Update mojo sdk to rev 1dc8a9a5db73d3718d99917fadf31f5fb2ebad4f
[chromium-blink-merge.git] / third_party / libwebp / dsp / yuv_sse2.c
blob6fe0f3b0d595c272019f53708985215de27ba8a3
1 // Copyright 2014 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // YUV->RGB conversion functions
12 // Author: Skal (pascal.massimino@gmail.com)
14 #include "./yuv.h"
16 #if defined(WEBP_USE_SSE2)
18 #include <emmintrin.h>
19 #include <string.h> // for memcpy
21 typedef union { // handy struct for converting SSE2 registers
22 int32_t i32[4];
23 uint8_t u8[16];
24 __m128i m;
25 } VP8kCstSSE2;
27 #if defined(WEBP_YUV_USE_SSE2_TABLES)
29 #include "./yuv_tables_sse2.h"
31 void VP8YUVInitSSE2(void) {}
33 #else
35 static int done_sse2 = 0;
36 static VP8kCstSSE2 VP8kUtoRGBA[256], VP8kVtoRGBA[256], VP8kYtoRGBA[256];
38 void VP8YUVInitSSE2(void) {
39 if (!done_sse2) {
40 int i;
41 for (i = 0; i < 256; ++i) {
42 VP8kYtoRGBA[i].i32[0] =
43 VP8kYtoRGBA[i].i32[1] =
44 VP8kYtoRGBA[i].i32[2] = (i - 16) * kYScale + YUV_HALF2;
45 VP8kYtoRGBA[i].i32[3] = 0xff << YUV_FIX2;
47 VP8kUtoRGBA[i].i32[0] = 0;
48 VP8kUtoRGBA[i].i32[1] = -kUToG * (i - 128);
49 VP8kUtoRGBA[i].i32[2] = kUToB * (i - 128);
50 VP8kUtoRGBA[i].i32[3] = 0;
52 VP8kVtoRGBA[i].i32[0] = kVToR * (i - 128);
53 VP8kVtoRGBA[i].i32[1] = -kVToG * (i - 128);
54 VP8kVtoRGBA[i].i32[2] = 0;
55 VP8kVtoRGBA[i].i32[3] = 0;
57 done_sse2 = 1;
59 #if 0 // code used to generate 'yuv_tables_sse2.h'
60 printf("static const VP8kCstSSE2 VP8kYtoRGBA[256] = {\n");
61 for (i = 0; i < 256; ++i) {
62 printf(" {{0x%.8x, 0x%.8x, 0x%.8x, 0x%.8x}},\n",
63 VP8kYtoRGBA[i].i32[0], VP8kYtoRGBA[i].i32[1],
64 VP8kYtoRGBA[i].i32[2], VP8kYtoRGBA[i].i32[3]);
66 printf("};\n\n");
67 printf("static const VP8kCstSSE2 VP8kUtoRGBA[256] = {\n");
68 for (i = 0; i < 256; ++i) {
69 printf(" {{0, 0x%.8x, 0x%.8x, 0}},\n",
70 VP8kUtoRGBA[i].i32[1], VP8kUtoRGBA[i].i32[2]);
72 printf("};\n\n");
73 printf("static VP8kCstSSE2 VP8kVtoRGBA[256] = {\n");
74 for (i = 0; i < 256; ++i) {
75 printf(" {{0x%.8x, 0x%.8x, 0, 0}},\n",
76 VP8kVtoRGBA[i].i32[0], VP8kVtoRGBA[i].i32[1]);
78 printf("};\n\n");
79 #endif
83 #endif // WEBP_YUV_USE_SSE2_TABLES
85 //-----------------------------------------------------------------------------
87 static WEBP_INLINE __m128i LoadUVPart(int u, int v) {
88 const __m128i u_part = _mm_loadu_si128(&VP8kUtoRGBA[u].m);
89 const __m128i v_part = _mm_loadu_si128(&VP8kVtoRGBA[v].m);
90 const __m128i uv_part = _mm_add_epi32(u_part, v_part);
91 return uv_part;
94 static WEBP_INLINE __m128i GetRGBA32bWithUV(int y, const __m128i uv_part) {
95 const __m128i y_part = _mm_loadu_si128(&VP8kYtoRGBA[y].m);
96 const __m128i rgba1 = _mm_add_epi32(y_part, uv_part);
97 const __m128i rgba2 = _mm_srai_epi32(rgba1, YUV_FIX2);
98 return rgba2;
101 static WEBP_INLINE __m128i GetRGBA32b(int y, int u, int v) {
