Update mojo sdk to rev 1dc8a9a5db73d3718d99917fadf31f5fb2ebad4f
[chromium-blink-merge.git] / third_party / libwebp / dsp / enc_sse2.c
blob9958d9f6ff6dfab7a73d3e8237d1629be96665de
1 // Copyright 2011 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // SSE2 version of speed-critical encoding functions.
12 // Author: Christian Duvivier (cduvivier@google.com)
14 #include "./dsp.h"
16 #if defined(WEBP_USE_SSE2)
17 #include <stdlib.h> // for abs()
18 #include <emmintrin.h>
20 #include "../enc/cost.h"
21 #include "../enc/vp8enci.h"
22 #include "../utils/utils.h"
24 //------------------------------------------------------------------------------
25 // Quite useful macro for debugging. Left here for convenience.
27 #if 0
28 #include <stdio.h>
29 static void PrintReg(const __m128i r, const char* const name, int size) {
30 int n;
31 union {
32 __m128i r;
33 uint8_t i8[16];
34 uint16_t i16[8];
35 uint32_t i32[4];
36 uint64_t i64[2];
37 } tmp;
38 tmp.r = r;
39 printf("%s\t: ", name);
40 if (size == 8) {
41 for (n = 0; n < 16; ++n) printf("%.2x ", tmp.i8[n]);
42 } else if (size == 16) {
43 for (n = 0; n < 8; ++n) printf("%.4x ", tmp.i16[n]);
44 } else if (size == 32) {
45 for (n = 0; n < 4; ++n) printf("%.8x ", tmp.i32[n]);
46 } else {
47 for (n = 0; n < 2; ++n) printf("%.16lx ", tmp.i64[n]);
49 printf("\n");
51 #endif
53 //------------------------------------------------------------------------------
54 // Compute susceptibility based on DCT-coeff histograms:
55 // the higher, the "easier" the macroblock is to compress.
57 static void CollectHistogram(const uint8_t* ref, const uint8_t* pred,
58 int start_block, int end_block,
59 VP8Histogram* const histo) {
60 const __m128i max_coeff_thresh = _mm_set1_epi16(MAX_COEFF_THRESH);
61 int j;
62 for (j = start_block; j < end_block; ++j) {
63 int16_t out[16];
64 int k;
66 VP8FTransform(ref + VP8DspScan[j], pred + VP8DspScan[j], out);
68 // Convert coefficients to bin (within out[]).
70 // Load.
71 const __m128i out0 = _mm_loadu_si128((__m128i*)&out[0]);
72 const __m128i out1 = _mm_loadu_si128((__m128i*)&out[8]);
73 // sign(out) = out >> 15 (0x0000 if positive, 0xffff if negative)
74 const __m128i sign0 = _mm_srai_epi16(out0, 15);
75 const __m128i sign1 = _mm_srai_epi16(out1, 15);
76 // abs(out) = (out ^ sign) - sign
77 const __m128i xor0 = _mm_xor_si128(out0, sign0);
78 const __m128i xor1 = _mm_xor_si128(out1, sign1);
79 const __m128i abs0 = _mm_sub_epi16(xor0, sign0);
80 const __m128i abs1 = _mm_sub_epi16(xor1, sign1);
81 // v = abs(out) >> 3
82 const __m128i v0 = _mm_srai_epi16(abs0, 3);
83 const __m128i v1 = _mm_srai_epi16(abs1, 3);
84 // bin = min(v, MAX_COEFF_THRESH)
85 const __m128i bin0 = _mm_min_epi16(v0, max_coeff_thresh);
86 const __m128i bin1 = _mm_min_epi16(v1, max_coeff_thresh);
87 // Store.
88 _mm_storeu_si128((__m128i*)&out[0], bin0);
89 _mm_storeu_si128((__m128i*)&out[8], bin1);
92 // Convert coefficients to bin.
93 for (k = 0; k < 16; ++k) {
94 histo->distribution[out[k]]++;
99 //------------------------------------------------------------------------------
100 // Transforms (Paragraph 14.4)
102 // Does one or two inverse transforms.
103 static void ITransform(const uint8_t* ref, const int16_t* in, uint8_t* dst,
104 int do_two) {
105 // This implementation makes use of 16-bit fixed point versions of two
106 // multiply constants:
107 // K1 = sqrt(2) * cos (pi/8) ~= 85627 / 2^16
108 // K2 = sqrt(2) * sin (pi/8) ~= 35468 / 2^16
110 // To be able to use signed 16-bit integers, we use the following trick to
111 // have constants within range:
112 // - Associated constants are obtained by subtracting the 16-bit fixed point
113 // version of one:
114 // k = K - (1 << 16) => K = k + (1 << 16)
115 // K1 = 85267 => k1 = 20091
116 // K2 = 35468 => k2 = -30068
117 // - The multiplication of a variable by a constant become the sum of the
118 // variable and the multiplication of that variable by the associated
119 // constant:
120 // (x * K) >> 16 = (x * (k + (1 << 16))) >> 16 = ((x * k ) >> 16) + x
121 const __m128i k1 = _mm_set1_epi16(20091);
122 const __m128i k2 = _mm_set1_epi16(-30068);
123 __m128i T0, T1, T2, T3;
125 // Load and concatenate the transform coefficients (we'll do two inverse
126 // transforms in parallel). In the case of only one inverse transform, the
127 // second half of the vectors will just contain random value we'll never
128 // use nor store.
129 __m128i in0, in1, in2, in3;
131 in0 = _mm_loadl_epi64((__m128i*)&in[0]);
132 in1 = _mm_loadl_epi64((__m128i*)&in[4]);
133 in2 = _mm_loadl_epi64((__m128i*)&in[8]);
134 in3 = _mm_loadl_epi64((__m128i*)&in[12]);
135 // a00 a10 a20 a30 x x x x
136 // a01 a11 a21 a31 x x x x
137 // a02 a12 a22 a32 x x x x
138 // a03 a13 a23 a33 x x x x
139 if (do_two) {
140 const __m128i inB0 = _mm_loadl_epi64((__m128i*)&in[16]);
141 const __m128i inB1 = _mm_loadl_epi64((__m128i*)&in[20]);
142 const __m128i inB2 = _mm_loadl_epi64((__m128i*)&in[24]);
143 const __m128i inB3 = _mm_loadl_epi64((__m128i*)&in[28]);
144 in0 = _mm_unpacklo_epi64(in0, inB0);
145 in1 = _mm_unpacklo_epi64(in1, inB1);
146 in2 = _mm_unpacklo_epi64(in2, inB2);
147 in3 = _mm_unpacklo_epi64(in3, inB3);
148 // a00 a10 a20 a30 b00 b10 b20 b30
149 // a01 a11 a21 a31 b01 b11 b21 b31
150 // a02 a12 a22 a32 b02 b12 b22 b32
151 // a03 a13 a23 a33 b03 b13 b23 b33
155 // Vertical pass and subsequent transpose.
157 // First pass, c and d calculations are longer because of the "trick"
158 // multiplications.
