tuple: update to make use of C++11
[chromium-blink-merge.git] / third_party / sqlite / src / ext / fts2 / fts2_porter.c
blob16620b93535e072863d106c39786de6c31a52e0b
1 /*
2 ** 2006 September 30
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** Implementation of the full-text-search tokenizer that implements
13 ** a Porter stemmer.
17 ** The code in this file is only compiled if:
19 ** * The FTS2 module is being built as an extension
20 ** (in which case SQLITE_CORE is not defined), or
22 ** * The FTS2 module is being built into the core of
23 ** SQLite (in which case SQLITE_ENABLE_FTS2 is defined).
25 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)
28 #include <assert.h>
29 #include <stdlib.h>
30 #include <stdio.h>
31 #include <string.h>
33 #include "fts2_tokenizer.h"
36 ** Class derived from sqlite3_tokenizer
38 typedef struct porter_tokenizer {
39 sqlite3_tokenizer base; /* Base class */
40 } porter_tokenizer;
43 ** Class derived from sqlit3_tokenizer_cursor
45 typedef struct porter_tokenizer_cursor {
46 sqlite3_tokenizer_cursor base;
47 const char *zInput; /* input we are tokenizing */
48 int nInput; /* size of the input */
49 int iOffset; /* current position in zInput */
50 int iToken; /* index of next token to be returned */
51 char *zToken; /* storage for current token */
52 int nAllocated; /* space allocated to zToken buffer */
53 } porter_tokenizer_cursor;
56 /* Forward declaration */
57 static const sqlite3_tokenizer_module porterTokenizerModule;
61 ** Create a new tokenizer instance.
63 static int porterCreate(
64 int argc, const char * const *argv,
65 sqlite3_tokenizer **ppTokenizer
67 porter_tokenizer *t;
68 t = (porter_tokenizer *) sqlite3_malloc(sizeof(*t));
69 if( t==NULL ) return SQLITE_NOMEM;
70 memset(t, 0, sizeof(*t));
71 *ppTokenizer = &t->base;
72 return SQLITE_OK;
76 ** Destroy a tokenizer
78 static int porterDestroy(sqlite3_tokenizer *pTokenizer){
79 sqlite3_free(pTokenizer);
80 return SQLITE_OK;
84 ** Prepare to begin tokenizing a particular string. The input
85 ** string to be tokenized is zInput[0..nInput-1]. A cursor
86 ** used to incrementally tokenize this string is returned in
87 ** *ppCursor.
89 static int porterOpen(
90 sqlite3_tokenizer *pTokenizer, /* The tokenizer */
91 const char *zInput, int nInput, /* String to be tokenized */
92 sqlite3_tokenizer_cursor **ppCursor /* OUT: Tokenization cursor */
94 porter_tokenizer_cursor *c;
96 c = (porter_tokenizer_cursor *) sqlite3_malloc(sizeof(*c));
97 if( c==NULL ) return SQLITE_NOMEM;
99 c->zInput = zInput;
100 if( zInput==0 ){
101 c->nInput = 0;
102 }else if( nInput<0 ){
103 c->nInput = (int)strlen(zInput);
104 }else{
105 c->nInput = nInput;
107 c->iOffset = 0; /* start tokenizing at the beginning */
108 c->iToken = 0;
109 c->zToken = NULL; /* no space allocated, yet. */
110 c->nAllocated = 0;
112 *ppCursor = &c->base;
113 return SQLITE_OK;
117 ** Close a tokenization cursor previously opened by a call to
118 ** porterOpen() above.
120 static int porterClose(sqlite3_tokenizer_cursor *pCursor){
121 porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
122 sqlite3_free(c->zToken);
123 sqlite3_free(c);
124 return SQLITE_OK;
127 ** Vowel or consonant
129 static const char cType[] = {
130 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0,
131 1, 1, 1, 2, 1
135 ** isConsonant() and isVowel() determine if their first character in
136 ** the string they point to is a consonant or a vowel, according
137 ** to Porter ruls.
139 ** A consonate is any letter other than 'a', 'e', 'i', 'o', or 'u'.
140 ** 'Y' is a consonant unless it follows another consonant,
141 ** in which case it is a vowel.
