Cleanup setting of 'sysroot' in common.gypi
[chromium-blink-merge.git] / base / memory / linked_ptr.h
blob80044add81c22cbd63f9d1d8fefa6ea077d3652b
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 //
5 // A "smart" pointer type with reference tracking. Every pointer to a
6 // particular object is kept on a circular linked list. When the last pointer
7 // to an object is destroyed or reassigned, the object is deleted.
8 //
9 // Used properly, this deletes the object when the last reference goes away.
10 // There are several caveats:
11 // - Like all reference counting schemes, cycles lead to leaks.
12 // - Each smart pointer is actually two pointers (8 bytes instead of 4).
13 // - Every time a pointer is released, the entire list of pointers to that
14 // object is traversed. This class is therefore NOT SUITABLE when there
15 // will often be more than two or three pointers to a particular object.
16 // - References are only tracked as long as linked_ptr<> objects are copied.
17 // If a linked_ptr<> is converted to a raw pointer and back, BAD THINGS
18 // will happen (double deletion).
20 // A good use of this class is storing object references in STL containers.
21 // You can safely put linked_ptr<> in a vector<>.
22 // Other uses may not be as good.
24 // Note: If you use an incomplete type with linked_ptr<>, the class
25 // *containing* linked_ptr<> must have a constructor and destructor (even
26 // if they do nothing!).
28 // Thread Safety:
29 // A linked_ptr is NOT thread safe. Copying a linked_ptr object is
30 // effectively a read-write operation.
32 // Alternative: to linked_ptr is shared_ptr, which
33 // - is also two pointers in size (8 bytes for 32 bit addresses)
34 // - is thread safe for copying and deletion
35 // - supports weak_ptrs
37 #ifndef BASE_MEMORY_LINKED_PTR_H_
38 #define BASE_MEMORY_LINKED_PTR_H_
40 #include "base/logging.h" // for CHECK macros
42 // This is used internally by all instances of linked_ptr<>. It needs to be
43 // a non-template class because different types of linked_ptr<> can refer to
44 // the same object (linked_ptr<Superclass>(obj) vs linked_ptr<Subclass>(obj)).
45 // So, it needs to be possible for different types of linked_ptr to participate
46 // in the same circular linked list, so we need a single class type here.
48 // DO NOT USE THIS CLASS DIRECTLY YOURSELF. Use linked_ptr<T>.
49 class linked_ptr_internal {
50 public:
51 // Create a new circle that includes only this instance.
52 void join_new() {
53 next_ = this;
56 // Join an existing circle.
57 void join(linked_ptr_internal const* ptr) {
58 next_ = ptr->next_;
59 ptr->next_ = this;
62 // Leave whatever circle we're part of. Returns true iff we were the
63 // last member of the circle. Once this is done, you can join() another.
64 bool depart() {
65 if (next_ == this) return true;
66 linked_ptr_internal const* p = next_;
67 while (p->next_ != this) p = p->next_;
68 p->next_ = next_;
69 return false;
72 private:
73 mutable linked_ptr_internal const* next_;
76 template <typename T>
77 class linked_ptr {
78 public:
79 typedef T element_type;
81 // Take over ownership of a raw pointer. This should happen as soon as
82 // possible after the object is created.
83 explicit linked_ptr(T* ptr = NULL) { capture(ptr); }
84 ~linked_ptr() { depart(); }
86 // Copy an existing linked_ptr<>, adding ourselves to the list of references.
87 template <typename U> linked_ptr(linked_ptr<U> const& ptr) { copy(&ptr); }
89 linked_ptr(linked_ptr const& ptr) {
90 DCHECK_NE(&ptr, this);
91 copy(&ptr);
94 // Assignment releases the old value and acquires the new.
95 template <typename U> linked_ptr& operator=(linked_ptr<U> const& ptr) {
96 depart();
97 copy(&ptr);
98 return *this;
101 linked_ptr& operator=(linked_ptr const& ptr) {
102 if (&ptr != this) {
103 depart();
104 copy(&ptr);
106 return *this;
109 // Smart pointer members.
110 void reset(T* ptr = NULL) {
111 depart();
112 capture(ptr);
114 T* get() const { return value_; }
115 T* operator->() const { return value_; }
116 T& operator*() const { return *value_; }
117 // Release ownership of the pointed object and returns it.
118 // Sole ownership by this linked_ptr object is required.
119 T* release() {
120 bool last = link_.depart();
121 CHECK(last);
122 T* v = value_;
123 value_ = NULL;
124 return v;
127 bool operator==(const T* p) const { return value_ == p; }
128 bool operator!=(const T* p) const { return value_ != p; }
129 template <typename U>
130 bool operator==(linked_ptr<U> const& ptr) const {
131 return value_ == ptr.get();
133 template <typename U>
134 bool operator!=(linked_ptr<U> const& ptr) const {
135 return value_ != ptr.get();
138 private:
139 template <typename U>
140 friend class linked_ptr;
142 T* value_;
143 linked_ptr_internal link_;
145 void depart() {
146 if (link_.depart()) delete value_;
149 void capture(T* ptr) {
150 value_ = ptr;
151 link_.join_new();
154 template <typename U> void copy(linked_ptr<U> const* ptr) {
155 value_ = ptr->get();
156 if (value_)
157 link_.join(&ptr->link_);
158 else
159 link_.join_new();
163 template<typename T> inline
164 bool operator==(T* ptr, const linked_ptr<T>& x) {
165 return ptr == x.get();
168 template<typename T> inline
169 bool operator!=(T* ptr, const linked_ptr<T>& x) {
170 return ptr != x.get();
173 // A function to convert T* into linked_ptr<T>
174 // Doing e.g. make_linked_ptr(new FooBarBaz<type>(arg)) is a shorter notation
175 // for linked_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg))
176 template <typename T>
177 linked_ptr<T> make_linked_ptr(T* ptr) {
178 return linked_ptr<T>(ptr);
181 #endif // BASE_MEMORY_LINKED_PTR_H_