Update mojo sdk to rev 1dc8a9a5db73d3718d99917fadf31f5fb2ebad4f
[chromium-blink-merge.git] / third_party / sqlite / sqlite-src-3080704 / src / btree.c
blob7ea66e0d3be94e88c344f06b969bffafc69ecd0c
1 /*
2 ** 2004 April 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
16 #include "btreeInt.h"
19 ** The header string that appears at the beginning of every
20 ** SQLite database.
22 static const char zMagicHeader[] = SQLITE_FILE_HEADER;
25 ** Set this global variable to 1 to enable tracing using the TRACE
26 ** macro.
28 #if 0
29 int sqlite3BtreeTrace=1; /* True to enable tracing */
30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
31 #else
32 # define TRACE(X)
33 #endif
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page. If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
47 ** Values passed as the 5th argument to allocateBtreePage()
49 #define BTALLOC_ANY 0 /* Allocate any page */
50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
61 #else
62 #define IfNotOmitAV(expr) 0
63 #endif
65 #ifndef SQLITE_OMIT_SHARED_CACHE
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache. This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
70 ** test builds.
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MASTER.
74 #ifdef SQLITE_TEST
75 BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
76 #else
77 static BtShared *SQLITE_WSD sqlite3SharedCacheList = 0;
78 #endif
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
81 #ifndef SQLITE_OMIT_SHARED_CACHE
83 ** Enable or disable the shared pager and schema features.
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
89 int sqlite3_enable_shared_cache(int enable){
90 sqlite3GlobalConfig.sharedCacheEnabled = enable;
91 return SQLITE_OK;
93 #endif
97 #ifdef SQLITE_OMIT_SHARED_CACHE
99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
110 #define downgradeAllSharedCacheTableLocks(a)
111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
113 #endif
115 #ifndef SQLITE_OMIT_SHARED_CACHE
117 #ifdef SQLITE_DEBUG
119 **** This function is only used as part of an assert() statement. ***
121 ** Check to see if pBtree holds the required locks to read or write to the
122 ** table with root page iRoot. Return 1 if it does and 0 if not.
124 ** For example, when writing to a table with root-page iRoot via
125 ** Btree connection pBtree:
127 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
129 ** When writing to an index that resides in a sharable database, the
130 ** caller should have first obtained a lock specifying the root page of
131 ** the corresponding table. This makes things a bit more complicated,
132 ** as this module treats each table as a separate structure. To determine
133 ** the table corresponding to the index being written, this
134 ** function has to search through the database schema.
136 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
137 ** hold a write-lock on the schema table (root page 1). This is also
138 ** acceptable.
140 static int hasSharedCacheTableLock(
141 Btree *pBtree, /* Handle that must hold lock */
142 Pgno iRoot, /* Root page of b-tree */
143 int isIndex, /* True if iRoot is the root of an index b-tree */
144 int eLockType /* Required lock type (READ_LOCK or WRITE_LOCK) */
146 Schema *pSchema = (Schema *)pBtree->pBt->pSchema;
147 Pgno iTab = 0;
148 BtLock *pLock;
150 /* If this database is not shareable, or if the client is reading
151 ** and has the read-uncommitted flag set, then no lock is required.
152 ** Return true immediately.
154 if( (pBtree->sharable==0)
155 || (eLockType==READ_LOCK && (pBtree->db->flags & SQLITE_ReadUncommitted))
157 return 1;
160 /* If the client is reading or writing an index and the schema is
161 ** not loaded, then it is too difficult to actually check to see if
162 ** the correct locks are held. So do not bother - just return true.
163 ** This case does not come up very often anyhow.
165 if( isIndex && (!pSchema || (pSchema->schemaFlags&DB_SchemaLoaded)==0) ){
166 return 1;
169 /* Figure out the root-page that the lock should be held on. For table
170 ** b-trees, this is just the root page of the b-tree being read or
171 ** written. For index b-trees, it is the root page of the associated
172 ** table. */
173 if( isIndex ){
174 HashElem *p;
175 for(p=sqliteHashFirst(&pSchema->idxHash); p; p=sqliteHashNext(p)){
176 Index *pIdx = (Index *)sqliteHashData(p);
177 if( pIdx->tnum==(int)iRoot ){
178 iTab = pIdx->pTable->tnum;
181 }else{
182 iTab = iRoot;
185 /* Search for the required lock. Either a write-lock on root-page iTab, a
186 ** write-lock on the schema table, or (if the client is reading) a
187 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
188 for(pLock=pBtree->pBt->pLock; pLock; pLock=pLock->pNext){
189 if( pLock->pBtree==pBtree
190 && (pLock->iTable==iTab || (pLock->eLock==WRITE_LOCK && pLock->iTable==1))
191 && pLock->eLock>=eLockType
193 return 1;
197 /* Failed to find the required lock. */
198 return 0;
200 #endif /* SQLITE_DEBUG */
202 #ifdef SQLITE_DEBUG
204 **** This function may be used as part of assert() statements only. ****
206 ** Return true if it would be illegal for pBtree to write into the
207 ** table or index rooted at iRoot because other shared connections are
208 ** simultaneously reading that same table or index.
210 ** It is illegal for pBtree to write if some other Btree object that
211 ** shares the same BtShared object is currently reading or writing
212 ** the iRoot table. Except, if the other Btree object has the
213 ** read-uncommitted flag set, then it is OK for the other object to
214 ** have a read cursor.
216 ** For example, before writing to any part of the table or index
217 ** rooted at page iRoot, one should call:
219 ** assert( !hasReadConflicts(pBtree, iRoot) );
221 static int hasReadConflicts(Btree *pBtree, Pgno iRoot){
222 BtCursor *p;
223 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
224 if( p->pgnoRoot==iRoot
225 && p->pBtree!=pBtree
226 && 0==(p->pBtree->db->flags & SQLITE_ReadUncommitted)
228 return 1;
231 return 0;
233 #endif /* #ifdef SQLITE_DEBUG */
236 ** Query to see if Btree handle p may obtain a lock of type eLock
237 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
238 ** SQLITE_OK if the lock may be obtained (by calling
239 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
241 static int querySharedCacheTableLock(Btree *p, Pgno iTab, u8 eLock){
242 BtShared *pBt = p->pBt;
243 BtLock *pIter;
245 assert( sqlite3BtreeHoldsMutex(p) );
246 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
247 assert( p->db!=0 );
248 assert( !(p->db->flags&SQLITE_ReadUncommitted)||eLock==WRITE_LOCK||iTab==1 );
250 /* If requesting a write-lock, then the Btree must have an open write
251 ** transaction on this file. And, obviously, for this to be so there
252 ** must be an open write transaction on the file itself.
254 assert( eLock==READ_LOCK || (p==pBt->pWriter && p->inTrans==TRANS_WRITE) );
255 assert( eLock==READ_LOCK || pBt->inTransaction==TRANS_WRITE );
257 /* This routine is a no-op if the shared-cache is not enabled */
258 if( !p->sharable ){
259 return SQLITE_OK;
262 /* If some other connection is holding an exclusive lock, the
263 ** requested lock may not be obtained.
265 if( pBt->pWriter!=p && (pBt->btsFlags & BTS_EXCLUSIVE)!=0 ){
266 sqlite3ConnectionBlocked(p->db, pBt->pWriter->db);
267 return SQLITE_LOCKED_SHAREDCACHE;
270 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
271 /* The condition (pIter->eLock!=eLock) in the following if(...)
272 ** statement is a simplification of:
274 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
276 ** since we know that if eLock==WRITE_LOCK, then no other connection
277 ** may hold a WRITE_LOCK on any table in this file (since there can
278 ** only be a single writer).
280 assert( pIter->eLock==READ_LOCK || pIter->eLock==WRITE_LOCK );
281 assert( eLock==READ_LOCK || pIter->pBtree==p || pIter->eLock==READ_LOCK);
282 if( pIter->pBtree!=p && pIter->iTable==iTab && pIter->eLock!=eLock ){
283 sqlite3ConnectionBlocked(p->db, pIter->pBtree->db);
284 if( eLock==WRITE_LOCK ){
285 assert( p==pBt->pWriter );
286 pBt->btsFlags |= BTS_PENDING;
288 return SQLITE_LOCKED_SHAREDCACHE;
291 return SQLITE_OK;
293 #endif /* !SQLITE_OMIT_SHARED_CACHE */
295 #ifndef SQLITE_OMIT_SHARED_CACHE
297 ** Add a lock on the table with root-page iTable to the shared-btree used
298 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
299 ** WRITE_LOCK.
301 ** This function assumes the following:
303 ** (a) The specified Btree object p is connected to a sharable
304 ** database (one with the BtShared.sharable flag set), and
306 ** (b) No other Btree objects hold a lock that conflicts
307 ** with the requested lock (i.e. querySharedCacheTableLock() has
308 ** already been called and returned SQLITE_OK).
310 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
311 ** is returned if a malloc attempt fails.
313 static int setSharedCacheTableLock(Btree *p, Pgno iTable, u8 eLock){
314 BtShared *pBt = p->pBt;
315 BtLock *pLock = 0;
316 BtLock *pIter;
318 assert( sqlite3BtreeHoldsMutex(p) );
319 assert( eLock==READ_LOCK || eLock==WRITE_LOCK );
320 assert( p->db!=0 );
322 /* A connection with the read-uncommitted flag set will never try to
323 ** obtain a read-lock using this function. The only read-lock obtained
324 ** by a connection in read-uncommitted mode is on the sqlite_master
325 ** table, and that lock is obtained in BtreeBeginTrans(). */
326 assert( 0==(p->db->flags&SQLITE_ReadUncommitted) || eLock==WRITE_LOCK );
328 /* This function should only be called on a sharable b-tree after it
329 ** has been determined that no other b-tree holds a conflicting lock. */
330 assert( p->sharable );
331 assert( SQLITE_OK==querySharedCacheTableLock(p, iTable, eLock) );
333 /* First search the list for an existing lock on this table. */
334 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
335 if( pIter->iTable==iTable && pIter->pBtree==p ){
336 pLock = pIter;
337 break;
341 /* If the above search did not find a BtLock struct associating Btree p
342 ** with table iTable, allocate one and link it into the list.
344 if( !pLock ){
345 pLock = (BtLock *)sqlite3MallocZero(sizeof(BtLock));
346 if( !pLock ){
347 return SQLITE_NOMEM;
349 pLock->iTable = iTable;
350 pLock->pBtree = p;
351 pLock->pNext = pBt->pLock;
352 pBt->pLock = pLock;
355 /* Set the BtLock.eLock variable to the maximum of the current lock
356 ** and the requested lock. This means if a write-lock was already held
357 ** and a read-lock requested, we don't incorrectly downgrade the lock.
359 assert( WRITE_LOCK>READ_LOCK );
360 if( eLock>pLock->eLock ){
361 pLock->eLock = eLock;
364 return SQLITE_OK;
366 #endif /* !SQLITE_OMIT_SHARED_CACHE */
368 #ifndef SQLITE_OMIT_SHARED_CACHE
370 ** Release all the table locks (locks obtained via calls to
371 ** the setSharedCacheTableLock() procedure) held by Btree object p.
373 ** This function assumes that Btree p has an open read or write
374 ** transaction. If it does not, then the BTS_PENDING flag
375 ** may be incorrectly cleared.
377 static void clearAllSharedCacheTableLocks(Btree *p){
378 BtShared *pBt = p->pBt;
379 BtLock **ppIter = &pBt->pLock;
381 assert( sqlite3BtreeHoldsMutex(p) );
382 assert( p->sharable || 0==*ppIter );
383 assert( p->inTrans>0 );
385 while( *ppIter ){
386 BtLock *pLock = *ppIter;
387 assert( (pBt->btsFlags & BTS_EXCLUSIVE)==0 || pBt->pWriter==pLock->pBtree );
388 assert( pLock->pBtree->inTrans>=pLock->eLock );
389 if( pLock->pBtree==p ){
390 *ppIter = pLock->pNext;
391 assert( pLock->iTable!=1 || pLock==&p->lock );
392 if( pLock->iTable!=1 ){
393 sqlite3_free(pLock);
395 }else{
396 ppIter = &pLock->pNext;
400 assert( (pBt->btsFlags & BTS_PENDING)==0 || pBt->pWriter );
401 if( pBt->pWriter==p ){
402 pBt->pWriter = 0;
403 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
404 }else if( pBt->nTransaction==2 ){
405 /* This function is called when Btree p is concluding its
406 ** transaction. If there currently exists a writer, and p is not
407 ** that writer, then the number of locks held by connections other
408 ** than the writer must be about to drop to zero. In this case
409 ** set the BTS_PENDING flag to 0.
411 ** If there is not currently a writer, then BTS_PENDING must
412 ** be zero already. So this next line is harmless in that case.
414 pBt->btsFlags &= ~BTS_PENDING;
419 ** This function changes all write-locks held by Btree p into read-locks.
421 static void downgradeAllSharedCacheTableLocks(Btree *p){
422 BtShared *pBt = p->pBt;
423 if( pBt->pWriter==p ){
424 BtLock *pLock;
425 pBt->pWriter = 0;
426 pBt->btsFlags &= ~(BTS_EXCLUSIVE|BTS_PENDING);
427 for(pLock=pBt->pLock; pLock; pLock=pLock->pNext){
428 assert( pLock->eLock==READ_LOCK || pLock->pBtree==p );
429 pLock->eLock = READ_LOCK;
434 #endif /* SQLITE_OMIT_SHARED_CACHE */
436 static void releasePage(MemPage *pPage); /* Forward reference */
439 ***** This routine is used inside of assert() only ****
441 ** Verify that the cursor holds the mutex on its BtShared
443 #ifdef SQLITE_DEBUG
444 static int cursorHoldsMutex(BtCursor *p){
445 return sqlite3_mutex_held(p->pBt->mutex);
447 #endif
450 ** Invalidate the overflow cache of the cursor passed as the first argument.
451 ** on the shared btree structure pBt.
453 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
456 ** Invalidate the overflow page-list cache for all cursors opened
457 ** on the shared btree structure pBt.
459 static void invalidateAllOverflowCache(BtShared *pBt){
460 BtCursor *p;
461 assert( sqlite3_mutex_held(pBt->mutex) );
462 for(p=pBt->pCursor; p; p=p->pNext){
463 invalidateOverflowCache(p);
467 #ifndef SQLITE_OMIT_INCRBLOB
469 ** This function is called before modifying the contents of a table
470 ** to invalidate any incrblob cursors that are open on the
471 ** row or one of the rows being modified.
473 ** If argument isClearTable is true, then the entire contents of the
474 ** table is about to be deleted. In this case invalidate all incrblob
475 ** cursors open on any row within the table with root-page pgnoRoot.
477 ** Otherwise, if argument isClearTable is false, then the row with
478 ** rowid iRow is being replaced or deleted. In this case invalidate
479 ** only those incrblob cursors open on that specific row.
481 static void invalidateIncrblobCursors(
482 Btree *pBtree, /* The database file to check */
483 i64 iRow, /* The rowid that might be changing */
484 int isClearTable /* True if all rows are being deleted */
486 BtCursor *p;
487 BtShared *pBt = pBtree->pBt;
488 assert( sqlite3BtreeHoldsMutex(pBtree) );
489 for(p=pBt->pCursor; p; p=p->pNext){
490 if( (p->curFlags & BTCF_Incrblob)!=0
491 && (isClearTable || p->info.nKey==iRow)
493 p->eState = CURSOR_INVALID;
498 #else
499 /* Stub function when INCRBLOB is omitted */
500 #define invalidateIncrblobCursors(x,y,z)
501 #endif /* SQLITE_OMIT_INCRBLOB */
504 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
505 ** when a page that previously contained data becomes a free-list leaf
506 ** page.
508 ** The BtShared.pHasContent bitvec exists to work around an obscure
509 ** bug caused by the interaction of two useful IO optimizations surrounding
510 ** free-list leaf pages:
512 ** 1) When all data is deleted from a page and the page becomes
513 ** a free-list leaf page, the page is not written to the database
514 ** (as free-list leaf pages contain no meaningful data). Sometimes
515 ** such a page is not even journalled (as it will not be modified,
516 ** why bother journalling it?).
518 ** 2) When a free-list leaf page is reused, its content is not read
519 ** from the database or written to the journal file (why should it
520 ** be, if it is not at all meaningful?).
522 ** By themselves, these optimizations work fine and provide a handy
523 ** performance boost to bulk delete or insert operations. However, if
524 ** a page is moved to the free-list and then reused within the same
525 ** transaction, a problem comes up. If the page is not journalled when
526 ** it is moved to the free-list and it is also not journalled when it
527 ** is extracted from the free-list and reused, then the original data
528 ** may be lost. In the event of a rollback, it may not be possible
529 ** to restore the database to its original configuration.
