Fix build break
[chromium-blink-merge.git] / cc / scheduler / delay_based_time_source.cc
blob4037824f2f256023112df84148bf61ce440f2d6b
1 // Copyright 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "cc/scheduler/delay_based_time_source.h"
7 #include <algorithm>
8 #include <cmath>
10 #include "base/debug/trace_event.h"
11 #include "base/logging.h"
12 #include "base/message_loop.h"
13 #include "cc/base/thread.h"
15 namespace cc {
17 namespace {
19 // kDoubleTickThreshold prevents ticks from running within the specified
20 // fraction of an interval. This helps account for jitter in the timebase as
21 // well as quick timer reactivation.
22 static const double kDoubleTickThreshold = 0.25;
24 // kIntervalChangeThreshold is the fraction of the interval that will trigger an
25 // immediate interval change. kPhaseChangeThreshold is the fraction of the
26 // interval that will trigger an immediate phase change. If the changes are
27 // within the thresholds, the change will take place on the next tick. If
28 // either change is outside the thresholds, the next tick will be canceled and
29 // reissued immediately.
30 static const double kIntervalChangeThreshold = 0.25;
31 static const double kPhaseChangeThreshold = 0.25;
33 } // namespace
35 scoped_refptr<DelayBasedTimeSource> DelayBasedTimeSource::Create(
36 base::TimeDelta interval,
37 Thread* thread) {
38 return make_scoped_refptr(new DelayBasedTimeSource(interval, thread));
41 DelayBasedTimeSource::DelayBasedTimeSource(base::TimeDelta interval,
42 Thread* thread)
43 : client_(NULL),
44 has_tick_target_(false),
45 current_parameters_(interval, base::TimeTicks()),
46 next_parameters_(interval, base::TimeTicks()),
47 state_(STATE_INACTIVE),
48 thread_(thread),
49 weak_factory_(ALLOW_THIS_IN_INITIALIZER_LIST(this)) {}
51 DelayBasedTimeSource::~DelayBasedTimeSource() {}
53 void DelayBasedTimeSource::SetActive(bool active) {
54 TRACE_EVENT1("cc", "DelayBasedTimeSource::SetActive", "active", active);
55 if (!active) {
56 state_ = STATE_INACTIVE;
57 weak_factory_.InvalidateWeakPtrs();
58 return;
61 if (state_ == STATE_STARTING || state_ == STATE_ACTIVE)
62 return;
64 if (!has_tick_target_) {
65 // Becoming active the first time is deferred: we post a 0-delay task.
66 // When it runs, we use that to establish the timebase, become truly
67 // active, and fire the first tick.
68 state_ = STATE_STARTING;
69 thread_->PostTask(base::Bind(&DelayBasedTimeSource::OnTimerFired,
70 weak_factory_.GetWeakPtr()));
71 return;
74 state_ = STATE_ACTIVE;
76 PostNextTickTask(Now());
79 bool DelayBasedTimeSource::Active() const { return state_ != STATE_INACTIVE; }
81 base::TimeTicks DelayBasedTimeSource::LastTickTime() { return last_tick_time_; }
83 base::TimeTicks DelayBasedTimeSource::NextTickTime() {
84 return Active() ? current_parameters_.tick_target : base::TimeTicks();
87 void DelayBasedTimeSource::OnTimerFired() {
88 DCHECK(state_ != STATE_INACTIVE);
90 base::TimeTicks now = this->Now();
91 last_tick_time_ = now;
93 if (state_ == STATE_STARTING) {
94 SetTimebaseAndInterval(now, current_parameters_.interval);
95 state_ = STATE_ACTIVE;
98 PostNextTickTask(now);
100 // Fire the tick.
101 if (client_)
102 client_->OnTimerTick();
105 void DelayBasedTimeSource::SetClient(TimeSourceClient* client) {
106 client_ = client;
109 void DelayBasedTimeSource::SetTimebaseAndInterval(base::TimeTicks timebase,
110 base::TimeDelta interval) {
111 next_parameters_.interval = interval;
112 next_parameters_.tick_target = timebase;
113 has_tick_target_ = true;
115 if (state_ != STATE_ACTIVE) {
116 // If we aren't active, there's no need to reset the timer.
117 return;
120 // If the change in interval is larger than the change threshold,
121 // request an immediate reset.
122 double interval_delta =
123 std::abs((interval - current_parameters_.interval).InSecondsF());
124 double interval_change = interval_delta / interval.InSecondsF();
125 if (interval_change > kIntervalChangeThreshold) {
126 SetActive(false);
127 SetActive(true);
128 return;
131 // If the change in phase is greater than the change threshold in either
132 // direction, request an immediate reset. This logic might result in a false
133 // negative if there is a simultaneous small change in the interval and the
134 // fmod just happens to return something near zero. Assuming the timebase
135 // is very recent though, which it should be, we'll still be ok because the
136 // old clock and new clock just happen to line up.
