Cleanup setting of 'sysroot' in common.gypi
[chromium-blink-merge.git] / base / bind_helpers.h
blob24063ad1ce58fd27c5535ec81c294c597db841df
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // This defines a set of argument wrappers and related factory methods that
6 // can be used specify the refcounting and reference semantics of arguments
7 // that are bound by the Bind() function in base/bind.h.
8 //
9 // It also defines a set of simple functions and utilities that people want
10 // when using Callback<> and Bind().
13 // ARGUMENT BINDING WRAPPERS
15 // The wrapper functions are base::Unretained(), base::Owned(), base::Passed(),
16 // base::ConstRef(), and base::IgnoreResult().
18 // Unretained() allows Bind() to bind a non-refcounted class, and to disable
19 // refcounting on arguments that are refcounted objects.
21 // Owned() transfers ownership of an object to the Callback resulting from
22 // bind; the object will be deleted when the Callback is deleted.
24 // Passed() is for transferring movable-but-not-copyable types (eg. scoped_ptr)
25 // through a Callback. Logically, this signifies a destructive transfer of
26 // the state of the argument into the target function. Invoking
27 // Callback::Run() twice on a Callback that was created with a Passed()
28 // argument will CHECK() because the first invocation would have already
29 // transferred ownership to the target function.
31 // ConstRef() allows binding a constant reference to an argument rather
32 // than a copy.
34 // IgnoreResult() is used to adapt a function or Callback with a return type to
35 // one with a void return. This is most useful if you have a function with,
36 // say, a pesky ignorable bool return that you want to use with PostTask or
37 // something else that expect a Callback with a void return.
39 // EXAMPLE OF Unretained():
41 // class Foo {
42 // public:
43 // void func() { cout << "Foo:f" << endl; }
44 // };
46 // // In some function somewhere.
47 // Foo foo;
48 // Closure foo_callback =
49 // Bind(&Foo::func, Unretained(&foo));
50 // foo_callback.Run(); // Prints "Foo:f".
52 // Without the Unretained() wrapper on |&foo|, the above call would fail
53 // to compile because Foo does not support the AddRef() and Release() methods.
56 // EXAMPLE OF Owned():
58 // void foo(int* arg) { cout << *arg << endl }
60 // int* pn = new int(1);
61 // Closure foo_callback = Bind(&foo, Owned(pn));
63 // foo_callback.Run(); // Prints "1"
64 // foo_callback.Run(); // Prints "1"
65 // *n = 2;
66 // foo_callback.Run(); // Prints "2"
68 // foo_callback.Reset(); // |pn| is deleted. Also will happen when
69 // // |foo_callback| goes out of scope.
71 // Without Owned(), someone would have to know to delete |pn| when the last
72 // reference to the Callback is deleted.
75 // EXAMPLE OF ConstRef():
77 // void foo(int arg) { cout << arg << endl }
79 // int n = 1;
80 // Closure no_ref = Bind(&foo, n);
81 // Closure has_ref = Bind(&foo, ConstRef(n));
83 // no_ref.Run(); // Prints "1"
84 // has_ref.Run(); // Prints "1"
86 // n = 2;
87 // no_ref.Run(); // Prints "1"
88 // has_ref.Run(); // Prints "2"
90 // Note that because ConstRef() takes a reference on |n|, |n| must outlive all
91 // its bound callbacks.
94 // EXAMPLE OF IgnoreResult():
96 // int DoSomething(int arg) { cout << arg << endl; }
98 // // Assign to a Callback with a void return type.
99 // Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething));
100 // cb->Run(1); // Prints "1".
102 // // Prints "1" on |ml|.
103 // ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1);
106 // EXAMPLE OF Passed():
108 // void TakesOwnership(scoped_ptr<Foo> arg) { }
109 // scoped_ptr<Foo> CreateFoo() { return scoped_ptr<Foo>(new Foo()); }
111 // scoped_ptr<Foo> f(new Foo());
113 // // |cb| is given ownership of Foo(). |f| is now NULL.
114 // // You can use f.Pass() in place of &f, but it's more verbose.