531 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
532 ** moved to become a free-list leaf page, the corresponding bit is
533 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
534 ** optimization 2 above is omitted if the corresponding bit is already
535 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
536 ** at the end of every transaction.
538 static int btreeSetHasContent(BtShared *pBt, Pgno pgno){
539 int rc = SQLITE_OK;
540 if( !pBt->pHasContent ){
541 assert( pgno<=pBt->nPage );
542 pBt->pHasContent = sqlite3BitvecCreate(pBt->nPage);
543 if( !pBt->pHasContent ){
544 rc = SQLITE_NOMEM;
547 if( rc==SQLITE_OK && pgno<=sqlite3BitvecSize(pBt->pHasContent) ){
548 rc = sqlite3BitvecSet(pBt->pHasContent, pgno);
550 return rc;
554 ** Query the BtShared.pHasContent vector.
556 ** This function is called when a free-list leaf page is removed from the
557 ** free-list for reuse. It returns false if it is safe to retrieve the
558 ** page from the pager layer with the 'no-content' flag set. True otherwise.
560 static int btreeGetHasContent(BtShared *pBt, Pgno pgno){
561 Bitvec *p = pBt->pHasContent;
562 return (p && (pgno>sqlite3BitvecSize(p) || sqlite3BitvecTest(p, pgno)));
566 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
567 ** invoked at the conclusion of each write-transaction.
569 static void btreeClearHasContent(BtShared *pBt){
570 sqlite3BitvecDestroy(pBt->pHasContent);
571 pBt->pHasContent = 0;
575 ** Release all of the apPage[] pages for a cursor.
577 static void btreeReleaseAllCursorPages(BtCursor *pCur){
578 int i;
579 for(i=0; i<=pCur->iPage; i++){
580 releasePage(pCur->apPage[i]);
581 pCur->apPage[i] = 0;
583 pCur->iPage = -1;
588 ** Save the current cursor position in the variables BtCursor.nKey
589 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
591 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
592 ** prior to calling this routine.
594 static int saveCursorPosition(BtCursor *pCur){
595 int rc;
597 assert( CURSOR_VALID==pCur->eState );
598 assert( 0==pCur->pKey );
599 assert( cursorHoldsMutex(pCur) );
601 rc = sqlite3BtreeKeySize(pCur, &pCur->nKey);
602 assert( rc==SQLITE_OK ); /* KeySize() cannot fail */
604 /* If this is an intKey table, then the above call to BtreeKeySize()
605 ** stores the integer key in pCur->nKey. In this case this value is
606 ** all that is required. Otherwise, if pCur is not open on an intKey
607 ** table, then malloc space for and store the pCur->nKey bytes of key
608 ** data.
610 if( 0==pCur->apPage[0]->intKey ){
611 void *pKey = sqlite3Malloc( pCur->nKey );
612 if( pKey ){
613 rc = sqlite3BtreeKey(pCur, 0, (int)pCur->nKey, pKey);
614 if( rc==SQLITE_OK ){
615 pCur->pKey = pKey;
616 }else{
617 sqlite3_free(pKey);
619 }else{
620 rc = SQLITE_NOMEM;
623 assert( !pCur->apPage[0]->intKey || !pCur->pKey );
625 if( rc==SQLITE_OK ){
626 btreeReleaseAllCursorPages(pCur);
627 pCur->eState = CURSOR_REQUIRESEEK;
630 invalidateOverflowCache(pCur);
631 return rc;
634 /* Forward reference */
635 static int SQLITE_NOINLINE saveCursorsOnList(BtCursor*,Pgno,BtCursor*);
638 ** Save the positions of all cursors (except pExcept) that are open on
639 ** the table with root-page iRoot. "Saving the cursor position" means that
640 ** the location in the btree is remembered in such a way that it can be
641 ** moved back to the same spot after the btree has been modified. This
642 ** routine is called just before cursor pExcept is used to modify the
643 ** table, for example in BtreeDelete() or BtreeInsert().
645 ** Implementation note: This routine merely checks to see if any cursors
646 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
647 ** event that cursors are in need to being saved.
649 static int saveAllCursors(BtShared *pBt, Pgno iRoot, BtCursor *pExcept){
650 BtCursor *p;
651 assert( sqlite3_mutex_held(pBt->mutex) );
652 assert( pExcept==0 || pExcept->pBt==pBt );
653 for(p=pBt->pCursor; p; p=p->pNext){
654 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ) break;
656 return p ? saveCursorsOnList(p, iRoot, pExcept) : SQLITE_OK;
659 /* This helper routine to saveAllCursors does the actual work of saving
660 ** the cursors if and when a cursor is found that actually requires saving.
661 ** The common case is that no cursors need to be saved, so this routine is
662 ** broken out from its caller to avoid unnecessary stack pointer movement.
664 static int SQLITE_NOINLINE saveCursorsOnList(
665 BtCursor *p, /* The first cursor that needs saving */
666 Pgno iRoot, /* Only save cursor with this iRoot. Save all if zero */
667 BtCursor *pExcept /* Do not save this cursor */
670 if( p!=pExcept && (0==iRoot || p->pgnoRoot==iRoot) ){
671 if( p->eState==CURSOR_VALID ){
672 int rc = saveCursorPosition(p);
673 if( SQLITE_OK!=rc ){
674 return rc;
676 }else{
677 testcase( p->iPage>0 );
678 btreeReleaseAllCursorPages(p);
681 p = p->pNext;
682 }while( p );
683 return SQLITE_OK;
687 ** Clear the current cursor position.
689 void sqlite3BtreeClearCursor(BtCursor *pCur){
690 assert( cursorHoldsMutex(pCur) );
691 sqlite3_free(pCur->pKey);
692 pCur->pKey = 0;
693 pCur->eState = CURSOR_INVALID;
697 ** In this version of BtreeMoveto, pKey is a packed index record
698 ** such as is generated by the OP_MakeRecord opcode. Unpack the
699 ** record and then call BtreeMovetoUnpacked() to do the work.
701 static int btreeMoveto(
702 BtCursor *pCur, /* Cursor open on the btree to be searched */
703 const void *pKey, /* Packed key if the btree is an index */
704 i64 nKey, /* Integer key for tables. Size of pKey for indices */
705 int bias, /* Bias search to the high end */
706 int *pRes /* Write search results here */
708 int rc; /* Status code */
709 UnpackedRecord *pIdxKey; /* Unpacked index key */
710 char aSpace[200]; /* Temp space for pIdxKey - to avoid a malloc */
711 char *pFree = 0;
713 if( pKey ){
714 assert( nKey==(i64)(int)nKey );
715 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
716 pCur->pKeyInfo, aSpace, sizeof(aSpace), &pFree
718 if( pIdxKey==0 ) return SQLITE_NOMEM;
719 sqlite3VdbeRecordUnpack(pCur->pKeyInfo, (int)nKey, pKey, pIdxKey);
720 if( pIdxKey->nField==0 ){
721 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
722 return SQLITE_CORRUPT_BKPT;
724 }else{
725 pIdxKey = 0;
727 rc = sqlite3BtreeMovetoUnpacked(pCur, pIdxKey, nKey, bias, pRes);
728 if( pFree ){
729 sqlite3DbFree(pCur->pKeyInfo->db, pFree);
731 return rc;
735 ** Restore the cursor to the position it was in (or as close to as possible)
736 ** when saveCursorPosition() was called. Note that this call deletes the
737 ** saved position info stored by saveCursorPosition(), so there can be
738 ** at most one effective restoreCursorPosition() call after each
739 ** saveCursorPosition().
741 static int btreeRestoreCursorPosition(BtCursor *pCur){
742 int rc;
743 assert( cursorHoldsMutex(pCur) );
744 assert( pCur->eState>=CURSOR_REQUIRESEEK );
745 if( pCur->eState==CURSOR_FAULT ){
746 return pCur->skipNext;
748 pCur->eState = CURSOR_INVALID;
749 rc = btreeMoveto(pCur, pCur->pKey, pCur->nKey, 0, &pCur->skipNext);
750 if( rc==SQLITE_OK ){
751 sqlite3_free(pCur->pKey);
752 pCur->pKey = 0;
753 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_INVALID );
754 if( pCur->skipNext && pCur->eState==CURSOR_VALID ){
755 pCur->eState = CURSOR_SKIPNEXT;
758 return rc;
761 #define restoreCursorPosition(p) \
762 (p->eState>=CURSOR_REQUIRESEEK ? \
763 btreeRestoreCursorPosition(p) : \
764 SQLITE_OK)
767 ** Determine whether or not a cursor has moved from the position where
768 ** it was last placed, or has been invalidated for any other reason.
769 ** Cursors can move when the row they are pointing at is deleted out
770 ** from under them, for example. Cursor might also move if a btree
771 ** is rebalanced.
773 ** Calling this routine with a NULL cursor pointer returns false.
775 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
776 ** back to where it ought to be if this routine returns true.
778 int sqlite3BtreeCursorHasMoved(BtCursor *pCur){
779 return pCur->eState!=CURSOR_VALID;
783 ** This routine restores a cursor back to its original position after it
784 ** has been moved by some outside activity (such as a btree rebalance or
785 ** a row having been deleted out from under the cursor).
787 ** On success, the *pDifferentRow parameter is false if the cursor is left
788 ** pointing at exactly the same row. *pDifferntRow is the row the cursor
789 ** was pointing to has been deleted, forcing the cursor to point to some
790 ** nearby row.
792 ** This routine should only be called for a cursor that just returned
793 ** TRUE from sqlite3BtreeCursorHasMoved().
795 int sqlite3BtreeCursorRestore(BtCursor *pCur, int *pDifferentRow){
796 int rc;
798 assert( pCur!=0 );
799 assert( pCur->eState!=CURSOR_VALID );
800 rc = restoreCursorPosition(pCur);
801 if( rc ){
802 *pDifferentRow = 1;
803 return rc;
805 if( pCur->eState!=CURSOR_VALID || NEVER(pCur->skipNext!=0) ){
806 *pDifferentRow = 1;
807 }else{
808 *pDifferentRow = 0;
810 return SQLITE_OK;
813 #ifndef SQLITE_OMIT_AUTOVACUUM
815 ** Given a page number of a regular database page, return the page
816 ** number for the pointer-map page that contains the entry for the
817 ** input page number.
819 ** Return 0 (not a valid page) for pgno==1 since there is
820 ** no pointer map associated with page 1. The integrity_check logic
821 ** requires that ptrmapPageno(*,1)!=1.
823 static Pgno ptrmapPageno(BtShared *pBt, Pgno pgno){
824 int nPagesPerMapPage;
825 Pgno iPtrMap, ret;
826 assert( sqlite3_mutex_held(pBt->mutex) );
827 if( pgno<2 ) return 0;
828 nPagesPerMapPage = (pBt->usableSize/5)+1;
829 iPtrMap = (pgno-2)/nPagesPerMapPage;
830 ret = (iPtrMap*nPagesPerMapPage) + 2;
831 if( ret==PENDING_BYTE_PAGE(pBt) ){
832 ret++;
834 return ret;
838 ** Write an entry into the pointer map.
840 ** This routine updates the pointer map entry for page number 'key'
841 ** so that it maps to type 'eType' and parent page number 'pgno'.
843 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
844 ** a no-op. If an error occurs, the appropriate error code is written
845 ** into *pRC.
847 static void ptrmapPut(BtShared *pBt, Pgno key, u8 eType, Pgno parent, int *pRC){
848 DbPage *pDbPage; /* The pointer map page */
849 u8 *pPtrmap; /* The pointer map data */
850 Pgno iPtrmap; /* The pointer map page number */
851 int offset; /* Offset in pointer map page */
852 int rc; /* Return code from subfunctions */
854 if( *pRC ) return;
856 assert( sqlite3_mutex_held(pBt->mutex) );
857 /* The master-journal page number must never be used as a pointer map page */
858 assert( 0==PTRMAP_ISPAGE(pBt, PENDING_BYTE_PAGE(pBt)) );
860 assert( pBt->autoVacuum );
861 if( key==0 ){
862 *pRC = SQLITE_CORRUPT_BKPT;
863 return;
865 iPtrmap = PTRMAP_PAGENO(pBt, key);
866 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
867 if( rc!=SQLITE_OK ){
868 *pRC = rc;
869 return;
871 offset = PTRMAP_PTROFFSET(iPtrmap, key);
872 if( offset<0 ){
873 *pRC = SQLITE_CORRUPT_BKPT;
874 goto ptrmap_exit;
876 assert( offset <= (int)pBt->usableSize-5 );
877 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
879 if( eType!=pPtrmap[offset] || get4byte(&pPtrmap[offset+1])!=parent ){
880 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key, eType, parent));
881 *pRC= rc = sqlite3PagerWrite(pDbPage);
882 if( rc==SQLITE_OK ){
883 pPtrmap[offset] = eType;
884 put4byte(&pPtrmap[offset+1], parent);
888 ptrmap_exit:
889 sqlite3PagerUnref(pDbPage);
893 ** Read an entry from the pointer map.
895 ** This routine retrieves the pointer map entry for page 'key', writing
896 ** the type and parent page number to *pEType and *pPgno respectively.
897 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
899 static int ptrmapGet(BtShared *pBt, Pgno key, u8 *pEType, Pgno *pPgno){
900 DbPage *pDbPage; /* The pointer map page */
901 int iPtrmap; /* Pointer map page index */
902 u8 *pPtrmap; /* Pointer map page data */
903 int offset; /* Offset of entry in pointer map */
904 int rc;
906 assert( sqlite3_mutex_held(pBt->mutex) );
908 iPtrmap = PTRMAP_PAGENO(pBt, key);
909 rc = sqlite3PagerGet(pBt->pPager, iPtrmap, &pDbPage);
910 if( rc!=0 ){
911 return rc;
913 pPtrmap = (u8 *)sqlite3PagerGetData(pDbPage);
915 offset = PTRMAP_PTROFFSET(iPtrmap, key);
916 if( offset<0 ){
917 sqlite3PagerUnref(pDbPage);
918 return SQLITE_CORRUPT_BKPT;
920 assert( offset <= (int)pBt->usableSize-5 );
921 assert( pEType!=0 );
922 *pEType = pPtrmap[offset];
923 if( pPgno ) *pPgno = get4byte(&pPtrmap[offset+1]);
925 sqlite3PagerUnref(pDbPage);
926 if( *pEType<1 || *pEType>5 ) return SQLITE_CORRUPT_BKPT;
927 return SQLITE_OK;
930 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
931 #define ptrmapPut(w,x,y,z,rc)
932 #define ptrmapGet(w,x,y,z) SQLITE_OK
933 #define ptrmapPutOvflPtr(x, y, rc)
934 #endif
937 ** Given a btree page and a cell index (0 means the first cell on
938 ** the page, 1 means the second cell, and so forth) return a pointer
939 ** to the cell content.
941 ** This routine works only for pages that do not contain overflow cells.
943 #define findCell(P,I) \
944 ((P)->aData + ((P)->maskPage & get2byte(&(P)->aCellIdx[2*(I)])))
945 #define findCellv2(D,M,O,I) (D+(M&get2byte(D+(O+2*(I)))))
949 ** This a more complex version of findCell() that works for
950 ** pages that do contain overflow cells.
952 static u8 *findOverflowCell(MemPage *pPage, int iCell){
953 int i;
954 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
955 for(i=pPage->nOverflow-1; i>=0; i--){
956 int k;
957 k = pPage->aiOvfl[i];
958 if( k<=iCell ){
959 if( k==iCell ){
960 return pPage->apOvfl[i];
962 iCell--;
965 return findCell(pPage, iCell);
969 ** Parse a cell content block and fill in the CellInfo structure. There
970 ** are two versions of this function. btreeParseCell() takes a
971 ** cell index as the second argument and btreeParseCellPtr()
972 ** takes a pointer to the body of the cell as its second argument.
