
2257 disk_cache::Entry
* entry
;
2258 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
2260 const int kSize
= 40 * 1024;
2261 scoped_refptr
<net::IOBuffer
> buf(new net::IOBuffer(kSize
));
2262 CacheTestFillBuffer(buf
->data(), kSize
, false);
2264 // This will open and write two "real" entries.
2265 net::TestCompletionCallback cb1
, cb2
, cb3
, cb4
, cb5
;
2266 int rv
= entry
->WriteSparseData(
2267 1024 * 1024 - 4096, buf
.get(), kSize
, cb1
.callback());
2268 EXPECT_EQ(net::ERR_IO_PENDING
, rv
);
2271 rv
= entry
->GetAvailableRange(offset
, kSize
, &offset
, cb5
.callback());
2272 rv
= cb5
.GetResult(rv
);
2273 if (!cb1
.have_result()) {
2274 // We may or may not have finished writing to the entry. If we have not,
2275 // we cannot start another operation at this time.
2276 EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED
, rv
);
2279 // We cancel the pending operation, and register multiple notifications.
2280 entry
->CancelSparseIO();
2281 EXPECT_EQ(net::ERR_IO_PENDING
, entry
->ReadyForSparseIO(cb2
.callback()));
2282 EXPECT_EQ(net::ERR_IO_PENDING
, entry
->ReadyForSparseIO(cb3
.callback()));
2283 entry
->CancelSparseIO(); // Should be a no op at this point.
2284 EXPECT_EQ(net::ERR_IO_PENDING
, entry
->ReadyForSparseIO(cb4
.callback()));
2286 if (!cb1
.have_result()) {
2287 EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED
,
2288 entry
->ReadSparseData(
2289 offset
, buf
.get(), kSize
, net::CompletionCallback()));
2290 EXPECT_EQ(net::ERR_CACHE_OPERATION_NOT_SUPPORTED
,
2291 entry
->WriteSparseData(
2292 offset
, buf
.get(), kSize
, net::CompletionCallback()));
2295 // Now see if we receive all notifications. Note that we should not be able
2296 // to write everything (unless the timing of the system is really weird).
2297 rv
= cb1
.WaitForResult();
2298 EXPECT_TRUE(rv
== 4096 || rv
== kSize
);
2299 EXPECT_EQ(net::OK
, cb2
.WaitForResult());
2300 EXPECT_EQ(net::OK
, cb3
.WaitForResult());
2301 EXPECT_EQ(net::OK
, cb4
.WaitForResult());
2303 rv
= entry
->GetAvailableRange(offset
, kSize
, &offset
, cb5
.callback());
2304 EXPECT_EQ(0, cb5
.GetResult(rv
));
2308 // Tests that we perform sanity checks on an entry's key. Note that there are
2309 // other tests that exercise sanity checks by using saved corrupt files.
2310 TEST_F(DiskCacheEntryTest
, KeySanityCheck
) {
2313 std::string
key("the first key");
2314 disk_cache::Entry
* entry
;
2315 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
2317 disk_cache::EntryImpl
* entry_impl
=
2318 static_cast<disk_cache::EntryImpl
*>(entry
);
2319 disk_cache::EntryStore
* store
= entry_impl
->entry()->Data();
2321 // We have reserved space for a short key (one block), let's say that the key
2322 // takes more than one block, and remove the NULLs after the actual key.
2323 store
->key_len
= 800;
2324 memset(store
->key
+ key
.size(), 'k', sizeof(store
->key
) - key
.size());
2325 entry_impl
->entry()->set_modified();
2328 // We have a corrupt entry. Now reload it. We should NOT read beyond the
2329 // allocated buffer here.
2330 ASSERT_NE(net::OK
, OpenEntry(key
, &entry
));
2331 DisableIntegrityCheck();
2334 // The Simple Cache backend requires a few guarantees from the filesystem like
2335 // atomic renaming of recently open files. Those guarantees are not provided in
2336 // general on Windows.
2337 #if defined(OS_POSIX)
2339 TEST_F(DiskCacheEntryTest
, SimpleCacheInternalAsyncIO
) {
2340 SetSimpleCacheMode();
2345 TEST_F(DiskCacheEntryTest
, SimpleCacheExternalAsyncIO
) {
2346 SetSimpleCacheMode();
2351 TEST_F(DiskCacheEntryTest
, SimpleCacheReleaseBuffer
) {
2352 SetSimpleCacheMode();
2354 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2355 EXPECT_EQ(net::OK
, DoomAllEntries());
2360 TEST_F(DiskCacheEntryTest
, SimpleCacheStreamAccess
) {
2361 SetSimpleCacheMode();
2366 TEST_F(DiskCacheEntryTest
, SimpleCacheGetKey
) {
2367 SetSimpleCacheMode();
2372 TEST_F(DiskCacheEntryTest
, SimpleCacheGetTimes
) {
2373 SetSimpleCacheMode();
2375 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2376 EXPECT_EQ(net::OK
, DoomAllEntries());
2381 TEST_F(DiskCacheEntryTest
, SimpleCacheGrowData
) {
2382 SetSimpleCacheMode();
2384 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2385 EXPECT_EQ(net::OK
, DoomAllEntries());
2390 TEST_F(DiskCacheEntryTest
, SimpleCacheTruncateData
) {
2391 SetSimpleCacheMode();
2393 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2394 EXPECT_EQ(net::OK
, DoomAllEntries());
2399 TEST_F(DiskCacheEntryTest
, SimpleCacheZeroLengthIO
) {
2400 SetSimpleCacheMode();
2402 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2403 EXPECT_EQ(net::OK
, DoomAllEntries());
2408 TEST_F(DiskCacheEntryTest
, SimpleCacheSizeAtCreate
) {
2409 SetSimpleCacheMode();
2414 TEST_F(DiskCacheEntryTest
, SimpleCacheReuseExternalEntry
) {
2415 SetSimpleCacheMode();
2416 SetMaxSize(200 * 1024);
2418 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2419 EXPECT_EQ(net::OK
, DoomAllEntries());
2420 ReuseEntry(20 * 1024, i
);
2424 TEST_F(DiskCacheEntryTest
, SimpleCacheReuseInternalEntry
) {
2425 SetSimpleCacheMode();
2426 SetMaxSize(100 * 1024);
2428 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2429 EXPECT_EQ(net::OK
, DoomAllEntries());
2430 ReuseEntry(10 * 1024, i
);
2434 TEST_F(DiskCacheEntryTest
, SimpleCacheSizeChanges
) {
2435 SetSimpleCacheMode();
2437 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2438 EXPECT_EQ(net::OK
, DoomAllEntries());
2443 TEST_F(DiskCacheEntryTest
, SimpleCacheInvalidData
) {
2444 SetSimpleCacheMode();
2446 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2447 EXPECT_EQ(net::OK
, DoomAllEntries());
2452 TEST_F(DiskCacheEntryTest
, SimpleCacheReadWriteDestroyBuffer
) {
2453 // Proving that the test works well with optimistic operations enabled is
2454 // subtle, instead run only in APP_CACHE mode to disable optimistic
2455 // operations. Stream 0 always uses optimistic operations, so the test is not
2457 SetCacheType(net::APP_CACHE
);
2458 SetSimpleCacheMode();
2460 for (int i
= 1; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
2461 EXPECT_EQ(net::OK
, DoomAllEntries());
2462 ReadWriteDestroyBuffer(i
);
2466 TEST_F(DiskCacheEntryTest
, SimpleCacheDoomEntry
) {
2467 SetSimpleCacheMode();
2472 TEST_F(DiskCacheEntryTest
, SimpleCacheDoomEntryNextToOpenEntry
) {
2473 SetSimpleCacheMode();
2475 DoomEntryNextToOpenEntry();
2478 TEST_F(DiskCacheEntryTest
, SimpleCacheDoomedEntry
) {
2479 SetSimpleCacheMode();
2481 // Stream 2 is excluded because the implementation does not support writing to
2482 // it on a doomed entry, if it was previously lazily omitted.
2483 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
- 1; ++i
) {
2484 EXPECT_EQ(net::OK
, DoomAllEntries());
2489 // Creates an entry with corrupted last byte in stream 0.
2490 // Requires SimpleCacheMode.
2491 bool DiskCacheEntryTest::SimpleCacheMakeBadChecksumEntry(const std::string
& key
,
2493 disk_cache::Entry
* entry
= NULL
;
2495 if (CreateEntry(key
, &entry
) != net::OK
|| !entry
) {
2496 LOG(ERROR
) << "Could not create entry";
2500 const char data
[] = "this is very good data";
2501 const int kDataSize
= arraysize(data
);
2502 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kDataSize
));
2503 base::strlcpy(buffer
->data(), data
, kDataSize
);
2505 EXPECT_EQ(kDataSize
, WriteData(entry
, 1, 0, buffer
.get(), kDataSize
, false));
2509 // Corrupt the last byte of the data.
