mac: Add the flag "-gline-tables-only" to reduce dSYM size. (attempt #2)
[chromium-blink-merge.git] / ui / gfx / transform_util.cc
blob3eab6e27aba4b1955298ebd5d2fa69a5f857a8f5
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "ui/gfx/transform_util.h"
7 #include <algorithm>
8 #include <cmath>
9 #include <string>
11 #include "base/logging.h"
12 #include "base/strings/stringprintf.h"
13 #include "ui/gfx/geometry/point.h"
14 #include "ui/gfx/geometry/point3_f.h"
15 #include "ui/gfx/geometry/rect.h"
17 namespace gfx {
19 namespace {
21 SkMScalar Length3(SkMScalar v[3]) {
22 double vd[3] = {SkMScalarToDouble(v[0]), SkMScalarToDouble(v[1]),
23 SkMScalarToDouble(v[2])};
24 return SkDoubleToMScalar(
25 std::sqrt(vd[0] * vd[0] + vd[1] * vd[1] + vd[2] * vd[2]));
28 template <int n>
29 SkMScalar Dot(const SkMScalar* a, const SkMScalar* b) {
30 double total = 0.0;
31 for (int i = 0; i < n; ++i)
32 total += a[i] * b[i];
33 return SkDoubleToMScalar(total);
36 template <int n>
37 void Combine(SkMScalar* out,
38 const SkMScalar* a,
39 const SkMScalar* b,
40 double scale_a,
41 double scale_b) {
42 for (int i = 0; i < n; ++i)
43 out[i] = SkDoubleToMScalar(a[i] * scale_a + b[i] * scale_b);
46 void Cross3(SkMScalar out[3], SkMScalar a[3], SkMScalar b[3]) {
47 SkMScalar x = a[1] * b[2] - a[2] * b[1];
48 SkMScalar y = a[2] * b[0] - a[0] * b[2];
49 SkMScalar z = a[0] * b[1] - a[1] * b[0];
50 out[0] = x;
51 out[1] = y;
52 out[2] = z;
55 SkMScalar Round(SkMScalar n) {
56 return SkDoubleToMScalar(std::floor(SkMScalarToDouble(n) + 0.5));
59 // Taken from http://www.w3.org/TR/css3-transforms/.
60 bool Slerp(SkMScalar out[4],
61 const SkMScalar q1[4],
62 const SkMScalar q2[4],
63 double progress) {
64 double product = Dot<4>(q1, q2);
66 // Clamp product to -1.0 <= product <= 1.0.
67 product = std::min(std::max(product, -1.0), 1.0);
69 const double epsilon = 1e-5;
70 if (std::abs(product - 1.0) < epsilon) {
71 for (int i = 0; i < 4; ++i)
72 out[i] = q1[i];
73 return true;
76 double denom = std::sqrt(1.0 - product * product);
77 double theta = std::acos(product);
78 double w = std::sin(progress * theta) * (1.0 / denom);
80 double scale1 = std::cos(progress * theta) - product * w;
81 double scale2 = w;
82 Combine<4>(out, q1, q2, scale1, scale2);
84 return true;
87 // Returns false if the matrix cannot be normalized.
88 bool Normalize(SkMatrix44& m) {
89 if (m.get(3, 3) == 0.0)
90 // Cannot normalize.