974 static void btreeParseCellPtr(
975 MemPage *pPage, /* Page containing the cell */
976 u8 *pCell, /* Pointer to the cell text. */
977 CellInfo *pInfo /* Fill in this structure */
979 u8 *pIter; /* For scanning through pCell */
980 u32 nPayload; /* Number of bytes of cell payload */
982 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
983 assert( pPage->leaf==0 || pPage->leaf==1 );
984 if( pPage->intKeyLeaf ){
985 assert( pPage->childPtrSize==0 );
986 pIter = pCell + getVarint32(pCell, nPayload);
987 pIter += getVarint(pIter, (u64*)&pInfo->nKey);
988 }else if( pPage->noPayload ){
989 assert( pPage->childPtrSize==4 );
990 pInfo->nSize = 4 + getVarint(&pCell[4], (u64*)&pInfo->nKey);
991 pInfo->nPayload = 0;
992 pInfo->nLocal = 0;
993 pInfo->iOverflow = 0;
994 pInfo->pPayload = 0;
995 return;
996 }else{
997 pIter = pCell + pPage->childPtrSize;
998 pIter += getVarint32(pIter, nPayload);
999 pInfo->nKey = nPayload;
1001 pInfo->nPayload = nPayload;
1002 pInfo->pPayload = pIter;
1003 testcase( nPayload==pPage->maxLocal );
1004 testcase( nPayload==pPage->maxLocal+1 );
1005 if( nPayload<=pPage->maxLocal ){
1006 /* This is the (easy) common case where the entire payload fits
1007 ** on the local page. No overflow is required.
1009 pInfo->nSize = nPayload + (u16)(pIter - pCell);
1010 if( pInfo->nSize<4 ) pInfo->nSize = 4;
1011 pInfo->nLocal = (u16)nPayload;
1012 pInfo->iOverflow = 0;
1013 }else{
1014 /* If the payload will not fit completely on the local page, we have
1015 ** to decide how much to store locally and how much to spill onto
1016 ** overflow pages. The strategy is to minimize the amount of unused
1017 ** space on overflow pages while keeping the amount of local storage
1018 ** in between minLocal and maxLocal.
1020 ** Warning: changing the way overflow payload is distributed in any
1021 ** way will result in an incompatible file format.
1023 int minLocal; /* Minimum amount of payload held locally */
1024 int maxLocal; /* Maximum amount of payload held locally */
1025 int surplus; /* Overflow payload available for local storage */
1027 minLocal = pPage->minLocal;
1028 maxLocal = pPage->maxLocal;
1029 surplus = minLocal + (nPayload - minLocal)%(pPage->pBt->usableSize - 4);
1030 testcase( surplus==maxLocal );
1031 testcase( surplus==maxLocal+1 );
1032 if( surplus <= maxLocal ){
1033 pInfo->nLocal = (u16)surplus;
1034 }else{
1035 pInfo->nLocal = (u16)minLocal;
1037 pInfo->iOverflow = (u16)(&pInfo->pPayload[pInfo->nLocal] - pCell);
1038 pInfo->nSize = pInfo->iOverflow + 4;
1041 static void btreeParseCell(
1042 MemPage *pPage, /* Page containing the cell */
1043 int iCell, /* The cell index. First cell is 0 */
1044 CellInfo *pInfo /* Fill in this structure */
1046 btreeParseCellPtr(pPage, findCell(pPage, iCell), pInfo);
1050 ** Compute the total number of bytes that a Cell needs in the cell
1051 ** data area of the btree-page. The return number includes the cell
1052 ** data header and the local payload, but not any overflow page or
1053 ** the space used by the cell pointer.
1055 static u16 cellSizePtr(MemPage *pPage, u8 *pCell){
1056 u8 *pIter = pCell + pPage->childPtrSize; /* For looping over bytes of pCell */
1057 u8 *pEnd; /* End mark for a varint */
1058 u32 nSize; /* Size value to return */
1060 #ifdef SQLITE_DEBUG
1061 /* The value returned by this function should always be the same as
1062 ** the (CellInfo.nSize) value found by doing a full parse of the
1063 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1064 ** this function verifies that this invariant is not violated. */
1065 CellInfo debuginfo;
1066 btreeParseCellPtr(pPage, pCell, &debuginfo);
1067 #endif
1069 if( pPage->noPayload ){
1070 pEnd = &pIter[9];
1071 while( (*pIter++)&0x80 && pIter<pEnd );
1072 assert( pPage->childPtrSize==4 );
1073 return (u16)(pIter - pCell);
1075 nSize = *pIter;
1076 if( nSize>=0x80 ){
1077 pEnd = &pIter[9];
1078 nSize &= 0x7f;
1080 nSize = (nSize<<7) | (*++pIter & 0x7f);
1081 }while( *(pIter)>=0x80 && pIter<pEnd );
1083 pIter++;
1084 if( pPage->intKey ){
1085 /* pIter now points at the 64-bit integer key value, a variable length
1086 ** integer. The following block moves pIter to point at the first byte
1087 ** past the end of the key value. */
1088 pEnd = &pIter[9];
1089 while( (*pIter++)&0x80 && pIter<pEnd );
1091 testcase( nSize==pPage->maxLocal );
1092 testcase( nSize==pPage->maxLocal+1 );
1093 if( nSize<=pPage->maxLocal ){
1094 nSize += (u32)(pIter - pCell);
1095 if( nSize<4 ) nSize = 4;
1096 }else{
1097 int minLocal = pPage->minLocal;
1098 nSize = minLocal + (nSize - minLocal) % (pPage->pBt->usableSize - 4);
1099 testcase( nSize==pPage->maxLocal );
1100 testcase( nSize==pPage->maxLocal+1 );
1101 if( nSize>pPage->maxLocal ){
1102 nSize = minLocal;
1104 nSize += 4 + (u16)(pIter - pCell);
1106 assert( nSize==debuginfo.nSize || CORRUPT_DB );
1107 return (u16)nSize;
1110 #ifdef SQLITE_DEBUG
1111 /* This variation on cellSizePtr() is used inside of assert() statements
1112 ** only. */
1113 static u16 cellSize(MemPage *pPage, int iCell){
1114 return cellSizePtr(pPage, findCell(pPage, iCell));
1116 #endif
1118 #ifndef SQLITE_OMIT_AUTOVACUUM
1120 ** If the cell pCell, part of page pPage contains a pointer
1121 ** to an overflow page, insert an entry into the pointer-map
1122 ** for the overflow page.
1124 static void ptrmapPutOvflPtr(MemPage *pPage, u8 *pCell, int *pRC){
1125 CellInfo info;
1126 if( *pRC ) return;
1127 assert( pCell!=0 );
1128 btreeParseCellPtr(pPage, pCell, &info);
1129 if( info.iOverflow ){
1130 Pgno ovfl = get4byte(&pCell[info.iOverflow]);
1131 ptrmapPut(pPage->pBt, ovfl, PTRMAP_OVERFLOW1, pPage->pgno, pRC);
1134 #endif
1138 ** Defragment the page given. All Cells are moved to the
1139 ** end of the page and all free space is collected into one
1140 ** big FreeBlk that occurs in between the header and cell
1141 ** pointer array and the cell content area.
1143 static int defragmentPage(MemPage *pPage){
1144 int i; /* Loop counter */
1145 int pc; /* Address of the i-th cell */
1146 int hdr; /* Offset to the page header */
1147 int size; /* Size of a cell */
1148 int usableSize; /* Number of usable bytes on a page */
1149 int cellOffset; /* Offset to the cell pointer array */
1150 int cbrk; /* Offset to the cell content area */
1151 int nCell; /* Number of cells on the page */
1152 unsigned char *data; /* The page data */
1153 unsigned char *temp; /* Temp area for cell content */
1154 int iCellFirst; /* First allowable cell index */
1155 int iCellLast; /* Last possible cell index */
1158 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1159 assert( pPage->pBt!=0 );
1160 assert( pPage->pBt->usableSize <= SQLITE_MAX_PAGE_SIZE );
1161 assert( pPage->nOverflow==0 );
1162 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1163 temp = sqlite3PagerTempSpace(pPage->pBt->pPager);
1164 data = pPage->aData;
1165 hdr = pPage->hdrOffset;
1166 cellOffset = pPage->cellOffset;
1167 nCell = pPage->nCell;
1168 assert( nCell==get2byte(&data[hdr+3]) );
1169 usableSize = pPage->pBt->usableSize;
1170 cbrk = get2byte(&data[hdr+5]);
1171 memcpy(&temp[cbrk], &data[cbrk], usableSize - cbrk);
1172 cbrk = usableSize;
1173 iCellFirst = cellOffset + 2*nCell;
1174 iCellLast = usableSize - 4;
1175 for(i=0; i<nCell; i++){
1176 u8 *pAddr; /* The i-th cell pointer */
1177 pAddr = &data[cellOffset + i*2];
1178 pc = get2byte(pAddr);
1179 testcase( pc==iCellFirst );
1180 testcase( pc==iCellLast );
1181 #if !defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1182 /* These conditions have already been verified in btreeInitPage()
1183 ** if SQLITE_ENABLE_OVERSIZE_CELL_CHECK is defined
1185 if( pc<iCellFirst || pc>iCellLast ){
1186 return SQLITE_CORRUPT_BKPT;
1188 #endif
1189 assert( pc>=iCellFirst && pc<=iCellLast );
1190 size = cellSizePtr(pPage, &temp[pc]);
1191 cbrk -= size;
1192 #if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1193 if( cbrk<iCellFirst ){
1194 return SQLITE_CORRUPT_BKPT;
1196 #else
1197 if( cbrk<iCellFirst || pc+size>usableSize ){
1198 return SQLITE_CORRUPT_BKPT;
1200 #endif
1201 assert( cbrk+size<=usableSize && cbrk>=iCellFirst );
1202 testcase( cbrk+size==usableSize );
1203 testcase( pc+size==usableSize );
1204 memcpy(&data[cbrk], &temp[pc], size);
1205 put2byte(pAddr, cbrk);
1207 assert( cbrk>=iCellFirst );
1208 put2byte(&data[hdr+5], cbrk);
1209 data[hdr+1] = 0;
1210 data[hdr+2] = 0;
1211 data[hdr+7] = 0;
1212 memset(&data[iCellFirst], 0, cbrk-iCellFirst);
1213 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1214 if( cbrk-iCellFirst!=pPage->nFree ){
1215 return SQLITE_CORRUPT_BKPT;
1217 return SQLITE_OK;
1221 ** Allocate nByte bytes of space from within the B-Tree page passed
1222 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1223 ** of the first byte of allocated space. Return either SQLITE_OK or
1224 ** an error code (usually SQLITE_CORRUPT).
1226 ** The caller guarantees that there is sufficient space to make the
1227 ** allocation. This routine might need to defragment in order to bring
1228 ** all the space together, however. This routine will avoid using
1229 ** the first two bytes past the cell pointer area since presumably this
1230 ** allocation is being made in order to insert a new cell, so we will
1231 ** also end up needing a new cell pointer.
1233 static int allocateSpace(MemPage *pPage, int nByte, int *pIdx){
1234 const int hdr = pPage->hdrOffset; /* Local cache of pPage->hdrOffset */
1235 u8 * const data = pPage->aData; /* Local cache of pPage->aData */
1236 int top; /* First byte of cell content area */
1237 int gap; /* First byte of gap between cell pointers and cell content */
1238 int rc; /* Integer return code */
1239 int usableSize; /* Usable size of the page */
1241 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1242 assert( pPage->pBt );
1243 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1244 assert( nByte>=0 ); /* Minimum cell size is 4 */
1245 assert( pPage->nFree>=nByte );
1246 assert( pPage->nOverflow==0 );
1247 usableSize = pPage->pBt->usableSize;
1248 assert( nByte < usableSize-8 );
1250 assert( pPage->cellOffset == hdr + 12 - 4*pPage->leaf );
1251 gap = pPage->cellOffset + 2*pPage->nCell;
1252 assert( gap<=65536 );
1253 top = get2byte(&data[hdr+5]);
1254 if( gap>top ){
1255 if( top==0 ){
1256 top = 65536;
1257 }else{
1258 return SQLITE_CORRUPT_BKPT;
1262 /* If there is enough space between gap and top for one more cell pointer
1263 ** array entry offset, and if the freelist is not empty, then search the
1264 ** freelist looking for a free slot big enough to satisfy the request.
1266 testcase( gap+2==top );
1267 testcase( gap+1==top );
1268 testcase( gap==top );
1269 if( gap+2<=top && (data[hdr+1] || data[hdr+2]) ){
1270 int pc, addr;
1271 for(addr=hdr+1; (pc = get2byte(&data[addr]))>0; addr=pc){
1272 int size; /* Size of the free slot */
1273 if( pc>usableSize-4 || pc<addr+4 ){
1274 return SQLITE_CORRUPT_BKPT;
1276 size = get2byte(&data[pc+2]);
1277 if( size>=nByte ){
1278 int x = size - nByte;
1279 testcase( x==4 );
1280 testcase( x==3 );
1281 if( x<4 ){
1282 if( data[hdr+7]>=60 ) goto defragment_page;
1283 /* Remove the slot from the free-list. Update the number of
1284 ** fragmented bytes within the page. */
1285 memcpy(&data[addr], &data[pc], 2);
1286 data[hdr+7] += (u8)x;
1287 }else if( size+pc > usableSize ){
1288 return SQLITE_CORRUPT_BKPT;
1289 }else{
1290 /* The slot remains on the free-list. Reduce its size to account
1291 ** for the portion used by the new allocation. */
1292 put2byte(&data[pc+2], x);
1294 *pIdx = pc + x;
1295 return SQLITE_OK;
1300 /* The request could not be fulfilled using a freelist slot. Check
1301 ** to see if defragmentation is necessary.
1303 testcase( gap+2+nByte==top );
1304 if( gap+2+nByte>top ){
1305 defragment_page:
1306 testcase( pPage->nCell==0 );
1307 rc = defragmentPage(pPage);
1308 if( rc ) return rc;
1309 top = get2byteNotZero(&data[hdr+5]);
1310 assert( gap+nByte<=top );
1314 /* Allocate memory from the gap in between the cell pointer array
1315 ** and the cell content area. The btreeInitPage() call has already
1316 ** validated the freelist. Given that the freelist is valid, there
1317 ** is no way that the allocation can extend off the end of the page.
1318 ** The assert() below verifies the previous sentence.
1320 top -= nByte;
1321 put2byte(&data[hdr+5], top);
1322 assert( top+nByte <= (int)pPage->pBt->usableSize );
1323 *pIdx = top;
1324 return SQLITE_OK;
1328 ** Return a section of the pPage->aData to the freelist.
1329 ** The first byte of the new free block is pPage->aData[iStart]
1330 ** and the size of the block is iSize bytes.
1332 ** Adjacent freeblocks are coalesced.
1334 ** Note that even though the freeblock list was checked by btreeInitPage(),
1335 ** that routine will not detect overlap between cells or freeblocks. Nor
1336 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1337 ** at the end of the page. So do additional corruption checks inside this
1338 ** routine and return SQLITE_CORRUPT if any problems are found.
1340 static int freeSpace(MemPage *pPage, u16 iStart, u16 iSize){
1341 u16 iPtr; /* Address of ptr to next freeblock */
1342 u16 iFreeBlk; /* Address of the next freeblock */
1343 u8 hdr; /* Page header size. 0 or 100 */
1344 u8 nFrag = 0; /* Reduction in fragmentation */
1345 u16 iOrigSize = iSize; /* Original value of iSize */
1346 u32 iLast = pPage->pBt->usableSize-4; /* Largest possible freeblock offset */
1347 u32 iEnd = iStart + iSize; /* First byte past the iStart buffer */
1348 unsigned char *data = pPage->aData; /* Page content */
1350 assert( pPage->pBt!=0 );
1351 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1352 assert( iStart>=pPage->hdrOffset+6+pPage->childPtrSize );
1353 assert( iEnd <= pPage->pBt->usableSize );
1354 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1355 assert( iSize>=4 ); /* Minimum cell size is 4 */
1356 assert( iStart<=iLast );
1358 /* Overwrite deleted information with zeros when the secure_delete
1359 ** option is enabled */
1360 if( pPage->pBt->btsFlags & BTS_SECURE_DELETE ){
1361 memset(&data[iStart], 0, iSize);
1364 /* The list of freeblocks must be in ascending order. Find the
1365 ** spot on the list where iStart should be inserted.
1367 hdr = pPage->hdrOffset;
1368 iPtr = hdr + 1;
1369 if( data[iPtr+1]==0 && data[iPtr]==0 ){
1370 iFreeBlk = 0; /* Shortcut for the case when the freelist is empty */
1371 }else{
1372 while( (iFreeBlk = get2byte(&data[iPtr]))>0 && iFreeBlk<iStart ){
1373 if( iFreeBlk<iPtr+4 ) return SQLITE_CORRUPT_BKPT;
1374 iPtr = iFreeBlk;
1376 if( iFreeBlk>iLast ) return SQLITE_CORRUPT_BKPT;
1377 assert( iFreeBlk>iPtr || iFreeBlk==0 );
1379 /* At this point:
1380 ** iFreeBlk: First freeblock after iStart, or zero if none
1381 ** iPtr: The address of a pointer iFreeBlk
1383 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1385 if( iFreeBlk && iEnd+3>=iFreeBlk ){
1386 nFrag = iFreeBlk - iEnd;
1387 if( iEnd>iFreeBlk ) return SQLITE_CORRUPT_BKPT;
1388 iEnd = iFreeBlk + get2byte(&data[iFreeBlk+2]);
1389 iSize = iEnd - iStart;
1390 iFreeBlk = get2byte(&data[iFreeBlk]);
1393 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1394 ** pointer in the page header) then check to see if iStart should be
1395 ** coalesced onto the end of iPtr.
