Syscall: Fix Syscall::Call's X86-64 implementation for CFI unwinding
[chromium-blink-merge.git] / sandbox / linux / seccomp-bpf / syscall.cc
blob57f6bafb9d8936ee7c494dd235fd729e7ac42c16
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "sandbox/linux/seccomp-bpf/syscall.h"
7 #include <asm/unistd.h>
8 #include <errno.h>
10 #include "base/basictypes.h"
11 #include "base/logging.h"
12 #include "sandbox/linux/seccomp-bpf/linux_seccomp.h"
14 namespace sandbox {
16 namespace {
18 #if defined(ARCH_CPU_X86_FAMILY) || defined(ARCH_CPU_ARM_FAMILY) || \
19 defined(ARCH_CPU_MIPS_FAMILY)
20 // Number that's not currently used by any Linux kernel ABIs.
21 const int kInvalidSyscallNumber = 0x351d3;
22 #else
23 #error Unrecognized architecture
24 #endif
26 asm(// We need to be able to tell the kernel exactly where we made a
27 // system call. The C++ compiler likes to sometimes clone or
28 // inline code, which would inadvertently end up duplicating
29 // the entry point.
30 // "gcc" can suppress code duplication with suitable function
31 // attributes, but "clang" doesn't have this ability.
32 // The "clang" developer mailing list suggested that the correct
33 // and portable solution is a file-scope assembly block.
34 // N.B. We do mark our code as a proper function so that backtraces
35 // work correctly. But we make absolutely no attempt to use the
36 // ABI's calling conventions for passing arguments. We will only
37 // ever be called from assembly code and thus can pick more
38 // suitable calling conventions.
39 #if defined(__i386__)
40 ".text\n"
41 ".align 16, 0x90\n"
42 ".type SyscallAsm, @function\n"
43 "SyscallAsm:.cfi_startproc\n"
44 // Check if "%eax" is negative. If so, do not attempt to make a
45 // system call. Instead, compute the return address that is visible
46 // to the kernel after we execute "int $0x80". This address can be
47 // used as a marker that BPF code inspects.
48 "test %eax, %eax\n"
49 "jge 1f\n"
50 // Always, make sure that our code is position-independent, or
51 // address space randomization might not work on i386. This means,
52 // we can't use "lea", but instead have to rely on "call/pop".
53 "call 0f; .cfi_adjust_cfa_offset 4\n"
54 "0:pop %eax; .cfi_adjust_cfa_offset -4\n"
55 "addl $2f-0b, %eax\n"
56 "ret\n"
57 // Save register that we don't want to clobber. On i386, we need to
58 // save relatively aggressively, as there are a couple or registers
59 // that are used internally (e.g. %ebx for position-independent
60 // code, and %ebp for the frame pointer), and as we need to keep at
61 // least a few registers available for the register allocator.
62 "1:push %esi; .cfi_adjust_cfa_offset 4; .cfi_rel_offset esi, 0\n"
63 "push %edi; .cfi_adjust_cfa_offset 4; .cfi_rel_offset edi, 0\n"
64 "push %ebx; .cfi_adjust_cfa_offset 4; .cfi_rel_offset ebx, 0\n"
65 "push %ebp; .cfi_adjust_cfa_offset 4; .cfi_rel_offset ebp, 0\n"
66 // Copy entries from the array holding the arguments into the
67 // correct CPU registers.
68 "movl 0(%edi), %ebx\n"
69 "movl 4(%edi), %ecx\n"
70 "movl 8(%edi), %edx\n"
71 "movl 12(%edi), %esi\n"
72 "movl 20(%edi), %ebp\n"
73 "movl 16(%edi), %edi\n"
74 // Enter the kernel.
75 "int $0x80\n"
76 // This is our "magic" return address that the BPF filter sees.
77 "2:"
78 // Restore any clobbered registers that we didn't declare to the
79 // compiler.
80 "pop %ebp; .cfi_restore ebp; .cfi_adjust_cfa_offset -4\n"
81 "pop %ebx; .cfi_restore ebx; .cfi_adjust_cfa_offset -4\n"
82 "pop %edi; .cfi_restore edi; .cfi_adjust_cfa_offset -4\n"
83 "pop %esi; .cfi_restore esi; .cfi_adjust_cfa_offset -4\n"
84 "ret\n"
85 ".cfi_endproc\n"
86 "9:.size SyscallAsm, 9b-SyscallAsm\n"
87 #elif defined(__x86_64__)
88 ".text\n"
89 ".align 16, 0x90\n"
90 ".type SyscallAsm, @function\n"
91 "SyscallAsm:.cfi_startproc\n"
92 // Check if "%rdi" is negative. If so, do not attempt to make a
93 // system call. Instead, compute the return address that is visible
94 // to the kernel after we execute "syscall". This address can be
95 // used as a marker that BPF code inspects.