91 return false;
93 SkMScalar scale = SK_MScalar1 / m.get(3, 3);
94 for (int i = 0; i < 4; i++)
95 for (int j = 0; j < 4; j++)
96 m.set(i, j, m.get(i, j) * scale);
98 return true;
101 SkMatrix44 BuildPerspectiveMatrix(const DecomposedTransform& decomp) {
102 SkMatrix44 matrix(SkMatrix44::kIdentity_Constructor);
104 for (int i = 0; i < 4; i++)
105 matrix.setDouble(3, i, decomp.perspective[i]);
106 return matrix;
109 SkMatrix44 BuildTranslationMatrix(const DecomposedTransform& decomp) {
110 SkMatrix44 matrix(SkMatrix44::kUninitialized_Constructor);
111 // Implicitly calls matrix.setIdentity()
112 matrix.setTranslate(SkDoubleToMScalar(decomp.translate[0]),
113 SkDoubleToMScalar(decomp.translate[1]),
114 SkDoubleToMScalar(decomp.translate[2]));
115 return matrix;
118 SkMatrix44 BuildSnappedTranslationMatrix(DecomposedTransform decomp) {
119 decomp.translate[0] = Round(decomp.translate[0]);
120 decomp.translate[1] = Round(decomp.translate[1]);
121 decomp.translate[2] = Round(decomp.translate[2]);
122 return BuildTranslationMatrix(decomp);
125 SkMatrix44 BuildRotationMatrix(const DecomposedTransform& decomp) {
126 double x = decomp.quaternion[0];
127 double y = decomp.quaternion[1];
128 double z = decomp.quaternion[2];
129 double w = decomp.quaternion[3];
131 SkMatrix44 matrix(SkMatrix44::kUninitialized_Constructor);
133 // Implicitly calls matrix.setIdentity()
134 matrix.set3x3(SkDoubleToMScalar(1.0 - 2.0 * (y * y + z * z)),
135 SkDoubleToMScalar(2.0 * (x * y + z * w)),
136 SkDoubleToMScalar(2.0 * (x * z - y * w)),
137 SkDoubleToMScalar(2.0 * (x * y - z * w)),
138 SkDoubleToMScalar(1.0 - 2.0 * (x * x + z * z)),
139 SkDoubleToMScalar(2.0 * (y * z + x * w)),
140 SkDoubleToMScalar(2.0 * (x * z + y * w)),
141 SkDoubleToMScalar(2.0 * (y * z - x * w)),
142 SkDoubleToMScalar(1.0 - 2.0 * (x * x + y * y)));
143 return matrix;
146 SkMatrix44 BuildSnappedRotationMatrix(const DecomposedTransform& decomp) {
147 // Create snapped rotation.
148 SkMatrix44 rotation_matrix = BuildRotationMatrix(decomp);
149 for (int i = 0; i < 3; ++i) {
150 for (int j = 0; j < 3; ++j) {
151 SkMScalar value = rotation_matrix.get(i, j);
152 // Snap values to -1, 0 or 1.
153 if (value < -0.5f) {
154 value = -1.0f;
155 } else if (value > 0.5f) {
156 value = 1.0f;
157 } else {
158 value = 0.0f;
160 rotation_matrix.set(i, j, value);
163 return rotation_matrix;
166 SkMatrix44 BuildSkewMatrix(const DecomposedTransform& decomp) {
167 SkMatrix44 matrix(SkMatrix44::kIdentity_Constructor);
169 SkMatrix44 temp(SkMatrix44::kIdentity_Constructor);
170 if (decomp.skew[2]) {
171 temp.setDouble(1, 2, decomp.skew[2]);
172 matrix.preConcat(temp);
175 if (decomp.skew[1]) {
176 temp.setDouble(1, 2, 0);
177 temp.setDouble(0, 2, decomp.skew[1]);
178 matrix.preConcat(temp);
181 if (decomp.skew[0]) {
182 temp.setDouble(0, 2, 0);
183 temp.setDouble(0, 1, decomp.skew[0]);
184 matrix.preConcat(temp);
186 return matrix;
189 SkMatrix44 BuildScaleMatrix(const DecomposedTransform& decomp) {
190 SkMatrix44 matrix(SkMatrix44::kUninitialized_Constructor);
191 matrix.setScale(SkDoubleToMScalar(decomp.scale[0]),
192 SkDoubleToMScalar(decomp.scale[1]),
193 SkDoubleToMScalar(decomp.scale[2]));
194 return matrix;
197 SkMatrix44 BuildSnappedScaleMatrix(DecomposedTransform decomp) {
198 decomp.scale[0] = Round(decomp.scale[0]);
199 decomp.scale[1] = Round(decomp.scale[1]);
200 decomp.scale[2] = Round(decomp.scale[2]);
201 return BuildScaleMatrix(decomp);
204 Transform ComposeTransform(const SkMatrix44& perspective,
205 const SkMatrix44& translation,
206 const SkMatrix44& rotation,
207 const SkMatrix44& skew,
208 const SkMatrix44& scale) {
209 SkMatrix44 matrix(SkMatrix44::kIdentity_Constructor);
211 matrix.preConcat(perspective);
212 matrix.preConcat(translation);
213 matrix.preConcat(rotation);
214 matrix.preConcat(skew);
215 matrix.preConcat(scale);
217 Transform to_return;
218 to_return.matrix() = matrix;
219 return to_return;
222 bool CheckViewportPointMapsWithinOnePixel(const Point& point,
223 const Transform& transform) {
224 Point3F point_original(point);
225 Point3F point_transformed(point);
227 // Can't use TransformRect here since it would give us the axis-aligned
228 // bounding rect of the 4 points in the initial rectable which is not what we
229 // want.