102 const __m128i uv_part = LoadUVPart(u, v);
103 return GetRGBA32bWithUV(y, uv_part);
106 static WEBP_INLINE void YuvToRgbSSE2(uint8_t y, uint8_t u, uint8_t v,
107 uint8_t* const rgb) {
108 const __m128i tmp0 = GetRGBA32b(y, u, v);
109 const __m128i tmp1 = _mm_packs_epi32(tmp0, tmp0);
110 const __m128i tmp2 = _mm_packus_epi16(tmp1, tmp1);
111 // Note: we store 8 bytes at a time, not 3 bytes! -> memory stomp
112 _mm_storel_epi64((__m128i*)rgb, tmp2);
115 static WEBP_INLINE void YuvToBgrSSE2(uint8_t y, uint8_t u, uint8_t v,
116 uint8_t* const bgr) {
117 const __m128i tmp0 = GetRGBA32b(y, u, v);
118 const __m128i tmp1 = _mm_shuffle_epi32(tmp0, _MM_SHUFFLE(3, 0, 1, 2));
119 const __m128i tmp2 = _mm_packs_epi32(tmp1, tmp1);
120 const __m128i tmp3 = _mm_packus_epi16(tmp2, tmp2);
121 // Note: we store 8 bytes at a time, not 3 bytes! -> memory stomp
122 _mm_storel_epi64((__m128i*)bgr, tmp3);
125 //-----------------------------------------------------------------------------
126 // Convert spans of 32 pixels to various RGB formats for the fancy upsampler.
128 #ifdef FANCY_UPSAMPLING
130 void VP8YuvToRgba32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
131 uint8_t* dst) {
132 int n;
133 for (n = 0; n < 32; n += 4) {
134 const __m128i tmp0_1 = GetRGBA32b(y[n + 0], u[n + 0], v[n + 0]);
135 const __m128i tmp0_2 = GetRGBA32b(y[n + 1], u[n + 1], v[n + 1]);
136 const __m128i tmp0_3 = GetRGBA32b(y[n + 2], u[n + 2], v[n + 2]);
137 const __m128i tmp0_4 = GetRGBA32b(y[n + 3], u[n + 3], v[n + 3]);
138 const __m128i tmp1_1 = _mm_packs_epi32(tmp0_1, tmp0_2);
139 const __m128i tmp1_2 = _mm_packs_epi32(tmp0_3, tmp0_4);
140 const __m128i tmp2 = _mm_packus_epi16(tmp1_1, tmp1_2);
141 _mm_storeu_si128((__m128i*)dst, tmp2);
142 dst += 4 * 4;
146 void VP8YuvToBgra32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
147 uint8_t* dst) {
148 int n;
149 for (n = 0; n < 32; n += 2) {
150 const __m128i tmp0_1 = GetRGBA32b(y[n + 0], u[n + 0], v[n + 0]);
151 const __m128i tmp0_2 = GetRGBA32b(y[n + 1], u[n + 1], v[n + 1]);
152 const __m128i tmp1_1 = _mm_shuffle_epi32(tmp0_1, _MM_SHUFFLE(3, 0, 1, 2));
153 const __m128i tmp1_2 = _mm_shuffle_epi32(tmp0_2, _MM_SHUFFLE(3, 0, 1, 2));
154 const __m128i tmp2_1 = _mm_packs_epi32(tmp1_1, tmp1_2);
155 const __m128i tmp3 = _mm_packus_epi16(tmp2_1, tmp2_1);
156 _mm_storel_epi64((__m128i*)dst, tmp3);
157 dst += 4 * 2;
161 void VP8YuvToRgb32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
162 uint8_t* dst) {
163 int n;
164 uint8_t tmp0[2 * 3 + 5 + 15];
165 uint8_t* const tmp = (uint8_t*)((uintptr_t)(tmp0 + 15) & ~15); // align
166 for (n = 0; n < 30; ++n) { // we directly stomp the *dst memory
167 YuvToRgbSSE2(y[n], u[n], v[n], dst + n * 3);
169 // Last two pixels are special: we write in a tmp buffer before sending
170 // to dst.
