Revert 99759 - Add two new valgrind suppressions.
[chromium-blink-merge.git] / crypto / rsa_private_key.cc
blob8290d1602ae5771cead6dc92e3c95c1e1cf732a6
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "crypto/rsa_private_key.h"
7 #include <algorithm>
8 #include <list>
10 #include "base/logging.h"
11 #include "base/memory/scoped_ptr.h"
12 #include "base/string_util.h"
14 // This file manually encodes and decodes RSA private keys using PrivateKeyInfo
15 // from PKCS #8 and RSAPrivateKey from PKCS #1. These structures are:
17 // PrivateKeyInfo ::= SEQUENCE {
18 // version Version,
19 // privateKeyAlgorithm PrivateKeyAlgorithmIdentifier,
20 // privateKey PrivateKey,
21 // attributes [0] IMPLICIT Attributes OPTIONAL
22 // }
24 // RSAPrivateKey ::= SEQUENCE {
25 // version Version,
26 // modulus INTEGER,
27 // publicExponent INTEGER,
28 // privateExponent INTEGER,
29 // prime1 INTEGER,
30 // prime2 INTEGER,
31 // exponent1 INTEGER,
32 // exponent2 INTEGER,
33 // coefficient INTEGER
34 // }
36 namespace {
37 // Helper for error handling during key import.
38 #define READ_ASSERT(truth) \
39 if (!(truth)) { \
40 NOTREACHED(); \
41 return false; \
43 } // namespace
45 namespace crypto {
47 const uint8 PrivateKeyInfoCodec::kRsaAlgorithmIdentifier[] = {
48 0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01,
49 0x05, 0x00
52 PrivateKeyInfoCodec::PrivateKeyInfoCodec(bool big_endian)
53 : big_endian_(big_endian) {}
55 PrivateKeyInfoCodec::~PrivateKeyInfoCodec() {}
57 bool PrivateKeyInfoCodec::Export(std::vector<uint8>* output) {
58 std::list<uint8> content;
60 // Version (always zero)
61 uint8 version = 0;
63 PrependInteger(coefficient_, &content);
64 PrependInteger(exponent2_, &content);
65 PrependInteger(exponent1_, &content);
66 PrependInteger(prime2_, &content);
67 PrependInteger(prime1_, &content);
68 PrependInteger(private_exponent_, &content);
69 PrependInteger(public_exponent_, &content);
70 PrependInteger(modulus_, &content);
71 PrependInteger(&version, 1, &content);
72 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
73 PrependTypeHeaderAndLength(kOctetStringTag, content.size(), &content);
75 // RSA algorithm OID
76 for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i)
77 content.push_front(kRsaAlgorithmIdentifier[i - 1]);
79 PrependInteger(&version, 1, &content);
80 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
82 // Copy everying into the output.
83 output->reserve(content.size());
84 for (std::list<uint8>::iterator i = content.begin(); i != content.end(); ++i)
85 output->push_back(*i);
87 return true;
90 bool PrivateKeyInfoCodec::ExportPublicKeyInfo(std::vector<uint8>* output) {
91 // Create a sequence with the modulus (n) and public exponent (e).
92 std::vector<uint8> bit_string;
93 if (!ExportPublicKey(&bit_string))
94 return false;
96 // Add the sequence as the contents of a bit string.
97 std::list<uint8> content;
98 PrependBitString(&bit_string[0], static_cast<int>(bit_string.size()),
99 &content);
101 // Add the RSA algorithm OID.
102 for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i)
103 content.push_front(kRsaAlgorithmIdentifier[i - 1]);
105 // Finally, wrap everything in a sequence.
106 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
108 // Copy everything into the output.
109 output->reserve(content.size());
110 for (std::list<uint8>::iterator i = content.begin(); i != content.end(); ++i)
111 output->push_back(*i);
113 return true;
116 bool PrivateKeyInfoCodec::ExportPublicKey(std::vector<uint8>* output) {
117 // Create a sequence with the modulus (n) and public exponent (e).
118 std::list<uint8> content;
119 PrependInteger(&public_exponent_[0],
120 static_cast<int>(public_exponent_.size()),
121 &content);
122 PrependInteger(&modulus_[0], static_cast<int>(modulus_.size()), &content);
123 PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content);
125 // Copy everything into the output.