159 const __m128i a = _mm_add_epi16(in0, in2);
160 const __m128i b = _mm_sub_epi16(in0, in2);
161 // c = MUL(in1, K2) - MUL(in3, K1) = MUL(in1, k2) - MUL(in3, k1) + in1 - in3
162 const __m128i c1 = _mm_mulhi_epi16(in1, k2);
163 const __m128i c2 = _mm_mulhi_epi16(in3, k1);
164 const __m128i c3 = _mm_sub_epi16(in1, in3);
165 const __m128i c4 = _mm_sub_epi16(c1, c2);
166 const __m128i c = _mm_add_epi16(c3, c4);
167 // d = MUL(in1, K1) + MUL(in3, K2) = MUL(in1, k1) + MUL(in3, k2) + in1 + in3
168 const __m128i d1 = _mm_mulhi_epi16(in1, k1);
169 const __m128i d2 = _mm_mulhi_epi16(in3, k2);
170 const __m128i d3 = _mm_add_epi16(in1, in3);
171 const __m128i d4 = _mm_add_epi16(d1, d2);
172 const __m128i d = _mm_add_epi16(d3, d4);
174 // Second pass.
175 const __m128i tmp0 = _mm_add_epi16(a, d);
176 const __m128i tmp1 = _mm_add_epi16(b, c);
177 const __m128i tmp2 = _mm_sub_epi16(b, c);
178 const __m128i tmp3 = _mm_sub_epi16(a, d);
180 // Transpose the two 4x4.
181 // a00 a01 a02 a03 b00 b01 b02 b03
182 // a10 a11 a12 a13 b10 b11 b12 b13
183 // a20 a21 a22 a23 b20 b21 b22 b23
184 // a30 a31 a32 a33 b30 b31 b32 b33
185 const __m128i transpose0_0 = _mm_unpacklo_epi16(tmp0, tmp1);
186 const __m128i transpose0_1 = _mm_unpacklo_epi16(tmp2, tmp3);
187 const __m128i transpose0_2 = _mm_unpackhi_epi16(tmp0, tmp1);
188 const __m128i transpose0_3 = _mm_unpackhi_epi16(tmp2, tmp3);
189 // a00 a10 a01 a11 a02 a12 a03 a13
190 // a20 a30 a21 a31 a22 a32 a23 a33
191 // b00 b10 b01 b11 b02 b12 b03 b13
192 // b20 b30 b21 b31 b22 b32 b23 b33
193 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
194 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
195 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
196 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
197 // a00 a10 a20 a30 a01 a11 a21 a31
198 // b00 b10 b20 b30 b01 b11 b21 b31
199 // a02 a12 a22 a32 a03 a13 a23 a33
200 // b02 b12 a22 b32 b03 b13 b23 b33
201 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
202 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
203 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
204 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
205 // a00 a10 a20 a30 b00 b10 b20 b30
206 // a01 a11 a21 a31 b01 b11 b21 b31
207 // a02 a12 a22 a32 b02 b12 b22 b32
208 // a03 a13 a23 a33 b03 b13 b23 b33
211 // Horizontal pass and subsequent transpose.
213 // First pass, c and d calculations are longer because of the "trick"
214 // multiplications.
215 const __m128i four = _mm_set1_epi16(4);
216 const __m128i dc = _mm_add_epi16(T0, four);
217 const __m128i a = _mm_add_epi16(dc, T2);
218 const __m128i b = _mm_sub_epi16(dc, T2);
219 // c = MUL(T1, K2) - MUL(T3, K1) = MUL(T1, k2) - MUL(T3, k1) + T1 - T3
220 const __m128i c1 = _mm_mulhi_epi16(T1, k2);
221 const __m128i c2 = _mm_mulhi_epi16(T3, k1);
222 const __m128i c3 = _mm_sub_epi16(T1, T3);
223 const __m128i c4 = _mm_sub_epi16(c1, c2);
224 const __m128i c = _mm_add_epi16(c3, c4);
225 // d = MUL(T1, K1) + MUL(T3, K2) = MUL(T1, k1) + MUL(T3, k2) + T1 + T3
226 const __m128i d1 = _mm_mulhi_epi16(T1, k1);
227 const __m128i d2 = _mm_mulhi_epi16(T3, k2);
228 const __m128i d3 = _mm_add_epi16(T1, T3);
229 const __m128i d4 = _mm_add_epi16(d1, d2);
230 const __m128i d = _mm_add_epi16(d3, d4);
232 // Second pass.
233 const __m128i tmp0 = _mm_add_epi16(a, d);
234 const __m128i tmp1 = _mm_add_epi16(b, c);
235 const __m128i tmp2 = _mm_sub_epi16(b, c);
236 const __m128i tmp3 = _mm_sub_epi16(a, d);
237 const __m128i shifted0 = _mm_srai_epi16(tmp0, 3);
238 const __m128i shifted1 = _mm_srai_epi16(tmp1, 3);
239 const __m128i shifted2 = _mm_srai_epi16(tmp2, 3);
240 const __m128i shifted3 = _mm_srai_epi16(tmp3, 3);
242 // Transpose the two 4x4.
243 // a00 a01 a02 a03 b00 b01 b02 b03
244 // a10 a11 a12 a13 b10 b11 b12 b13
245 // a20 a21 a22 a23 b20 b21 b22 b23
246 // a30 a31 a32 a33 b30 b31 b32 b33
247 const __m128i transpose0_0 = _mm_unpacklo_epi16(shifted0, shifted1);
248 const __m128i transpose0_1 = _mm_unpacklo_epi16(shifted2, shifted3);
249 const __m128i transpose0_2 = _mm_unpackhi_epi16(shifted0, shifted1);
250 const __m128i transpose0_3 = _mm_unpackhi_epi16(shifted2, shifted3);
251 // a00 a10 a01 a11 a02 a12 a03 a13
252 // a20 a30 a21 a31 a22 a32 a23 a33
253 // b00 b10 b01 b11 b02 b12 b03 b13
254 // b20 b30 b21 b31 b22 b32 b23 b33
255 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
256 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
257 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
258 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
259 // a00 a10 a20 a30 a01 a11 a21 a31
260 // b00 b10 b20 b30 b01 b11 b21 b31
261 // a02 a12 a22 a32 a03 a13 a23 a33
262 // b02 b12 a22 b32 b03 b13 b23 b33
263 T0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
264 T1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
265 T2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
266 T3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
267 // a00 a10 a20 a30 b00 b10 b20 b30
268 // a01 a11 a21 a31 b01 b11 b21 b31
269 // a02 a12 a22 a32 b02 b12 b22 b32
270 // a03 a13 a23 a33 b03 b13 b23 b33
273 // Add inverse transform to 'ref' and store.
275 const __m128i zero = _mm_setzero_si128();
276 // Load the reference(s).
277 __m128i ref0, ref1, ref2, ref3;
278 if (do_two) {
279 // Load eight bytes/pixels per line.
280 ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
281 ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
282 ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
283 ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
284 } else {
285 // Load four bytes/pixels per line.