143 ** In these routine, the letters are in reverse order. So the 'y' rule
144 ** is that 'y' is a consonant unless it is followed by another
145 ** consonent.
147 static int isVowel(const char*);
148 static int isConsonant(const char *z){
149 int j;
150 char x = *z;
151 if( x==0 ) return 0;
152 assert( x>='a' && x<='z' );
153 j = cType[x-'a'];
154 if( j<2 ) return j;
155 return z[1]==0 || isVowel(z + 1);
157 static int isVowel(const char *z){
158 int j;
159 char x = *z;
160 if( x==0 ) return 0;
161 assert( x>='a' && x<='z' );
162 j = cType[x-'a'];
163 if( j<2 ) return 1-j;
164 return isConsonant(z + 1);
168 ** Let any sequence of one or more vowels be represented by V and let
169 ** C be sequence of one or more consonants. Then every word can be
170 ** represented as:
172 ** [C] (VC){m} [V]
174 ** In prose: A word is an optional consonant followed by zero or
175 ** vowel-consonant pairs followed by an optional vowel. "m" is the
176 ** number of vowel consonant pairs. This routine computes the value
177 ** of m for the first i bytes of a word.
179 ** Return true if the m-value for z is 1 or more. In other words,
180 ** return true if z contains at least one vowel that is followed
181 ** by a consonant.
183 ** In this routine z[] is in reverse order. So we are really looking
184 ** for an instance of of a consonant followed by a vowel.
186 static int m_gt_0(const char *z){
187 while( isVowel(z) ){ z++; }
188 if( *z==0 ) return 0;
189 while( isConsonant(z) ){ z++; }
190 return *z!=0;
193 /* Like mgt0 above except we are looking for a value of m which is
194 ** exactly 1
196 static int m_eq_1(const char *z){
197 while( isVowel(z) ){ z++; }
198 if( *z==0 ) return 0;
199 while( isConsonant(z) ){ z++; }
200 if( *z==0 ) return 0;
201 while( isVowel(z) ){ z++; }
202 if( *z==0 ) return 1;
203 while( isConsonant(z) ){ z++; }
204 return *z==0;
207 /* Like mgt0 above except we are looking for a value of m>1 instead
208 ** or m>0
210 static int m_gt_1(const char *z){
211 while( isVowel(z) ){ z++; }
212 if( *z==0 ) return 0;
213 while( isConsonant(z) ){ z++; }
214 if( *z==0 ) return 0;
215 while( isVowel(z) ){ z++; }
216 if( *z==0 ) return 0;
217 while( isConsonant(z) ){ z++; }
218 return *z!=0;
222 ** Return TRUE if there is a vowel anywhere within z[0..n-1]
224 static int hasVowel(const char *z){
225 while( isConsonant(z) ){ z++; }
226 return *z!=0;
230 ** Return TRUE if the word ends in a double consonant.
232 ** The text is reversed here. So we are really looking at
233 ** the first two characters of z[].
235 static int doubleConsonant(const char *z){
236 return isConsonant(z) && z[0]==z[1] && isConsonant(z+1);
240 ** Return TRUE if the word ends with three letters which
241 ** are consonant-vowel-consonent and where the final consonant
242 ** is not 'w', 'x', or 'y'.
244 ** The word is reversed here. So we are really checking the
245 ** first three letters and the first one cannot be in [wxy].
247 static int star_oh(const char *z){
248 return
249 z[0]!=0 && isConsonant(z) &&
250 z[0]!='w' && z[0]!='x' && z[0]!='y' &&
251 z[1]!=0 && isVowel(z+1) &&
252 z[2]!=0 && isConsonant(z+2);
256 ** If the word ends with zFrom and xCond() is true for the stem
257 ** of the word that preceeds the zFrom ending, then change the
258 ** ending to zTo.
260 ** The input word *pz and zFrom are both in reverse order. zTo
261 ** is in normal order.
263 ** Return TRUE if zFrom matches. Return FALSE if zFrom does not
264 ** match. Not that TRUE is returned even if xCond() fails and
265 ** no substitution occurs.