171 YuvToRgbSSE2(y[n + 0], u[n + 0], v[n + 0], tmp + 0);
172 YuvToRgbSSE2(y[n + 1], u[n + 1], v[n + 1], tmp + 3);
173 memcpy(dst + n * 3, tmp, 2 * 3);
176 void VP8YuvToBgr32(const uint8_t* y, const uint8_t* u, const uint8_t* v,
177 uint8_t* dst) {
178 int n;
179 uint8_t tmp0[2 * 3 + 5 + 15];
180 uint8_t* const tmp = (uint8_t*)((uintptr_t)(tmp0 + 15) & ~15); // align
181 for (n = 0; n < 30; ++n) {
182 YuvToBgrSSE2(y[n], u[n], v[n], dst + n * 3);
184 YuvToBgrSSE2(y[n + 0], u[n + 0], v[n + 0], tmp + 0);
185 YuvToBgrSSE2(y[n + 1], u[n + 1], v[n + 1], tmp + 3);
186 memcpy(dst + n * 3, tmp, 2 * 3);
189 #endif // FANCY_UPSAMPLING
191 //-----------------------------------------------------------------------------
192 // Arbitrary-length row conversion functions
194 static void YuvToRgbaRowSSE2(const uint8_t* y,
195 const uint8_t* u, const uint8_t* v,
196 uint8_t* dst, int len) {
197 int n;
198 for (n = 0; n + 4 <= len; n += 4) {
199 const __m128i uv_0 = LoadUVPart(u[0], v[0]);
200 const __m128i uv_1 = LoadUVPart(u[1], v[1]);
201 const __m128i tmp0_1 = GetRGBA32bWithUV(y[0], uv_0);
202 const __m128i tmp0_2 = GetRGBA32bWithUV(y[1], uv_0);
203 const __m128i tmp0_3 = GetRGBA32bWithUV(y[2], uv_1);
204 const __m128i tmp0_4 = GetRGBA32bWithUV(y[3], uv_1);
205 const __m128i tmp1_1 = _mm_packs_epi32(tmp0_1, tmp0_2);
206 const __m128i tmp1_2 = _mm_packs_epi32(tmp0_3, tmp0_4);
207 const __m128i tmp2 = _mm_packus_epi16(tmp1_1, tmp1_2);
208 _mm_storeu_si128((__m128i*)dst, tmp2);
209 dst += 4 * 4;
210 y += 4;
211 u += 2;
212 v += 2;
214 // Finish off
215 while (n < len) {
216 VP8YuvToRgba(y[0], u[0], v[0], dst);
217 dst += 4;
218 ++y;
219 u += (n & 1);
220 v += (n & 1);
221 ++n;
225 static void YuvToBgraRowSSE2(const uint8_t* y,
226 const uint8_t* u, const uint8_t* v,
227 uint8_t* dst, int len) {
228 int n;
229 for (n = 0; n + 2 <= len; n += 2) {
230 const __m128i uv_0 = LoadUVPart(u[0], v[0]);
231 const __m128i tmp0_1 = GetRGBA32bWithUV(y[0], uv_0);
232 const __m128i tmp0_2 = GetRGBA32bWithUV(y[1], uv_0);
233 const __m128i tmp1_1 = _mm_shuffle_epi32(tmp0_1, _MM_SHUFFLE(3, 0, 1, 2));
234 const __m128i tmp1_2 = _mm_shuffle_epi32(tmp0_2, _MM_SHUFFLE(3, 0, 1, 2));
235 const __m128i tmp2_1 = _mm_packs_epi32(tmp1_1, tmp1_2);
236 const __m128i tmp3 = _mm_packus_epi16(tmp2_1, tmp2_1);