96 "test %rdi, %rdi\n"
97 "jge 1f\n"
98 // Always make sure that our code is position-independent, or the
99 // linker will throw a hissy fit on x86-64.
100 "lea 2f(%rip), %rax\n"
101 "ret\n"
102 // Now we load the registers used to pass arguments to the system
103 // call: system call number in %rax, and arguments in %rdi, %rsi,
104 // %rdx, %r10, %r8, %r9. Note: These are all caller-save registers
105 // (only %rbx, %rbp, %rsp, and %r12-%r15 are callee-save), so no
106 // need to worry here about spilling registers or CFI directives.
107 "1:movq %rdi, %rax\n"
108 "movq 0(%rsi), %rdi\n"
109 "movq 16(%rsi), %rdx\n"
110 "movq 24(%rsi), %r10\n"
111 "movq 32(%rsi), %r8\n"
112 "movq 40(%rsi), %r9\n"
113 "movq 8(%rsi), %rsi\n"
114 // Enter the kernel.
115 "syscall\n"
116 // This is our "magic" return address that the BPF filter sees.
117 "2:ret\n"
118 ".cfi_endproc\n"
119 "9:.size SyscallAsm, 9b-SyscallAsm\n"
120 #elif defined(__arm__)
121 // Throughout this file, we use the same mode (ARM vs. thumb)
122 // that the C++ compiler uses. This means, when transfering control
123 // from C++ to assembly code, we do not need to switch modes (e.g.
124 // by using the "bx" instruction). It also means that our assembly
125 // code should not be invoked directly from code that lives in
126 // other compilation units, as we don't bother implementing thumb
127 // interworking. That's OK, as we don't make any of the assembly
128 // symbols public. They are all local to this file.
129 ".text\n"
130 ".align 2\n"
131 ".type SyscallAsm, %function\n"
132 #if defined(__thumb__)
133 ".thumb_func\n"
134 #else
135 ".arm\n"
136 #endif
137 "SyscallAsm:.fnstart\n"
138 "@ args = 0, pretend = 0, frame = 8\n"
139 "@ frame_needed = 1, uses_anonymous_args = 0\n"
140 #if defined(__thumb__)
141 ".cfi_startproc\n"
142 "push {r7, lr}\n"
143 ".cfi_offset 14, -4\n"
144 ".cfi_offset 7, -8\n"
145 "mov r7, sp\n"
146 ".cfi_def_cfa_register 7\n"
147 ".cfi_def_cfa_offset 8\n"
148 #else
149 "stmfd sp!, {fp, lr}\n"
150 "add fp, sp, #4\n"
151 #endif
152 // Check if "r0" is negative. If so, do not attempt to make a
153 // system call. Instead, compute the return address that is visible
154 // to the kernel after we execute "swi 0". This address can be
155 // used as a marker that BPF code inspects.
156 "cmp r0, #0\n"
157 "bge 1f\n"
158 "adr r0, 2f\n"
159 "b 2f\n"
160 // We declared (almost) all clobbered registers to the compiler. On
161 // ARM there is no particular register pressure. So, we can go
162 // ahead and directly copy the entries from the arguments array
163 // into the appropriate CPU registers.
164 "1:ldr r5, [r6, #20]\n"
165 "ldr r4, [r6, #16]\n"
166 "ldr r3, [r6, #12]\n"
167 "ldr r2, [r6, #8]\n"
168 "ldr r1, [r6, #4]\n"
169 "mov r7, r0\n"
170 "ldr r0, [r6, #0]\n"
171 // Enter the kernel
172 "swi 0\n"
173 // Restore the frame pointer. Also restore the program counter from
174 // the link register; this makes us return to the caller.