115 // Closure cb = Bind(&TakesOwnership, Passed(&f));
117 // // Run was never called so |cb| still owns Foo() and deletes
118 // // it on Reset().
119 // cb.Reset();
121 // // |cb| is given a new Foo created by CreateFoo().
122 // cb = Bind(&TakesOwnership, Passed(CreateFoo()));
124 // // |arg| in TakesOwnership() is given ownership of Foo(). |cb|
125 // // no longer owns Foo() and, if reset, would not delete Foo().
126 // cb.Run(); // Foo() is now transferred to |arg| and deleted.
127 // cb.Run(); // This CHECK()s since Foo() already been used once.
129 // Passed() is particularly useful with PostTask() when you are transferring
130 // ownership of an argument into a task, but don't necessarily know if the
131 // task will always be executed. This can happen if the task is cancellable
132 // or if it is posted to a TaskRunner.
135 // SIMPLE FUNCTIONS AND UTILITIES.
137 // DoNothing() - Useful for creating a Closure that does nothing when called.
138 // DeletePointer<T>() - Useful for creating a Closure that will delete a
139 // pointer when invoked. Only use this when necessary.
140 // In most cases MessageLoop::DeleteSoon() is a better
141 // fit.
143 #ifndef BASE_BIND_HELPERS_H_
144 #define BASE_BIND_HELPERS_H_
146 #include "base/basictypes.h"
147 #include "base/callback.h"
148 #include "base/memory/weak_ptr.h"
149 #include "base/template_util.h"
151 namespace base {
152 namespace internal {
154 // Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T
155 // for the existence of AddRef() and Release() functions of the correct
156 // signature.
158 // http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error
159 // http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence
160 // http://stackoverflow.com/questions/4358584/sfinae-approach-comparison
161 // http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions
163 // The last link in particular show the method used below.
165 // For SFINAE to work with inherited methods, we need to pull some extra tricks
166 // with multiple inheritance. In the more standard formulation, the overloads
167 // of Check would be:
169 // template <typename C>
170 // Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*);
172 // template <typename C>
173 // No NotTheCheckWeWant(...);
175 // static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes);
177 // The problem here is that template resolution will not match
178 // C::TargetFunc if TargetFunc does not exist directly in C. That is, if
179 // TargetFunc in inherited from an ancestor, &C::TargetFunc will not match,
180 // |value| will be false. This formulation only checks for whether or
181 // not TargetFunc exist directly in the class being introspected.
183 // To get around this, we play a dirty trick with multiple inheritance.
184 // First, We create a class BaseMixin that declares each function that we
185 // want to probe for. Then we create a class Base that inherits from both T
186 // (the class we wish to probe) and BaseMixin. Note that the function
187 // signature in BaseMixin does not need to match the signature of the function
188 // we are probing for; thus it's easiest to just use void(void).
190 // Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an
191 // ambiguous resolution between BaseMixin and T. This lets us write the
192 // following:
194 // template <typename C>
195 // No GoodCheck(Helper<&C::TargetFunc>*);
197 // template <typename C>
198 // Yes GoodCheck(...);
200 // static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes);
202 // Notice here that the variadic version of GoodCheck() returns Yes here
203 // instead of No like the previous one. Also notice that we calculate |value|
204 // by specializing GoodCheck() on Base instead of T.
206 // We've reversed the roles of the variadic, and Helper overloads.
207 // GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid
208 // substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve
209 // to the variadic version if T has TargetFunc. If T::TargetFunc does not
210 // exist, then &C::TargetFunc is not ambiguous, and the overload resolution
211 // will prefer GoodCheck(Helper<&C::TargetFunc>*).
213 // This method of SFINAE will correctly probe for inherited names, but it cannot
214 // typecheck those names. It's still a good enough sanity check though.
216 // Works on gcc-4.2, gcc-4.4, and Visual Studio 2008.
218 // TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted
219 // this works well.
221 // TODO(ajwong): Make this check for Release() as well.
222 // See http://crbug.com/82038.
223 template <typename T>
224 class SupportsAddRefAndRelease {
225 typedef char Yes[1];
226 typedef char No[2];
228 struct BaseMixin {
229 void AddRef();
232 // MSVC warns when you try to use Base if T has a private destructor, the
233 // common pattern for refcounted types. It does this even though no attempt to
234 // instantiate Base is made. We disable the warning for this definition.