1397 if( iPtr>hdr+1 ){
1398 int iPtrEnd = iPtr + get2byte(&data[iPtr+2]);
1399 if( iPtrEnd+3>=iStart ){
1400 if( iPtrEnd>iStart ) return SQLITE_CORRUPT_BKPT;
1401 nFrag += iStart - iPtrEnd;
1402 iSize = iEnd - iPtr;
1403 iStart = iPtr;
1406 if( nFrag>data[hdr+7] ) return SQLITE_CORRUPT_BKPT;
1407 data[hdr+7] -= nFrag;
1409 if( iStart==get2byte(&data[hdr+5]) ){
1410 /* The new freeblock is at the beginning of the cell content area,
1411 ** so just extend the cell content area rather than create another
1412 ** freelist entry */
1413 if( iPtr!=hdr+1 ) return SQLITE_CORRUPT_BKPT;
1414 put2byte(&data[hdr+1], iFreeBlk);
1415 put2byte(&data[hdr+5], iEnd);
1416 }else{
1417 /* Insert the new freeblock into the freelist */
1418 put2byte(&data[iPtr], iStart);
1419 put2byte(&data[iStart], iFreeBlk);
1420 put2byte(&data[iStart+2], iSize);
1422 pPage->nFree += iOrigSize;
1423 return SQLITE_OK;
1427 ** Decode the flags byte (the first byte of the header) for a page
1428 ** and initialize fields of the MemPage structure accordingly.
1430 ** Only the following combinations are supported. Anything different
1431 ** indicates a corrupt database files:
1433 ** PTF_ZERODATA
1434 ** PTF_ZERODATA | PTF_LEAF
1435 ** PTF_LEAFDATA | PTF_INTKEY
1436 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1438 static int decodeFlags(MemPage *pPage, int flagByte){
1439 BtShared *pBt; /* A copy of pPage->pBt */
1441 assert( pPage->hdrOffset==(pPage->pgno==1 ? 100 : 0) );
1442 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1443 pPage->leaf = (u8)(flagByte>>3); assert( PTF_LEAF == 1<<3 );
1444 flagByte &= ~PTF_LEAF;
1445 pPage->childPtrSize = 4-4*pPage->leaf;
1446 pBt = pPage->pBt;
1447 if( flagByte==(PTF_LEAFDATA | PTF_INTKEY) ){
1448 pPage->intKey = 1;
1449 pPage->intKeyLeaf = pPage->leaf;
1450 pPage->noPayload = !pPage->leaf;
1451 pPage->maxLocal = pBt->maxLeaf;
1452 pPage->minLocal = pBt->minLeaf;
1453 }else if( flagByte==PTF_ZERODATA ){
1454 pPage->intKey = 0;
1455 pPage->intKeyLeaf = 0;
1456 pPage->noPayload = 0;
1457 pPage->maxLocal = pBt->maxLocal;
1458 pPage->minLocal = pBt->minLocal;
1459 }else{
1460 return SQLITE_CORRUPT_BKPT;
1462 pPage->max1bytePayload = pBt->max1bytePayload;
1463 return SQLITE_OK;
1467 ** Initialize the auxiliary information for a disk block.
1469 ** Return SQLITE_OK on success. If we see that the page does
1470 ** not contain a well-formed database page, then return
1471 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
1472 ** guarantee that the page is well-formed. It only shows that
1473 ** we failed to detect any corruption.
1475 static int btreeInitPage(MemPage *pPage){
1477 assert( pPage->pBt!=0 );
1478 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1479 assert( pPage->pgno==sqlite3PagerPagenumber(pPage->pDbPage) );
1480 assert( pPage == sqlite3PagerGetExtra(pPage->pDbPage) );
1481 assert( pPage->aData == sqlite3PagerGetData(pPage->pDbPage) );
1483 if( !pPage->isInit ){
1484 u16 pc; /* Address of a freeblock within pPage->aData[] */
1485 u8 hdr; /* Offset to beginning of page header */
1486 u8 *data; /* Equal to pPage->aData */
1487 BtShared *pBt; /* The main btree structure */
1488 int usableSize; /* Amount of usable space on each page */
1489 u16 cellOffset; /* Offset from start of page to first cell pointer */
1490 int nFree; /* Number of unused bytes on the page */
1491 int top; /* First byte of the cell content area */
1492 int iCellFirst; /* First allowable cell or freeblock offset */
1493 int iCellLast; /* Last possible cell or freeblock offset */
1495 pBt = pPage->pBt;
1497 hdr = pPage->hdrOffset;
1498 data = pPage->aData;
1499 if( decodeFlags(pPage, data[hdr]) ) return SQLITE_CORRUPT_BKPT;
1500 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1501 pPage->maskPage = (u16)(pBt->pageSize - 1);
1502 pPage->nOverflow = 0;
1503 usableSize = pBt->usableSize;
1504 pPage->cellOffset = cellOffset = hdr + 12 - 4*pPage->leaf;
1505 pPage->aDataEnd = &data[usableSize];
1506 pPage->aCellIdx = &data[cellOffset];
1507 top = get2byteNotZero(&data[hdr+5]);
1508 pPage->nCell = get2byte(&data[hdr+3]);
1509 if( pPage->nCell>MX_CELL(pBt) ){
1510 /* To many cells for a single page. The page must be corrupt */
1511 return SQLITE_CORRUPT_BKPT;
1513 testcase( pPage->nCell==MX_CELL(pBt) );
1515 /* A malformed database page might cause us to read past the end
1516 ** of page when parsing a cell.
1518 ** The following block of code checks early to see if a cell extends
1519 ** past the end of a page boundary and causes SQLITE_CORRUPT to be
1520 ** returned if it does.
1522 iCellFirst = cellOffset + 2*pPage->nCell;
1523 iCellLast = usableSize - 4;
1524 #if defined(SQLITE_ENABLE_OVERSIZE_CELL_CHECK)
1526 int i; /* Index into the cell pointer array */
1527 int sz; /* Size of a cell */
1529 if( !pPage->leaf ) iCellLast--;
1530 for(i=0; i<pPage->nCell; i++){
1531 pc = get2byte(&data[cellOffset+i*2]);
1532 testcase( pc==iCellFirst );
1533 testcase( pc==iCellLast );
1534 if( pc<iCellFirst || pc>iCellLast ){
1535 return SQLITE_CORRUPT_BKPT;
1537 sz = cellSizePtr(pPage, &data[pc]);
1538 testcase( pc+sz==usableSize );
1539 if( pc+sz>usableSize ){
1540 return SQLITE_CORRUPT_BKPT;
1543 if( !pPage->leaf ) iCellLast++;
1545 #endif
1547 /* Compute the total free space on the page */
1548 pc = get2byte(&data[hdr+1]);
1549 nFree = data[hdr+7] + top;
1550 while( pc>0 ){
1551 u16 next, size;
1552 if( pc<iCellFirst || pc>iCellLast ){
1553 /* Start of free block is off the page */
1554 return SQLITE_CORRUPT_BKPT;
1556 next = get2byte(&data[pc]);
1557 size = get2byte(&data[pc+2]);
1558 if( (next>0 && next<=pc+size+3) || pc+size>usableSize ){
1559 /* Free blocks must be in ascending order. And the last byte of
1560 ** the free-block must lie on the database page. */
1561 return SQLITE_CORRUPT_BKPT;
1563 nFree = nFree + size;
1564 pc = next;
1567 /* At this point, nFree contains the sum of the offset to the start
1568 ** of the cell-content area plus the number of free bytes within
1569 ** the cell-content area. If this is greater than the usable-size
1570 ** of the page, then the page must be corrupted. This check also
1571 ** serves to verify that the offset to the start of the cell-content
1572 ** area, according to the page header, lies within the page.
1574 if( nFree>usableSize ){
1575 return SQLITE_CORRUPT_BKPT;
1577 pPage->nFree = (u16)(nFree - iCellFirst);
1578 pPage->isInit = 1;
1580 return SQLITE_OK;
1584 ** Set up a raw page so that it looks like a database page holding
1585 ** no entries.
1587 static void zeroPage(MemPage *pPage, int flags){
1588 unsigned char *data = pPage->aData;
1589 BtShared *pBt = pPage->pBt;
1590 u8 hdr = pPage->hdrOffset;
1591 u16 first;
1593 assert( sqlite3PagerPagenumber(pPage->pDbPage)==pPage->pgno );
1594 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1595 assert( sqlite3PagerGetData(pPage->pDbPage) == data );
1596 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
1597 assert( sqlite3_mutex_held(pBt->mutex) );
1598 if( pBt->btsFlags & BTS_SECURE_DELETE ){
1599 memset(&data[hdr], 0, pBt->usableSize - hdr);
1601 data[hdr] = (char)flags;
1602 first = hdr + ((flags&PTF_LEAF)==0 ? 12 : 8);
1603 memset(&data[hdr+1], 0, 4);
1604 data[hdr+7] = 0;
1605 put2byte(&data[hdr+5], pBt->usableSize);
1606 pPage->nFree = (u16)(pBt->usableSize - first);
1607 decodeFlags(pPage, flags);
1608 pPage->cellOffset = first;
1609 pPage->aDataEnd = &data[pBt->usableSize];
1610 pPage->aCellIdx = &data[first];
1611 pPage->nOverflow = 0;
1612 assert( pBt->pageSize>=512 && pBt->pageSize<=65536 );
1613 pPage->maskPage = (u16)(pBt->pageSize - 1);
1614 pPage->nCell = 0;
1615 pPage->isInit = 1;
1620 ** Convert a DbPage obtained from the pager into a MemPage used by
1621 ** the btree layer.
1623 static MemPage *btreePageFromDbPage(DbPage *pDbPage, Pgno pgno, BtShared *pBt){
1624 MemPage *pPage = (MemPage*)sqlite3PagerGetExtra(pDbPage);
1625 pPage->aData = sqlite3PagerGetData(pDbPage);
1626 pPage->pDbPage = pDbPage;
1627 pPage->pBt = pBt;
1628 pPage->pgno = pgno;
1629 pPage->hdrOffset = pPage->pgno==1 ? 100 : 0;
1630 return pPage;
1634 ** Get a page from the pager. Initialize the MemPage.pBt and
1635 ** MemPage.aData elements if needed.
1637 ** If the noContent flag is set, it means that we do not care about
1638 ** the content of the page at this time. So do not go to the disk
1639 ** to fetch the content. Just fill in the content with zeros for now.
1640 ** If in the future we call sqlite3PagerWrite() on this page, that
1641 ** means we have started to be concerned about content and the disk
1642 ** read should occur at that point.
1644 static int btreeGetPage(
1645 BtShared *pBt, /* The btree */
1646 Pgno pgno, /* Number of the page to fetch */
1647 MemPage **ppPage, /* Return the page in this parameter */
1648 int flags /* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
1650 int rc;
1651 DbPage *pDbPage;
1653 assert( flags==0 || flags==PAGER_GET_NOCONTENT || flags==PAGER_GET_READONLY );
1654 assert( sqlite3_mutex_held(pBt->mutex) );
1655 rc = sqlite3PagerAcquire(pBt->pPager, pgno, (DbPage**)&pDbPage, flags);
1656 if( rc ) return rc;
1657 *ppPage = btreePageFromDbPage(pDbPage, pgno, pBt);
1658 return SQLITE_OK;
1662 ** Retrieve a page from the pager cache. If the requested page is not
1663 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
1664 ** MemPage.aData elements if needed.
1666 static MemPage *btreePageLookup(BtShared *pBt, Pgno pgno){
1667 DbPage *pDbPage;
1668 assert( sqlite3_mutex_held(pBt->mutex) );
1669 pDbPage = sqlite3PagerLookup(pBt->pPager, pgno);
1670 if( pDbPage ){
1671 return btreePageFromDbPage(pDbPage, pgno, pBt);
1673 return 0;
1677 ** Return the size of the database file in pages. If there is any kind of
1678 ** error, return ((unsigned int)-1).
1680 static Pgno btreePagecount(BtShared *pBt){
1681 return pBt->nPage;
1683 u32 sqlite3BtreeLastPage(Btree *p){
1684 assert( sqlite3BtreeHoldsMutex(p) );
1685 assert( ((p->pBt->nPage)&0x8000000)==0 );
1686 return btreePagecount(p->pBt);
1690 ** Get a page from the pager and initialize it. This routine is just a
1691 ** convenience wrapper around separate calls to btreeGetPage() and
1692 ** btreeInitPage().
1694 ** If an error occurs, then the value *ppPage is set to is undefined. It
1695 ** may remain unchanged, or it may be set to an invalid value.
1697 static int getAndInitPage(
1698 BtShared *pBt, /* The database file */
1699 Pgno pgno, /* Number of the page to get */
1700 MemPage **ppPage, /* Write the page pointer here */
1701 int bReadonly /* PAGER_GET_READONLY or 0 */
1703 int rc;
1704 assert( sqlite3_mutex_held(pBt->mutex) );
1705 assert( bReadonly==PAGER_GET_READONLY || bReadonly==0 );
1707 if( pgno>btreePagecount(pBt) ){
1708 rc = SQLITE_CORRUPT_BKPT;
1709 }else{
1710 rc = btreeGetPage(pBt, pgno, ppPage, bReadonly);
1711 if( rc==SQLITE_OK && (*ppPage)->isInit==0 ){
1712 rc = btreeInitPage(*ppPage);
1713 if( rc!=SQLITE_OK ){
1714 releasePage(*ppPage);
1719 testcase( pgno==0 );
1720 assert( pgno!=0 || rc==SQLITE_CORRUPT );
1721 return rc;
1725 ** Release a MemPage. This should be called once for each prior
1726 ** call to btreeGetPage.
1728 static void releasePage(MemPage *pPage){
1729 if( pPage ){
1730 assert( pPage->aData );
1731 assert( pPage->pBt );
1732 assert( pPage->pDbPage!=0 );
1733 assert( sqlite3PagerGetExtra(pPage->pDbPage) == (void*)pPage );
1734 assert( sqlite3PagerGetData(pPage->pDbPage)==pPage->aData );
1735 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1736 sqlite3PagerUnrefNotNull(pPage->pDbPage);
1741 ** During a rollback, when the pager reloads information into the cache
1742 ** so that the cache is restored to its original state at the start of
1743 ** the transaction, for each page restored this routine is called.
1745 ** This routine needs to reset the extra data section at the end of the
1746 ** page to agree with the restored data.
1748 static void pageReinit(DbPage *pData){
1749 MemPage *pPage;
1750 pPage = (MemPage *)sqlite3PagerGetExtra(pData);
1751 assert( sqlite3PagerPageRefcount(pData)>0 );
1752 if( pPage->isInit ){
1753 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
1754 pPage->isInit = 0;
1755 if( sqlite3PagerPageRefcount(pData)>1 ){
1756 /* pPage might not be a btree page; it might be an overflow page
1757 ** or ptrmap page or a free page. In those cases, the following
1758 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
1759 ** But no harm is done by this. And it is very important that
1760 ** btreeInitPage() be called on every btree page so we make
1761 ** the call for every page that comes in for re-initing. */
1762 btreeInitPage(pPage);
1768 ** Invoke the busy handler for a btree.
1770 static int btreeInvokeBusyHandler(void *pArg){
1771 BtShared *pBt = (BtShared*)pArg;
1772 assert( pBt->db );
1773 assert( sqlite3_mutex_held(pBt->db->mutex) );
1774 return sqlite3InvokeBusyHandler(&pBt->db->busyHandler);
1778 ** Open a database file.
1780 ** zFilename is the name of the database file. If zFilename is NULL
1781 ** then an ephemeral database is created. The ephemeral database might
1782 ** be exclusively in memory, or it might use a disk-based memory cache.
1783 ** Either way, the ephemeral database will be automatically deleted
1784 ** when sqlite3BtreeClose() is called.
1786 ** If zFilename is ":memory:" then an in-memory database is created
1787 ** that is automatically destroyed when it is closed.