175 #if defined(__thumb__)
176 "2:pop {r7, pc}\n"
177 ".cfi_endproc\n"
178 #else
179 "2:ldmfd sp!, {fp, pc}\n"
180 #endif
181 ".fnend\n"
182 "9:.size SyscallAsm, 9b-SyscallAsm\n"
183 #elif defined(__mips__)
184 ".text\n"
185 ".align 4\n"
186 ".type SyscallAsm, @function\n"
187 "SyscallAsm:.ent SyscallAsm\n"
188 ".frame $sp, 40, $ra\n"
189 ".set push\n"
190 ".set noreorder\n"
191 "addiu $sp, $sp, -40\n"
192 "sw $ra, 36($sp)\n"
193 // Check if "v0" is negative. If so, do not attempt to make a
194 // system call. Instead, compute the return address that is visible
195 // to the kernel after we execute "syscall". This address can be
196 // used as a marker that BPF code inspects.
197 "bgez $v0, 1f\n"
198 " nop\n"
199 "la $v0, 2f\n"
200 "b 2f\n"
201 " nop\n"
202 // On MIPS first four arguments go to registers a0 - a3 and any
203 // argument after that goes to stack. We can go ahead and directly
204 // copy the entries from the arguments array into the appropriate
205 // CPU registers and on the stack.
206 "1:lw $a3, 28($a0)\n"
207 "lw $a2, 24($a0)\n"
208 "lw $a1, 20($a0)\n"
209 "lw $t0, 16($a0)\n"
210 "sw $a3, 28($sp)\n"
211 "sw $a2, 24($sp)\n"
212 "sw $a1, 20($sp)\n"
213 "sw $t0, 16($sp)\n"
214 "lw $a3, 12($a0)\n"
215 "lw $a2, 8($a0)\n"
216 "lw $a1, 4($a0)\n"
217 "lw $a0, 0($a0)\n"
218 // Enter the kernel
219 "syscall\n"
220 // This is our "magic" return address that the BPF filter sees.
221 // Restore the return address from the stack.
222 "2:lw $ra, 36($sp)\n"
223 "jr $ra\n"
224 " addiu $sp, $sp, 40\n"
225 ".set pop\n"
226 ".end SyscallAsm\n"
227 ".size SyscallAsm,.-SyscallAsm\n"
228 #elif defined(__aarch64__)
229 ".text\n"
230 ".align 2\n"
231 ".type SyscallAsm, %function\n"
232 "SyscallAsm:\n"
233 ".cfi_startproc\n"
234 "cmp x0, #0\n"
235 "b.ge 1f\n"
236 "adr x0,2f\n"
237 "b 2f\n"
238 "1:ldr x5, [x6, #40]\n"
239 "ldr x4, [x6, #32]\n"
240 "ldr x3, [x6, #24]\n"
241 "ldr x2, [x6, #16]\n"
242 "ldr x1, [x6, #8]\n"
243 "mov x8, x0\n"
244 "ldr x0, [x6, #0]\n"
245 // Enter the kernel
246 "svc 0\n"
247 "2:ret\n"
248 ".cfi_endproc\n"
249 ".size SyscallAsm, .-SyscallAsm\n"
250 #endif
251 ); // asm
253 #if defined(__x86_64__)
254 extern "C" {
255 intptr_t SyscallAsm(intptr_t nr, const intptr_t args[6]);
257 #endif
259 } // namespace
261 intptr_t Syscall::InvalidCall() {
262 // Explicitly pass eight zero arguments just in case.
263 return Call(kInvalidSyscallNumber, 0, 0, 0, 0, 0, 0, 0, 0);
266 intptr_t Syscall::Call(int nr,
267 intptr_t p0,
268 intptr_t p1,
269 intptr_t p2,
270 intptr_t p3,
271 intptr_t p4,
272 intptr_t p5,
273 intptr_t p6,
274 intptr_t p7) {
275 // We rely on "intptr_t" to be the exact size as a "void *". This is
276 // typically true, but just in case, we add a check. The language
277 // specification allows platforms some leeway in cases, where
278 // "sizeof(void *)" is not the same as "sizeof(void (*)())". We expect
279 // that this would only be an issue for IA64, which we are currently not
280 // planning on supporting. And it is even possible that this would work
281 // on IA64, but for lack of actual hardware, I cannot test.
282 COMPILE_ASSERT(sizeof(void*) == sizeof(intptr_t),
283 pointer_types_and_intptr_must_be_exactly_the_same_size);
285 // TODO(nedeljko): Enable use of more than six parameters on architectures
286 // where that makes sense.