235 #if defined(OS_WIN)
236 #pragma warning(push)
237 #pragma warning(disable:4624)
238 #endif
239 struct Base : public T, public BaseMixin {
241 #if defined(OS_WIN)
242 #pragma warning(pop)
243 #endif
245 template <void(BaseMixin::*)(void)> struct Helper {};
247 template <typename C>
248 static No& Check(Helper<&C::AddRef>*);
250 template <typename >
251 static Yes& Check(...);
253 public:
254 enum { value = sizeof(Check<Base>(0)) == sizeof(Yes) };
257 // Helpers to assert that arguments of a recounted type are bound with a
258 // scoped_refptr.
259 template <bool IsClasstype, typename T>
260 struct UnsafeBindtoRefCountedArgHelper : false_type {
263 template <typename T>
264 struct UnsafeBindtoRefCountedArgHelper<true, T>
265 : integral_constant<bool, SupportsAddRefAndRelease<T>::value> {
268 template <typename T>
269 struct UnsafeBindtoRefCountedArg : false_type {
272 template <typename T>
273 struct UnsafeBindtoRefCountedArg<T*>
274 : UnsafeBindtoRefCountedArgHelper<is_class<T>::value, T> {
277 template <typename T>
278 class HasIsMethodTag {
279 typedef char Yes[1];
280 typedef char No[2];
282 template <typename U>
283 static Yes& Check(typename U::IsMethod*);
285 template <typename U>
286 static No& Check(...);
288 public:
289 enum { value = sizeof(Check<T>(0)) == sizeof(Yes) };
292 template <typename T>
293 class UnretainedWrapper {
294 public:
295 explicit UnretainedWrapper(T* o) : ptr_(o) {}
296 T* get() const { return ptr_; }
297 private:
298 T* ptr_;
301 template <typename T>
302 class ConstRefWrapper {
303 public:
304 explicit ConstRefWrapper(const T& o) : ptr_(&o) {}
305 const T& get() const { return *ptr_; }
306 private:
307 const T* ptr_;
310 template <typename T>
311 struct IgnoreResultHelper {
312 explicit IgnoreResultHelper(T functor) : functor_(functor) {}
314 T functor_;
317 template <typename T>
318 struct IgnoreResultHelper<Callback<T> > {
319 explicit IgnoreResultHelper(const Callback<T>& functor) : functor_(functor) {}
321 const Callback<T>& functor_;
324 // An alternate implementation is to avoid the destructive copy, and instead
325 // specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to
326 // a class that is essentially a scoped_ptr<>.
328 // The current implementation has the benefit though of leaving ParamTraits<>
329 // fully in callback_internal.h as well as avoiding type conversions during
330 // storage.
331 template <typename T>
332 class OwnedWrapper {
333 public:
334 explicit OwnedWrapper(T* o) : ptr_(o) {}
335 ~OwnedWrapper() { delete ptr_; }
336 T* get() const { return ptr_; }
337 OwnedWrapper(const OwnedWrapper& other) {
338 ptr_ = other.ptr_;
339 other.ptr_ = NULL;
342 private:
343 mutable T* ptr_;
346 // PassedWrapper is a copyable adapter for a scoper that ignores const.
348 // It is needed to get around the fact that Bind() takes a const reference to
349 // all its arguments. Because Bind() takes a const reference to avoid
350 // unnecessary copies, it is incompatible with movable-but-not-copyable
351 // types; doing a destructive "move" of the type into Bind() would violate
352 // the const correctness.
354 // This conundrum cannot be solved without either C++11 rvalue references or
355 // a O(2^n) blowup of Bind() templates to handle each combination of regular
356 // types and movable-but-not-copyable types. Thus we introduce a wrapper type
357 // that is copyable to transmit the correct type information down into
358 // BindState<>. Ignoring const in this type makes sense because it is only
359 // created when we are explicitly trying to do a destructive move.
361 // Two notes:
362 // 1) PassedWrapper supports any type that has a "Pass()" function.