2510 base::FilePath entry_file0_path
= cache_path_
.AppendASCII(
2511 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key
, 0));
2512 base::File
entry_file0(entry_file0_path
,
2513 base::File::FLAG_WRITE
| base::File::FLAG_OPEN
);
2514 if (!entry_file0
.IsValid())
2518 sizeof(disk_cache::SimpleFileHeader
) + key
.size() + kDataSize
- 2;
2519 EXPECT_EQ(1, entry_file0
.Write(file_offset
, "X", 1));
2520 *data_size
= kDataSize
;
2524 // Tests that the simple cache can detect entries that have bad data.
2525 TEST_F(DiskCacheEntryTest
, SimpleCacheBadChecksum
) {
2526 SetSimpleCacheMode();
2529 const char key
[] = "the first key";
2531 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key
, &size_unused
));
2533 disk_cache::Entry
* entry
= NULL
;
2536 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
2537 ScopedEntryPtr
entry_closer(entry
);
2539 const int kReadBufferSize
= 200;
2540 EXPECT_GE(kReadBufferSize
, entry
->GetDataSize(1));
2541 scoped_refptr
<net::IOBuffer
> read_buffer(new net::IOBuffer(kReadBufferSize
));
2542 EXPECT_EQ(net::ERR_CACHE_CHECKSUM_MISMATCH
,
2543 ReadData(entry
, 1, 0, read_buffer
.get(), kReadBufferSize
));
2546 // Tests that an entry that has had an IO error occur can still be Doomed().
2547 TEST_F(DiskCacheEntryTest
, SimpleCacheErrorThenDoom
) {
2548 SetSimpleCacheMode();
2551 const char key
[] = "the first key";
2553 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key
, &size_unused
));
2555 disk_cache::Entry
* entry
= NULL
;
2557 // Open the entry, forcing an IO error.
2558 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
2559 ScopedEntryPtr
entry_closer(entry
);
2561 const int kReadBufferSize
= 200;
2562 EXPECT_GE(kReadBufferSize
, entry
->GetDataSize(1));
2563 scoped_refptr
<net::IOBuffer
> read_buffer(new net::IOBuffer(kReadBufferSize
));
2564 EXPECT_EQ(net::ERR_CACHE_CHECKSUM_MISMATCH
,
2565 ReadData(entry
, 1, 0, read_buffer
.get(), kReadBufferSize
));
2567 entry
->Doom(); // Should not crash.
2570 bool TruncatePath(const base::FilePath
& file_path
, int64 length
) {
2571 base::File
file(file_path
, base::File::FLAG_WRITE
| base::File::FLAG_OPEN
);
2572 if (!file
.IsValid())
2574 return file
.SetLength(length
);
2577 TEST_F(DiskCacheEntryTest
, SimpleCacheNoEOF
) {
2578 SetSimpleCacheMode();
2581 const char key
[] = "the first key";
2583 disk_cache::Entry
* entry
= NULL
;
2584 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
2585 disk_cache::Entry
* null
= NULL
;
2586 EXPECT_NE(null
, entry
);
2590 // Force the entry to flush to disk, so subsequent platform file operations
2592 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
2596 // Truncate the file such that the length isn't sufficient to have an EOF
2598 int kTruncationBytes
= -implicit_cast
<int>(sizeof(disk_cache::SimpleFileEOF
));
2599 const base::FilePath entry_path
= cache_path_
.AppendASCII(
2600 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key
, 0));
2601 const int64 invalid_size
=
2602 disk_cache::simple_util::GetFileSizeFromKeyAndDataSize(key
,
2604 EXPECT_TRUE(TruncatePath(entry_path
, invalid_size
));
2605 EXPECT_EQ(net::ERR_FAILED
, OpenEntry(key
, &entry
));
2606 DisableIntegrityCheck();
2609 TEST_F(DiskCacheEntryTest
, SimpleCacheNonOptimisticOperationsBasic
) {
2611 // Create, Write, Read, Close.
2612 SetCacheType(net::APP_CACHE
); // APP_CACHE doesn't use optimistic operations.
2613 SetSimpleCacheMode();
2615 disk_cache::Entry
* const null_entry
= NULL
;
2617 disk_cache::Entry
* entry
= NULL
;
2618 EXPECT_EQ(net::OK
, CreateEntry("my key", &entry
));
2619 ASSERT_NE(null_entry
, entry
);
2620 ScopedEntryPtr
entry_closer(entry
);
2622 const int kBufferSize
= 10;
2623 scoped_refptr
<net::IOBufferWithSize
> write_buffer(
2624 new net::IOBufferWithSize(kBufferSize
));
2625 CacheTestFillBuffer(write_buffer
->data(), write_buffer
->size(), false);
2627 write_buffer
->size(),
2628 WriteData(entry
, 1, 0, write_buffer
.get(), write_buffer
->size(), false));
2630 scoped_refptr
<net::IOBufferWithSize
> read_buffer(
2631 new net::IOBufferWithSize(kBufferSize
));
2632 EXPECT_EQ(read_buffer
->size(),
2633 ReadData(entry
, 1, 0, read_buffer
.get(), read_buffer
->size()));
2636 TEST_F(DiskCacheEntryTest
, SimpleCacheNonOptimisticOperationsDontBlock
) {
2638 // Create, Write, Close.
2639 SetCacheType(net::APP_CACHE
); // APP_CACHE doesn't use optimistic operations.
2640 SetSimpleCacheMode();
2642 disk_cache::Entry
* const null_entry
= NULL
;
2644 MessageLoopHelper helper
;
2645 CallbackTest
create_callback(&helper
, false);
2647 int expected_callback_runs
= 0;
2648 const int kBufferSize
= 10;
2649 scoped_refptr
<net::IOBufferWithSize
> write_buffer(
2650 new net::IOBufferWithSize(kBufferSize
));
2652 disk_cache::Entry
* entry
= NULL
;
2653 EXPECT_EQ(net::OK
, CreateEntry("my key", &entry
));
2654 ASSERT_NE(null_entry
, entry
);
2655 ScopedEntryPtr
entry_closer(entry
);
2657 CacheTestFillBuffer(write_buffer
->data(), write_buffer
->size(), false);
2658 CallbackTest
write_callback(&helper
, false);
2659 int ret
= entry
->WriteData(
2663 write_buffer
->size(),
2664 base::Bind(&CallbackTest::Run
, base::Unretained(&write_callback
)),
2666 ASSERT_EQ(net::ERR_IO_PENDING
, ret
);
2667 helper
.WaitUntilCacheIoFinished(++expected_callback_runs
);
2670 TEST_F(DiskCacheEntryTest
,
2671 SimpleCacheNonOptimisticOperationsBasicsWithoutWaiting
) {
2673 // Create, Write, Read, Close.
2674 SetCacheType(net::APP_CACHE
); // APP_CACHE doesn't use optimistic operations.
2675 SetSimpleCacheMode();
2677 disk_cache::Entry
* const null_entry
= NULL
;
2678 MessageLoopHelper helper
;
2680 disk_cache::Entry
* entry
= NULL
;
2681 // Note that |entry| is only set once CreateEntry() completed which is why we
2682 // have to wait (i.e. use the helper CreateEntry() function).
2683 EXPECT_EQ(net::OK
, CreateEntry("my key", &entry
));
2684 ASSERT_NE(null_entry
, entry
);
2685 ScopedEntryPtr
entry_closer(entry
);
2687 const int kBufferSize
= 10;
2688 scoped_refptr
<net::IOBufferWithSize
> write_buffer(
2689 new net::IOBufferWithSize(kBufferSize
));
2690 CacheTestFillBuffer(write_buffer
->data(), write_buffer
->size(), false);
2691 CallbackTest
write_callback(&helper
, false);
2692 int ret
= entry
->WriteData(
2696 write_buffer
->size(),
2697 base::Bind(&CallbackTest::Run
, base::Unretained(&write_callback
)),
2699 EXPECT_EQ(net::ERR_IO_PENDING
, ret
);
2700 int expected_callback_runs
= 1;
2702 scoped_refptr
<net::IOBufferWithSize
> read_buffer(
2703 new net::IOBufferWithSize(kBufferSize
));
2704 CallbackTest
read_callback(&helper
, false);
2705 ret
= entry
->ReadData(
2709 read_buffer
->size(),
2710 base::Bind(&CallbackTest::Run
, base::Unretained(&read_callback
)));
2711 EXPECT_EQ(net::ERR_IO_PENDING
, ret
);
2712 ++expected_callback_runs
;
2714 helper
.WaitUntilCacheIoFinished(expected_callback_runs
);
2715 ASSERT_EQ(read_buffer
->size(), write_buffer
->size());
2718 memcmp(read_buffer
->data(), write_buffer
->data(), read_buffer
->size()));
2721 TEST_F(DiskCacheEntryTest
, SimpleCacheOptimistic
) {
2723 // Create, Write, Read, Write, Read, Close.