1789 ** The "flags" parameter is a bitmask that might contain bits like
1790 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
1792 ** If the database is already opened in the same database connection
1793 ** and we are in shared cache mode, then the open will fail with an
1794 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
1795 ** objects in the same database connection since doing so will lead
1796 ** to problems with locking.
1798 int sqlite3BtreeOpen(
1799 sqlite3_vfs *pVfs, /* VFS to use for this b-tree */
1800 const char *zFilename, /* Name of the file containing the BTree database */
1801 sqlite3 *db, /* Associated database handle */
1802 Btree **ppBtree, /* Pointer to new Btree object written here */
1803 int flags, /* Options */
1804 int vfsFlags /* Flags passed through to sqlite3_vfs.xOpen() */
1806 BtShared *pBt = 0; /* Shared part of btree structure */
1807 Btree *p; /* Handle to return */
1808 sqlite3_mutex *mutexOpen = 0; /* Prevents a race condition. Ticket #3537 */
1809 int rc = SQLITE_OK; /* Result code from this function */
1810 u8 nReserve; /* Byte of unused space on each page */
1811 unsigned char zDbHeader[100]; /* Database header content */
1813 /* True if opening an ephemeral, temporary database */
1814 const int isTempDb = zFilename==0 || zFilename[0]==0;
1816 /* Set the variable isMemdb to true for an in-memory database, or
1817 ** false for a file-based database.
1819 #ifdef SQLITE_OMIT_MEMORYDB
1820 const int isMemdb = 0;
1821 #else
1822 const int isMemdb = (zFilename && strcmp(zFilename, ":memory:")==0)
1823 || (isTempDb && sqlite3TempInMemory(db))
1824 || (vfsFlags & SQLITE_OPEN_MEMORY)!=0;
1825 #endif
1827 assert( db!=0 );
1828 assert( pVfs!=0 );
1829 assert( sqlite3_mutex_held(db->mutex) );
1830 assert( (flags&0xff)==flags ); /* flags fit in 8 bits */
1832 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
1833 assert( (flags & BTREE_UNORDERED)==0 || (flags & BTREE_SINGLE)!=0 );
1835 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
1836 assert( (flags & BTREE_SINGLE)==0 || isTempDb );
1838 if( isMemdb ){
1839 flags |= BTREE_MEMORY;
1841 if( (vfsFlags & SQLITE_OPEN_MAIN_DB)!=0 && (isMemdb || isTempDb) ){
1842 vfsFlags = (vfsFlags & ~SQLITE_OPEN_MAIN_DB) | SQLITE_OPEN_TEMP_DB;
1844 p = sqlite3MallocZero(sizeof(Btree));
1845 if( !p ){
1846 return SQLITE_NOMEM;
1848 p->inTrans = TRANS_NONE;
1849 p->db = db;
1850 #ifndef SQLITE_OMIT_SHARED_CACHE
1851 p->lock.pBtree = p;
1852 p->lock.iTable = 1;
1853 #endif
1855 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1857 ** If this Btree is a candidate for shared cache, try to find an
1858 ** existing BtShared object that we can share with
1860 if( isTempDb==0 && (isMemdb==0 || (vfsFlags&SQLITE_OPEN_URI)!=0) ){
1861 if( vfsFlags & SQLITE_OPEN_SHAREDCACHE ){
1862 int nFullPathname = pVfs->mxPathname+1;
1863 char *zFullPathname = sqlite3Malloc(nFullPathname);
1864 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
1865 p->sharable = 1;
1866 if( !zFullPathname ){
1867 sqlite3_free(p);
1868 return SQLITE_NOMEM;
1870 if( isMemdb ){
1871 memcpy(zFullPathname, zFilename, sqlite3Strlen30(zFilename)+1);
1872 }else{
1873 rc = sqlite3OsFullPathname(pVfs, zFilename,
1874 nFullPathname, zFullPathname);
1875 if( rc ){
1876 sqlite3_free(zFullPathname);
1877 sqlite3_free(p);
1878 return rc;
1881 #if SQLITE_THREADSAFE
1882 mutexOpen = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN);
1883 sqlite3_mutex_enter(mutexOpen);
1884 mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
1885 sqlite3_mutex_enter(mutexShared);
1886 #endif
1887 for(pBt=GLOBAL(BtShared*,sqlite3SharedCacheList); pBt; pBt=pBt->pNext){
1888 assert( pBt->nRef>0 );
1889 if( 0==strcmp(zFullPathname, sqlite3PagerFilename(pBt->pPager, 0))
1890 && sqlite3PagerVfs(pBt->pPager)==pVfs ){
1891 int iDb;
1892 for(iDb=db->nDb-1; iDb>=0; iDb--){
1893 Btree *pExisting = db->aDb[iDb].pBt;
1894 if( pExisting && pExisting->pBt==pBt ){
1895 sqlite3_mutex_leave(mutexShared);
1896 sqlite3_mutex_leave(mutexOpen);
1897 sqlite3_free(zFullPathname);
1898 sqlite3_free(p);
1899 return SQLITE_CONSTRAINT;
1902 p->pBt = pBt;
1903 pBt->nRef++;
1904 break;
1907 sqlite3_mutex_leave(mutexShared);
1908 sqlite3_free(zFullPathname);
1910 #ifdef SQLITE_DEBUG
1911 else{
1912 /* In debug mode, we mark all persistent databases as sharable
1913 ** even when they are not. This exercises the locking code and
1914 ** gives more opportunity for asserts(sqlite3_mutex_held())
1915 ** statements to find locking problems.
1917 p->sharable = 1;
1919 #endif
1921 #endif
1922 if( pBt==0 ){
1924 ** The following asserts make sure that structures used by the btree are
1925 ** the right size. This is to guard against size changes that result
1926 ** when compiling on a different architecture.
1928 assert( sizeof(i64)==8 || sizeof(i64)==4 );
1929 assert( sizeof(u64)==8 || sizeof(u64)==4 );
1930 assert( sizeof(u32)==4 );
1931 assert( sizeof(u16)==2 );
1932 assert( sizeof(Pgno)==4 );
1934 pBt = sqlite3MallocZero( sizeof(*pBt) );
1935 if( pBt==0 ){
1936 rc = SQLITE_NOMEM;
1937 goto btree_open_out;
1939 rc = sqlite3PagerOpen(pVfs, &pBt->pPager, zFilename,
1940 EXTRA_SIZE, flags, vfsFlags, pageReinit);
1941 if( rc==SQLITE_OK ){
1942 sqlite3PagerSetMmapLimit(pBt->pPager, db->szMmap);
1943 rc = sqlite3PagerReadFileheader(pBt->pPager,sizeof(zDbHeader),zDbHeader);
1945 if( rc!=SQLITE_OK ){
1946 goto btree_open_out;
1948 pBt->openFlags = (u8)flags;
1949 pBt->db = db;
1950 sqlite3PagerSetBusyhandler(pBt->pPager, btreeInvokeBusyHandler, pBt);
1951 p->pBt = pBt;
1953 pBt->pCursor = 0;
1954 pBt->pPage1 = 0;
1955 if( sqlite3PagerIsreadonly(pBt->pPager) ) pBt->btsFlags |= BTS_READ_ONLY;
1956 #ifdef SQLITE_SECURE_DELETE
1957 pBt->btsFlags |= BTS_SECURE_DELETE;
1958 #endif
1959 pBt->pageSize = (zDbHeader[16]<<8) | (zDbHeader[17]<<16);
1960 if( pBt->pageSize<512 || pBt->pageSize>SQLITE_MAX_PAGE_SIZE
1961 || ((pBt->pageSize-1)&pBt->pageSize)!=0 ){
1962 pBt->pageSize = 0;
1963 #ifndef SQLITE_OMIT_AUTOVACUUM
1964 /* If the magic name ":memory:" will create an in-memory database, then
1965 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
1966 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
1967 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
1968 ** regular file-name. In this case the auto-vacuum applies as per normal.
1970 if( zFilename && !isMemdb ){
1971 pBt->autoVacuum = (SQLITE_DEFAULT_AUTOVACUUM ? 1 : 0);
1972 pBt->incrVacuum = (SQLITE_DEFAULT_AUTOVACUUM==2 ? 1 : 0);
1974 #endif
1975 nReserve = 0;
1976 }else{
1977 nReserve = zDbHeader[20];
1978 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
1979 #ifndef SQLITE_OMIT_AUTOVACUUM
1980 pBt->autoVacuum = (get4byte(&zDbHeader[36 + 4*4])?1:0);
1981 pBt->incrVacuum = (get4byte(&zDbHeader[36 + 7*4])?1:0);
1982 #endif
1984 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
1985 if( rc ) goto btree_open_out;
1986 pBt->usableSize = pBt->pageSize - nReserve;
1987 assert( (pBt->pageSize & 7)==0 ); /* 8-byte alignment of pageSize */
1989 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
1990 /* Add the new BtShared object to the linked list sharable BtShareds.
1992 if( p->sharable ){
1993 MUTEX_LOGIC( sqlite3_mutex *mutexShared; )
1994 pBt->nRef = 1;
1995 MUTEX_LOGIC( mutexShared = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);)
1996 if( SQLITE_THREADSAFE && sqlite3GlobalConfig.bCoreMutex ){
1997 pBt->mutex = sqlite3MutexAlloc(SQLITE_MUTEX_FAST);
1998 if( pBt->mutex==0 ){
1999 rc = SQLITE_NOMEM;
2000 db->mallocFailed = 0;
2001 goto btree_open_out;
2004 sqlite3_mutex_enter(mutexShared);
2005 pBt->pNext = GLOBAL(BtShared*,sqlite3SharedCacheList);
2006 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt;
2007 sqlite3_mutex_leave(mutexShared);
2009 #endif
2012 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2013 /* If the new Btree uses a sharable pBtShared, then link the new
2014 ** Btree into the list of all sharable Btrees for the same connection.
2015 ** The list is kept in ascending order by pBt address.
2017 if( p->sharable ){
2018 int i;
2019 Btree *pSib;
2020 for(i=0; i<db->nDb; i++){
2021 if( (pSib = db->aDb[i].pBt)!=0 && pSib->sharable ){
2022 while( pSib->pPrev ){ pSib = pSib->pPrev; }
2023 if( p->pBt<pSib->pBt ){
2024 p->pNext = pSib;
2025 p->pPrev = 0;
2026 pSib->pPrev = p;
2027 }else{
2028 while( pSib->pNext && pSib->pNext->pBt<p->pBt ){
2029 pSib = pSib->pNext;
2031 p->pNext = pSib->pNext;
2032 p->pPrev = pSib;
2033 if( p->pNext ){
2034 p->pNext->pPrev = p;
2036 pSib->pNext = p;
2038 break;
2042 #endif
2043 *ppBtree = p;
2045 btree_open_out:
2046 if( rc!=SQLITE_OK ){
2047 if( pBt && pBt->pPager ){
2048 sqlite3PagerClose(pBt->pPager);
2050 sqlite3_free(pBt);
2051 sqlite3_free(p);
2052 *ppBtree = 0;
2053 }else{
2054 /* If the B-Tree was successfully opened, set the pager-cache size to the
2055 ** default value. Except, when opening on an existing shared pager-cache,
2056 ** do not change the pager-cache size.
2058 if( sqlite3BtreeSchema(p, 0, 0)==0 ){
2059 sqlite3PagerSetCachesize(p->pBt->pPager, SQLITE_DEFAULT_CACHE_SIZE);
2062 if( mutexOpen ){
2063 assert( sqlite3_mutex_held(mutexOpen) );
2064 sqlite3_mutex_leave(mutexOpen);
2066 return rc;
2070 ** Decrement the BtShared.nRef counter. When it reaches zero,
2071 ** remove the BtShared structure from the sharing list. Return
2072 ** true if the BtShared.nRef counter reaches zero and return
2073 ** false if it is still positive.
2075 static int removeFromSharingList(BtShared *pBt){
2076 #ifndef SQLITE_OMIT_SHARED_CACHE
2077 MUTEX_LOGIC( sqlite3_mutex *pMaster; )
2078 BtShared *pList;
2079 int removed = 0;
2081 assert( sqlite3_mutex_notheld(pBt->mutex) );
2082 MUTEX_LOGIC( pMaster = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); )
2083 sqlite3_mutex_enter(pMaster);
2084 pBt->nRef--;
2085 if( pBt->nRef<=0 ){
2086 if( GLOBAL(BtShared*,sqlite3SharedCacheList)==pBt ){
2087 GLOBAL(BtShared*,sqlite3SharedCacheList) = pBt->pNext;
2088 }else{
2089 pList = GLOBAL(BtShared*,sqlite3SharedCacheList);
2090 while( ALWAYS(pList) && pList->pNext!=pBt ){
2091 pList=pList->pNext;
2093 if( ALWAYS(pList) ){
2094 pList->pNext = pBt->pNext;
2097 if( SQLITE_THREADSAFE ){
2098 sqlite3_mutex_free(pBt->mutex);
2100 removed = 1;
2102 sqlite3_mutex_leave(pMaster);
2103 return removed;
2104 #else
2105 return 1;
2106 #endif
2110 ** Make sure pBt->pTmpSpace points to an allocation of
2111 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2112 ** pointer.
2114 static void allocateTempSpace(BtShared *pBt){
2115 if( !pBt->pTmpSpace ){
2116 pBt->pTmpSpace = sqlite3PageMalloc( pBt->pageSize );
2118 /* One of the uses of pBt->pTmpSpace is to format cells before
2119 ** inserting them into a leaf page (function fillInCell()). If
2120 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2121 ** by the various routines that manipulate binary cells. Which
2122 ** can mean that fillInCell() only initializes the first 2 or 3
2123 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2124 ** it into a database page. This is not actually a problem, but it
2125 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2126 ** data is passed to system call write(). So to avoid this error,
2127 ** zero the first 4 bytes of temp space here.
2129 ** Also: Provide four bytes of initialized space before the
2130 ** beginning of pTmpSpace as an area available to prepend the
2131 ** left-child pointer to the beginning of a cell.
2133 if( pBt->pTmpSpace ){
2134 memset(pBt->pTmpSpace, 0, 8);
2135 pBt->pTmpSpace += 4;
2141 ** Free the pBt->pTmpSpace allocation
2143 static void freeTempSpace(BtShared *pBt){
2144 if( pBt->pTmpSpace ){
2145 pBt->pTmpSpace -= 4;
2146 sqlite3PageFree(pBt->pTmpSpace);
2147 pBt->pTmpSpace = 0;
2152 ** Close an open database and invalidate all cursors.
2154 int sqlite3BtreeClose(Btree *p){
2155 BtShared *pBt = p->pBt;
2156 BtCursor *pCur;
2158 /* Close all cursors opened via this handle. */
2159 assert( sqlite3_mutex_held(p->db->mutex) );
2160 sqlite3BtreeEnter(p);
2161 pCur = pBt->pCursor;
2162 while( pCur ){
2163 BtCursor *pTmp = pCur;
2164 pCur = pCur->pNext;
2165 if( pTmp->pBtree==p ){
2166 sqlite3BtreeCloseCursor(pTmp);
2170 /* Rollback any active transaction and free the handle structure.
2171 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2172 ** this handle.
2174 sqlite3BtreeRollback(p, SQLITE_OK, 0);
2175 sqlite3BtreeLeave(p);
2177 /* If there are still other outstanding references to the shared-btree
2178 ** structure, return now. The remainder of this procedure cleans
2179 ** up the shared-btree.
2181 assert( p->wantToLock==0 && p->locked==0 );
2182 if( !p->sharable || removeFromSharingList(pBt) ){
2183 /* The pBt is no longer on the sharing list, so we can access
2184 ** it without having to hold the mutex.
2186 ** Clean out and delete the BtShared object.
2188 assert( !pBt->pCursor );
2189 sqlite3PagerClose(pBt->pPager);
2190 if( pBt->xFreeSchema && pBt->pSchema ){
2191 pBt->xFreeSchema(pBt->pSchema);
2193 sqlite3DbFree(0, pBt->pSchema);
2194 freeTempSpace(pBt);
2195 sqlite3_free(pBt);
2198 #ifndef SQLITE_OMIT_SHARED_CACHE
2199 assert( p->wantToLock==0 );
2200 assert( p->locked==0 );
2201 if( p->pPrev ) p->pPrev->pNext = p->pNext;
2202 if( p->pNext ) p->pNext->pPrev = p->pPrev;
2203 #endif
2205 sqlite3_free(p);
2206 return SQLITE_OK;
2210 ** Change the limit on the number of pages allowed in the cache.