286 ref0 = _mm_cvtsi32_si128(*(int*)&ref[0 * BPS]);
287 ref1 = _mm_cvtsi32_si128(*(int*)&ref[1 * BPS]);
288 ref2 = _mm_cvtsi32_si128(*(int*)&ref[2 * BPS]);
289 ref3 = _mm_cvtsi32_si128(*(int*)&ref[3 * BPS]);
291 // Convert to 16b.
292 ref0 = _mm_unpacklo_epi8(ref0, zero);
293 ref1 = _mm_unpacklo_epi8(ref1, zero);
294 ref2 = _mm_unpacklo_epi8(ref2, zero);
295 ref3 = _mm_unpacklo_epi8(ref3, zero);
296 // Add the inverse transform(s).
297 ref0 = _mm_add_epi16(ref0, T0);
298 ref1 = _mm_add_epi16(ref1, T1);
299 ref2 = _mm_add_epi16(ref2, T2);
300 ref3 = _mm_add_epi16(ref3, T3);
301 // Unsigned saturate to 8b.
302 ref0 = _mm_packus_epi16(ref0, ref0);
303 ref1 = _mm_packus_epi16(ref1, ref1);
304 ref2 = _mm_packus_epi16(ref2, ref2);
305 ref3 = _mm_packus_epi16(ref3, ref3);
306 // Store the results.
307 if (do_two) {
308 // Store eight bytes/pixels per line.
309 _mm_storel_epi64((__m128i*)&dst[0 * BPS], ref0);
310 _mm_storel_epi64((__m128i*)&dst[1 * BPS], ref1);
311 _mm_storel_epi64((__m128i*)&dst[2 * BPS], ref2);
312 _mm_storel_epi64((__m128i*)&dst[3 * BPS], ref3);
313 } else {
314 // Store four bytes/pixels per line.
315 *((int32_t *)&dst[0 * BPS]) = _mm_cvtsi128_si32(ref0);
316 *((int32_t *)&dst[1 * BPS]) = _mm_cvtsi128_si32(ref1);
317 *((int32_t *)&dst[2 * BPS]) = _mm_cvtsi128_si32(ref2);
318 *((int32_t *)&dst[3 * BPS]) = _mm_cvtsi128_si32(ref3);
323 static void FTransform(const uint8_t* src, const uint8_t* ref, int16_t* out) {
324 const __m128i zero = _mm_setzero_si128();
325 const __m128i seven = _mm_set1_epi16(7);
326 const __m128i k937 = _mm_set1_epi32(937);
327 const __m128i k1812 = _mm_set1_epi32(1812);
328 const __m128i k51000 = _mm_set1_epi32(51000);
329 const __m128i k12000_plus_one = _mm_set1_epi32(12000 + (1 << 16));
330 const __m128i k5352_2217 = _mm_set_epi16(5352, 2217, 5352, 2217,
331 5352, 2217, 5352, 2217);
332 const __m128i k2217_5352 = _mm_set_epi16(2217, -5352, 2217, -5352,
333 2217, -5352, 2217, -5352);
334 const __m128i k88p = _mm_set_epi16(8, 8, 8, 8, 8, 8, 8, 8);
335 const __m128i k88m = _mm_set_epi16(-8, 8, -8, 8, -8, 8, -8, 8);
336 const __m128i k5352_2217p = _mm_set_epi16(2217, 5352, 2217, 5352,
337 2217, 5352, 2217, 5352);
338 const __m128i k5352_2217m = _mm_set_epi16(-5352, 2217, -5352, 2217,
339 -5352, 2217, -5352, 2217);
340 __m128i v01, v32;
343 // Difference between src and ref and initial transpose.
345 // Load src and convert to 16b.
346 const __m128i src0 = _mm_loadl_epi64((__m128i*)&src[0 * BPS]);
347 const __m128i src1 = _mm_loadl_epi64((__m128i*)&src[1 * BPS]);
348 const __m128i src2 = _mm_loadl_epi64((__m128i*)&src[2 * BPS]);
349 const __m128i src3 = _mm_loadl_epi64((__m128i*)&src[3 * BPS]);
350 const __m128i src_0 = _mm_unpacklo_epi8(src0, zero);
351 const __m128i src_1 = _mm_unpacklo_epi8(src1, zero);
352 const __m128i src_2 = _mm_unpacklo_epi8(src2, zero);
353 const __m128i src_3 = _mm_unpacklo_epi8(src3, zero);
354 // Load ref and convert to 16b.
355 const __m128i ref0 = _mm_loadl_epi64((__m128i*)&ref[0 * BPS]);
356 const __m128i ref1 = _mm_loadl_epi64((__m128i*)&ref[1 * BPS]);
357 const __m128i ref2 = _mm_loadl_epi64((__m128i*)&ref[2 * BPS]);
358 const __m128i ref3 = _mm_loadl_epi64((__m128i*)&ref[3 * BPS]);
359 const __m128i ref_0 = _mm_unpacklo_epi8(ref0, zero);
360 const __m128i ref_1 = _mm_unpacklo_epi8(ref1, zero);
361 const __m128i ref_2 = _mm_unpacklo_epi8(ref2, zero);
362 const __m128i ref_3 = _mm_unpacklo_epi8(ref3, zero);
363 // Compute difference. -> 00 01 02 03 00 00 00 00
364 const __m128i diff0 = _mm_sub_epi16(src_0, ref_0);
365 const __m128i diff1 = _mm_sub_epi16(src_1, ref_1);
366 const __m128i diff2 = _mm_sub_epi16(src_2, ref_2);
367 const __m128i diff3 = _mm_sub_epi16(src_3, ref_3);
370 // Unpack and shuffle
371 // 00 01 02 03 0 0 0 0
372 // 10 11 12 13 0 0 0 0
373 // 20 21 22 23 0 0 0 0
374 // 30 31 32 33 0 0 0 0
375 const __m128i shuf01 = _mm_unpacklo_epi32(diff0, diff1);
376 const __m128i shuf23 = _mm_unpacklo_epi32(diff2, diff3);
377 // 00 01 10 11 02 03 12 13
378 // 20 21 30 31 22 23 32 33
379 const __m128i shuf01_p =
380 _mm_shufflehi_epi16(shuf01, _MM_SHUFFLE(2, 3, 0, 1));
381 const __m128i shuf23_p =
382 _mm_shufflehi_epi16(shuf23, _MM_SHUFFLE(2, 3, 0, 1));
383 // 00 01 10 11 03 02 13 12
384 // 20 21 30 31 23 22 33 32
385 const __m128i s01 = _mm_unpacklo_epi64(shuf01_p, shuf23_p);
386 const __m128i s32 = _mm_unpackhi_epi64(shuf01_p, shuf23_p);
387 // 00 01 10 11 20 21 30 31
388 // 03 02 13 12 23 22 33 32
389 const __m128i a01 = _mm_add_epi16(s01, s32);
390 const __m128i a32 = _mm_sub_epi16(s01, s32);
391 // [d0 + d3 | d1 + d2 | ...] = [a0 a1 | a0' a1' | ... ]
392 // [d0 - d3 | d1 - d2 | ...] = [a3 a2 | a3' a2' | ... ]
394 const __m128i tmp0 = _mm_madd_epi16(a01, k88p); // [ (a0 + a1) << 3, ... ]
395 const __m128i tmp2 = _mm_madd_epi16(a01, k88m); // [ (a0 - a1) << 3, ... ]
396 const __m128i tmp1_1 = _mm_madd_epi16(a32, k5352_2217p);
397 const __m128i tmp3_1 = _mm_madd_epi16(a32, k5352_2217m);
398 const __m128i tmp1_2 = _mm_add_epi32(tmp1_1, k1812);
399 const __m128i tmp3_2 = _mm_add_epi32(tmp3_1, k937);
400 const __m128i tmp1 = _mm_srai_epi32(tmp1_2, 9);
401 const __m128i tmp3 = _mm_srai_epi32(tmp3_2, 9);
402 const __m128i s03 = _mm_packs_epi32(tmp0, tmp2);
403 const __m128i s12 = _mm_packs_epi32(tmp1, tmp3);
404 const __m128i s_lo = _mm_unpacklo_epi16(s03, s12); // 0 1 0 1 0 1...