2724 SetSimpleCacheMode();
2726 disk_cache::Entry
* null
= NULL
;
2727 const char key
[] = "the first key";
2729 MessageLoopHelper helper
;
2730 CallbackTest
callback1(&helper
, false);
2731 CallbackTest
callback2(&helper
, false);
2732 CallbackTest
callback3(&helper
, false);
2733 CallbackTest
callback4(&helper
, false);
2734 CallbackTest
callback5(&helper
, false);
2737 const int kSize1
= 10;
2738 const int kSize2
= 20;
2739 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
2740 scoped_refptr
<net::IOBuffer
> buffer1_read(new net::IOBuffer(kSize1
));
2741 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize2
));
2742 scoped_refptr
<net::IOBuffer
> buffer2_read(new net::IOBuffer(kSize2
));
2743 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
2744 CacheTestFillBuffer(buffer2
->data(), kSize2
, false);
2746 disk_cache::Entry
* entry
= NULL
;
2747 // Create is optimistic, must return OK.
2749 cache_
->CreateEntry(key
, &entry
,
2750 base::Bind(&CallbackTest::Run
,
2751 base::Unretained(&callback1
))));
2752 EXPECT_NE(null
, entry
);
2753 ScopedEntryPtr
entry_closer(entry
);
2755 // This write may or may not be optimistic (it depends if the previous
2756 // optimistic create already finished by the time we call the write here).
2757 int ret
= entry
->WriteData(
2762 base::Bind(&CallbackTest::Run
, base::Unretained(&callback2
)),
2764 EXPECT_TRUE(kSize1
== ret
|| net::ERR_IO_PENDING
== ret
);
2765 if (net::ERR_IO_PENDING
== ret
)
2768 // This Read must not be optimistic, since we don't support that yet.
2769 EXPECT_EQ(net::ERR_IO_PENDING
,
2775 base::Bind(&CallbackTest::Run
, base::Unretained(&callback3
))));
2777 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
2778 EXPECT_EQ(0, memcmp(buffer1
->data(), buffer1_read
->data(), kSize1
));
2780 // At this point after waiting, the pending operations queue on the entry
2781 // should be empty, so the next Write operation must run as optimistic.
2788 base::Bind(&CallbackTest::Run
, base::Unretained(&callback4
)),
2791 // Lets do another read so we block until both the write and the read
2792 // operation finishes and we can then test for HasOneRef() below.
2793 EXPECT_EQ(net::ERR_IO_PENDING
,
2799 base::Bind(&CallbackTest::Run
, base::Unretained(&callback5
))));
2802 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
2803 EXPECT_EQ(0, memcmp(buffer2
->data(), buffer2_read
->data(), kSize2
));
2805 // Check that we are not leaking.
2806 EXPECT_NE(entry
, null
);
2808 static_cast<disk_cache::SimpleEntryImpl
*>(entry
)->HasOneRef());
2811 TEST_F(DiskCacheEntryTest
, SimpleCacheOptimistic2
) {
2813 // Create, Open, Close, Close.
2814 SetSimpleCacheMode();
2816 disk_cache::Entry
* null
= NULL
;
2817 const char key
[] = "the first key";
2819 MessageLoopHelper helper
;
2820 CallbackTest
callback1(&helper
, false);
2821 CallbackTest
callback2(&helper
, false);
2823 disk_cache::Entry
* entry
= NULL
;
2825 cache_
->CreateEntry(key
, &entry
,
2826 base::Bind(&CallbackTest::Run
,
2827 base::Unretained(&callback1
))));
2828 EXPECT_NE(null
, entry
);
2829 ScopedEntryPtr
entry_closer(entry
);
2831 disk_cache::Entry
* entry2
= NULL
;
2832 ASSERT_EQ(net::ERR_IO_PENDING
,
2833 cache_
->OpenEntry(key
, &entry2
,
2834 base::Bind(&CallbackTest::Run
,
2835 base::Unretained(&callback2
))));
2836 ASSERT_TRUE(helper
.WaitUntilCacheIoFinished(1));
2838 EXPECT_NE(null
, entry2
);
2839 EXPECT_EQ(entry
, entry2
);
2841 // We have to call close twice, since we called create and open above.
2844 // Check that we are not leaking.
2846 static_cast<disk_cache::SimpleEntryImpl
*>(entry
)->HasOneRef());
2849 TEST_F(DiskCacheEntryTest
, SimpleCacheOptimistic3
) {
2851 // Create, Close, Open, Close.
2852 SetSimpleCacheMode();
2854 disk_cache::Entry
* null
= NULL
;
2855 const char key
[] = "the first key";
2857 disk_cache::Entry
* entry
= NULL
;
2859 cache_
->CreateEntry(key
, &entry
, net::CompletionCallback()));
2860 EXPECT_NE(null
, entry
);
2863 net::TestCompletionCallback cb
;
2864 disk_cache::Entry
* entry2
= NULL
;
2865 ASSERT_EQ(net::ERR_IO_PENDING
,
2866 cache_
->OpenEntry(key
, &entry2
, cb
.callback()));
2867 ASSERT_EQ(net::OK
, cb
.GetResult(net::ERR_IO_PENDING
));
2868 ScopedEntryPtr
entry_closer(entry2
);
2870 EXPECT_NE(null
, entry2
);
2871 EXPECT_EQ(entry
, entry2
);
2873 // Check that we are not leaking.
2875 static_cast<disk_cache::SimpleEntryImpl
*>(entry2
)->HasOneRef());
2878 TEST_F(DiskCacheEntryTest
, SimpleCacheOptimistic4
) {
2880 // Create, Close, Write, Open, Open, Close, Write, Read, Close.
2881 SetSimpleCacheMode();
2883 disk_cache::Entry
* null
= NULL
;
2884 const char key
[] = "the first key";
2886 net::TestCompletionCallback cb
;
2887 const int kSize1
= 10;
2888 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
2889 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
2890 disk_cache::Entry
* entry
= NULL
;
2893 cache_
->CreateEntry(key
, &entry
, net::CompletionCallback()));
2894 EXPECT_NE(null
, entry
);
2897 // Lets do a Write so we block until both the Close and the Write
2898 // operation finishes. Write must fail since we are writing in a closed entry.
2900 net::ERR_IO_PENDING
,
2901 entry
->WriteData(1, 0, buffer1
.get(), kSize1
, cb
.callback(), false));
2902 EXPECT_EQ(net::ERR_FAILED
, cb
.GetResult(net::ERR_IO_PENDING
));
2904 // Finish running the pending tasks so that we fully complete the close
2905 // operation and destroy the entry object.
2906 base::MessageLoop::current()->RunUntilIdle();
2908 // At this point the |entry| must have been destroyed, and called
2909 // RemoveSelfFromBackend().
2910 disk_cache::Entry
* entry2
= NULL
;
2911 ASSERT_EQ(net::ERR_IO_PENDING
,
2912 cache_
->OpenEntry(key
, &entry2
, cb
.callback()));
2913 ASSERT_EQ(net::OK
, cb
.GetResult(net::ERR_IO_PENDING
));
2914 EXPECT_NE(null
, entry2
);
2916 disk_cache::Entry
* entry3
= NULL
;
2917 ASSERT_EQ(net::ERR_IO_PENDING
,
2918 cache_
->OpenEntry(key
, &entry3
, cb
.callback()));
2919 ASSERT_EQ(net::OK
, cb
.GetResult(net::ERR_IO_PENDING
));
2920 EXPECT_NE(null
, entry3
);
2921 EXPECT_EQ(entry2
, entry3
);
2924 // The previous Close doesn't actually closes the entry since we opened it
2925 // twice, so the next Write operation must succeed and it must be able to
2926 // perform it optimistically, since there is no operation running on this
2930 1, 0, buffer1
.get(), kSize1
, net::CompletionCallback(), false));
2932 // Lets do another read so we block until both the write and the read
2933 // operation finishes and we can then test for HasOneRef() below.
2934 EXPECT_EQ(net::ERR_IO_PENDING
,
2935 entry2
->ReadData(1, 0, buffer1
.get(), kSize1
, cb
.callback()));
2936 EXPECT_EQ(kSize1
, cb
.GetResult(net::ERR_IO_PENDING
));
2938 // Check that we are not leaking.
2940 static_cast<disk_cache::SimpleEntryImpl
*>(entry2
)->HasOneRef());
2944 TEST_F(DiskCacheEntryTest
, SimpleCacheOptimistic5
) {
2946 // Create, Doom, Write, Read, Close.