287 #if defined(__mips__)
288 const intptr_t args[8] = {p0, p1, p2, p3, p4, p5, p6, p7};
289 #else
290 DCHECK_EQ(p6, 0) << " Support for syscalls with more than six arguments not "
291 "added for this architecture";
292 DCHECK_EQ(p7, 0) << " Support for syscalls with more than six arguments not "
293 "added for this architecture";
294 const intptr_t args[6] = {p0, p1, p2, p3, p4, p5};
295 #endif // defined(__mips__)
297 // Invoke our file-scope assembly code. The constraints have been picked
298 // carefully to match what the rest of the assembly code expects in input,
299 // output, and clobbered registers.
300 #if defined(__i386__)
301 intptr_t ret = nr;
302 asm volatile(
303 "call SyscallAsm\n"
304 // N.B. These are not the calling conventions normally used by the ABI.
305 : "=a"(ret)
306 : "0"(ret), "D"(args)
307 : "cc", "esp", "memory", "ecx", "edx");
308 #elif defined(__x86_64__)
309 intptr_t ret = SyscallAsm(nr, args);
310 #elif defined(__arm__)
311 intptr_t ret;
313 register intptr_t inout __asm__("r0") = nr;
314 register const intptr_t* data __asm__("r6") = args;
315 asm volatile(
316 "bl SyscallAsm\n"
317 // N.B. These are not the calling conventions normally used by the ABI.
318 : "=r"(inout)
319 : "0"(inout), "r"(data)
320 : "cc",
321 "lr",
322 "memory",
323 "r1",
324 "r2",
325 "r3",
326 "r4",
327 "r5"
328 #if !defined(__thumb__)
329 // In thumb mode, we cannot use "r7" as a general purpose register, as
330 // it is our frame pointer. We have to manually manage and preserve
331 // it.
332 // In ARM mode, we have a dedicated frame pointer register and "r7" is
333 // thus available as a general purpose register. We don't preserve it,
334 // but instead mark it as clobbered.
336 "r7"
337 #endif // !defined(__thumb__)
339 ret = inout;
341 #elif defined(__mips__)
342 int err_status;
343 intptr_t ret = Syscall::SandboxSyscallRaw(nr, args, &err_status);
345 if (err_status) {
346 // On error, MIPS returns errno from syscall instead of -errno.
347 // The purpose of this negation is for SandboxSyscall() to behave
348 // more like it would on other architectures.
349 ret = -ret;
351 #elif defined(__aarch64__)
352 intptr_t ret;
354 register intptr_t inout __asm__("x0") = nr;
355 register const intptr_t* data __asm__("x6") = args;
356 asm volatile("bl SyscallAsm\n"
357 : "=r"(inout)
358 : "0"(inout), "r"(data)
359 : "memory", "x1", "x2", "x3", "x4", "x5", "x8", "x30");
360 ret = inout;
363 #else
364 #error "Unimplemented architecture"
365 #endif
366 return ret;
369 void Syscall::PutValueInUcontext(intptr_t ret_val, ucontext_t* ctx) {
370 #if defined(__mips__)
371 // Mips ABI states that on error a3 CPU register has non zero value and if
372 // there is no error, it should be zero.
373 if (ret_val <= -1 && ret_val >= -4095) {
374 // |ret_val| followes the Syscall::Call() convention of being -errno on
375 // errors. In order to write correct value to return register this sign
376 // needs to be changed back.
377 ret_val = -ret_val;
378 SECCOMP_PARM4(ctx) = 1;
379 } else
380 SECCOMP_PARM4(ctx) = 0;
381 #endif
382 SECCOMP_RESULT(ctx) = static_cast<greg_t>(ret_val);
385 #if defined(__mips__)
386 intptr_t Syscall::SandboxSyscallRaw(int nr,
387 const intptr_t* args,
388 intptr_t* err_ret) {
389 register intptr_t ret __asm__("v0") = nr;
390 // a3 register becomes non zero on error.
391 register intptr_t err_stat __asm__("a3") = 0;
393 register const intptr_t* data __asm__("a0") = args;
394 asm volatile(
395 "la $t9, SyscallAsm\n"
396 "jalr $t9\n"
397 " nop\n"
398 : "=r"(ret), "=r"(err_stat)
399 : "0"(ret),
400 "r"(data)
401 // a2 is in the clober list so inline assembly can not change its
402 // value.
403 : "memory", "ra", "t9", "a2");
406 // Set an error status so it can be used outside of this function
407 *err_ret = err_stat;
409 return ret;
411 #endif // defined(__mips__)
413 } // namespace sandbox