405 const __m128i s_hi = _mm_unpackhi_epi16(s03, s12); // 2 3 2 3 2 3
406 const __m128i v23 = _mm_unpackhi_epi32(s_lo, s_hi);
407 v01 = _mm_unpacklo_epi32(s_lo, s_hi);
408 v32 = _mm_shuffle_epi32(v23, _MM_SHUFFLE(1, 0, 3, 2)); // 3 2 3 2 3 2..
411 // Second pass
413 // Same operations are done on the (0,3) and (1,2) pairs.
414 // a0 = v0 + v3
415 // a1 = v1 + v2
416 // a3 = v0 - v3
417 // a2 = v1 - v2
418 const __m128i a01 = _mm_add_epi16(v01, v32);
419 const __m128i a32 = _mm_sub_epi16(v01, v32);
420 const __m128i a11 = _mm_unpackhi_epi64(a01, a01);
421 const __m128i a22 = _mm_unpackhi_epi64(a32, a32);
422 const __m128i a01_plus_7 = _mm_add_epi16(a01, seven);
424 // d0 = (a0 + a1 + 7) >> 4;
425 // d2 = (a0 - a1 + 7) >> 4;
426 const __m128i c0 = _mm_add_epi16(a01_plus_7, a11);
427 const __m128i c2 = _mm_sub_epi16(a01_plus_7, a11);
428 const __m128i d0 = _mm_srai_epi16(c0, 4);
429 const __m128i d2 = _mm_srai_epi16(c2, 4);
431 // f1 = ((b3 * 5352 + b2 * 2217 + 12000) >> 16)
432 // f3 = ((b3 * 2217 - b2 * 5352 + 51000) >> 16)
433 const __m128i b23 = _mm_unpacklo_epi16(a22, a32);
434 const __m128i c1 = _mm_madd_epi16(b23, k5352_2217);
435 const __m128i c3 = _mm_madd_epi16(b23, k2217_5352);
436 const __m128i d1 = _mm_add_epi32(c1, k12000_plus_one);
437 const __m128i d3 = _mm_add_epi32(c3, k51000);
438 const __m128i e1 = _mm_srai_epi32(d1, 16);
439 const __m128i e3 = _mm_srai_epi32(d3, 16);
440 const __m128i f1 = _mm_packs_epi32(e1, e1);
441 const __m128i f3 = _mm_packs_epi32(e3, e3);
442 // f1 = f1 + (a3 != 0);
443 // The compare will return (0xffff, 0) for (==0, !=0). To turn that into the
444 // desired (0, 1), we add one earlier through k12000_plus_one.
445 // -> f1 = f1 + 1 - (a3 == 0)
446 const __m128i g1 = _mm_add_epi16(f1, _mm_cmpeq_epi16(a32, zero));
448 const __m128i d0_g1 = _mm_unpacklo_epi64(d0, g1);
449 const __m128i d2_f3 = _mm_unpacklo_epi64(d2, f3);
450 _mm_storeu_si128((__m128i*)&out[0], d0_g1);
451 _mm_storeu_si128((__m128i*)&out[8], d2_f3);
455 static void FTransformWHT(const int16_t* in, int16_t* out) {
456 int32_t tmp[16];
457 int i;
458 for (i = 0; i < 4; ++i, in += 64) {
459 const int a0 = (in[0 * 16] + in[2 * 16]);
460 const int a1 = (in[1 * 16] + in[3 * 16]);
461 const int a2 = (in[1 * 16] - in[3 * 16]);
462 const int a3 = (in[0 * 16] - in[2 * 16]);
463 tmp[0 + i * 4] = a0 + a1;
464 tmp[1 + i * 4] = a3 + a2;
465 tmp[2 + i * 4] = a3 - a2;
466 tmp[3 + i * 4] = a0 - a1;
469 const __m128i src0 = _mm_loadu_si128((__m128i*)&tmp[0]);
470 const __m128i src1 = _mm_loadu_si128((__m128i*)&tmp[4]);
471 const __m128i src2 = _mm_loadu_si128((__m128i*)&tmp[8]);
472 const __m128i src3 = _mm_loadu_si128((__m128i*)&tmp[12]);
473 const __m128i a0 = _mm_add_epi32(src0, src2);
474 const __m128i a1 = _mm_add_epi32(src1, src3);
475 const __m128i a2 = _mm_sub_epi32(src1, src3);
476 const __m128i a3 = _mm_sub_epi32(src0, src2);
477 const __m128i b0 = _mm_srai_epi32(_mm_add_epi32(a0, a1), 1);
478 const __m128i b1 = _mm_srai_epi32(_mm_add_epi32(a3, a2), 1);
479 const __m128i b2 = _mm_srai_epi32(_mm_sub_epi32(a3, a2), 1);
480 const __m128i b3 = _mm_srai_epi32(_mm_sub_epi32(a0, a1), 1);
481 const __m128i out0 = _mm_packs_epi32(b0, b1);
482 const __m128i out1 = _mm_packs_epi32(b2, b3);
483 _mm_storeu_si128((__m128i*)&out[0], out0);
484 _mm_storeu_si128((__m128i*)&out[8], out1);
488 //------------------------------------------------------------------------------
489 // Metric
491 static int SSE_Nx4(const uint8_t* a, const uint8_t* b,
492 int num_quads, int do_16) {
493 const __m128i zero = _mm_setzero_si128();
494 __m128i sum1 = zero;
495 __m128i sum2 = zero;
497 while (num_quads-- > 0) {
498 // Note: for the !do_16 case, we read 16 pixels instead of 8 but that's ok,
499 // thanks to buffer over-allocation to that effect.