2947 SetSimpleCacheMode();
2949 disk_cache::Entry
* null
= NULL
;
2950 const char key
[] = "the first key";
2952 net::TestCompletionCallback cb
;
2953 const int kSize1
= 10;
2954 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
2955 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
2956 disk_cache::Entry
* entry
= NULL
;
2959 cache_
->CreateEntry(key
, &entry
, net::CompletionCallback()));
2960 EXPECT_NE(null
, entry
);
2961 ScopedEntryPtr
entry_closer(entry
);
2965 net::ERR_IO_PENDING
,
2966 entry
->WriteData(1, 0, buffer1
.get(), kSize1
, cb
.callback(), false));
2967 EXPECT_EQ(kSize1
, cb
.GetResult(net::ERR_IO_PENDING
));
2969 EXPECT_EQ(net::ERR_IO_PENDING
,
2970 entry
->ReadData(1, 0, buffer1
.get(), kSize1
, cb
.callback()));
2971 EXPECT_EQ(kSize1
, cb
.GetResult(net::ERR_IO_PENDING
));
2973 // Check that we are not leaking.
2975 static_cast<disk_cache::SimpleEntryImpl
*>(entry
)->HasOneRef());
2978 TEST_F(DiskCacheEntryTest
, SimpleCacheOptimistic6
) {
2980 // Create, Write, Doom, Doom, Read, Doom, Close.
2981 SetSimpleCacheMode();
2983 disk_cache::Entry
* null
= NULL
;
2984 const char key
[] = "the first key";
2986 net::TestCompletionCallback cb
;
2987 const int kSize1
= 10;
2988 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
2989 scoped_refptr
<net::IOBuffer
> buffer1_read(new net::IOBuffer(kSize1
));
2990 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
2991 disk_cache::Entry
* entry
= NULL
;
2994 cache_
->CreateEntry(key
, &entry
, net::CompletionCallback()));
2995 EXPECT_NE(null
, entry
);
2996 ScopedEntryPtr
entry_closer(entry
);
2999 net::ERR_IO_PENDING
,
3000 entry
->WriteData(1, 0, buffer1
.get(), kSize1
, cb
.callback(), false));
3001 EXPECT_EQ(kSize1
, cb
.GetResult(net::ERR_IO_PENDING
));
3006 // This Read must not be optimistic, since we don't support that yet.
3007 EXPECT_EQ(net::ERR_IO_PENDING
,
3008 entry
->ReadData(1, 0, buffer1_read
.get(), kSize1
, cb
.callback()));
3009 EXPECT_EQ(kSize1
, cb
.GetResult(net::ERR_IO_PENDING
));
3010 EXPECT_EQ(0, memcmp(buffer1
->data(), buffer1_read
->data(), kSize1
));
3015 // Confirm that IO buffers are not referenced by the Simple Cache after a write
3017 TEST_F(DiskCacheEntryTest
, SimpleCacheOptimisticWriteReleases
) {
3018 SetSimpleCacheMode();
3021 const char key
[] = "the first key";
3022 disk_cache::Entry
* entry
= NULL
;
3024 // First, an optimistic create.
3026 cache_
->CreateEntry(key
, &entry
, net::CompletionCallback()));
3028 ScopedEntryPtr
entry_closer(entry
);
3030 const int kWriteSize
= 512;
3031 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kWriteSize
));
3032 EXPECT_TRUE(buffer1
->HasOneRef());
3033 CacheTestFillBuffer(buffer1
->data(), kWriteSize
, false);
3035 // An optimistic write happens only when there is an empty queue of pending
3036 // operations. To ensure the queue is empty, we issue a write and wait until
3038 EXPECT_EQ(kWriteSize
,
3039 WriteData(entry
, 1, 0, buffer1
.get(), kWriteSize
, false));
3040 EXPECT_TRUE(buffer1
->HasOneRef());
3042 // Finally, we should perform an optimistic write and confirm that all
3043 // references to the IO buffer have been released.
3047 1, 0, buffer1
.get(), kWriteSize
, net::CompletionCallback(), false));
3048 EXPECT_TRUE(buffer1
->HasOneRef());
3051 TEST_F(DiskCacheEntryTest
, SimpleCacheCreateDoomRace
) {
3053 // Create, Doom, Write, Close, Check files are not on disk anymore.
3054 SetSimpleCacheMode();
3056 disk_cache::Entry
* null
= NULL
;
3057 const char key
[] = "the first key";
3059 net::TestCompletionCallback cb
;
3060 const int kSize1
= 10;
3061 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize1
));
3062 CacheTestFillBuffer(buffer1
->data(), kSize1
, false);
3063 disk_cache::Entry
* entry
= NULL
;
3066 cache_
->CreateEntry(key
, &entry
, net::CompletionCallback()));
3067 EXPECT_NE(null
, entry
);
3069 EXPECT_EQ(net::ERR_IO_PENDING
, cache_
->DoomEntry(key
, cb
.callback()));
3070 EXPECT_EQ(net::OK
, cb
.GetResult(net::ERR_IO_PENDING
));
3074 entry
->WriteData(0, 0, buffer1
.get(), kSize1
, cb
.callback(), false));
3078 // Finish running the pending tasks so that we fully complete the close
3079 // operation and destroy the entry object.
3080 base::MessageLoop::current()->RunUntilIdle();
3082 for (int i
= 0; i
< disk_cache::kSimpleEntryFileCount
; ++i
) {
3083 base::FilePath entry_file_path
= cache_path_
.AppendASCII(
3084 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key
, i
));
3085 base::File::Info info
;
3086 EXPECT_FALSE(base::GetFileInfo(entry_file_path
, &info
));
3090 TEST_F(DiskCacheEntryTest
, SimpleCacheDoomCreateRace
) {
3091 // This test runs as APP_CACHE to make operations more synchronous. Test
3093 // Create, Doom, Create.
3094 SetCacheType(net::APP_CACHE
);
3095 SetSimpleCacheMode();
3097 disk_cache::Entry
* null
= NULL
;
3098 const char key
[] = "the first key";
3100 net::TestCompletionCallback create_callback
;
3102 disk_cache::Entry
* entry1
= NULL
;
3104 create_callback
.GetResult(
3105 cache_
->CreateEntry(key
, &entry1
, create_callback
.callback())));
3106 ScopedEntryPtr
entry1_closer(entry1
);
3107 EXPECT_NE(null
, entry1
);
3109 net::TestCompletionCallback doom_callback
;
3110 EXPECT_EQ(net::ERR_IO_PENDING
,
3111 cache_
->DoomEntry(key
, doom_callback
.callback()));
3113 disk_cache::Entry
* entry2
= NULL
;
3115 create_callback
.GetResult(
3116 cache_
->CreateEntry(key
, &entry2
, create_callback
.callback())));
3117 ScopedEntryPtr
entry2_closer(entry2
);
3118 EXPECT_EQ(net::OK
, doom_callback
.GetResult(net::ERR_IO_PENDING
));
3121 TEST_F(DiskCacheEntryTest
, SimpleCacheDoomDoom
) {
3123 // Create, Doom, Create, Doom (1st entry), Open.
3124 SetSimpleCacheMode();
3126 disk_cache::Entry
* null
= NULL
;
3128 const char key
[] = "the first key";
3130 disk_cache::Entry
* entry1
= NULL
;
3131 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry1
));
3132 ScopedEntryPtr
entry1_closer(entry1
);
3133 EXPECT_NE(null
, entry1
);
3135 EXPECT_EQ(net::OK
, DoomEntry(key
));
3137 disk_cache::Entry
* entry2
= NULL
;
3138 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry2
));
3139 ScopedEntryPtr
entry2_closer(entry2
);
3140 EXPECT_NE(null
, entry2
);
3142 // Redundantly dooming entry1 should not delete entry2.
3143 disk_cache::SimpleEntryImpl
* simple_entry1
=
3144 static_cast<disk_cache::SimpleEntryImpl
*>(entry1
);
3145 net::TestCompletionCallback cb
;
3147 cb
.GetResult(simple_entry1
->DoomEntry(cb
.callback())));
3149 disk_cache::Entry
* entry3
= NULL
;
3150 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry3
));
3151 ScopedEntryPtr
entry3_closer(entry3
);
3152 EXPECT_NE(null
, entry3
);
3155 TEST_F(DiskCacheEntryTest
, SimpleCacheDoomCreateDoom
) {
3157 // Create, Doom, Create, Doom.
3158 SetSimpleCacheMode();
3161 disk_cache::Entry
* null
= NULL
;
3163 const char key
[] = "the first key";
3165 disk_cache::Entry
* entry1
= NULL
;
3166 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry1
));
3167 ScopedEntryPtr
entry1_closer(entry1
);
3168 EXPECT_NE(null
, entry1
);
3172 disk_cache::Entry
* entry2
= NULL
;
3173 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry2
));
3174 ScopedEntryPtr
entry2_closer(entry2
);
3175 EXPECT_NE(null
, entry2
);
3179 // This test passes if it doesn't crash.