237 _mm_storel_epi64((__m128i*)dst, tmp3);
238 dst += 4 * 2;
239 y += 2;
240 ++u;
241 ++v;
243 // Finish off
244 if (len & 1) {
245 VP8YuvToBgra(y[0], u[0], v[0], dst);
249 static void YuvToArgbRowSSE2(const uint8_t* y,
250 const uint8_t* u, const uint8_t* v,
251 uint8_t* dst, int len) {
252 int n;
253 for (n = 0; n + 2 <= len; n += 2) {
254 const __m128i uv_0 = LoadUVPart(u[0], v[0]);
255 const __m128i tmp0_1 = GetRGBA32bWithUV(y[0], uv_0);
256 const __m128i tmp0_2 = GetRGBA32bWithUV(y[1], uv_0);
257 const __m128i tmp1_1 = _mm_shuffle_epi32(tmp0_1, _MM_SHUFFLE(2, 1, 0, 3));
258 const __m128i tmp1_2 = _mm_shuffle_epi32(tmp0_2, _MM_SHUFFLE(2, 1, 0, 3));
259 const __m128i tmp2_1 = _mm_packs_epi32(tmp1_1, tmp1_2);
260 const __m128i tmp3 = _mm_packus_epi16(tmp2_1, tmp2_1);
261 _mm_storel_epi64((__m128i*)dst, tmp3);
262 dst += 4 * 2;
263 y += 2;
264 ++u;
265 ++v;
267 // Finish off
268 if (len & 1) {
269 VP8YuvToArgb(y[0], u[0], v[0], dst);
273 static void YuvToRgbRowSSE2(const uint8_t* y,
274 const uint8_t* u, const uint8_t* v,
275 uint8_t* dst, int len) {
276 int n;
277 for (n = 0; n + 2 < len; ++n) { // we directly stomp the *dst memory
278 YuvToRgbSSE2(y[0], u[0], v[0], dst); // stomps 8 bytes
279 dst += 3;
280 ++y;
281 u += (n & 1);
282 v += (n & 1);
284 VP8YuvToRgb(y[0], u[0], v[0], dst);
285 if (len > 1) {
286 VP8YuvToRgb(y[1], u[n & 1], v[n & 1], dst + 3);
290 static void YuvToBgrRowSSE2(const uint8_t* y,
291 const uint8_t* u, const uint8_t* v,
292 uint8_t* dst, int len) {
293 int n;
294 for (n = 0; n + 2 < len; ++n) { // we directly stomp the *dst memory
295 YuvToBgrSSE2(y[0], u[0], v[0], dst); // stomps 8 bytes
296 dst += 3;
297 ++y;
298 u += (n & 1);
299 v += (n & 1);
301 VP8YuvToBgr(y[0], u[0], v[0], dst + 0);
302 if (len > 1) {
303 VP8YuvToBgr(y[1], u[n & 1], v[n & 1], dst + 3);
307 #endif // WEBP_USE_SSE2
309 //------------------------------------------------------------------------------
310 // Entry point
312 extern void WebPInitSamplersSSE2(void);
314 void WebPInitSamplersSSE2(void) {
315 #if defined(WEBP_USE_SSE2)
316 WebPSamplers[MODE_RGB] = YuvToRgbRowSSE2;
317 WebPSamplers[MODE_RGBA] = YuvToRgbaRowSSE2;
318 WebPSamplers[MODE_BGR] = YuvToBgrRowSSE2;
319 WebPSamplers[MODE_BGRA] = YuvToBgraRowSSE2;
320 WebPSamplers[MODE_ARGB] = YuvToArgbRowSSE2;
321 #endif // WEBP_USE_SSE2