500 const __m128i a0 = _mm_loadu_si128((__m128i*)&a[BPS * 0]);
501 const __m128i a1 = _mm_loadu_si128((__m128i*)&a[BPS * 1]);
502 const __m128i a2 = _mm_loadu_si128((__m128i*)&a[BPS * 2]);
503 const __m128i a3 = _mm_loadu_si128((__m128i*)&a[BPS * 3]);
504 const __m128i b0 = _mm_loadu_si128((__m128i*)&b[BPS * 0]);
505 const __m128i b1 = _mm_loadu_si128((__m128i*)&b[BPS * 1]);
506 const __m128i b2 = _mm_loadu_si128((__m128i*)&b[BPS * 2]);
507 const __m128i b3 = _mm_loadu_si128((__m128i*)&b[BPS * 3]);
509 // compute clip0(a-b) and clip0(b-a)
510 const __m128i a0p = _mm_subs_epu8(a0, b0);
511 const __m128i a0m = _mm_subs_epu8(b0, a0);
512 const __m128i a1p = _mm_subs_epu8(a1, b1);
513 const __m128i a1m = _mm_subs_epu8(b1, a1);
514 const __m128i a2p = _mm_subs_epu8(a2, b2);
515 const __m128i a2m = _mm_subs_epu8(b2, a2);
516 const __m128i a3p = _mm_subs_epu8(a3, b3);
517 const __m128i a3m = _mm_subs_epu8(b3, a3);
519 // compute |a-b| with 8b arithmetic as clip0(a-b) | clip0(b-a)
520 const __m128i diff0 = _mm_or_si128(a0p, a0m);
521 const __m128i diff1 = _mm_or_si128(a1p, a1m);
522 const __m128i diff2 = _mm_or_si128(a2p, a2m);
523 const __m128i diff3 = _mm_or_si128(a3p, a3m);
525 // unpack (only four operations, instead of eight)
526 const __m128i low0 = _mm_unpacklo_epi8(diff0, zero);
527 const __m128i low1 = _mm_unpacklo_epi8(diff1, zero);
528 const __m128i low2 = _mm_unpacklo_epi8(diff2, zero);
529 const __m128i low3 = _mm_unpacklo_epi8(diff3, zero);
531 // multiply with self
532 const __m128i low_madd0 = _mm_madd_epi16(low0, low0);
533 const __m128i low_madd1 = _mm_madd_epi16(low1, low1);
534 const __m128i low_madd2 = _mm_madd_epi16(low2, low2);
535 const __m128i low_madd3 = _mm_madd_epi16(low3, low3);
537 // collect in a cascading way
538 const __m128i low_sum0 = _mm_add_epi32(low_madd0, low_madd1);
539 const __m128i low_sum1 = _mm_add_epi32(low_madd2, low_madd3);
540 sum1 = _mm_add_epi32(sum1, low_sum0);
541 sum2 = _mm_add_epi32(sum2, low_sum1);
543 if (do_16) { // if necessary, process the higher 8 bytes similarly
544 const __m128i hi0 = _mm_unpackhi_epi8(diff0, zero);
545 const __m128i hi1 = _mm_unpackhi_epi8(diff1, zero);
546 const __m128i hi2 = _mm_unpackhi_epi8(diff2, zero);
547 const __m128i hi3 = _mm_unpackhi_epi8(diff3, zero);
549 const __m128i hi_madd0 = _mm_madd_epi16(hi0, hi0);
550 const __m128i hi_madd1 = _mm_madd_epi16(hi1, hi1);
551 const __m128i hi_madd2 = _mm_madd_epi16(hi2, hi2);
552 const __m128i hi_madd3 = _mm_madd_epi16(hi3, hi3);
553 const __m128i hi_sum0 = _mm_add_epi32(hi_madd0, hi_madd1);
554 const __m128i hi_sum1 = _mm_add_epi32(hi_madd2, hi_madd3);
555 sum1 = _mm_add_epi32(sum1, hi_sum0);
556 sum2 = _mm_add_epi32(sum2, hi_sum1);
558 a += 4 * BPS;
559 b += 4 * BPS;
562 int32_t tmp[4];
563 const __m128i sum = _mm_add_epi32(sum1, sum2);
564 _mm_storeu_si128((__m128i*)tmp, sum);
565 return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
569 static int SSE16x16(const uint8_t* a, const uint8_t* b) {
570 return SSE_Nx4(a, b, 4, 1);
573 static int SSE16x8(const uint8_t* a, const uint8_t* b) {
574 return SSE_Nx4(a, b, 2, 1);
577 static int SSE8x8(const uint8_t* a, const uint8_t* b) {
578 return SSE_Nx4(a, b, 2, 0);
581 static int SSE4x4(const uint8_t* a, const uint8_t* b) {
582 const __m128i zero = _mm_setzero_si128();
584 // Load values. Note that we read 8 pixels instead of 4,
585 // but the a/b buffers are over-allocated to that effect.
586 const __m128i a0 = _mm_loadl_epi64((__m128i*)&a[BPS * 0]);
587 const __m128i a1 = _mm_loadl_epi64((__m128i*)&a[BPS * 1]);
588 const __m128i a2 = _mm_loadl_epi64((__m128i*)&a[BPS * 2]);
589 const __m128i a3 = _mm_loadl_epi64((__m128i*)&a[BPS * 3]);
590 const __m128i b0 = _mm_loadl_epi64((__m128i*)&b[BPS * 0]);
591 const __m128i b1 = _mm_loadl_epi64((__m128i*)&b[BPS * 1]);
592 const __m128i b2 = _mm_loadl_epi64((__m128i*)&b[BPS * 2]);
593 const __m128i b3 = _mm_loadl_epi64((__m128i*)&b[BPS * 3]);
595 // Combine pair of lines and convert to 16b.
596 const __m128i a01 = _mm_unpacklo_epi32(a0, a1);
597 const __m128i a23 = _mm_unpacklo_epi32(a2, a3);
598 const __m128i b01 = _mm_unpacklo_epi32(b0, b1);
599 const __m128i b23 = _mm_unpacklo_epi32(b2, b3);
600 const __m128i a01s = _mm_unpacklo_epi8(a01, zero);
601 const __m128i a23s = _mm_unpacklo_epi8(a23, zero);
602 const __m128i b01s = _mm_unpacklo_epi8(b01, zero);
603 const __m128i b23s = _mm_unpacklo_epi8(b23, zero);
605 // Compute differences; (a-b)^2 = (abs(a-b))^2 = (sat8(a-b) + sat8(b-a))^2
606 // TODO(cduvivier): Dissassemble and figure out why this is fastest. We don't
607 // need absolute values, there is no need to do calculation
608 // in 8bit as we are already in 16bit, ... Yet this is what
609 // benchmarks the fastest!
610 const __m128i d0 = _mm_subs_epu8(a01s, b01s);
611 const __m128i d1 = _mm_subs_epu8(b01s, a01s);
612 const __m128i d2 = _mm_subs_epu8(a23s, b23s);
613 const __m128i d3 = _mm_subs_epu8(b23s, a23s);
615 // Square and add them all together.