3182 TEST_F(DiskCacheEntryTest
, SimpleCacheDoomCloseCreateCloseOpen
) {
3183 // Test sequence: Create, Doom, Close, Create, Close, Open.
3184 SetSimpleCacheMode();
3187 disk_cache::Entry
* null
= NULL
;
3189 const char key
[] = "this is a key";
3191 disk_cache::Entry
* entry1
= NULL
;
3192 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry1
));
3193 ScopedEntryPtr
entry1_closer(entry1
);
3194 EXPECT_NE(null
, entry1
);
3197 entry1_closer
.reset();
3200 disk_cache::Entry
* entry2
= NULL
;
3201 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry2
));
3202 ScopedEntryPtr
entry2_closer(entry2
);
3203 EXPECT_NE(null
, entry2
);
3205 entry2_closer
.reset();
3208 disk_cache::Entry
* entry3
= NULL
;
3209 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry3
));
3210 ScopedEntryPtr
entry3_closer(entry3
);
3211 EXPECT_NE(null
, entry3
);
3214 // Checks that an optimistic Create would fail later on a racing Open.
3215 TEST_F(DiskCacheEntryTest
, SimpleCacheOptimisticCreateFailsOnOpen
) {
3216 SetSimpleCacheMode();
3219 // Create a corrupt file in place of a future entry. Optimistic create should
3220 // initially succeed, but realize later that creation failed.
3221 const std::string key
= "the key";
3222 net::TestCompletionCallback cb
;
3223 disk_cache::Entry
* entry
= NULL
;
3224 disk_cache::Entry
* entry2
= NULL
;
3226 EXPECT_TRUE(disk_cache::simple_util::CreateCorruptFileForTests(
3228 EXPECT_EQ(net::OK
, cache_
->CreateEntry(key
, &entry
, cb
.callback()));
3230 ScopedEntryPtr
entry_closer(entry
);
3231 ASSERT_NE(net::OK
, OpenEntry(key
, &entry2
));
3233 // Check that we are not leaking.
3235 static_cast<disk_cache::SimpleEntryImpl
*>(entry
)->HasOneRef());
3237 DisableIntegrityCheck();
3240 // Tests that old entries are evicted while new entries remain in the index.
3241 // This test relies on non-mandatory properties of the simple Cache Backend:
3242 // LRU eviction, specific values of high-watermark and low-watermark etc.
3243 // When changing the eviction algorithm, the test will have to be re-engineered.
3244 TEST_F(DiskCacheEntryTest
, SimpleCacheEvictOldEntries
) {
3245 const int kMaxSize
= 200 * 1024;
3246 const int kWriteSize
= kMaxSize
/ 10;
3247 const int kNumExtraEntries
= 12;
3248 SetSimpleCacheMode();
3249 SetMaxSize(kMaxSize
);
3252 std::string
key1("the first key");
3253 disk_cache::Entry
* entry
;
3254 ASSERT_EQ(net::OK
, CreateEntry(key1
, &entry
));
3255 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kWriteSize
));
3256 CacheTestFillBuffer(buffer
->data(), kWriteSize
, false);
3257 EXPECT_EQ(kWriteSize
,
3258 WriteData(entry
, 1, 0, buffer
.get(), kWriteSize
, false));
3262 std::string
key2("the key prefix");
3263 for (int i
= 0; i
< kNumExtraEntries
; i
++) {
3264 if (i
== kNumExtraEntries
- 2) {
3265 // Create a distinct timestamp for the last two entries. These entries
3266 // will be checked for outliving the eviction.
3269 ASSERT_EQ(net::OK
, CreateEntry(key2
+ base::StringPrintf("%d", i
), &entry
));
3270 ScopedEntryPtr
entry_closer(entry
);
3271 EXPECT_EQ(kWriteSize
,
3272 WriteData(entry
, 1, 0, buffer
.get(), kWriteSize
, false));
3275 // TODO(pasko): Find a way to wait for the eviction task(s) to finish by using
3276 // the internal knowledge about |SimpleBackendImpl|.
3277 ASSERT_NE(net::OK
, OpenEntry(key1
, &entry
))
3278 << "Should have evicted the old entry";
3279 for (int i
= 0; i
< 2; i
++) {
3280 int entry_no
= kNumExtraEntries
- i
- 1;
3281 // Generally there is no guarantee that at this point the backround eviction
3282 // is finished. We are testing the positive case, i.e. when the eviction
3283 // never reaches this entry, should be non-flaky.
3284 ASSERT_EQ(net::OK
, OpenEntry(key2
+ base::StringPrintf("%d", entry_no
),
3286 << "Should not have evicted fresh entry " << entry_no
;
3291 // Tests that if a read and a following in-flight truncate are both in progress
3292 // simultaniously that they both can occur successfully. See
3293 // http://crbug.com/239223
3294 TEST_F(DiskCacheEntryTest
, SimpleCacheInFlightTruncate
) {
3295 SetSimpleCacheMode();
3298 const char key
[] = "the first key";
3300 const int kBufferSize
= 1024;
3301 scoped_refptr
<net::IOBuffer
> write_buffer(new net::IOBuffer(kBufferSize
));
3302 CacheTestFillBuffer(write_buffer
->data(), kBufferSize
, false);
3304 disk_cache::Entry
* entry
= NULL
;
3305 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3307 EXPECT_EQ(kBufferSize
,
3308 WriteData(entry
, 1, 0, write_buffer
.get(), kBufferSize
, false));
3312 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3313 ScopedEntryPtr
entry_closer(entry
);
3315 MessageLoopHelper helper
;
3318 // Make a short read.
3319 const int kReadBufferSize
= 512;
3320 scoped_refptr
<net::IOBuffer
> read_buffer(new net::IOBuffer(kReadBufferSize
));
3321 CallbackTest
read_callback(&helper
, false);
3322 EXPECT_EQ(net::ERR_IO_PENDING
,
3327 base::Bind(&CallbackTest::Run
,
3328 base::Unretained(&read_callback
))));
3331 // Truncate the entry to the length of that read.
3332 scoped_refptr
<net::IOBuffer
>
3333 truncate_buffer(new net::IOBuffer(kReadBufferSize
));
3334 CacheTestFillBuffer(truncate_buffer
->data(), kReadBufferSize
, false);
3335 CallbackTest
truncate_callback(&helper
, false);
3336 EXPECT_EQ(net::ERR_IO_PENDING
,
3339 truncate_buffer
.get(),
3341 base::Bind(&CallbackTest::Run
,
3342 base::Unretained(&truncate_callback
)),
3346 // Wait for both the read and truncation to finish, and confirm that both
3348 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
3349 EXPECT_EQ(kReadBufferSize
, read_callback
.last_result());
3350 EXPECT_EQ(kReadBufferSize
, truncate_callback
.last_result());
3352 memcmp(write_buffer
->data(), read_buffer
->data(), kReadBufferSize
));
3355 // Tests that if a write and a read dependant on it are both in flight
3356 // simultaneiously that they both can complete successfully without erroneous
3357 // early returns. See http://crbug.com/239223
3358 TEST_F(DiskCacheEntryTest
, SimpleCacheInFlightRead
) {
3359 SetSimpleCacheMode();
3362 const char key
[] = "the first key";
3363 disk_cache::Entry
* entry
= NULL
;
3365 cache_
->CreateEntry(key
, &entry
, net::CompletionCallback()));
3366 ScopedEntryPtr
entry_closer(entry
);
3368 const int kBufferSize
= 1024;
3369 scoped_refptr
<net::IOBuffer
> write_buffer(new net::IOBuffer(kBufferSize
));
3370 CacheTestFillBuffer(write_buffer
->data(), kBufferSize
, false);
3372 MessageLoopHelper helper
;
3375 CallbackTest
write_callback(&helper
, false);
3376 EXPECT_EQ(net::ERR_IO_PENDING
,
3381 base::Bind(&CallbackTest::Run
,
3382 base::Unretained(&write_callback
)),
3386 scoped_refptr
<net::IOBuffer
> read_buffer(new net::IOBuffer(kBufferSize
));
3387 CallbackTest
read_callback(&helper
, false);
3388 EXPECT_EQ(net::ERR_IO_PENDING
,
3393 base::Bind(&CallbackTest::Run
,
3394 base::Unretained(&read_callback
))));
3397 EXPECT_TRUE(helper
.WaitUntilCacheIoFinished(expected
));
3398 EXPECT_EQ(kBufferSize
, write_callback
.last_result());
3399 EXPECT_EQ(kBufferSize
, read_callback
.last_result());
3400 EXPECT_EQ(0, memcmp(write_buffer
->data(), read_buffer
->data(), kBufferSize
));
3403 TEST_F(DiskCacheEntryTest
, SimpleCacheOpenCreateRaceWithNoIndex
) {
3404 SetSimpleCacheMode();
3405 DisableSimpleCacheWaitForIndex();
3406 DisableIntegrityCheck();
3409 // Assume the index is not initialized, which is likely, since we are blocking
3410 // the IO thread from executing the index finalization step.