230 transform.TransformPoint(&point_transformed);
232 if ((point_transformed - point_original).Length() > 1.f) {
233 // The changed distance should not be more than 1 pixel.
234 return false;
236 return true;
239 bool CheckTransformsMapsIntViewportWithinOnePixel(const Rect& viewport,
240 const Transform& original,
241 const Transform& snapped) {
243 Transform original_inv(Transform::kSkipInitialization);
244 bool invertible = true;
245 invertible &= original.GetInverse(&original_inv);
246 DCHECK(invertible) << "Non-invertible transform, cannot snap.";
248 Transform combined = snapped * original_inv;
250 return CheckViewportPointMapsWithinOnePixel(viewport.origin(), combined) &&
251 CheckViewportPointMapsWithinOnePixel(viewport.top_right(), combined) &&
252 CheckViewportPointMapsWithinOnePixel(viewport.bottom_left(),
253 combined) &&
254 CheckViewportPointMapsWithinOnePixel(viewport.bottom_right(),
255 combined);
258 } // namespace
260 Transform GetScaleTransform(const Point& anchor, float scale) {
261 Transform transform;
262 transform.Translate(anchor.x() * (1 - scale),
263 anchor.y() * (1 - scale));
264 transform.Scale(scale, scale);
265 return transform;
268 DecomposedTransform::DecomposedTransform() {
269 translate[0] = translate[1] = translate[2] = 0.0;
270 scale[0] = scale[1] = scale[2] = 1.0;
271 skew[0] = skew[1] = skew[2] = 0.0;
272 perspective[0] = perspective[1] = perspective[2] = 0.0;
273 quaternion[0] = quaternion[1] = quaternion[2] = 0.0;
274 perspective[3] = quaternion[3] = 1.0;
277 bool BlendDecomposedTransforms(DecomposedTransform* out,
278 const DecomposedTransform& to,
279 const DecomposedTransform& from,
280 double progress) {
281 double scalea = progress;
282 double scaleb = 1.0 - progress;
283 Combine<3>(out->translate, to.translate, from.translate, scalea, scaleb);
284 Combine<3>(out->scale, to.scale, from.scale, scalea, scaleb);
285 Combine<3>(out->skew, to.skew, from.skew, scalea, scaleb);
286 Combine<4>(
287 out->perspective, to.perspective, from.perspective, scalea, scaleb);
288 return Slerp(out->quaternion, from.quaternion, to.quaternion, progress);
291 // Taken from http://www.w3.org/TR/css3-transforms/.
292 bool DecomposeTransform(DecomposedTransform* decomp,
293 const Transform& transform) {
294 if (!decomp)
295 return false;
297 // We'll operate on a copy of the matrix.
298 SkMatrix44 matrix = transform.matrix();
300 // If we cannot normalize the matrix, then bail early as we cannot decompose.
301 if (!Normalize(matrix))
302 return false;
304 SkMatrix44 perspectiveMatrix = matrix;
306 for (int i = 0; i < 3; ++i)
307 perspectiveMatrix.set(3, i, 0.0);
309 perspectiveMatrix.set(3, 3, 1.0);
311 // If the perspective matrix is not invertible, we are also unable to
312 // decompose, so we'll bail early. Constant taken from SkMatrix44::invert.