126 output->reserve(content.size());
127 for (std::list<uint8>::iterator i = content.begin(); i != content.end(); ++i)
128 output->push_back(*i);
130 return true;
133 bool PrivateKeyInfoCodec::Import(const std::vector<uint8>& input) {
134 if (input.empty()) {
135 return false;
138 // Parse the private key info up to the public key values, ignoring
139 // the subsequent private key values.
140 uint8* src = const_cast<uint8*>(&input.front());
141 uint8* end = src + input.size();
142 if (!ReadSequence(&src, end) ||
143 !ReadVersion(&src, end) ||
144 !ReadAlgorithmIdentifier(&src, end) ||
145 !ReadTypeHeaderAndLength(&src, end, kOctetStringTag, NULL) ||
146 !ReadSequence(&src, end) ||
147 !ReadVersion(&src, end) ||
148 !ReadInteger(&src, end, &modulus_))
149 return false;
151 int mod_size = modulus_.size();
152 READ_ASSERT(mod_size % 2 == 0);
153 int primes_size = mod_size / 2;
155 if (!ReadIntegerWithExpectedSize(&src, end, 4, &public_exponent_) ||
156 !ReadIntegerWithExpectedSize(&src, end, mod_size, &private_exponent_) ||
157 !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime1_) ||
158 !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime2_) ||
159 !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent1_) ||
160 !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent2_) ||
161 !ReadIntegerWithExpectedSize(&src, end, primes_size, &coefficient_))
162 return false;
164 READ_ASSERT(src == end);
167 return true;
170 void PrivateKeyInfoCodec::PrependInteger(const std::vector<uint8>& in,
171 std::list<uint8>* out) {
172 uint8* ptr = const_cast<uint8*>(&in.front());
173 PrependIntegerImpl(ptr, in.size(), out, big_endian_);
176 // Helper to prepend an ASN.1 integer.
177 void PrivateKeyInfoCodec::PrependInteger(uint8* val,
178 int num_bytes,
179 std::list<uint8>* data) {
180 PrependIntegerImpl(val, num_bytes, data, big_endian_);
183 void PrivateKeyInfoCodec::PrependIntegerImpl(uint8* val,
184 int num_bytes,
185 std::list<uint8>* data,
186 bool big_endian) {
187 // Reverse input if little-endian.
188 std::vector<uint8> tmp;
189 if (!big_endian) {
190 tmp.assign(val, val + num_bytes);
191 reverse(tmp.begin(), tmp.end());
192 val = &tmp.front();
195 // ASN.1 integers are unpadded byte arrays, so skip any null padding bytes
196 // from the most-significant end of the integer.
197 int start = 0;
198 while (start < (num_bytes - 1) && val[start] == 0x00) {
199 start++;
200 num_bytes--;
202 PrependBytes(val, start, num_bytes, data);
204 // ASN.1 integers are signed. To encode a positive integer whose sign bit
205 // (the most significant bit) would otherwise be set and make the number
206 // negative, ASN.1 requires a leading null byte to force the integer to be
207 // positive.
208 uint8 front = data->front();
209 if ((front & 0x80) != 0) {
210 data->push_front(0x00);
211 num_bytes++;
214 PrependTypeHeaderAndLength(kIntegerTag, num_bytes, data);
217 bool PrivateKeyInfoCodec::ReadInteger(uint8** pos,
218 uint8* end,
219 std::vector<uint8>* out) {
220 return ReadIntegerImpl(pos, end, out, big_endian_);
223 bool PrivateKeyInfoCodec::ReadIntegerWithExpectedSize(uint8** pos,
224 uint8* end,
225 size_t expected_size,
226 std::vector<uint8>* out) {
227 std::vector<uint8> temp;
228 if (!ReadIntegerImpl(pos, end, &temp, true)) // Big-Endian
229 return false;
231 int pad = expected_size - temp.size();
232 int index = 0;
233 if (out->size() == expected_size + 1) {
234 READ_ASSERT(out->front() == 0x00);
235 pad++;
236 index++;
237 } else {
238 READ_ASSERT(out->size() <= expected_size);
241 while (pad) {
242 out->push_back(0x00);
243 pad--;
245 out->insert(out->end(), temp.begin(), temp.end());
247 // Reverse output if little-endian.