3411 disk_cache::Entry
* entry1
;
3412 net::TestCompletionCallback cb1
;
3413 disk_cache::Entry
* entry2
;
3414 net::TestCompletionCallback cb2
;
3415 int rv1
= cache_
->OpenEntry("key", &entry1
, cb1
.callback());
3416 int rv2
= cache_
->CreateEntry("key", &entry2
, cb2
.callback());
3418 EXPECT_EQ(net::ERR_FAILED
, cb1
.GetResult(rv1
));
3419 ASSERT_EQ(net::OK
, cb2
.GetResult(rv2
));
3423 // Checks that reading two entries simultaneously does not discard a CRC check.
3424 // TODO(pasko): make it work with Simple Cache.
3425 TEST_F(DiskCacheEntryTest
, DISABLED_SimpleCacheMultipleReadersCheckCRC
) {
3426 SetSimpleCacheMode();
3429 const char key
[] = "key";
3432 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key
, &size
));
3434 scoped_refptr
<net::IOBuffer
> read_buffer1(new net::IOBuffer(size
));
3435 scoped_refptr
<net::IOBuffer
> read_buffer2(new net::IOBuffer(size
));
3437 // Advance the first reader a little.
3438 disk_cache::Entry
* entry
= NULL
;
3439 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3440 EXPECT_EQ(1, ReadData(entry
, 0, 0, read_buffer1
.get(), 1));
3442 // Make the second reader pass the point where the first one is, and close.
3443 disk_cache::Entry
* entry2
= NULL
;
3444 EXPECT_EQ(net::OK
, OpenEntry(key
, &entry2
));
3445 EXPECT_EQ(1, ReadData(entry2
, 0, 0, read_buffer2
.get(), 1));
3446 EXPECT_EQ(1, ReadData(entry2
, 0, 1, read_buffer2
.get(), 1));
3449 // Read the data till the end should produce an error.
3450 EXPECT_GT(0, ReadData(entry
, 0, 1, read_buffer1
.get(), size
));
3452 DisableIntegrityCheck();
3455 // Checking one more scenario of overlapped reading of a bad entry.
3456 // Differs from the |SimpleCacheMultipleReadersCheckCRC| only by the order of
3458 TEST_F(DiskCacheEntryTest
, SimpleCacheMultipleReadersCheckCRC2
) {
3459 SetSimpleCacheMode();
3462 const char key
[] = "key";
3464 ASSERT_TRUE(SimpleCacheMakeBadChecksumEntry(key
, &size
));
3466 scoped_refptr
<net::IOBuffer
> read_buffer1(new net::IOBuffer(size
));
3467 scoped_refptr
<net::IOBuffer
> read_buffer2(new net::IOBuffer(size
));
3469 // Advance the first reader a little.
3470 disk_cache::Entry
* entry
= NULL
;
3471 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3472 ScopedEntryPtr
entry_closer(entry
);
3473 EXPECT_EQ(1, ReadData(entry
, 1, 0, read_buffer1
.get(), 1));
3475 // Advance the 2nd reader by the same amount.
3476 disk_cache::Entry
* entry2
= NULL
;
3477 EXPECT_EQ(net::OK
, OpenEntry(key
, &entry2
));
3478 ScopedEntryPtr
entry2_closer(entry2
);
3479 EXPECT_EQ(1, ReadData(entry2
, 1, 0, read_buffer2
.get(), 1));
3481 // Continue reading 1st.
3482 EXPECT_GT(0, ReadData(entry
, 1, 1, read_buffer1
.get(), size
));
3484 // This read should fail as well because we have previous read failures.
3485 EXPECT_GT(0, ReadData(entry2
, 1, 1, read_buffer2
.get(), 1));
3486 DisableIntegrityCheck();
3489 // Test if we can sequentially read each subset of the data until all the data
3490 // is read, then the CRC is calculated correctly and the reads are successful.
3491 TEST_F(DiskCacheEntryTest
, SimpleCacheReadCombineCRC
) {
3493 // Create, Write, Read (first half of data), Read (second half of data),
3495 SetSimpleCacheMode();
3497 disk_cache::Entry
* null
= NULL
;
3498 const char key
[] = "the first key";
3500 const int kHalfSize
= 200;
3501 const int kSize
= 2 * kHalfSize
;
3502 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize
));
3503 CacheTestFillBuffer(buffer1
->data(), kSize
, false);
3504 disk_cache::Entry
* entry
= NULL
;
3506 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3507 EXPECT_NE(null
, entry
);
3509 EXPECT_EQ(kSize
, WriteData(entry
, 1, 0, buffer1
.get(), kSize
, false));
3512 disk_cache::Entry
* entry2
= NULL
;
3513 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry2
));
3514 EXPECT_EQ(entry
, entry2
);
3516 // Read the first half of the data.
3518 int buf_len
= kHalfSize
;
3519 scoped_refptr
<net::IOBuffer
> buffer1_read1(new net::IOBuffer(buf_len
));
3520 EXPECT_EQ(buf_len
, ReadData(entry2
, 1, offset
, buffer1_read1
.get(), buf_len
));
3521 EXPECT_EQ(0, memcmp(buffer1
->data(), buffer1_read1
->data(), buf_len
));
3523 // Read the second half of the data.
3525 buf_len
= kHalfSize
;
3526 scoped_refptr
<net::IOBuffer
> buffer1_read2(new net::IOBuffer(buf_len
));
3527 EXPECT_EQ(buf_len
, ReadData(entry2
, 1, offset
, buffer1_read2
.get(), buf_len
));
3528 char* buffer1_data
= buffer1
->data() + offset
;
3529 EXPECT_EQ(0, memcmp(buffer1_data
, buffer1_read2
->data(), buf_len
));
3531 // Check that we are not leaking.
3532 EXPECT_NE(entry
, null
);
3534 static_cast<disk_cache::SimpleEntryImpl
*>(entry
)->HasOneRef());
3539 // Test if we can write the data not in sequence and read correctly. In
3540 // this case the CRC will not be present.
3541 TEST_F(DiskCacheEntryTest
, SimpleCacheNonSequentialWrite
) {
3543 // Create, Write (second half of data), Write (first half of data), Read,
3545 SetSimpleCacheMode();
3547 disk_cache::Entry
* null
= NULL
;
3548 const char key
[] = "the first key";
3550 const int kHalfSize
= 200;
3551 const int kSize
= 2 * kHalfSize
;
3552 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize
));
3553 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize
));
3554 CacheTestFillBuffer(buffer1
->data(), kSize
, false);
3555 char* buffer1_data
= buffer1
->data() + kHalfSize
;
3556 memcpy(buffer2
->data(), buffer1_data
, kHalfSize
);
3558 disk_cache::Entry
* entry
= NULL
;
3559 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3561 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
3562 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3563 EXPECT_NE(null
, entry
);
3565 int offset
= kHalfSize
;
3566 int buf_len
= kHalfSize
;
3569 WriteData(entry
, i
, offset
, buffer2
.get(), buf_len
, false));
3571 buf_len
= kHalfSize
;
3573 WriteData(entry
, i
, offset
, buffer1
.get(), buf_len
, false));
3576 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3578 scoped_refptr
<net::IOBuffer
> buffer1_read1(new net::IOBuffer(kSize
));
3579 EXPECT_EQ(kSize
, ReadData(entry
, i
, 0, buffer1_read1
.get(), kSize
));
3580 EXPECT_EQ(0, memcmp(buffer1
->data(), buffer1_read1
->data(), kSize
));
3581 // Check that we are not leaking.
3582 ASSERT_NE(entry
, null
);
3583 EXPECT_TRUE(static_cast<disk_cache::SimpleEntryImpl
*>(entry
)->HasOneRef());
3588 // Test that changing stream1 size does not affect stream0 (stream0 and stream1
3589 // are stored in the same file in Simple Cache).
3590 TEST_F(DiskCacheEntryTest
, SimpleCacheStream1SizeChanges
) {
3591 SetSimpleCacheMode();
3593 disk_cache::Entry
* entry
= NULL
;
3594 const char key
[] = "the key";
3595 const int kSize
= 100;
3596 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kSize
));
3597 scoped_refptr
<net::IOBuffer
> buffer_read(new net::IOBuffer(kSize
));
3598 CacheTestFillBuffer(buffer
->data(), kSize
, false);
3600 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3603 // Write something into stream0.
3604 EXPECT_EQ(kSize
, WriteData(entry
, 0, 0, buffer
.get(), kSize
, false));
3605 EXPECT_EQ(kSize
, ReadData(entry
, 0, 0, buffer_read
.get(), kSize
));
3606 EXPECT_EQ(0, memcmp(buffer
->data(), buffer_read
->data(), kSize
));
3610 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3611 int stream1_size
= 100;
3612 EXPECT_EQ(0, WriteData(entry
, 1, stream1_size
, buffer
.get(), 0, false));
3613 EXPECT_EQ(stream1_size
, entry
->GetDataSize(1));
3616 // Check that stream0 data has not been modified and that the EOF record for
3617 // stream 0 contains a crc.