313 if (std::abs(perspectiveMatrix.determinant()) < 1e-8)
314 return false;
316 if (matrix.get(3, 0) != 0.0 || matrix.get(3, 1) != 0.0 ||
317 matrix.get(3, 2) != 0.0) {
318 // rhs is the right hand side of the equation.
319 SkMScalar rhs[4] = {
320 matrix.get(3, 0),
321 matrix.get(3, 1),
322 matrix.get(3, 2),
323 matrix.get(3, 3)
326 // Solve the equation by inverting perspectiveMatrix and multiplying
327 // rhs by the inverse.
328 SkMatrix44 inversePerspectiveMatrix(SkMatrix44::kUninitialized_Constructor);
329 if (!perspectiveMatrix.invert(&inversePerspectiveMatrix))
330 return false;
332 SkMatrix44 transposedInversePerspectiveMatrix =
333 inversePerspectiveMatrix;
335 transposedInversePerspectiveMatrix.transpose();
336 transposedInversePerspectiveMatrix.mapMScalars(rhs);
338 for (int i = 0; i < 4; ++i)
339 decomp->perspective[i] = rhs[i];
341 } else {
342 // No perspective.
343 for (int i = 0; i < 3; ++i)
344 decomp->perspective[i] = 0.0;
345 decomp->perspective[3] = 1.0;
348 for (int i = 0; i < 3; i++)
349 decomp->translate[i] = matrix.get(i, 3);
351 SkMScalar row[3][3];
352 for (int i = 0; i < 3; i++)
353 for (int j = 0; j < 3; ++j)
354 row[i][j] = matrix.get(j, i);
356 // Compute X scale factor and normalize first row.
357 decomp->scale[0] = Length3(row[0]);
358 if (decomp->scale[0] != 0.0) {
359 row[0][0] /= decomp->scale[0];
360 row[0][1] /= decomp->scale[0];
361 row[0][2] /= decomp->scale[0];
364 // Compute XY shear factor and make 2nd row orthogonal to 1st.
365 decomp->skew[0] = Dot<3>(row[0], row[1]);
366 Combine<3>(row[1], row[1], row[0], 1.0, -decomp->skew[0]);
368 // Now, compute Y scale and normalize 2nd row.
369 decomp->scale[1] = Length3(row[1]);
370 if (decomp->scale[1] != 0.0) {
371 row[1][0] /= decomp->scale[1];
372 row[1][1] /= decomp->scale[1];
373 row[1][2] /= decomp->scale[1];
376 decomp->skew[0] /= decomp->scale[1];
378 // Compute XZ and YZ shears, orthogonalize 3rd row
379 decomp->skew[1] = Dot<3>(row[0], row[2]);
380 Combine<3>(row[2], row[2], row[0], 1.0, -decomp->skew[1]);
381 decomp->skew[2] = Dot<3>(row[1], row[2]);
382 Combine<3>(row[2], row[2], row[1], 1.0, -decomp->skew[2]);
384 // Next, get Z scale and normalize 3rd row.
385 decomp->scale[2] = Length3(row[2]);
386 if (decomp->scale[2] != 0.0) {
387 row[2][0] /= decomp->scale[2];
388 row[2][1] /= decomp->scale[2];
389 row[2][2] /= decomp->scale[2];
392 decomp->skew[1] /= decomp->scale[2];
393 decomp->skew[2] /= decomp->scale[2];
395 // At this point, the matrix (in rows) is orthonormal.
396 // Check for a coordinate system flip. If the determinant
397 // is -1, then negate the matrix and the scaling factors.