363 // This is intentional. The whitelisting of which specific types we
364 // support is maintained by CallbackParamTraits<>.
365 // 2) is_valid_ is distinct from NULL because it is valid to bind a "NULL"
366 // scoper to a Callback and allow the Callback to execute once.
367 template <typename T>
368 class PassedWrapper {
369 public:
370 explicit PassedWrapper(T scoper) : is_valid_(true), scoper_(scoper.Pass()) {}
371 PassedWrapper(const PassedWrapper& other)
372 : is_valid_(other.is_valid_), scoper_(other.scoper_.Pass()) {
374 T Pass() const {
375 CHECK(is_valid_);
376 is_valid_ = false;
377 return scoper_.Pass();
380 private:
381 mutable bool is_valid_;
382 mutable T scoper_;
385 // Unwrap the stored parameters for the wrappers above.
386 template <typename T>
387 struct UnwrapTraits {
388 typedef const T& ForwardType;
389 static ForwardType Unwrap(const T& o) { return o; }
392 template <typename T>
393 struct UnwrapTraits<UnretainedWrapper<T> > {
394 typedef T* ForwardType;
395 static ForwardType Unwrap(UnretainedWrapper<T> unretained) {
396 return unretained.get();
400 template <typename T>
401 struct UnwrapTraits<ConstRefWrapper<T> > {
402 typedef const T& ForwardType;
403 static ForwardType Unwrap(ConstRefWrapper<T> const_ref) {
404 return const_ref.get();
408 template <typename T>
409 struct UnwrapTraits<scoped_refptr<T> > {
410 typedef T* ForwardType;
411 static ForwardType Unwrap(const scoped_refptr<T>& o) { return o.get(); }
414 template <typename T>
415 struct UnwrapTraits<WeakPtr<T> > {
416 typedef const WeakPtr<T>& ForwardType;
417 static ForwardType Unwrap(const WeakPtr<T>& o) { return o; }
420 template <typename T>
421 struct UnwrapTraits<OwnedWrapper<T> > {
422 typedef T* ForwardType;
423 static ForwardType Unwrap(const OwnedWrapper<T>& o) {
424 return o.get();
428 template <typename T>
429 struct UnwrapTraits<PassedWrapper<T> > {
430 typedef T ForwardType;
431 static T Unwrap(PassedWrapper<T>& o) {
432 return o.Pass();
436 // Utility for handling different refcounting semantics in the Bind()
437 // function.
438 template <bool is_method, typename... T>
439 struct MaybeScopedRefPtr;
441 template <bool is_method>
442 struct MaybeScopedRefPtr<is_method> {
443 MaybeScopedRefPtr() {}
446 template <typename T, typename... Rest>
447 struct MaybeScopedRefPtr<false, T, Rest...> {
448 MaybeScopedRefPtr(const T&, const Rest&...) {}
451 template <typename T, size_t n, typename... Rest>
452 struct MaybeScopedRefPtr<false, T[n], Rest...> {
453 MaybeScopedRefPtr(const T*, const Rest&...) {}
456 template <typename T, typename... Rest>
457 struct MaybeScopedRefPtr<true, T, Rest...> {
458 MaybeScopedRefPtr(const T& o, const Rest&...) {}
461 template <typename T, typename... Rest>
462 struct MaybeScopedRefPtr<true, T*, Rest...> {
463 MaybeScopedRefPtr(T* o, const Rest&...) : ref_(o) {}
464 scoped_refptr<T> ref_;
467 // No need to additionally AddRef() and Release() since we are storing a
468 // scoped_refptr<> inside the storage object already.
469 template <typename T, typename... Rest>
470 struct MaybeScopedRefPtr<true, scoped_refptr<T>, Rest...> {
471 MaybeScopedRefPtr(const scoped_refptr<T>&, const Rest&...) {}
474 template <typename T, typename... Rest>
475 struct MaybeScopedRefPtr<true, const T*, Rest...> {
476 MaybeScopedRefPtr(const T* o, const Rest&...) : ref_(o) {}
477 scoped_refptr<const T> ref_;
480 // IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a
481 // method. It is used internally by Bind() to select the correct
482 // InvokeHelper that will no-op itself in the event the WeakPtr<> for
483 // the target object is invalidated.