3618 // The entry needs to be reopened before checking the crc: Open will perform
3619 // the synchronization with the previous Close. This ensures the EOF records
3620 // have been written to disk before we attempt to read them independently.
3621 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3622 base::FilePath entry_file0_path
= cache_path_
.AppendASCII(
3623 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(key
, 0));
3624 base::File
entry_file0(entry_file0_path
,
3625 base::File::FLAG_READ
| base::File::FLAG_OPEN
);
3626 ASSERT_TRUE(entry_file0
.IsValid());
3628 int data_size
[disk_cache::kSimpleEntryStreamCount
] = {kSize
, stream1_size
, 0};
3629 int sparse_data_size
= 0;
3630 disk_cache::SimpleEntryStat
entry_stat(
3631 base::Time::Now(), base::Time::Now(), data_size
, sparse_data_size
);
3632 int eof_offset
= entry_stat
.GetEOFOffsetInFile(key
, 0);
3633 disk_cache::SimpleFileEOF eof_record
;
3634 ASSERT_EQ(static_cast<int>(sizeof(eof_record
)),
3635 entry_file0
.Read(eof_offset
, reinterpret_cast<char*>(&eof_record
),
3636 sizeof(eof_record
)));
3637 EXPECT_EQ(disk_cache::kSimpleFinalMagicNumber
, eof_record
.final_magic_number
);
3638 EXPECT_TRUE((eof_record
.flags
& disk_cache::SimpleFileEOF::FLAG_HAS_CRC32
) ==
3639 disk_cache::SimpleFileEOF::FLAG_HAS_CRC32
);
3641 buffer_read
= new net::IOBuffer(kSize
);
3642 EXPECT_EQ(kSize
, ReadData(entry
, 0, 0, buffer_read
.get(), kSize
));
3643 EXPECT_EQ(0, memcmp(buffer
->data(), buffer_read
->data(), kSize
));
3647 EXPECT_EQ(0, WriteData(entry
, 1, stream1_size
, buffer
.get(), 0, true));
3648 EXPECT_EQ(stream1_size
, entry
->GetDataSize(1));
3651 // Check that stream0 data has not been modified.
3652 buffer_read
= new net::IOBuffer(kSize
);
3653 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3654 EXPECT_EQ(kSize
, ReadData(entry
, 0, 0, buffer_read
.get(), kSize
));
3655 EXPECT_EQ(0, memcmp(buffer
->data(), buffer_read
->data(), kSize
));
3660 // Test that writing within the range for which the crc has already been
3661 // computed will properly invalidate the computed crc.
3662 TEST_F(DiskCacheEntryTest
, SimpleCacheCRCRewrite
) {
3664 // Create, Write (big data), Write (small data in the middle), Close.
3665 // Open, Read (all), Close.
3666 SetSimpleCacheMode();
3668 disk_cache::Entry
* null
= NULL
;
3669 const char key
[] = "the first key";
3671 const int kHalfSize
= 200;
3672 const int kSize
= 2 * kHalfSize
;
3673 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize
));
3674 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kHalfSize
));
3675 CacheTestFillBuffer(buffer1
->data(), kSize
, false);
3676 CacheTestFillBuffer(buffer2
->data(), kHalfSize
, false);
3678 disk_cache::Entry
* entry
= NULL
;
3679 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3680 EXPECT_NE(null
, entry
);
3683 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
3684 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3686 int buf_len
= kSize
;
3689 WriteData(entry
, i
, offset
, buffer1
.get(), buf_len
, false));
3691 buf_len
= kHalfSize
;
3693 WriteData(entry
, i
, offset
, buffer2
.get(), buf_len
, false));
3696 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3698 scoped_refptr
<net::IOBuffer
> buffer1_read1(new net::IOBuffer(kSize
));
3699 EXPECT_EQ(kSize
, ReadData(entry
, i
, 0, buffer1_read1
.get(), kSize
));
3700 EXPECT_EQ(0, memcmp(buffer1
->data(), buffer1_read1
->data(), kHalfSize
));
3703 memcmp(buffer2
->data(), buffer1_read1
->data() + kHalfSize
, kHalfSize
));
3709 bool DiskCacheEntryTest::SimpleCacheThirdStreamFileExists(const char* key
) {
3710 int third_stream_file_index
=
3711 disk_cache::simple_util::GetFileIndexFromStreamIndex(2);
3712 base::FilePath third_stream_file_path
= cache_path_
.AppendASCII(
3713 disk_cache::simple_util::GetFilenameFromKeyAndFileIndex(
3714 key
, third_stream_file_index
));
3715 return PathExists(third_stream_file_path
);
3718 void DiskCacheEntryTest::SyncDoomEntry(const char* key
) {
3719 net::TestCompletionCallback callback
;
3720 cache_
->DoomEntry(key
, callback
.callback());
3721 callback
.WaitForResult();
3724 // Check that a newly-created entry with no third-stream writes omits the
3725 // third stream file.
3726 TEST_F(DiskCacheEntryTest
, SimpleCacheOmittedThirdStream1
) {
3727 SetSimpleCacheMode();
3730 const char key
[] = "key";
3732 disk_cache::Entry
* entry
;
3734 // Create entry and close without writing: third stream file should be
3735 // omitted, since the stream is empty.
3736 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3738 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key
));
3741 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key
));
3744 // Check that a newly-created entry with only a single zero-offset, zero-length
3745 // write omits the third stream file.
3746 TEST_F(DiskCacheEntryTest
, SimpleCacheOmittedThirdStream2
) {
3747 SetSimpleCacheMode();
3750 const int kHalfSize
= 8;
3751 const int kSize
= kHalfSize
* 2;
3752 const char key
[] = "key";
3753 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kSize
));
3754 CacheTestFillBuffer(buffer
->data(), kHalfSize
, false);
3756 disk_cache::Entry
* entry
;
3758 // Create entry, write empty buffer to third stream, and close: third stream
3759 // should still be omitted, since the entry ignores writes that don't modify
3760 // data or change the length.
3761 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3762 EXPECT_EQ(0, WriteData(entry
, 2, 0, buffer
.get(), 0, true));
3764 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key
));
3767 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key
));
3770 // Check that we can read back data written to the third stream.
3771 TEST_F(DiskCacheEntryTest
, SimpleCacheOmittedThirdStream3
) {
3772 SetSimpleCacheMode();
3775 const int kHalfSize
= 8;
3776 const int kSize
= kHalfSize
* 2;
3777 const char key
[] = "key";
3778 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize
));
3779 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize
));
3780 CacheTestFillBuffer(buffer1
->data(), kHalfSize
, false);
3782 disk_cache::Entry
* entry
;
3784 // Create entry, write data to third stream, and close: third stream should
3785 // not be omitted, since it contains data. Re-open entry and ensure there
3786 // are that many bytes in the third stream.
3787 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3788 EXPECT_EQ(kHalfSize
, WriteData(entry
, 2, 0, buffer1
.get(), kHalfSize
, true));
3790 EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key
));
3792 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3793 EXPECT_EQ(kHalfSize
, ReadData(entry
, 2, 0, buffer2
.get(), kSize
));
3794 EXPECT_EQ(0, memcmp(buffer1
->data(), buffer2
->data(), kHalfSize
));
3796 EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key
));
3799 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key
));
3802 // Check that we remove the third stream file upon opening an entry and finding
3803 // the third stream empty. (This is the upgrade path for entries written
3804 // before the third stream was optional.)
3805 TEST_F(DiskCacheEntryTest
, SimpleCacheOmittedThirdStream4
) {
3806 SetSimpleCacheMode();
3809 const int kHalfSize
= 8;
3810 const int kSize
= kHalfSize
* 2;
3811 const char key
[] = "key";
3812 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize
));
3813 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize
));
3814 CacheTestFillBuffer(buffer1
->data(), kHalfSize
, false);
3816 disk_cache::Entry
* entry
;
3818 // Create entry, write data to third stream, truncate third stream back to
3819 // empty, and close: third stream will not initially be omitted, since entry
3820 // creates the file when the first significant write comes in, and only
3821 // removes it on open if it is empty. Reopen, ensure that the file is
3822 // deleted, and that there's no data in the third stream.