616 const __m128i madd0 = _mm_madd_epi16(d0, d0);
617 const __m128i madd1 = _mm_madd_epi16(d1, d1);
618 const __m128i madd2 = _mm_madd_epi16(d2, d2);
619 const __m128i madd3 = _mm_madd_epi16(d3, d3);
620 const __m128i sum0 = _mm_add_epi32(madd0, madd1);
621 const __m128i sum1 = _mm_add_epi32(madd2, madd3);
622 const __m128i sum2 = _mm_add_epi32(sum0, sum1);
624 int32_t tmp[4];
625 _mm_storeu_si128((__m128i*)tmp, sum2);
626 return (tmp[3] + tmp[2] + tmp[1] + tmp[0]);
629 //------------------------------------------------------------------------------
630 // Texture distortion
632 // We try to match the spectral content (weighted) between source and
633 // reconstructed samples.
635 // Hadamard transform
636 // Returns the difference between the weighted sum of the absolute value of
637 // transformed coefficients.
638 static int TTransform(const uint8_t* inA, const uint8_t* inB,
639 const uint16_t* const w) {
640 int32_t sum[4];
641 __m128i tmp_0, tmp_1, tmp_2, tmp_3;
642 const __m128i zero = _mm_setzero_si128();
644 // Load, combine and transpose inputs.
646 const __m128i inA_0 = _mm_loadl_epi64((__m128i*)&inA[BPS * 0]);
647 const __m128i inA_1 = _mm_loadl_epi64((__m128i*)&inA[BPS * 1]);
648 const __m128i inA_2 = _mm_loadl_epi64((__m128i*)&inA[BPS * 2]);
649 const __m128i inA_3 = _mm_loadl_epi64((__m128i*)&inA[BPS * 3]);
650 const __m128i inB_0 = _mm_loadl_epi64((__m128i*)&inB[BPS * 0]);
651 const __m128i inB_1 = _mm_loadl_epi64((__m128i*)&inB[BPS * 1]);
652 const __m128i inB_2 = _mm_loadl_epi64((__m128i*)&inB[BPS * 2]);
653 const __m128i inB_3 = _mm_loadl_epi64((__m128i*)&inB[BPS * 3]);
655 // Combine inA and inB (we'll do two transforms in parallel).
656 const __m128i inAB_0 = _mm_unpacklo_epi8(inA_0, inB_0);
657 const __m128i inAB_1 = _mm_unpacklo_epi8(inA_1, inB_1);
658 const __m128i inAB_2 = _mm_unpacklo_epi8(inA_2, inB_2);
659 const __m128i inAB_3 = _mm_unpacklo_epi8(inA_3, inB_3);
660 // a00 b00 a01 b01 a02 b03 a03 b03 0 0 0 0 0 0 0 0
661 // a10 b10 a11 b11 a12 b12 a13 b13 0 0 0 0 0 0 0 0
662 // a20 b20 a21 b21 a22 b22 a23 b23 0 0 0 0 0 0 0 0
663 // a30 b30 a31 b31 a32 b32 a33 b33 0 0 0 0 0 0 0 0
665 // Transpose the two 4x4, discarding the filling zeroes.
666 const __m128i transpose0_0 = _mm_unpacklo_epi8(inAB_0, inAB_2);
667 const __m128i transpose0_1 = _mm_unpacklo_epi8(inAB_1, inAB_3);
668 // a00 a20 b00 b20 a01 a21 b01 b21 a02 a22 b02 b22 a03 a23 b03 b23
669 // a10 a30 b10 b30 a11 a31 b11 b31 a12 a32 b12 b32 a13 a33 b13 b33
670 const __m128i transpose1_0 = _mm_unpacklo_epi8(transpose0_0, transpose0_1);
671 const __m128i transpose1_1 = _mm_unpackhi_epi8(transpose0_0, transpose0_1);
672 // a00 a10 a20 a30 b00 b10 b20 b30 a01 a11 a21 a31 b01 b11 b21 b31
673 // a02 a12 a22 a32 b02 b12 b22 b32 a03 a13 a23 a33 b03 b13 b23 b33
675 // Convert to 16b.
676 tmp_0 = _mm_unpacklo_epi8(transpose1_0, zero);
677 tmp_1 = _mm_unpackhi_epi8(transpose1_0, zero);
678 tmp_2 = _mm_unpacklo_epi8(transpose1_1, zero);
679 tmp_3 = _mm_unpackhi_epi8(transpose1_1, zero);
680 // a00 a10 a20 a30 b00 b10 b20 b30
681 // a01 a11 a21 a31 b01 b11 b21 b31
682 // a02 a12 a22 a32 b02 b12 b22 b32
683 // a03 a13 a23 a33 b03 b13 b23 b33
686 // Horizontal pass and subsequent transpose.
688 // Calculate a and b (two 4x4 at once).
689 const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
690 const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
691 const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
692 const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
693 const __m128i b0 = _mm_add_epi16(a0, a1);
694 const __m128i b1 = _mm_add_epi16(a3, a2);
695 const __m128i b2 = _mm_sub_epi16(a3, a2);
696 const __m128i b3 = _mm_sub_epi16(a0, a1);
697 // a00 a01 a02 a03 b00 b01 b02 b03
698 // a10 a11 a12 a13 b10 b11 b12 b13
699 // a20 a21 a22 a23 b20 b21 b22 b23
700 // a30 a31 a32 a33 b30 b31 b32 b33
702 // Transpose the two 4x4.
703 const __m128i transpose0_0 = _mm_unpacklo_epi16(b0, b1);
704 const __m128i transpose0_1 = _mm_unpacklo_epi16(b2, b3);
705 const __m128i transpose0_2 = _mm_unpackhi_epi16(b0, b1);
706 const __m128i transpose0_3 = _mm_unpackhi_epi16(b2, b3);
707 // a00 a10 a01 a11 a02 a12 a03 a13
708 // a20 a30 a21 a31 a22 a32 a23 a33
709 // b00 b10 b01 b11 b02 b12 b03 b13
710 // b20 b30 b21 b31 b22 b32 b23 b33
711 const __m128i transpose1_0 = _mm_unpacklo_epi32(transpose0_0, transpose0_1);
712 const __m128i transpose1_1 = _mm_unpacklo_epi32(transpose0_2, transpose0_3);
713 const __m128i transpose1_2 = _mm_unpackhi_epi32(transpose0_0, transpose0_1);
714 const __m128i transpose1_3 = _mm_unpackhi_epi32(transpose0_2, transpose0_3);
715 // a00 a10 a20 a30 a01 a11 a21 a31
716 // b00 b10 b20 b30 b01 b11 b21 b31
717 // a02 a12 a22 a32 a03 a13 a23 a33
718 // b02 b12 a22 b32 b03 b13 b23 b33
719 tmp_0 = _mm_unpacklo_epi64(transpose1_0, transpose1_1);
720 tmp_1 = _mm_unpackhi_epi64(transpose1_0, transpose1_1);
721 tmp_2 = _mm_unpacklo_epi64(transpose1_2, transpose1_3);
722 tmp_3 = _mm_unpackhi_epi64(transpose1_2, transpose1_3);
723 // a00 a10 a20 a30 b00 b10 b20 b30
724 // a01 a11 a21 a31 b01 b11 b21 b31
725 // a02 a12 a22 a32 b02 b12 b22 b32
726 // a03 a13 a23 a33 b03 b13 b23 b33
729 // Vertical pass and difference of weighted sums.