267 static int stem(
268 char **pz, /* The word being stemmed (Reversed) */
269 const char *zFrom, /* If the ending matches this... (Reversed) */
270 const char *zTo, /* ... change the ending to this (not reversed) */
271 int (*xCond)(const char*) /* Condition that must be true */
273 char *z = *pz;
274 while( *zFrom && *zFrom==*z ){ z++; zFrom++; }
275 if( *zFrom!=0 ) return 0;
276 if( xCond && !xCond(z) ) return 1;
277 while( *zTo ){
278 *(--z) = *(zTo++);
280 *pz = z;
281 return 1;
285 ** This is the fallback stemmer used when the porter stemmer is
286 ** inappropriate. The input word is copied into the output with
287 ** US-ASCII case folding. If the input word is too long (more
288 ** than 20 bytes if it contains no digits or more than 6 bytes if
289 ** it contains digits) then word is truncated to 20 or 6 bytes
290 ** by taking 10 or 3 bytes from the beginning and end.
292 static void copy_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
293 int i, mx, j;
294 int hasDigit = 0;
295 for(i=0; i<nIn; i++){
296 int c = zIn[i];
297 if( c>='A' && c<='Z' ){
298 zOut[i] = c - 'A' + 'a';
299 }else{
300 if( c>='0' && c<='9' ) hasDigit = 1;
301 zOut[i] = c;
304 mx = hasDigit ? 3 : 10;
305 if( nIn>mx*2 ){
306 for(j=mx, i=nIn-mx; i<nIn; i++, j++){
307 zOut[j] = zOut[i];
309 i = j;
311 zOut[i] = 0;
312 *pnOut = i;
317 ** Stem the input word zIn[0..nIn-1]. Store the output in zOut.
318 ** zOut is at least big enough to hold nIn bytes. Write the actual
319 ** size of the output word (exclusive of the '\0' terminator) into *pnOut.
321 ** Any upper-case characters in the US-ASCII character set ([A-Z])
322 ** are converted to lower case. Upper-case UTF characters are
323 ** unchanged.
325 ** Words that are longer than about 20 bytes are stemmed by retaining
326 ** a few bytes from the beginning and the end of the word. If the
327 ** word contains digits, 3 bytes are taken from the beginning and
328 ** 3 bytes from the end. For long words without digits, 10 bytes
329 ** are taken from each end. US-ASCII case folding still applies.
331 ** If the input word contains not digits but does characters not
332 ** in [a-zA-Z] then no stemming is attempted and this routine just
333 ** copies the input into the input into the output with US-ASCII
334 ** case folding.
336 ** Stemming never increases the length of the word. So there is
337 ** no chance of overflowing the zOut buffer.
339 static void porter_stemmer(const char *zIn, int nIn, char *zOut, int *pnOut){
340 int i, j, c;
341 char zReverse[28];
342 char *z, *z2;
343 if( nIn<3 || nIn>=sizeof(zReverse)-7 ){
344 /* The word is too big or too small for the porter stemmer.
345 ** Fallback to the copy stemmer */
346 copy_stemmer(zIn, nIn, zOut, pnOut);
347 return;
349 for(i=0, j=sizeof(zReverse)-6; i<nIn; i++, j--){
350 c = zIn[i];
351 if( c>='A' && c<='Z' ){
352 zReverse[j] = c + 'a' - 'A';
353 }else if( c>='a' && c<='z' ){
354 zReverse[j] = c;
355 }else{
356 /* The use of a character not in [a-zA-Z] means that we fallback
357 ** to the copy stemmer */
358 copy_stemmer(zIn, nIn, zOut, pnOut);
359 return;
362 memset(&zReverse[sizeof(zReverse)-5], 0, 5);
363 z = &zReverse[j+1];
366 /* Step 1a */
367 if( z[0]=='s' ){
369 !stem(&z, "sess", "ss", 0) &&
370 !stem(&z, "sei", "i", 0) &&
371 !stem(&z, "ss", "ss", 0)
373 z++;
377 /* Step 1b */
378 z2 = z;
379 if( stem(&z, "dee", "ee", m_gt_0) ){
380 /* Do nothing. The work was all in the test */
381 }else if(