2212 ** The maximum number of cache pages is set to the absolute
2213 ** value of mxPage. If mxPage is negative, the pager will
2214 ** operate asynchronously - it will not stop to do fsync()s
2215 ** to insure data is written to the disk surface before
2216 ** continuing. Transactions still work if synchronous is off,
2217 ** and the database cannot be corrupted if this program
2218 ** crashes. But if the operating system crashes or there is
2219 ** an abrupt power failure when synchronous is off, the database
2220 ** could be left in an inconsistent and unrecoverable state.
2221 ** Synchronous is on by default so database corruption is not
2222 ** normally a worry.
2224 int sqlite3BtreeSetCacheSize(Btree *p, int mxPage){
2225 BtShared *pBt = p->pBt;
2226 assert( sqlite3_mutex_held(p->db->mutex) );
2227 sqlite3BtreeEnter(p);
2228 sqlite3PagerSetCachesize(pBt->pPager, mxPage);
2229 sqlite3BtreeLeave(p);
2230 return SQLITE_OK;
2233 #if SQLITE_MAX_MMAP_SIZE>0
2235 ** Change the limit on the amount of the database file that may be
2236 ** memory mapped.
2238 int sqlite3BtreeSetMmapLimit(Btree *p, sqlite3_int64 szMmap){
2239 BtShared *pBt = p->pBt;
2240 assert( sqlite3_mutex_held(p->db->mutex) );
2241 sqlite3BtreeEnter(p);
2242 sqlite3PagerSetMmapLimit(pBt->pPager, szMmap);
2243 sqlite3BtreeLeave(p);
2244 return SQLITE_OK;
2246 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2249 ** Change the way data is synced to disk in order to increase or decrease
2250 ** how well the database resists damage due to OS crashes and power
2251 ** failures. Level 1 is the same as asynchronous (no syncs() occur and
2252 ** there is a high probability of damage) Level 2 is the default. There
2253 ** is a very low but non-zero probability of damage. Level 3 reduces the
2254 ** probability of damage to near zero but with a write performance reduction.
2256 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2257 int sqlite3BtreeSetPagerFlags(
2258 Btree *p, /* The btree to set the safety level on */
2259 unsigned pgFlags /* Various PAGER_* flags */
2261 BtShared *pBt = p->pBt;
2262 assert( sqlite3_mutex_held(p->db->mutex) );
2263 sqlite3BtreeEnter(p);
2264 sqlite3PagerSetFlags(pBt->pPager, pgFlags);
2265 sqlite3BtreeLeave(p);
2266 return SQLITE_OK;
2268 #endif
2271 ** Return TRUE if the given btree is set to safety level 1. In other
2272 ** words, return TRUE if no sync() occurs on the disk files.
2274 int sqlite3BtreeSyncDisabled(Btree *p){
2275 BtShared *pBt = p->pBt;
2276 int rc;
2277 assert( sqlite3_mutex_held(p->db->mutex) );
2278 sqlite3BtreeEnter(p);
2279 assert( pBt && pBt->pPager );
2280 rc = sqlite3PagerNosync(pBt->pPager);
2281 sqlite3BtreeLeave(p);
2282 return rc;
2286 ** Change the default pages size and the number of reserved bytes per page.
2287 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2288 ** without changing anything.
2290 ** The page size must be a power of 2 between 512 and 65536. If the page
2291 ** size supplied does not meet this constraint then the page size is not
2292 ** changed.
2294 ** Page sizes are constrained to be a power of two so that the region
2295 ** of the database file used for locking (beginning at PENDING_BYTE,
2296 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2297 ** at the beginning of a page.
2299 ** If parameter nReserve is less than zero, then the number of reserved
2300 ** bytes per page is left unchanged.
2302 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2303 ** and autovacuum mode can no longer be changed.
2305 int sqlite3BtreeSetPageSize(Btree *p, int pageSize, int nReserve, int iFix){
2306 int rc = SQLITE_OK;
2307 BtShared *pBt = p->pBt;
2308 assert( nReserve>=-1 && nReserve<=255 );
2309 sqlite3BtreeEnter(p);
2310 if( pBt->btsFlags & BTS_PAGESIZE_FIXED ){
2311 sqlite3BtreeLeave(p);
2312 return SQLITE_READONLY;
2314 if( nReserve<0 ){
2315 nReserve = pBt->pageSize - pBt->usableSize;
2317 assert( nReserve>=0 && nReserve<=255 );
2318 if( pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE &&
2319 ((pageSize-1)&pageSize)==0 ){
2320 assert( (pageSize & 7)==0 );
2321 assert( !pBt->pPage1 && !pBt->pCursor );
2322 pBt->pageSize = (u32)pageSize;
2323 freeTempSpace(pBt);
2325 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize, nReserve);
2326 pBt->usableSize = pBt->pageSize - (u16)nReserve;
2327 if( iFix ) pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2328 sqlite3BtreeLeave(p);
2329 return rc;
2333 ** Return the currently defined page size
2335 int sqlite3BtreeGetPageSize(Btree *p){
2336 return p->pBt->pageSize;
2339 #if defined(SQLITE_HAS_CODEC) || defined(SQLITE_DEBUG)
2341 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2342 ** may only be called if it is guaranteed that the b-tree mutex is already
2343 ** held.
2345 ** This is useful in one special case in the backup API code where it is
2346 ** known that the shared b-tree mutex is held, but the mutex on the
2347 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2348 ** were to be called, it might collide with some other operation on the
2349 ** database handle that owns *p, causing undefined behavior.
2351 int sqlite3BtreeGetReserveNoMutex(Btree *p){
2352 assert( sqlite3_mutex_held(p->pBt->mutex) );
2353 return p->pBt->pageSize - p->pBt->usableSize;
2355 #endif /* SQLITE_HAS_CODEC || SQLITE_DEBUG */
2357 #if !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM)
2359 ** Return the number of bytes of space at the end of every page that
2360 ** are intentually left unused. This is the "reserved" space that is
2361 ** sometimes used by extensions.
2363 int sqlite3BtreeGetReserve(Btree *p){
2364 int n;
2365 sqlite3BtreeEnter(p);
2366 n = p->pBt->pageSize - p->pBt->usableSize;
2367 sqlite3BtreeLeave(p);
2368 return n;
2372 ** Set the maximum page count for a database if mxPage is positive.
2373 ** No changes are made if mxPage is 0 or negative.
2374 ** Regardless of the value of mxPage, return the maximum page count.
2376 int sqlite3BtreeMaxPageCount(Btree *p, int mxPage){
2377 int n;
2378 sqlite3BtreeEnter(p);
2379 n = sqlite3PagerMaxPageCount(p->pBt->pPager, mxPage);
2380 sqlite3BtreeLeave(p);
2381 return n;
2385 ** Set the BTS_SECURE_DELETE flag if newFlag is 0 or 1. If newFlag is -1,
2386 ** then make no changes. Always return the value of the BTS_SECURE_DELETE
2387 ** setting after the change.
2389 int sqlite3BtreeSecureDelete(Btree *p, int newFlag){
2390 int b;
2391 if( p==0 ) return 0;
2392 sqlite3BtreeEnter(p);
2393 if( newFlag>=0 ){
2394 p->pBt->btsFlags &= ~BTS_SECURE_DELETE;
2395 if( newFlag ) p->pBt->btsFlags |= BTS_SECURE_DELETE;
2397 b = (p->pBt->btsFlags & BTS_SECURE_DELETE)!=0;
2398 sqlite3BtreeLeave(p);
2399 return b;
2401 #endif /* !defined(SQLITE_OMIT_PAGER_PRAGMAS) || !defined(SQLITE_OMIT_VACUUM) */
2404 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
2405 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
2406 ** is disabled. The default value for the auto-vacuum property is
2407 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
2409 int sqlite3BtreeSetAutoVacuum(Btree *p, int autoVacuum){
2410 #ifdef SQLITE_OMIT_AUTOVACUUM
2411 return SQLITE_READONLY;
2412 #else
2413 BtShared *pBt = p->pBt;
2414 int rc = SQLITE_OK;
2415 u8 av = (u8)autoVacuum;
2417 sqlite3BtreeEnter(p);
2418 if( (pBt->btsFlags & BTS_PAGESIZE_FIXED)!=0 && (av ?1:0)!=pBt->autoVacuum ){
2419 rc = SQLITE_READONLY;
2420 }else{
2421 pBt->autoVacuum = av ?1:0;
2422 pBt->incrVacuum = av==2 ?1:0;
2424 sqlite3BtreeLeave(p);
2425 return rc;
2426 #endif
2430 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
2431 ** enabled 1 is returned. Otherwise 0.
2433 int sqlite3BtreeGetAutoVacuum(Btree *p){
2434 #ifdef SQLITE_OMIT_AUTOVACUUM
2435 return BTREE_AUTOVACUUM_NONE;
2436 #else
2437 int rc;
2438 sqlite3BtreeEnter(p);
2439 rc = (
2440 (!p->pBt->autoVacuum)?BTREE_AUTOVACUUM_NONE:
2441 (!p->pBt->incrVacuum)?BTREE_AUTOVACUUM_FULL:
2442 BTREE_AUTOVACUUM_INCR
2444 sqlite3BtreeLeave(p);
2445 return rc;
2446 #endif
2451 ** Get a reference to pPage1 of the database file. This will
2452 ** also acquire a readlock on that file.
2454 ** SQLITE_OK is returned on success. If the file is not a
2455 ** well-formed database file, then SQLITE_CORRUPT is returned.
2456 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
2457 ** is returned if we run out of memory.
2459 static int lockBtree(BtShared *pBt){
2460 int rc; /* Result code from subfunctions */
2461 MemPage *pPage1; /* Page 1 of the database file */
2462 int nPage; /* Number of pages in the database */
2463 int nPageFile = 0; /* Number of pages in the database file */
2464 int nPageHeader; /* Number of pages in the database according to hdr */
2466 assert( sqlite3_mutex_held(pBt->mutex) );
2467 assert( pBt->pPage1==0 );
2468 rc = sqlite3PagerSharedLock(pBt->pPager);
2469 if( rc!=SQLITE_OK ) return rc;
2470 rc = btreeGetPage(pBt, 1, &pPage1, 0);
2471 if( rc!=SQLITE_OK ) return rc;
2473 /* Do some checking to help insure the file we opened really is
2474 ** a valid database file.
2476 nPage = nPageHeader = get4byte(28+(u8*)pPage1->aData);
2477 sqlite3PagerPagecount(pBt->pPager, &nPageFile);
2478 if( nPage==0 || memcmp(24+(u8*)pPage1->aData, 92+(u8*)pPage1->aData,4)!=0 ){
2479 nPage = nPageFile;
2481 if( nPage>0 ){
2482 u32 pageSize;
2483 u32 usableSize;
2484 u8 *page1 = pPage1->aData;
2485 rc = SQLITE_NOTADB;
2486 if( memcmp(page1, zMagicHeader, 16)!=0 ){
2487 goto page1_init_failed;
2490 #ifdef SQLITE_OMIT_WAL
2491 if( page1[18]>1 ){
2492 pBt->btsFlags |= BTS_READ_ONLY;
2494 if( page1[19]>1 ){
2495 goto page1_init_failed;
2497 #else
2498 if( page1[18]>2 ){
2499 pBt->btsFlags |= BTS_READ_ONLY;
2501 if( page1[19]>2 ){
2502 goto page1_init_failed;
2505 /* If the write version is set to 2, this database should be accessed
2506 ** in WAL mode. If the log is not already open, open it now. Then
2507 ** return SQLITE_OK and return without populating BtShared.pPage1.
2508 ** The caller detects this and calls this function again. This is
2509 ** required as the version of page 1 currently in the page1 buffer
2510 ** may not be the latest version - there may be a newer one in the log
2511 ** file.
2513 if( page1[19]==2 && (pBt->btsFlags & BTS_NO_WAL)==0 ){
2514 int isOpen = 0;
2515 rc = sqlite3PagerOpenWal(pBt->pPager, &isOpen);
2516 if( rc!=SQLITE_OK ){
2517 goto page1_init_failed;
2518 }else if( isOpen==0 ){
2519 releasePage(pPage1);
2520 return SQLITE_OK;
2522 rc = SQLITE_NOTADB;
2524 #endif
2526 /* The maximum embedded fraction must be exactly 25%. And the minimum
2527 ** embedded fraction must be 12.5% for both leaf-data and non-leaf-data.
2528 ** The original design allowed these amounts to vary, but as of
2529 ** version 3.6.0, we require them to be fixed.
2531 if( memcmp(&page1[21], "\100\040\040",3)!=0 ){
2532 goto page1_init_failed;
2534 pageSize = (page1[16]<<8) | (page1[17]<<16);
2535 if( ((pageSize-1)&pageSize)!=0
2536 || pageSize>SQLITE_MAX_PAGE_SIZE
2537 || pageSize<=256
2539 goto page1_init_failed;
2541 assert( (pageSize & 7)==0 );
2542 usableSize = pageSize - page1[20];
2543 if( (u32)pageSize!=pBt->pageSize ){
2544 /* After reading the first page of the database assuming a page size
2545 ** of BtShared.pageSize, we have discovered that the page-size is
2546 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
2547 ** zero and return SQLITE_OK. The caller will call this function
2548 ** again with the correct page-size.
2550 releasePage(pPage1);
2551 pBt->usableSize = usableSize;
2552 pBt->pageSize = pageSize;
2553 freeTempSpace(pBt);
2554 rc = sqlite3PagerSetPagesize(pBt->pPager, &pBt->pageSize,
2555 pageSize-usableSize);
2556 return rc;
2558 if( (pBt->db->flags & SQLITE_RecoveryMode)==0 && nPage>nPageFile ){
2559 rc = SQLITE_CORRUPT_BKPT;
2560 goto page1_init_failed;
2562 if( usableSize<480 ){
2563 goto page1_init_failed;
2565 pBt->pageSize = pageSize;
2566 pBt->usableSize = usableSize;
2567 #ifndef SQLITE_OMIT_AUTOVACUUM
2568 pBt->autoVacuum = (get4byte(&page1[36 + 4*4])?1:0);
2569 pBt->incrVacuum = (get4byte(&page1[36 + 7*4])?1:0);
2570 #endif
2573 /* maxLocal is the maximum amount of payload to store locally for
2574 ** a cell. Make sure it is small enough so that at least minFanout
2575 ** cells can will fit on one page. We assume a 10-byte page header.
2576 ** Besides the payload, the cell must store:
2577 ** 2-byte pointer to the cell
2578 ** 4-byte child pointer
2579 ** 9-byte nKey value
2580 ** 4-byte nData value
2581 ** 4-byte overflow page pointer
2582 ** So a cell consists of a 2-byte pointer, a header which is as much as
2583 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
2584 ** page pointer.
2586 pBt->maxLocal = (u16)((pBt->usableSize-12)*64/255 - 23);
2587 pBt->minLocal = (u16)((pBt->usableSize-12)*32/255 - 23);
2588 pBt->maxLeaf = (u16)(pBt->usableSize - 35);
2589 pBt->minLeaf = (u16)((pBt->usableSize-12)*32/255 - 23);
2590 if( pBt->maxLocal>127 ){
2591 pBt->max1bytePayload = 127;
2592 }else{
2593 pBt->max1bytePayload = (u8)pBt->maxLocal;
2595 assert( pBt->maxLeaf + 23 <= MX_CELL_SIZE(pBt) );
2596 pBt->pPage1 = pPage1;
2597 pBt->nPage = nPage;
2598 return SQLITE_OK;
2600 page1_init_failed:
2601 releasePage(pPage1);
2602 pBt->pPage1 = 0;
2603 return rc;
2606 #ifndef NDEBUG
2608 ** Return the number of cursors open on pBt. This is for use
2609 ** in assert() expressions, so it is only compiled if NDEBUG is not
2610 ** defined.
2612 ** Only write cursors are counted if wrOnly is true. If wrOnly is
2613 ** false then all cursors are counted.
2615 ** For the purposes of this routine, a cursor is any cursor that
2616 ** is capable of reading or writing to the database. Cursors that
2617 ** have been tripped into the CURSOR_FAULT state are not counted.
2619 static int countValidCursors(BtShared *pBt, int wrOnly){
2620 BtCursor *pCur;
2621 int r = 0;
2622 for(pCur=pBt->pCursor; pCur; pCur=pCur->pNext){
2623 if( (wrOnly==0 || (pCur->curFlags & BTCF_WriteFlag)!=0)
2624 && pCur->eState!=CURSOR_FAULT ) r++;
2626 return r;
2628 #endif
2631 ** If there are no outstanding cursors and we are not in the middle
2632 ** of a transaction but there is a read lock on the database, then
2633 ** this routine unrefs the first page of the database file which
2634 ** has the effect of releasing the read lock.