485 // The first argument should be the type of the object that will be received by
486 // the method.
487 template <bool IsMethod, typename... Args>
488 struct IsWeakMethod : public false_type {};
490 template <typename T, typename... Args>
491 struct IsWeakMethod<true, WeakPtr<T>, Args...> : public true_type {};
493 template <typename T, typename... Args>
494 struct IsWeakMethod<true, ConstRefWrapper<WeakPtr<T>>, Args...>
495 : public true_type {};
498 // Packs a list of types to hold them in a single type.
499 template <typename... Types>
500 struct TypeList {};
502 // Used for DropTypeListItem implementation.
503 template <size_t n, typename List>
504 struct DropTypeListItemImpl;
506 // Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
507 template <size_t n, typename T, typename... List>
508 struct DropTypeListItemImpl<n, TypeList<T, List...>>
509 : DropTypeListItemImpl<n - 1, TypeList<List...>> {};
511 template <typename T, typename... List>
512 struct DropTypeListItemImpl<0, TypeList<T, List...>> {
513 typedef TypeList<T, List...> Type;
516 template <>
517 struct DropTypeListItemImpl<0, TypeList<>> {
518 typedef TypeList<> Type;
521 // A type-level function that drops |n| list item from given TypeList.
522 template <size_t n, typename List>
523 using DropTypeListItem = typename DropTypeListItemImpl<n, List>::Type;
525 // Used for ConcatTypeLists implementation.
526 template <typename List1, typename List2>
527 struct ConcatTypeListsImpl;
529 template <typename... Types1, typename... Types2>
530 struct ConcatTypeListsImpl<TypeList<Types1...>, TypeList<Types2...>> {
531 typedef TypeList<Types1..., Types2...> Type;
534 // A type-level function that concats two TypeLists.
535 template <typename List1, typename List2>
536 using ConcatTypeLists = typename ConcatTypeListsImpl<List1, List2>::Type;
538 // Used for MakeFunctionType implementation.
539 template <typename R, typename ArgList>
540 struct MakeFunctionTypeImpl;
542 template <typename R, typename... Args>
543 struct MakeFunctionTypeImpl<R, TypeList<Args...>> {
544 typedef R(Type)(Args...);
547 // A type-level function that constructs a function type that has |R| as its
548 // return type and has TypeLists items as its arguments.
549 template <typename R, typename ArgList>
550 using MakeFunctionType = typename MakeFunctionTypeImpl<R, ArgList>::Type;
552 } // namespace internal
554 template <typename T>
555 static inline internal::UnretainedWrapper<T> Unretained(T* o) {
556 return internal::UnretainedWrapper<T>(o);
559 template <typename T>
560 static inline internal::ConstRefWrapper<T> ConstRef(const T& o) {
561 return internal::ConstRefWrapper<T>(o);
564 template <typename T>
565 static inline internal::OwnedWrapper<T> Owned(T* o) {
566 return internal::OwnedWrapper<T>(o);
569 // We offer 2 syntaxes for calling Passed(). The first takes a temporary and
570 // is best suited for use with the return value of a function. The second
571 // takes a pointer to the scoper and is just syntactic sugar to avoid having
572 // to write Passed(scoper.Pass()).
573 template <typename T>
574 static inline internal::PassedWrapper<T> Passed(T scoper) {
575 return internal::PassedWrapper<T>(scoper.Pass());
577 template <typename T>
578 static inline internal::PassedWrapper<T> Passed(T* scoper) {
579 return internal::PassedWrapper<T>(scoper->Pass());
582 template <typename T>
583 static inline internal::IgnoreResultHelper<T> IgnoreResult(T data) {
584 return internal::IgnoreResultHelper<T>(data);
587 template <typename T>
588 static inline internal::IgnoreResultHelper<Callback<T> >
589 IgnoreResult(const Callback<T>& data) {
590 return internal::IgnoreResultHelper<Callback<T> >(data);
593 BASE_EXPORT void DoNothing();
595 template<typename T>
596 void DeletePointer(T* obj) {
597 delete obj;
600 } // namespace base
602 #endif // BASE_BIND_HELPERS_H_