398 SkMScalar pdum3[3];
399 Cross3(pdum3, row[1], row[2]);
400 if (Dot<3>(row[0], pdum3) < 0) {
401 for (int i = 0; i < 3; i++) {
402 decomp->scale[i] *= -1.0;
403 for (int j = 0; j < 3; ++j)
404 row[i][j] *= -1.0;
408 double row00 = SkMScalarToDouble(row[0][0]);
409 double row11 = SkMScalarToDouble(row[1][1]);
410 double row22 = SkMScalarToDouble(row[2][2]);
411 decomp->quaternion[0] = SkDoubleToMScalar(
412 0.5 * std::sqrt(std::max(1.0 + row00 - row11 - row22, 0.0)));
413 decomp->quaternion[1] = SkDoubleToMScalar(
414 0.5 * std::sqrt(std::max(1.0 - row00 + row11 - row22, 0.0)));
415 decomp->quaternion[2] = SkDoubleToMScalar(
416 0.5 * std::sqrt(std::max(1.0 - row00 - row11 + row22, 0.0)));
417 decomp->quaternion[3] = SkDoubleToMScalar(
418 0.5 * std::sqrt(std::max(1.0 + row00 + row11 + row22, 0.0)));
420 if (row[2][1] > row[1][2])
421 decomp->quaternion[0] = -decomp->quaternion[0];
422 if (row[0][2] > row[2][0])
423 decomp->quaternion[1] = -decomp->quaternion[1];
424 if (row[1][0] > row[0][1])
425 decomp->quaternion[2] = -decomp->quaternion[2];
427 return true;
430 // Taken from http://www.w3.org/TR/css3-transforms/.
431 Transform ComposeTransform(const DecomposedTransform& decomp) {
432 SkMatrix44 perspective = BuildPerspectiveMatrix(decomp);
433 SkMatrix44 translation = BuildTranslationMatrix(decomp);
434 SkMatrix44 rotation = BuildRotationMatrix(decomp);
435 SkMatrix44 skew = BuildSkewMatrix(decomp);
436 SkMatrix44 scale = BuildScaleMatrix(decomp);
438 return ComposeTransform(perspective, translation, rotation, skew, scale);
441 bool SnapTransform(Transform* out,
442 const Transform& transform,
443 const Rect& viewport) {
444 DecomposedTransform decomp;
445 DecomposeTransform(&decomp, transform);
447 SkMatrix44 rotation_matrix = BuildSnappedRotationMatrix(decomp);
448 SkMatrix44 translation = BuildSnappedTranslationMatrix(decomp);
449 SkMatrix44 scale = BuildSnappedScaleMatrix(decomp);
451 // Rebuild matrices for other unchanged components.
452 SkMatrix44 perspective = BuildPerspectiveMatrix(decomp);
454 // Completely ignore the skew.
455 SkMatrix44 skew(SkMatrix44::kIdentity_Constructor);
457 // Get full tranform
458 Transform snapped =
459 ComposeTransform(perspective, translation, rotation_matrix, skew, scale);
461 // Verify that viewport is not moved unnaturally.
462 bool snappable =
463 CheckTransformsMapsIntViewportWithinOnePixel(viewport, transform, snapped);
464 if (snappable) {
465 *out = snapped;
467 return snappable;
470 Transform TransformAboutPivot(const gfx::Point& pivot,
471 const gfx::Transform& transform) {
472 gfx::Transform result;
473 result.Translate(pivot.x(), pivot.y());
474 result.PreconcatTransform(transform);
475 result.Translate(-pivot.x(), -pivot.y());
476 return result;
479 std::string DecomposedTransform::ToString() const {
480 return base::StringPrintf(
481 "translate: %+0.4f %+0.4f %+0.4f\n"
482 "scale: %+0.4f %+0.4f %+0.4f\n"
483 "skew: %+0.4f %+0.4f %+0.4f\n"
484 "perspective: %+0.4f %+0.4f %+0.4f %+0.4f\n"
485 "quaternion: %+0.4f %+0.4f %+0.4f %+0.4f\n",
486 translate[0],
487 translate[1],
488 translate[2],
489 scale[0],
490 scale[1],
491 scale[2],
492 skew[0],
493 skew[1],
494 skew[2],
495 perspective[0],
496 perspective[1],
497 perspective[2],
498 perspective[3],
499 quaternion[0],
500 quaternion[1],
501 quaternion[2],
502 quaternion[3]);
505 } // namespace gfx