2636 ** If there is a transaction in progress, this routine is a no-op.
2638 static void unlockBtreeIfUnused(BtShared *pBt){
2639 assert( sqlite3_mutex_held(pBt->mutex) );
2640 assert( countValidCursors(pBt,0)==0 || pBt->inTransaction>TRANS_NONE );
2641 if( pBt->inTransaction==TRANS_NONE && pBt->pPage1!=0 ){
2642 MemPage *pPage1 = pBt->pPage1;
2643 assert( pPage1->aData );
2644 assert( sqlite3PagerRefcount(pBt->pPager)==1 );
2645 pBt->pPage1 = 0;
2646 releasePage(pPage1);
2651 ** If pBt points to an empty file then convert that empty file
2652 ** into a new empty database by initializing the first page of
2653 ** the database.
2655 static int newDatabase(BtShared *pBt){
2656 MemPage *pP1;
2657 unsigned char *data;
2658 int rc;
2660 assert( sqlite3_mutex_held(pBt->mutex) );
2661 if( pBt->nPage>0 ){
2662 return SQLITE_OK;
2664 pP1 = pBt->pPage1;
2665 assert( pP1!=0 );
2666 data = pP1->aData;
2667 rc = sqlite3PagerWrite(pP1->pDbPage);
2668 if( rc ) return rc;
2669 memcpy(data, zMagicHeader, sizeof(zMagicHeader));
2670 assert( sizeof(zMagicHeader)==16 );
2671 data[16] = (u8)((pBt->pageSize>>8)&0xff);
2672 data[17] = (u8)((pBt->pageSize>>16)&0xff);
2673 data[18] = 1;
2674 data[19] = 1;
2675 assert( pBt->usableSize<=pBt->pageSize && pBt->usableSize+255>=pBt->pageSize);
2676 data[20] = (u8)(pBt->pageSize - pBt->usableSize);
2677 data[21] = 64;
2678 data[22] = 32;
2679 data[23] = 32;
2680 memset(&data[24], 0, 100-24);
2681 zeroPage(pP1, PTF_INTKEY|PTF_LEAF|PTF_LEAFDATA );
2682 pBt->btsFlags |= BTS_PAGESIZE_FIXED;
2683 #ifndef SQLITE_OMIT_AUTOVACUUM
2684 assert( pBt->autoVacuum==1 || pBt->autoVacuum==0 );
2685 assert( pBt->incrVacuum==1 || pBt->incrVacuum==0 );
2686 put4byte(&data[36 + 4*4], pBt->autoVacuum);
2687 put4byte(&data[36 + 7*4], pBt->incrVacuum);
2688 #endif
2689 pBt->nPage = 1;
2690 data[31] = 1;
2691 return SQLITE_OK;
2695 ** Initialize the first page of the database file (creating a database
2696 ** consisting of a single page and no schema objects). Return SQLITE_OK
2697 ** if successful, or an SQLite error code otherwise.
2699 int sqlite3BtreeNewDb(Btree *p){
2700 int rc;
2701 sqlite3BtreeEnter(p);
2702 p->pBt->nPage = 0;
2703 rc = newDatabase(p->pBt);
2704 sqlite3BtreeLeave(p);
2705 return rc;
2709 ** Attempt to start a new transaction. A write-transaction
2710 ** is started if the second argument is nonzero, otherwise a read-
2711 ** transaction. If the second argument is 2 or more and exclusive
2712 ** transaction is started, meaning that no other process is allowed
2713 ** to access the database. A preexisting transaction may not be
2714 ** upgraded to exclusive by calling this routine a second time - the
2715 ** exclusivity flag only works for a new transaction.
2717 ** A write-transaction must be started before attempting any
2718 ** changes to the database. None of the following routines
2719 ** will work unless a transaction is started first:
2721 ** sqlite3BtreeCreateTable()
2722 ** sqlite3BtreeCreateIndex()
2723 ** sqlite3BtreeClearTable()
2724 ** sqlite3BtreeDropTable()
2725 ** sqlite3BtreeInsert()
2726 ** sqlite3BtreeDelete()
2727 ** sqlite3BtreeUpdateMeta()
2729 ** If an initial attempt to acquire the lock fails because of lock contention
2730 ** and the database was previously unlocked, then invoke the busy handler
2731 ** if there is one. But if there was previously a read-lock, do not
2732 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
2733 ** returned when there is already a read-lock in order to avoid a deadlock.
2735 ** Suppose there are two processes A and B. A has a read lock and B has
2736 ** a reserved lock. B tries to promote to exclusive but is blocked because
2737 ** of A's read lock. A tries to promote to reserved but is blocked by B.
2738 ** One or the other of the two processes must give way or there can be
2739 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback
2740 ** when A already has a read lock, we encourage A to give up and let B
2741 ** proceed.
2743 int sqlite3BtreeBeginTrans(Btree *p, int wrflag){
2744 sqlite3 *pBlock = 0;
2745 BtShared *pBt = p->pBt;
2746 int rc = SQLITE_OK;
2748 sqlite3BtreeEnter(p);
2749 btreeIntegrity(p);
2751 /* If the btree is already in a write-transaction, or it
2752 ** is already in a read-transaction and a read-transaction
2753 ** is requested, this is a no-op.
2755 if( p->inTrans==TRANS_WRITE || (p->inTrans==TRANS_READ && !wrflag) ){
2756 goto trans_begun;
2758 assert( pBt->inTransaction==TRANS_WRITE || IfNotOmitAV(pBt->bDoTruncate)==0 );
2760 /* Write transactions are not possible on a read-only database */
2761 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 && wrflag ){
2762 rc = SQLITE_READONLY;
2763 goto trans_begun;
2766 #ifndef SQLITE_OMIT_SHARED_CACHE
2767 /* If another database handle has already opened a write transaction
2768 ** on this shared-btree structure and a second write transaction is
2769 ** requested, return SQLITE_LOCKED.
2771 if( (wrflag && pBt->inTransaction==TRANS_WRITE)
2772 || (pBt->btsFlags & BTS_PENDING)!=0
2774 pBlock = pBt->pWriter->db;
2775 }else if( wrflag>1 ){
2776 BtLock *pIter;
2777 for(pIter=pBt->pLock; pIter; pIter=pIter->pNext){
2778 if( pIter->pBtree!=p ){
2779 pBlock = pIter->pBtree->db;
2780 break;
2784 if( pBlock ){
2785 sqlite3ConnectionBlocked(p->db, pBlock);
2786 rc = SQLITE_LOCKED_SHAREDCACHE;
2787 goto trans_begun;
2789 #endif
2791 /* Any read-only or read-write transaction implies a read-lock on
2792 ** page 1. So if some other shared-cache client already has a write-lock
2793 ** on page 1, the transaction cannot be opened. */
2794 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
2795 if( SQLITE_OK!=rc ) goto trans_begun;
2797 pBt->btsFlags &= ~BTS_INITIALLY_EMPTY;
2798 if( pBt->nPage==0 ) pBt->btsFlags |= BTS_INITIALLY_EMPTY;
2799 do {
2800 /* Call lockBtree() until either pBt->pPage1 is populated or
2801 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
2802 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
2803 ** reading page 1 it discovers that the page-size of the database
2804 ** file is not pBt->pageSize. In this case lockBtree() will update
2805 ** pBt->pageSize to the page-size of the file on disk.
2807 while( pBt->pPage1==0 && SQLITE_OK==(rc = lockBtree(pBt)) );
2809 if( rc==SQLITE_OK && wrflag ){
2810 if( (pBt->btsFlags & BTS_READ_ONLY)!=0 ){
2811 rc = SQLITE_READONLY;
2812 }else{
2813 rc = sqlite3PagerBegin(pBt->pPager,wrflag>1,sqlite3TempInMemory(p->db));
2814 if( rc==SQLITE_OK ){
2815 rc = newDatabase(pBt);
2820 if( rc!=SQLITE_OK ){
2821 unlockBtreeIfUnused(pBt);
2823 }while( (rc&0xFF)==SQLITE_BUSY && pBt->inTransaction==TRANS_NONE &&
2824 btreeInvokeBusyHandler(pBt) );
2826 if( rc==SQLITE_OK ){
2827 if( p->inTrans==TRANS_NONE ){
2828 pBt->nTransaction++;
2829 #ifndef SQLITE_OMIT_SHARED_CACHE
2830 if( p->sharable ){
2831 assert( p->lock.pBtree==p && p->lock.iTable==1 );
2832 p->lock.eLock = READ_LOCK;
2833 p->lock.pNext = pBt->pLock;
2834 pBt->pLock = &p->lock;
2836 #endif
2838 p->inTrans = (wrflag?TRANS_WRITE:TRANS_READ);
2839 if( p->inTrans>pBt->inTransaction ){
2840 pBt->inTransaction = p->inTrans;
2842 if( wrflag ){
2843 MemPage *pPage1 = pBt->pPage1;
2844 #ifndef SQLITE_OMIT_SHARED_CACHE
2845 assert( !pBt->pWriter );
2846 pBt->pWriter = p;
2847 pBt->btsFlags &= ~BTS_EXCLUSIVE;
2848 if( wrflag>1 ) pBt->btsFlags |= BTS_EXCLUSIVE;
2849 #endif
2851 /* If the db-size header field is incorrect (as it may be if an old
2852 ** client has been writing the database file), update it now. Doing
2853 ** this sooner rather than later means the database size can safely
2854 ** re-read the database size from page 1 if a savepoint or transaction
2855 ** rollback occurs within the transaction.
2857 if( pBt->nPage!=get4byte(&pPage1->aData[28]) ){
2858 rc = sqlite3PagerWrite(pPage1->pDbPage);
2859 if( rc==SQLITE_OK ){
2860 put4byte(&pPage1->aData[28], pBt->nPage);
2867 trans_begun:
2868 if( rc==SQLITE_OK && wrflag ){
2869 /* This call makes sure that the pager has the correct number of
2870 ** open savepoints. If the second parameter is greater than 0 and
2871 ** the sub-journal is not already open, then it will be opened here.
2873 rc = sqlite3PagerOpenSavepoint(pBt->pPager, p->db->nSavepoint);
2876 btreeIntegrity(p);
2877 sqlite3BtreeLeave(p);
2878 return rc;
2881 #ifndef SQLITE_OMIT_AUTOVACUUM
2884 ** Set the pointer-map entries for all children of page pPage. Also, if
2885 ** pPage contains cells that point to overflow pages, set the pointer
2886 ** map entries for the overflow pages as well.
2888 static int setChildPtrmaps(MemPage *pPage){
2889 int i; /* Counter variable */
2890 int nCell; /* Number of cells in page pPage */
2891 int rc; /* Return code */
2892 BtShared *pBt = pPage->pBt;
2893 u8 isInitOrig = pPage->isInit;
2894 Pgno pgno = pPage->pgno;
2896 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2897 rc = btreeInitPage(pPage);
2898 if( rc!=SQLITE_OK ){
2899 goto set_child_ptrmaps_out;
2901 nCell = pPage->nCell;
2903 for(i=0; i<nCell; i++){
2904 u8 *pCell = findCell(pPage, i);
2906 ptrmapPutOvflPtr(pPage, pCell, &rc);
2908 if( !pPage->leaf ){
2909 Pgno childPgno = get4byte(pCell);
2910 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
2914 if( !pPage->leaf ){
2915 Pgno childPgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
2916 ptrmapPut(pBt, childPgno, PTRMAP_BTREE, pgno, &rc);
2919 set_child_ptrmaps_out:
2920 pPage->isInit = isInitOrig;
2921 return rc;
2925 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
2926 ** that it points to iTo. Parameter eType describes the type of pointer to
2927 ** be modified, as follows:
2929 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
2930 ** page of pPage.
2932 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
2933 ** page pointed to by one of the cells on pPage.
2935 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
2936 ** overflow page in the list.
2938 static int modifyPagePointer(MemPage *pPage, Pgno iFrom, Pgno iTo, u8 eType){
2939 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
2940 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
2941 if( eType==PTRMAP_OVERFLOW2 ){
2942 /* The pointer is always the first 4 bytes of the page in this case. */
2943 if( get4byte(pPage->aData)!=iFrom ){
2944 return SQLITE_CORRUPT_BKPT;
2946 put4byte(pPage->aData, iTo);
2947 }else{
2948 u8 isInitOrig = pPage->isInit;
2949 int i;
2950 int nCell;
2952 btreeInitPage(pPage);
2953 nCell = pPage->nCell;
2955 for(i=0; i<nCell; i++){
2956 u8 *pCell = findCell(pPage, i);
2957 if( eType==PTRMAP_OVERFLOW1 ){
2958 CellInfo info;
2959 btreeParseCellPtr(pPage, pCell, &info);
2960 if( info.iOverflow
2961 && pCell+info.iOverflow+3<=pPage->aData+pPage->maskPage
2962 && iFrom==get4byte(&pCell[info.iOverflow])
2964 put4byte(&pCell[info.iOverflow], iTo);
2965 break;
2967 }else{
2968 if( get4byte(pCell)==iFrom ){
2969 put4byte(pCell, iTo);
2970 break;
2975 if( i==nCell ){
2976 if( eType!=PTRMAP_BTREE ||
2977 get4byte(&pPage->aData[pPage->hdrOffset+8])!=iFrom ){
2978 return SQLITE_CORRUPT_BKPT;
2980 put4byte(&pPage->aData[pPage->hdrOffset+8], iTo);
2983 pPage->isInit = isInitOrig;
2985 return SQLITE_OK;
2990 ** Move the open database page pDbPage to location iFreePage in the
2991 ** database. The pDbPage reference remains valid.
2993 ** The isCommit flag indicates that there is no need to remember that
2994 ** the journal needs to be sync()ed before database page pDbPage->pgno
2995 ** can be written to. The caller has already promised not to write to that
2996 ** page.
2998 static int relocatePage(
2999 BtShared *pBt, /* Btree */
3000 MemPage *pDbPage, /* Open page to move */
3001 u8 eType, /* Pointer map 'type' entry for pDbPage */
3002 Pgno iPtrPage, /* Pointer map 'page-no' entry for pDbPage */
3003 Pgno iFreePage, /* The location to move pDbPage to */
3004 int isCommit /* isCommit flag passed to sqlite3PagerMovepage */
3006 MemPage *pPtrPage; /* The page that contains a pointer to pDbPage */
3007 Pgno iDbPage = pDbPage->pgno;
3008 Pager *pPager = pBt->pPager;
3009 int rc;
3011 assert( eType==PTRMAP_OVERFLOW2 || eType==PTRMAP_OVERFLOW1 ||
3012 eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE );
3013 assert( sqlite3_mutex_held(pBt->mutex) );
3014 assert( pDbPage->pBt==pBt );
3016 /* Move page iDbPage from its current location to page number iFreePage */
3017 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3018 iDbPage, iFreePage, iPtrPage, eType));
3019 rc = sqlite3PagerMovepage(pPager, pDbPage->pDbPage, iFreePage, isCommit);
3020 if( rc!=SQLITE_OK ){
3021 return rc;
3023 pDbPage->pgno = iFreePage;
3025 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3026 ** that point to overflow pages. The pointer map entries for all these
3027 ** pages need to be changed.
3029 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3030 ** pointer to a subsequent overflow page. If this is the case, then
3031 ** the pointer map needs to be updated for the subsequent overflow page.
3033 if( eType==PTRMAP_BTREE || eType==PTRMAP_ROOTPAGE ){
3034 rc = setChildPtrmaps(pDbPage);
3035 if( rc!=SQLITE_OK ){
3036 return rc;
3038 }else{
3039 Pgno nextOvfl = get4byte(pDbPage->aData);
3040 if( nextOvfl!=0 ){
3041 ptrmapPut(pBt, nextOvfl, PTRMAP_OVERFLOW2, iFreePage, &rc);
3042 if( rc!=SQLITE_OK ){
3043 return rc;
3048 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3049 ** that it points at iFreePage. Also fix the pointer map entry for
3050 ** iPtrPage.