382 (stem(&z, "gni", "", hasVowel) || stem(&z, "de", "", hasVowel))
383 && z!=z2
385 if( stem(&z, "ta", "ate", 0) ||
386 stem(&z, "lb", "ble", 0) ||
387 stem(&z, "zi", "ize", 0) ){
388 /* Do nothing. The work was all in the test */
389 }else if( doubleConsonant(z) && (*z!='l' && *z!='s' && *z!='z') ){
390 z++;
391 }else if( m_eq_1(z) && star_oh(z) ){
392 *(--z) = 'e';
396 /* Step 1c */
397 if( z[0]=='y' && hasVowel(z+1) ){
398 z[0] = 'i';
401 /* Step 2 */
402 switch( z[1] ){
403 case 'a':
404 stem(&z, "lanoita", "ate", m_gt_0) ||
405 stem(&z, "lanoit", "tion", m_gt_0);
406 break;
407 case 'c':
408 stem(&z, "icne", "ence", m_gt_0) ||
409 stem(&z, "icna", "ance", m_gt_0);
410 break;
411 case 'e':
412 stem(&z, "rezi", "ize", m_gt_0);
413 break;
414 case 'g':
415 stem(&z, "igol", "log", m_gt_0);
416 break;
417 case 'l':
418 stem(&z, "ilb", "ble", m_gt_0) ||
419 stem(&z, "illa", "al", m_gt_0) ||
420 stem(&z, "iltne", "ent", m_gt_0) ||
421 stem(&z, "ile", "e", m_gt_0) ||
422 stem(&z, "ilsuo", "ous", m_gt_0);
423 break;
424 case 'o':
425 stem(&z, "noitazi", "ize", m_gt_0) ||
426 stem(&z, "noita", "ate", m_gt_0) ||
427 stem(&z, "rota", "ate", m_gt_0);
428 break;
429 case 's':
430 stem(&z, "msila", "al", m_gt_0) ||
431 stem(&z, "ssenevi", "ive", m_gt_0) ||
432 stem(&z, "ssenluf", "ful", m_gt_0) ||
433 stem(&z, "ssensuo", "ous", m_gt_0);
434 break;
435 case 't':
436 stem(&z, "itila", "al", m_gt_0) ||
437 stem(&z, "itivi", "ive", m_gt_0) ||
438 stem(&z, "itilib", "ble", m_gt_0);
439 break;
442 /* Step 3 */
443 switch( z[0] ){
444 case 'e':
445 stem(&z, "etaci", "ic", m_gt_0) ||
446 stem(&z, "evita", "", m_gt_0) ||
447 stem(&z, "ezila", "al", m_gt_0);
448 break;
449 case 'i':
450 stem(&z, "itici", "ic", m_gt_0);
451 break;
452 case 'l':
453 stem(&z, "laci", "ic", m_gt_0) ||
454 stem(&z, "luf", "", m_gt_0);
455 break;
456 case 's':
457 stem(&z, "ssen", "", m_gt_0);
458 break;
461 /* Step 4 */
462 switch( z[1] ){
463 case 'a':
464 if( z[0]=='l' && m_gt_1(z+2) ){
465 z += 2;
467 break;
468 case 'c':
469 if( z[0]=='e' && z[2]=='n' && (z[3]=='a' || z[3]=='e') && m_gt_1(z+4) ){
470 z += 4;
472 break;
473 case 'e':
474 if( z[0]=='r' && m_gt_1(z+2) ){
475 z += 2;
477 break;
478 case 'i':
479 if( z[0]=='c' && m_gt_1(z+2) ){
480 z += 2;
482 break;
483 case 'l':
484 if( z[0]=='e' && z[2]=='b' && (z[3]=='a' || z[3]=='i') && m_gt_1(z+4) ){
485 z += 4;
487 break;
488 case 'n':
489 if( z[0]=='t' ){
490 if( z[2]=='a' ){
491 if( m_gt_1(z+3) ){
492 z += 3;
494 }else if( z[2]=='e' ){
495 stem(&z, "tneme", "", m_gt_1) ||
496 stem(&z, "tnem", "", m_gt_1) ||
497 stem(&z, "tne", "", m_gt_1);
500 break;
501 case 'o':
502 if( z[0]=='u' ){
503 if( m_gt_1(z+2) ){
504 z += 2;
506 }else if( z[3]=='s' || z[3]=='t' ){
507 stem(&z, "noi", "", m_gt_1);
509 break;
510 case 's':
511 if( z[0]=='m' && z[2]=='i' && m_gt_1(z+3) ){
512 z += 3;
514 break;
515 case 't':
516 stem(&z, "eta", "", m_gt_1) ||
517 stem(&z, "iti", "", m_gt_1);
518 break;
519 case 'u':
520 if( z[0]=='s' && z[2]=='o' && m_gt_1(z+3) ){
521 z += 3;
523 break;
524 case 'v':
525 case 'z':
526 if( z[0]=='e' && z[2]=='i' && m_gt_1(z+3) ){
527 z += 3;
529 break;
532 /* Step 5a */
533 if( z[0]=='e' ){
534 if( m_gt_1(z+1) ){
535 z++;
536 }else if( m_eq_1(z+1) && !star_oh(z+1) ){
537 z++;
541 /* Step 5b */
542 if( m_gt_1(z) && z[0]=='l' && z[1]=='l' ){
543 z++;
546 /* z[] is now the stemmed word in reverse order. Flip it back
547 ** around into forward order and return.