3823 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3824 EXPECT_EQ(kHalfSize
, WriteData(entry
, 2, 0, buffer1
.get(), kHalfSize
, true));
3825 EXPECT_EQ(0, WriteData(entry
, 2, 0, buffer1
.get(), 0, true));
3827 EXPECT_TRUE(SimpleCacheThirdStreamFileExists(key
));
3829 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3830 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key
));
3831 EXPECT_EQ(0, ReadData(entry
, 2, 0, buffer2
.get(), kSize
));
3833 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key
));
3836 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key
));
3839 // Check that we don't accidentally create the third stream file once the entry
3841 TEST_F(DiskCacheEntryTest
, SimpleCacheOmittedThirdStream5
) {
3842 SetSimpleCacheMode();
3845 const int kHalfSize
= 8;
3846 const int kSize
= kHalfSize
* 2;
3847 const char key
[] = "key";
3848 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kSize
));
3849 CacheTestFillBuffer(buffer
->data(), kHalfSize
, false);
3851 disk_cache::Entry
* entry
;
3853 // Create entry, doom entry, write data to third stream, and close: third
3854 // stream should not exist. (Note: We don't care if the write fails, just
3855 // that it doesn't cause the file to be created on disk.)
3856 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3858 WriteData(entry
, 2, 0, buffer
.get(), kHalfSize
, true);
3860 EXPECT_FALSE(SimpleCacheThirdStreamFileExists(key
));
3863 // There could be a race between Doom and an optimistic write.
3864 TEST_F(DiskCacheEntryTest
, SimpleCacheDoomOptimisticWritesRace
) {
3866 // Create, first Write, second Write, Close.
3868 SetSimpleCacheMode();
3870 disk_cache::Entry
* null
= NULL
;
3871 const char key
[] = "the first key";
3873 const int kSize
= 200;
3874 scoped_refptr
<net::IOBuffer
> buffer1(new net::IOBuffer(kSize
));
3875 scoped_refptr
<net::IOBuffer
> buffer2(new net::IOBuffer(kSize
));
3876 CacheTestFillBuffer(buffer1
->data(), kSize
, false);
3877 CacheTestFillBuffer(buffer2
->data(), kSize
, false);
3879 // The race only happens on stream 1 and stream 2.
3880 for (int i
= 0; i
< disk_cache::kSimpleEntryStreamCount
; ++i
) {
3881 ASSERT_EQ(net::OK
, DoomAllEntries());
3882 disk_cache::Entry
* entry
= NULL
;
3884 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3885 EXPECT_NE(null
, entry
);
3889 ASSERT_EQ(net::OK
, DoomAllEntries());
3890 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
3891 EXPECT_NE(null
, entry
);
3894 int buf_len
= kSize
;
3895 // This write should not be optimistic (since create is).
3897 WriteData(entry
, i
, offset
, buffer1
.get(), buf_len
, false));
3900 // This write should be optimistic.
3902 WriteData(entry
, i
, offset
, buffer2
.get(), buf_len
, false));
3905 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry
));
3906 EXPECT_NE(null
, entry
);
3913 // Tests for a regression in crbug.com/317138 , in which deleting an already
3914 // doomed entry was removing the active entry from the index.
3915 TEST_F(DiskCacheEntryTest
, SimpleCachePreserveActiveEntries
) {
3916 SetSimpleCacheMode();
3919 disk_cache::Entry
* null
= NULL
;
3921 const char key
[] = "this is a key";
3923 disk_cache::Entry
* entry1
= NULL
;
3924 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry1
));
3925 ScopedEntryPtr
entry1_closer(entry1
);
3926 EXPECT_NE(null
, entry1
);
3929 disk_cache::Entry
* entry2
= NULL
;
3930 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry2
));
3931 ScopedEntryPtr
entry2_closer(entry2
);
3932 EXPECT_NE(null
, entry2
);
3933 entry2_closer
.reset();
3935 // Closing then reopening entry2 insures that entry2 is serialized, and so
3936 // it can be opened from files without error.
3938 ASSERT_EQ(net::OK
, OpenEntry(key
, &entry2
));
3939 EXPECT_NE(null
, entry2
);
3940 entry2_closer
.reset(entry2
);
3942 scoped_refptr
<disk_cache::SimpleEntryImpl
>
3943 entry1_refptr
= static_cast<disk_cache::SimpleEntryImpl
*>(entry1
);
3945 // If crbug.com/317138 has regressed, this will remove |entry2| from
3946 // the backend's |active_entries_| while |entry2| is still alive and its
3947 // files are still on disk.
3948 entry1_closer
.reset();
3951 // Close does not have a callback. However, we need to be sure the close is
3952 // finished before we continue the test. We can take advantage of how the ref
3953 // counting of a SimpleEntryImpl works to fake out a callback: When the
3954 // last Close() call is made to an entry, an IO operation is sent to the
3955 // synchronous entry to close the platform files. This IO operation holds a
3956 // ref pointer to the entry, which expires when the operation is done. So,
3957 // we take a refpointer, and watch the SimpleEntry object until it has only
3958 // one ref; this indicates the IO operation is complete.
3959 while (!entry1_refptr
->HasOneRef()) {
3960 base::PlatformThread::YieldCurrentThread();
3961 base::MessageLoop::current()->RunUntilIdle();
3963 entry1_refptr
= NULL
;
3965 // In the bug case, this new entry ends up being a duplicate object pointing
3966 // at the same underlying files.
3967 disk_cache::Entry
* entry3
= NULL
;
3968 EXPECT_EQ(net::OK
, OpenEntry(key
, &entry3
));
3969 ScopedEntryPtr
entry3_closer(entry3
);
3970 EXPECT_NE(null
, entry3
);
3972 // The test passes if these two dooms do not crash.
3977 TEST_F(DiskCacheEntryTest
, SimpleCacheBasicSparseIO
) {
3978 SetSimpleCacheMode();
3983 TEST_F(DiskCacheEntryTest
, SimpleCacheHugeSparseIO
) {
3984 SetSimpleCacheMode();
3989 TEST_F(DiskCacheEntryTest
, SimpleCacheGetAvailableRange
) {
3990 SetSimpleCacheMode();
3992 GetAvailableRange();
3995 TEST_F(DiskCacheEntryTest
, DISABLED_SimpleCacheCouldBeSparse
) {
3996 SetSimpleCacheMode();
4001 TEST_F(DiskCacheEntryTest
, SimpleCacheUpdateSparseEntry
) {
4002 SetSimpleCacheMode();
4004 UpdateSparseEntry();
4007 TEST_F(DiskCacheEntryTest
, SimpleCacheDoomSparseEntry
) {
4008 SetSimpleCacheMode();
4013 TEST_F(DiskCacheEntryTest
, SimpleCachePartialSparseEntry
) {
4014 SetSimpleCacheMode();
4016 PartialSparseEntry();
4019 TEST_F(DiskCacheEntryTest
, SimpleCacheTruncateLargeSparseFile
) {
4020 const int kSize
= 1024;
4022 SetSimpleCacheMode();
4023 // An entry is allowed sparse data 1/10 the size of the cache, so this size
4024 // allows for one |kSize|-sized range plus overhead, but not two ranges.
4025 SetMaxSize(kSize
* 15);
4028 const char key
[] = "key";
4029 disk_cache::Entry
* null
= NULL
;
4030 disk_cache::Entry
* entry
;
4031 ASSERT_EQ(net::OK
, CreateEntry(key
, &entry
));
4032 EXPECT_NE(null
, entry
);
4034 scoped_refptr
<net::IOBuffer
> buffer(new net::IOBuffer(kSize
));
4035 CacheTestFillBuffer(buffer
->data(), kSize
, false);
4036 net::TestCompletionCallback callback
;
4039 // Verify initial conditions.
4040 ret
= entry
->ReadSparseData(0, buffer
.get(), kSize
, callback
.callback());
4041 EXPECT_EQ(0, callback
.GetResult(ret
));
4043 ret
= entry
->ReadSparseData(kSize
, buffer
.get(), kSize
, callback
.callback());
4044 EXPECT_EQ(0, callback
.GetResult(ret
));
4046 // Write a range and make sure it reads back.
4047 ret
= entry
->WriteSparseData(0, buffer
.get(), kSize
, callback
.callback());
4048 EXPECT_EQ(kSize
, callback
.GetResult(ret
));
4050 ret
= entry
->ReadSparseData(0, buffer
.get(), kSize
, callback
.callback());
4051 EXPECT_EQ(kSize
, callback
.GetResult(ret
));
4053 // Write another range and make sure it reads back.
4054 ret
= entry
->WriteSparseData(kSize
, buffer
.get(), kSize
, callback
.callback());
4055 EXPECT_EQ(kSize
, callback
.GetResult(ret
));
4057 ret
= entry
->ReadSparseData(kSize
, buffer
.get(), kSize
, callback
.callback());
4058 EXPECT_EQ(kSize
, callback
.GetResult(ret
));
4060 // Make sure the first range was removed when the second was written.
4061 ret
= entry
->ReadSparseData(0, buffer
.get(), kSize
, callback
.callback());
4062 EXPECT_EQ(0, callback
.GetResult(ret
));
4067 #endif // defined(OS_POSIX)