731 // Load all inputs.
732 // TODO(cduvivier): Make variable declarations and allocations aligned so
733 // we can use _mm_load_si128 instead of _mm_loadu_si128.
734 const __m128i w_0 = _mm_loadu_si128((__m128i*)&w[0]);
735 const __m128i w_8 = _mm_loadu_si128((__m128i*)&w[8]);
737 // Calculate a and b (two 4x4 at once).
738 const __m128i a0 = _mm_add_epi16(tmp_0, tmp_2);
739 const __m128i a1 = _mm_add_epi16(tmp_1, tmp_3);
740 const __m128i a2 = _mm_sub_epi16(tmp_1, tmp_3);
741 const __m128i a3 = _mm_sub_epi16(tmp_0, tmp_2);
742 const __m128i b0 = _mm_add_epi16(a0, a1);
743 const __m128i b1 = _mm_add_epi16(a3, a2);
744 const __m128i b2 = _mm_sub_epi16(a3, a2);
745 const __m128i b3 = _mm_sub_epi16(a0, a1);
747 // Separate the transforms of inA and inB.
748 __m128i A_b0 = _mm_unpacklo_epi64(b0, b1);
749 __m128i A_b2 = _mm_unpacklo_epi64(b2, b3);
750 __m128i B_b0 = _mm_unpackhi_epi64(b0, b1);
751 __m128i B_b2 = _mm_unpackhi_epi64(b2, b3);
754 // sign(b) = b >> 15 (0x0000 if positive, 0xffff if negative)
755 const __m128i sign_A_b0 = _mm_srai_epi16(A_b0, 15);
756 const __m128i sign_A_b2 = _mm_srai_epi16(A_b2, 15);
757 const __m128i sign_B_b0 = _mm_srai_epi16(B_b0, 15);
758 const __m128i sign_B_b2 = _mm_srai_epi16(B_b2, 15);
760 // b = abs(b) = (b ^ sign) - sign
761 A_b0 = _mm_xor_si128(A_b0, sign_A_b0);
762 A_b2 = _mm_xor_si128(A_b2, sign_A_b2);
763 B_b0 = _mm_xor_si128(B_b0, sign_B_b0);
764 B_b2 = _mm_xor_si128(B_b2, sign_B_b2);
765 A_b0 = _mm_sub_epi16(A_b0, sign_A_b0);
766 A_b2 = _mm_sub_epi16(A_b2, sign_A_b2);
767 B_b0 = _mm_sub_epi16(B_b0, sign_B_b0);
768 B_b2 = _mm_sub_epi16(B_b2, sign_B_b2);
771 // weighted sums
772 A_b0 = _mm_madd_epi16(A_b0, w_0);
773 A_b2 = _mm_madd_epi16(A_b2, w_8);
774 B_b0 = _mm_madd_epi16(B_b0, w_0);
775 B_b2 = _mm_madd_epi16(B_b2, w_8);
776 A_b0 = _mm_add_epi32(A_b0, A_b2);
777 B_b0 = _mm_add_epi32(B_b0, B_b2);
779 // difference of weighted sums
780 A_b0 = _mm_sub_epi32(A_b0, B_b0);
781 _mm_storeu_si128((__m128i*)&sum[0], A_b0);
783 return sum[0] + sum[1] + sum[2] + sum[3];
786 static int Disto4x4(const uint8_t* const a, const uint8_t* const b,
787 const uint16_t* const w) {
788 const int diff_sum = TTransform(a, b, w);
789 return abs(diff_sum) >> 5;
792 static int Disto16x16(const uint8_t* const a, const uint8_t* const b,
793 const uint16_t* const w) {
794 int D = 0;
795 int x, y;
796 for (y = 0; y < 16 * BPS; y += 4 * BPS) {
797 for (x = 0; x < 16; x += 4) {
798 D += Disto4x4(a + x + y, b + x + y, w);
801 return D;
804 //------------------------------------------------------------------------------
805 // Quantization
808 static WEBP_INLINE int DoQuantizeBlock(int16_t in[16], int16_t out[16],
809 const uint16_t* const sharpen,
810 const VP8Matrix* const mtx) {
811 const __m128i max_coeff_2047 = _mm_set1_epi16(MAX_LEVEL);
812 const __m128i zero = _mm_setzero_si128();
813 __m128i coeff0, coeff8;
814 __m128i out0, out8;
815 __m128i packed_out;
817 // Load all inputs.
818 // TODO(cduvivier): Make variable declarations and allocations aligned so that
819 // we can use _mm_load_si128 instead of _mm_loadu_si128.
820 __m128i in0 = _mm_loadu_si128((__m128i*)&in[0]);
821 __m128i in8 = _mm_loadu_si128((__m128i*)&in[8]);
822 const __m128i iq0 = _mm_loadu_si128((__m128i*)&mtx->iq_[0]);
823 const __m128i iq8 = _mm_loadu_si128((__m128i*)&mtx->iq_[8]);
824 const __m128i q0 = _mm_loadu_si128((__m128i*)&mtx->q_[0]);
825 const __m128i q8 = _mm_loadu_si128((__m128i*)&mtx->q_[8]);
827 // extract sign(in) (0x0000 if positive, 0xffff if negative)
828 const __m128i sign0 = _mm_cmpgt_epi16(zero, in0);
829 const __m128i sign8 = _mm_cmpgt_epi16(zero, in8);
831 // coeff = abs(in) = (in ^ sign) - sign
832 coeff0 = _mm_xor_si128(in0, sign0);
833 coeff8 = _mm_xor_si128(in8, sign8);
834 coeff0 = _mm_sub_epi16(coeff0, sign0);
835 coeff8 = _mm_sub_epi16(coeff8, sign8);
837 // coeff = abs(in) + sharpen
838 if (sharpen != NULL) {
839 const __m128i sharpen0 = _mm_loadu_si128((__m128i*)&sharpen[0]);
840 const __m128i sharpen8 = _mm_loadu_si128((__m128i*)&sharpen[8]);
841 coeff0 = _mm_add_epi16(coeff0, sharpen0);
842 coeff8 = _mm_add_epi16(coeff8, sharpen8);
845 // out = (coeff * iQ + B) >> QFIX
847 // doing calculations with 32b precision (QFIX=17)
848 // out = (coeff * iQ)
849 const __m128i coeff_iQ0H = _mm_mulhi_epu16(coeff0, iq0);
850 const __m128i coeff_iQ0L = _mm_mullo_epi16(coeff0, iq0);
851 const __m128i coeff_iQ8H = _mm_mulhi_epu16(coeff8, iq8);
852 const __m128i coeff_iQ8L = _mm_mullo_epi16(coeff8, iq8);
853 __m128i out_00 = _mm_unpacklo_epi16(coeff_iQ0L, coeff_iQ0H);
854 __m128i out_04 = _mm_unpackhi_epi16(coeff_iQ0L, coeff_iQ0H);
855 __m128i out_08 = _mm_unpacklo_epi16(coeff_iQ8L, coeff_iQ8H);
856 __m128i out_12 = _mm_unpackhi_epi16(coeff_iQ8L, coeff_iQ8H);