549 *pnOut = i = strlen(z);
550 zOut[i] = 0;
551 while( *z ){
552 zOut[--i] = *(z++);
557 ** Characters that can be part of a token. We assume any character
558 ** whose value is greater than 0x80 (any UTF character) can be
559 ** part of a token. In other words, delimiters all must have
560 ** values of 0x7f or lower.
562 static const char porterIdChar[] = {
563 /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */
564 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */
565 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */
566 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */
567 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */
568 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */
570 #define isDelim(C) (((ch=C)&0x80)==0 && (ch<0x30 || !porterIdChar[ch-0x30]))
573 ** Extract the next token from a tokenization cursor. The cursor must
574 ** have been opened by a prior call to porterOpen().
576 static int porterNext(
577 sqlite3_tokenizer_cursor *pCursor, /* Cursor returned by porterOpen */
578 const char **pzToken, /* OUT: *pzToken is the token text */
579 int *pnBytes, /* OUT: Number of bytes in token */
580 int *piStartOffset, /* OUT: Starting offset of token */
581 int *piEndOffset, /* OUT: Ending offset of token */
582 int *piPosition /* OUT: Position integer of token */
584 porter_tokenizer_cursor *c = (porter_tokenizer_cursor *) pCursor;
585 const char *z = c->zInput;
587 while( c->iOffset<c->nInput ){
588 int iStartOffset, ch;
590 /* Scan past delimiter characters */
591 while( c->iOffset<c->nInput && isDelim(z[c->iOffset]) ){
592 c->iOffset++;
595 /* Count non-delimiter characters. */
596 iStartOffset = c->iOffset;
597 while( c->iOffset<c->nInput && !isDelim(z[c->iOffset]) ){
598 c->iOffset++;
601 if( c->iOffset>iStartOffset ){
602 int n = c->iOffset-iStartOffset;
603 if( n>c->nAllocated ){
604 c->nAllocated = n+20;
605 c->zToken = sqlite3_realloc(c->zToken, c->nAllocated);
606 if( c->zToken==NULL ) return SQLITE_NOMEM;
608 porter_stemmer(&z[iStartOffset], n, c->zToken, pnBytes);
609 *pzToken = c->zToken;
610 *piStartOffset = iStartOffset;
611 *piEndOffset = c->iOffset;
612 *piPosition = c->iToken++;
613 return SQLITE_OK;
616 return SQLITE_DONE;
620 ** The set of routines that implement the porter-stemmer tokenizer
622 static const sqlite3_tokenizer_module porterTokenizerModule = {
624 porterCreate,
625 porterDestroy,
626 porterOpen,
627 porterClose,
628 porterNext,
632 ** Allocate a new porter tokenizer. Return a pointer to the new
633 ** tokenizer in *ppModule
635 void sqlite3Fts2PorterTokenizerModule(
636 sqlite3_tokenizer_module const**ppModule
638 *ppModule = &porterTokenizerModule;
641 #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) */