248 if (!big_endian_)
249 reverse(out->begin(), out->end());
250 return true;
253 bool PrivateKeyInfoCodec::ReadIntegerImpl(uint8** pos,
254 uint8* end,
255 std::vector<uint8>* out,
256 bool big_endian) {
257 uint32 length = 0;
258 if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length) || !length)
259 return false;
261 // The first byte can be zero to force positiveness. We can ignore this.
262 if (**pos == 0x00) {
263 ++(*pos);
264 --length;
267 if (length)
268 out->insert(out->end(), *pos, (*pos) + length);
270 (*pos) += length;
272 // Reverse output if little-endian.
273 if (!big_endian)
274 reverse(out->begin(), out->end());
275 return true;
278 void PrivateKeyInfoCodec::PrependBytes(uint8* val,
279 int start,
280 int num_bytes,
281 std::list<uint8>* data) {
282 while (num_bytes > 0) {
283 --num_bytes;
284 data->push_front(val[start + num_bytes]);
288 void PrivateKeyInfoCodec::PrependLength(size_t size, std::list<uint8>* data) {
289 // The high bit is used to indicate whether additional octets are needed to
290 // represent the length.
291 if (size < 0x80) {
292 data->push_front(static_cast<uint8>(size));
293 } else {
294 uint8 num_bytes = 0;
295 while (size > 0) {
296 data->push_front(static_cast<uint8>(size & 0xFF));
297 size >>= 8;
298 num_bytes++;
300 CHECK_LE(num_bytes, 4);
301 data->push_front(0x80 | num_bytes);
305 void PrivateKeyInfoCodec::PrependTypeHeaderAndLength(uint8 type,
306 uint32 length,
307 std::list<uint8>* output) {
308 PrependLength(length, output);
309 output->push_front(type);
312 void PrivateKeyInfoCodec::PrependBitString(uint8* val,
313 int num_bytes,
314 std::list<uint8>* output) {
315 // Start with the data.
316 PrependBytes(val, 0, num_bytes, output);
317 // Zero unused bits.
318 output->push_front(0);
319 // Add the length.
320 PrependLength(num_bytes + 1, output);
321 // Finally, add the bit string tag.
322 output->push_front((uint8) kBitStringTag);
325 bool PrivateKeyInfoCodec::ReadLength(uint8** pos, uint8* end, uint32* result) {
326 READ_ASSERT(*pos < end);
327 int length = 0;
329 // If the MSB is not set, the length is just the byte itself.
330 if (!(**pos & 0x80)) {
331 length = **pos;
332 (*pos)++;
333 } else {
334 // Otherwise, the lower 7 indicate the length of the length.
335 int length_of_length = **pos & 0x7F;
336 READ_ASSERT(length_of_length <= 4);
337 (*pos)++;
338 READ_ASSERT(*pos + length_of_length < end);
340 length = 0;
341 for (int i = 0; i < length_of_length; ++i) {
342 length <<= 8;
343 length |= **pos;
344 (*pos)++;
348 READ_ASSERT(*pos + length <= end);
349 if (result) *result = length;
350 return true;
353 bool PrivateKeyInfoCodec::ReadTypeHeaderAndLength(uint8** pos,
354 uint8* end,
355 uint8 expected_tag,
356 uint32* length) {
357 READ_ASSERT(*pos < end);
358 READ_ASSERT(**pos == expected_tag);
359 (*pos)++;
361 return ReadLength(pos, end, length);
364 bool PrivateKeyInfoCodec::ReadSequence(uint8** pos, uint8* end) {
365 return ReadTypeHeaderAndLength(pos, end, kSequenceTag, NULL);
368 bool PrivateKeyInfoCodec::ReadAlgorithmIdentifier(uint8** pos, uint8* end) {
369 READ_ASSERT(*pos + sizeof(kRsaAlgorithmIdentifier) < end);
370 READ_ASSERT(memcmp(*pos, kRsaAlgorithmIdentifier,
371 sizeof(kRsaAlgorithmIdentifier)) == 0);
372 (*pos) += sizeof(kRsaAlgorithmIdentifier);
373 return true;
376 bool PrivateKeyInfoCodec::ReadVersion(uint8** pos, uint8* end) {
377 uint32 length = 0;
378 if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length))
379 return false;
381 // The version should be zero.
382 for (uint32 i = 0; i < length; ++i) {
383 READ_ASSERT(**pos == 0x00);
384 (*pos)++;
387 return true;
390 } // namespace crypto