857 // out = (coeff * iQ + B)
858 const __m128i bias_00 = _mm_loadu_si128((__m128i*)&mtx->bias_[0]);
859 const __m128i bias_04 = _mm_loadu_si128((__m128i*)&mtx->bias_[4]);
860 const __m128i bias_08 = _mm_loadu_si128((__m128i*)&mtx->bias_[8]);
861 const __m128i bias_12 = _mm_loadu_si128((__m128i*)&mtx->bias_[12]);
862 out_00 = _mm_add_epi32(out_00, bias_00);
863 out_04 = _mm_add_epi32(out_04, bias_04);
864 out_08 = _mm_add_epi32(out_08, bias_08);
865 out_12 = _mm_add_epi32(out_12, bias_12);
866 // out = QUANTDIV(coeff, iQ, B, QFIX)
867 out_00 = _mm_srai_epi32(out_00, QFIX);
868 out_04 = _mm_srai_epi32(out_04, QFIX);
869 out_08 = _mm_srai_epi32(out_08, QFIX);
870 out_12 = _mm_srai_epi32(out_12, QFIX);
872 // pack result as 16b
873 out0 = _mm_packs_epi32(out_00, out_04);
874 out8 = _mm_packs_epi32(out_08, out_12);
876 // if (coeff > 2047) coeff = 2047
877 out0 = _mm_min_epi16(out0, max_coeff_2047);
878 out8 = _mm_min_epi16(out8, max_coeff_2047);
881 // get sign back (if (sign[j]) out_n = -out_n)
882 out0 = _mm_xor_si128(out0, sign0);
883 out8 = _mm_xor_si128(out8, sign8);
884 out0 = _mm_sub_epi16(out0, sign0);
885 out8 = _mm_sub_epi16(out8, sign8);
887 // in = out * Q
888 in0 = _mm_mullo_epi16(out0, q0);
889 in8 = _mm_mullo_epi16(out8, q8);
891 _mm_storeu_si128((__m128i*)&in[0], in0);
892 _mm_storeu_si128((__m128i*)&in[8], in8);
894 // zigzag the output before storing it.
896 // The zigzag pattern can almost be reproduced with a small sequence of
897 // shuffles. After it, we only need to swap the 7th (ending up in third
898 // position instead of twelfth) and 8th values.
900 __m128i outZ0, outZ8;
901 outZ0 = _mm_shufflehi_epi16(out0, _MM_SHUFFLE(2, 1, 3, 0));
902 outZ0 = _mm_shuffle_epi32 (outZ0, _MM_SHUFFLE(3, 1, 2, 0));
903 outZ0 = _mm_shufflehi_epi16(outZ0, _MM_SHUFFLE(3, 1, 0, 2));
904 outZ8 = _mm_shufflelo_epi16(out8, _MM_SHUFFLE(3, 0, 2, 1));
905 outZ8 = _mm_shuffle_epi32 (outZ8, _MM_SHUFFLE(3, 1, 2, 0));
906 outZ8 = _mm_shufflelo_epi16(outZ8, _MM_SHUFFLE(1, 3, 2, 0));
907 _mm_storeu_si128((__m128i*)&out[0], outZ0);
908 _mm_storeu_si128((__m128i*)&out[8], outZ8);
909 packed_out = _mm_packs_epi16(outZ0, outZ8);
912 const int16_t outZ_12 = out[12];
913 const int16_t outZ_3 = out[3];
914 out[3] = outZ_12;
915 out[12] = outZ_3;
918 // detect if all 'out' values are zeroes or not
919 return (_mm_movemask_epi8(_mm_cmpeq_epi8(packed_out, zero)) != 0xffff);
922 static int QuantizeBlock(int16_t in[16], int16_t out[16],
923 const VP8Matrix* const mtx) {
924 return DoQuantizeBlock(in, out, &mtx->sharpen_[0], mtx);
927 static int QuantizeBlockWHT(int16_t in[16], int16_t out[16],
928 const VP8Matrix* const mtx) {
929 return DoQuantizeBlock(in, out, NULL, mtx);
932 // Forward declaration.
933 void VP8SetResidualCoeffsSSE2(const int16_t* const coeffs,
934 VP8Residual* const res);
936 void VP8SetResidualCoeffsSSE2(const int16_t* const coeffs,
937 VP8Residual* const res) {
938 const __m128i c0 = _mm_loadu_si128((const __m128i*)coeffs);
939 const __m128i c1 = _mm_loadu_si128((const __m128i*)(coeffs + 8));
940 // Use SSE to compare 8 values with a single instruction.
941 const __m128i zero = _mm_setzero_si128();
942 const __m128i m0 = _mm_cmpeq_epi16(c0, zero);
943 const __m128i m1 = _mm_cmpeq_epi16(c1, zero);
944 // Get the comparison results as a bitmask, consisting of two times 16 bits:
945 // two identical bits for each result. Concatenate both bitmasks to get a
946 // single 32 bit value. Negate the mask to get the position of entries that
947 // are not equal to zero. We don't need to mask out least significant bits
948 // according to res->first, since coeffs[0] is 0 if res->first > 0
949 const uint32_t mask =
950 ~(((uint32_t)_mm_movemask_epi8(m1) << 16) | _mm_movemask_epi8(m0));
951 // The position of the most significant non-zero bit indicates the position of
952 // the last non-zero value. Divide the result by two because __movemask_epi8
953 // operates on 8 bit values instead of 16 bit values.
954 assert(res->first == 0 || coeffs[0] == 0);
955 res->last = mask ? (BitsLog2Floor(mask) >> 1) : -1;
956 res->coeffs = coeffs;
959 #endif // WEBP_USE_SSE2
961 //------------------------------------------------------------------------------
962 // Entry point
964 extern void VP8EncDspInitSSE2(void);
966 void VP8EncDspInitSSE2(void) {
967 #if defined(WEBP_USE_SSE2)
968 VP8CollectHistogram = CollectHistogram;
969 VP8EncQuantizeBlock = QuantizeBlock;
970 VP8EncQuantizeBlockWHT = QuantizeBlockWHT;
971 VP8ITransform = ITransform;
972 VP8FTransform = FTransform;
973 VP8FTransformWHT = FTransformWHT;
974 VP8SSE16x16 = SSE16x16;
975 VP8SSE16x8 = SSE16x8;
976 VP8SSE8x8 = SSE8x8;
977 VP8SSE4x4 = SSE4x4;
978 VP8TDisto4x4 = Disto4x4;
979 VP8TDisto16x16 = Disto16x16;
980 #endif // WEBP_USE_SSE2