137 double target_delta =
138 std::abs((timebase - current_parameters_.tick_target).InSecondsF());
139 double phase_change =
140 fmod(target_delta, interval.InSecondsF()) / interval.InSecondsF();
141 if (phase_change > kPhaseChangeThreshold &&
142 phase_change < (1.0 - kPhaseChangeThreshold)) {
143 SetActive(false);
144 SetActive(true);
145 return;
149 base::TimeTicks DelayBasedTimeSource::Now() const {
150 return base::TimeTicks::Now();
153 // This code tries to achieve an average tick rate as close to interval_ as
154 // possible. To do this, it has to deal with a few basic issues:
155 // 1. PostDelayedTask can delay only at a millisecond granularity. So, 16.666
156 // has to posted as 16 or 17.
157 // 2. A delayed task may come back a bit late (a few ms), or really late
158 // (frames later)
160 // The basic idea with this scheduler here is to keep track of where we *want*
161 // to run in tick_target_. We update this with the exact interval.
163 // Then, when we post our task, we take the floor of (tick_target_ and Now()).
164 // If we started at now=0, and 60FPs (all times in milliseconds):
165 // now=0 target=16.667 PostDelayedTask(16)
167 // When our callback runs, we figure out how far off we were from that goal.
168 // Because of the flooring operation, and assuming our timer runs exactly when
169 // it should, this yields:
170 // now=16 target=16.667
172 // Since we can't post a 0.667 ms task to get to now=16, we just treat this as a
173 // tick. Then, we update target to be 33.333. We now post another task based on
174 // the difference between our target and now:
175 // now=16 tick_target=16.667 new_target=33.333 -->
176 // PostDelayedTask(floor(33.333 - 16)) --> PostDelayedTask(17)
178 // Over time, with no late tasks, this leads to us posting tasks like this:
179 // now=0 tick_target=0 new_target=16.667 -->
180 // tick(), PostDelayedTask(16)
181 // now=16 tick_target=16.667 new_target=33.333 -->
182 // tick(), PostDelayedTask(17)
183 // now=33 tick_target=33.333 new_target=50.000 -->
184 // tick(), PostDelayedTask(17)
185 // now=50 tick_target=50.000 new_target=66.667 -->
186 // tick(), PostDelayedTask(16)
188 // We treat delays in tasks differently depending on the amount of delay we
189 // encounter. Suppose we posted a task with a target=16.667:
190 // Case 1: late but not unrecoverably-so
191 // now=18 tick_target=16.667
193 // Case 2: so late we obviously missed the tick
194 // now=25.0 tick_target=16.667
196 // We treat the first case as a tick anyway, and assume the delay was unusual.
197 // Thus, we compute the new_target based on the old timebase:
198 // now=18 tick_target=16.667 new_target=33.333 -->
199 // tick(), PostDelayedTask(floor(33.333-18)) --> PostDelayedTask(15)
200 // This brings us back to 18+15 = 33, which was where we would have been if the
201 // task hadn't been late.
203 // For the really late delay, we we move to the next logical tick. The timebase
204 // is not reset.
205 // now=37 tick_target=16.667 new_target=50.000 -->
206 // tick(), PostDelayedTask(floor(50.000-37)) --> PostDelayedTask(13)
207 base::TimeTicks DelayBasedTimeSource::NextTickTarget(base::TimeTicks now) {
208 base::TimeDelta new_interval = next_parameters_.interval;
209 int intervals_elapsed =
210 static_cast<int>(floor((now - next_parameters_.tick_target).InSecondsF() /
211 new_interval.InSecondsF()));
212 base::TimeTicks last_effective_tick =
213 next_parameters_.tick_target + new_interval * intervals_elapsed;
214 base::TimeTicks new_tick_target = last_effective_tick + new_interval;
215 DCHECK(new_tick_target > now);
217 // Avoid double ticks when:
218 // 1) Turning off the timer and turning it right back on.
219 // 2) Jittery data is passed to SetTimebaseAndInterval().
220 if (new_tick_target - last_tick_time_ <=
221 new_interval / static_cast<int>(1.0 / kDoubleTickThreshold))
222 new_tick_target += new_interval;
224 return new_tick_target;
227 void DelayBasedTimeSource::PostNextTickTask(base::TimeTicks now) {
228 base::TimeTicks new_tick_target = NextTickTarget(now);
230 // Post another task *before* the tick and update state
231 base::TimeDelta delay = new_tick_target - now;
232 DCHECK(delay.InMillisecondsF() <=
233 next_parameters_.interval.InMillisecondsF() *
234 (1.0 + kDoubleTickThreshold));
235 thread_->PostDelayedTask(base::Bind(&DelayBasedTimeSource::OnTimerFired,
236 weak_factory_.GetWeakPtr()),
237 delay);
239 next_parameters_.tick_target = new_tick_target;
240 current_parameters_ = next_parameters_;
243 } // namespace cc