3052 if( eType!=PTRMAP_ROOTPAGE ){
3053 rc = btreeGetPage(pBt, iPtrPage, &pPtrPage, 0);
3054 if( rc!=SQLITE_OK ){
3055 return rc;
3057 rc = sqlite3PagerWrite(pPtrPage->pDbPage);
3058 if( rc!=SQLITE_OK ){
3059 releasePage(pPtrPage);
3060 return rc;
3062 rc = modifyPagePointer(pPtrPage, iDbPage, iFreePage, eType);
3063 releasePage(pPtrPage);
3064 if( rc==SQLITE_OK ){
3065 ptrmapPut(pBt, iFreePage, eType, iPtrPage, &rc);
3068 return rc;
3071 /* Forward declaration required by incrVacuumStep(). */
3072 static int allocateBtreePage(BtShared *, MemPage **, Pgno *, Pgno, u8);
3075 ** Perform a single step of an incremental-vacuum. If successful, return
3076 ** SQLITE_OK. If there is no work to do (and therefore no point in
3077 ** calling this function again), return SQLITE_DONE. Or, if an error
3078 ** occurs, return some other error code.
3080 ** More specifically, this function attempts to re-organize the database so
3081 ** that the last page of the file currently in use is no longer in use.
3083 ** Parameter nFin is the number of pages that this database would contain
3084 ** were this function called until it returns SQLITE_DONE.
3086 ** If the bCommit parameter is non-zero, this function assumes that the
3087 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3088 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3089 ** operation, or false for an incremental vacuum.
3091 static int incrVacuumStep(BtShared *pBt, Pgno nFin, Pgno iLastPg, int bCommit){
3092 Pgno nFreeList; /* Number of pages still on the free-list */
3093 int rc;
3095 assert( sqlite3_mutex_held(pBt->mutex) );
3096 assert( iLastPg>nFin );
3098 if( !PTRMAP_ISPAGE(pBt, iLastPg) && iLastPg!=PENDING_BYTE_PAGE(pBt) ){
3099 u8 eType;
3100 Pgno iPtrPage;
3102 nFreeList = get4byte(&pBt->pPage1->aData[36]);
3103 if( nFreeList==0 ){
3104 return SQLITE_DONE;
3107 rc = ptrmapGet(pBt, iLastPg, &eType, &iPtrPage);
3108 if( rc!=SQLITE_OK ){
3109 return rc;
3111 if( eType==PTRMAP_ROOTPAGE ){
3112 return SQLITE_CORRUPT_BKPT;
3115 if( eType==PTRMAP_FREEPAGE ){
3116 if( bCommit==0 ){
3117 /* Remove the page from the files free-list. This is not required
3118 ** if bCommit is non-zero. In that case, the free-list will be
3119 ** truncated to zero after this function returns, so it doesn't
3120 ** matter if it still contains some garbage entries.
3122 Pgno iFreePg;
3123 MemPage *pFreePg;
3124 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iLastPg, BTALLOC_EXACT);
3125 if( rc!=SQLITE_OK ){
3126 return rc;
3128 assert( iFreePg==iLastPg );
3129 releasePage(pFreePg);
3131 } else {
3132 Pgno iFreePg; /* Index of free page to move pLastPg to */
3133 MemPage *pLastPg;
3134 u8 eMode = BTALLOC_ANY; /* Mode parameter for allocateBtreePage() */
3135 Pgno iNear = 0; /* nearby parameter for allocateBtreePage() */
3137 rc = btreeGetPage(pBt, iLastPg, &pLastPg, 0);
3138 if( rc!=SQLITE_OK ){
3139 return rc;
3142 /* If bCommit is zero, this loop runs exactly once and page pLastPg
3143 ** is swapped with the first free page pulled off the free list.
3145 ** On the other hand, if bCommit is greater than zero, then keep
3146 ** looping until a free-page located within the first nFin pages
3147 ** of the file is found.
3149 if( bCommit==0 ){
3150 eMode = BTALLOC_LE;
3151 iNear = nFin;
3153 do {
3154 MemPage *pFreePg;
3155 rc = allocateBtreePage(pBt, &pFreePg, &iFreePg, iNear, eMode);
3156 if( rc!=SQLITE_OK ){
3157 releasePage(pLastPg);
3158 return rc;
3160 releasePage(pFreePg);
3161 }while( bCommit && iFreePg>nFin );
3162 assert( iFreePg<iLastPg );
3164 rc = relocatePage(pBt, pLastPg, eType, iPtrPage, iFreePg, bCommit);
3165 releasePage(pLastPg);
3166 if( rc!=SQLITE_OK ){
3167 return rc;
3172 if( bCommit==0 ){
3173 do {
3174 iLastPg--;
3175 }while( iLastPg==PENDING_BYTE_PAGE(pBt) || PTRMAP_ISPAGE(pBt, iLastPg) );
3176 pBt->bDoTruncate = 1;
3177 pBt->nPage = iLastPg;
3179 return SQLITE_OK;
3183 ** The database opened by the first argument is an auto-vacuum database
3184 ** nOrig pages in size containing nFree free pages. Return the expected
3185 ** size of the database in pages following an auto-vacuum operation.
3187 static Pgno finalDbSize(BtShared *pBt, Pgno nOrig, Pgno nFree){
3188 int nEntry; /* Number of entries on one ptrmap page */
3189 Pgno nPtrmap; /* Number of PtrMap pages to be freed */
3190 Pgno nFin; /* Return value */
3192 nEntry = pBt->usableSize/5;
3193 nPtrmap = (nFree-nOrig+PTRMAP_PAGENO(pBt, nOrig)+nEntry)/nEntry;
3194 nFin = nOrig - nFree - nPtrmap;
3195 if( nOrig>PENDING_BYTE_PAGE(pBt) && nFin<PENDING_BYTE_PAGE(pBt) ){
3196 nFin--;
3198 while( PTRMAP_ISPAGE(pBt, nFin) || nFin==PENDING_BYTE_PAGE(pBt) ){
3199 nFin--;
3202 return nFin;
3206 ** A write-transaction must be opened before calling this function.
3207 ** It performs a single unit of work towards an incremental vacuum.
3209 ** If the incremental vacuum is finished after this function has run,
3210 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3211 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3213 int sqlite3BtreeIncrVacuum(Btree *p){
3214 int rc;
3215 BtShared *pBt = p->pBt;
3217 sqlite3BtreeEnter(p);
3218 assert( pBt->inTransaction==TRANS_WRITE && p->inTrans==TRANS_WRITE );
3219 if( !pBt->autoVacuum ){
3220 rc = SQLITE_DONE;
3221 }else{
3222 Pgno nOrig = btreePagecount(pBt);
3223 Pgno nFree = get4byte(&pBt->pPage1->aData[36]);
3224 Pgno nFin = finalDbSize(pBt, nOrig, nFree);
3226 if( nOrig<nFin ){
3227 rc = SQLITE_CORRUPT_BKPT;
3228 }else if( nFree>0 ){
3229 rc = saveAllCursors(pBt, 0, 0);
3230 if( rc==SQLITE_OK ){
3231 invalidateAllOverflowCache(pBt);
3232 rc = incrVacuumStep(pBt, nFin, nOrig, 0);
3234 if( rc==SQLITE_OK ){
3235 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3236 put4byte(&pBt->pPage1->aData[28], pBt->nPage);
3238 }else{
3239 rc = SQLITE_DONE;
3242 sqlite3BtreeLeave(p);
3243 return rc;
3247 ** This routine is called prior to sqlite3PagerCommit when a transaction
3248 ** is committed for an auto-vacuum database.
3250 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3251 ** the database file should be truncated to during the commit process.
3252 ** i.e. the database has been reorganized so that only the first *pnTrunc
3253 ** pages are in use.
3255 static int autoVacuumCommit(BtShared *pBt){
3256 int rc = SQLITE_OK;
3257 Pager *pPager = pBt->pPager;
3258 VVA_ONLY( int nRef = sqlite3PagerRefcount(pPager) );
3260 assert( sqlite3_mutex_held(pBt->mutex) );
3261 invalidateAllOverflowCache(pBt);
3262 assert(pBt->autoVacuum);
3263 if( !pBt->incrVacuum ){
3264 Pgno nFin; /* Number of pages in database after autovacuuming */
3265 Pgno nFree; /* Number of pages on the freelist initially */
3266 Pgno iFree; /* The next page to be freed */
3267 Pgno nOrig; /* Database size before freeing */
3269 nOrig = btreePagecount(pBt);
3270 if( PTRMAP_ISPAGE(pBt, nOrig) || nOrig==PENDING_BYTE_PAGE(pBt) ){
3271 /* It is not possible to create a database for which the final page
3272 ** is either a pointer-map page or the pending-byte page. If one
3273 ** is encountered, this indicates corruption.
3275 return SQLITE_CORRUPT_BKPT;
3278 nFree = get4byte(&pBt->pPage1->aData[36]);
3279 nFin = finalDbSize(pBt, nOrig, nFree);
3280 if( nFin>nOrig ) return SQLITE_CORRUPT_BKPT;
3281 if( nFin<nOrig ){
3282 rc = saveAllCursors(pBt, 0, 0);
3284 for(iFree=nOrig; iFree>nFin && rc==SQLITE_OK; iFree--){
3285 rc = incrVacuumStep(pBt, nFin, iFree, 1);
3287 if( (rc==SQLITE_DONE || rc==SQLITE_OK) && nFree>0 ){
3288 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
3289 put4byte(&pBt->pPage1->aData[32], 0);
3290 put4byte(&pBt->pPage1->aData[36], 0);
3291 put4byte(&pBt->pPage1->aData[28], nFin);
3292 pBt->bDoTruncate = 1;
3293 pBt->nPage = nFin;
3295 if( rc!=SQLITE_OK ){
3296 sqlite3PagerRollback(pPager);
3300 assert( nRef>=sqlite3PagerRefcount(pPager) );
3301 return rc;
3304 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
3305 # define setChildPtrmaps(x) SQLITE_OK
3306 #endif
3309 ** This routine does the first phase of a two-phase commit. This routine
3310 ** causes a rollback journal to be created (if it does not already exist)
3311 ** and populated with enough information so that if a power loss occurs
3312 ** the database can be restored to its original state by playing back
3313 ** the journal. Then the contents of the journal are flushed out to
3314 ** the disk. After the journal is safely on oxide, the changes to the
3315 ** database are written into the database file and flushed to oxide.
3316 ** At the end of this call, the rollback journal still exists on the
3317 ** disk and we are still holding all locks, so the transaction has not
3318 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
3319 ** commit process.
3321 ** This call is a no-op if no write-transaction is currently active on pBt.
3323 ** Otherwise, sync the database file for the btree pBt. zMaster points to
3324 ** the name of a master journal file that should be written into the
3325 ** individual journal file, or is NULL, indicating no master journal file
3326 ** (single database transaction).
3328 ** When this is called, the master journal should already have been
3329 ** created, populated with this journal pointer and synced to disk.
3331 ** Once this is routine has returned, the only thing required to commit
3332 ** the write-transaction for this database file is to delete the journal.
3334 int sqlite3BtreeCommitPhaseOne(Btree *p, const char *zMaster){
3335 int rc = SQLITE_OK;
3336 if( p->inTrans==TRANS_WRITE ){
3337 BtShared *pBt = p->pBt;
3338 sqlite3BtreeEnter(p);
3339 #ifndef SQLITE_OMIT_AUTOVACUUM
3340 if( pBt->autoVacuum ){
3341 rc = autoVacuumCommit(pBt);
3342 if( rc!=SQLITE_OK ){
3343 sqlite3BtreeLeave(p);
3344 return rc;
3347 if( pBt->bDoTruncate ){
3348 sqlite3PagerTruncateImage(pBt->pPager, pBt->nPage);
3350 #endif
3351 rc = sqlite3PagerCommitPhaseOne(pBt->pPager, zMaster, 0);
3352 sqlite3BtreeLeave(p);
3354 return rc;
3358 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
3359 ** at the conclusion of a transaction.
3361 static void btreeEndTransaction(Btree *p){
3362 BtShared *pBt = p->pBt;
3363 sqlite3 *db = p->db;
3364 assert( sqlite3BtreeHoldsMutex(p) );
3366 #ifndef SQLITE_OMIT_AUTOVACUUM
3367 pBt->bDoTruncate = 0;
3368 #endif
3369 if( p->inTrans>TRANS_NONE && db->nVdbeRead>1 ){
3370 /* If there are other active statements that belong to this database
3371 ** handle, downgrade to a read-only transaction. The other statements
3372 ** may still be reading from the database. */
3373 downgradeAllSharedCacheTableLocks(p);
3374 p->inTrans = TRANS_READ;
3375 }else{
3376 /* If the handle had any kind of transaction open, decrement the
3377 ** transaction count of the shared btree. If the transaction count
3378 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
3379 ** call below will unlock the pager. */
3380 if( p->inTrans!=TRANS_NONE ){
3381 clearAllSharedCacheTableLocks(p);
3382 pBt->nTransaction--;
3383 if( 0==pBt->nTransaction ){
3384 pBt->inTransaction = TRANS_NONE;
3388 /* Set the current transaction state to TRANS_NONE and unlock the
3389 ** pager if this call closed the only read or write transaction. */
3390 p->inTrans = TRANS_NONE;
3391 unlockBtreeIfUnused(pBt);
3394 btreeIntegrity(p);
3398 ** Commit the transaction currently in progress.
3400 ** This routine implements the second phase of a 2-phase commit. The
3401 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
3402 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
3403 ** routine did all the work of writing information out to disk and flushing the
3404 ** contents so that they are written onto the disk platter. All this
3405 ** routine has to do is delete or truncate or zero the header in the
3406 ** the rollback journal (which causes the transaction to commit) and
3407 ** drop locks.
3409 ** Normally, if an error occurs while the pager layer is attempting to
3410 ** finalize the underlying journal file, this function returns an error and
3411 ** the upper layer will attempt a rollback. However, if the second argument
3412 ** is non-zero then this b-tree transaction is part of a multi-file
3413 ** transaction. In this case, the transaction has already been committed
3414 ** (by deleting a master journal file) and the caller will ignore this
3415 ** functions return code. So, even if an error occurs in the pager layer,
3416 ** reset the b-tree objects internal state to indicate that the write
3417 ** transaction has been closed. This is quite safe, as the pager will have
3418 ** transitioned to the error state.
3420 ** This will release the write lock on the database file. If there
3421 ** are no active cursors, it also releases the read lock.
3423 int sqlite3BtreeCommitPhaseTwo(Btree *p, int bCleanup){
3425 if( p->inTrans==TRANS_NONE ) return SQLITE_OK;
3426 sqlite3BtreeEnter(p);
3427 btreeIntegrity(p);
3429 /* If the handle has a write-transaction open, commit the shared-btrees
3430 ** transaction and set the shared state to TRANS_READ.
3432 if( p->inTrans==TRANS_WRITE ){
3433 int rc;
3434 BtShared *pBt = p->pBt;
3435 assert( pBt->inTransaction==TRANS_WRITE );
3436 assert( pBt->nTransaction>0 );
3437 rc = sqlite3PagerCommitPhaseTwo(pBt->pPager);
3438 if( rc!=SQLITE_OK && bCleanup==0 ){
3439 sqlite3BtreeLeave(p);
3440 return rc;
3442 pBt->inTransaction = TRANS_READ;
3443 btreeClearHasContent(pBt);
3446 btreeEndTransaction(p);
3447 sqlite3BtreeLeave(p);
3448 return SQLITE_OK;
3452 ** Do both phases of a commit.
3454 int sqlite3BtreeCommit(Btree *p){
3455 int rc;
3456 sqlite3BtreeEnter(p);
3457 rc = sqlite3BtreeCommitPhaseOne(p, 0);
3458 if( rc==SQLITE_OK ){
3459 rc = sqlite3BtreeCommitPhaseTwo(p, 0);
3461 sqlite3BtreeLeave(p);
3462 return rc;
3466 ** This routine sets the state to CURSOR_FAULT and the error
3467 ** code to errCode for every cursor on any BtShared that pBtree
3468 ** references. Or if the writeOnly flag is set to 1, then only
3469 ** trip write cursors and leave read cursors unchanged.
3471 ** Every cursor is a candidate to be tripped, including cursors
3472 ** that belong to other database connections that happen to be
3473 ** sharing the cache with pBtree.
3475 ** This routine gets called when a rollback occurs. If the writeOnly
3476 ** flag is true, then only write-cursors need be tripped - read-only
3477 ** cursors save their current positions so that they may continue
3478 ** following the rollback. Or, if writeOnly is false, all cursors are
3479 ** tripped. In general, writeOnly is false if the transaction being
3480 ** rolled back modified the database schema. In this case b-tree root
3481 ** pages may be moved or deleted from the database altogether, making
3482 ** it unsafe for read cursors to continue.
3484 ** If the writeOnly flag is true and an error is encountered while
3485 ** saving the current position of a read-only cursor, all cursors,
3486 ** including all read-cursors are tripped.
3488 ** SQLITE_OK is returned if successful, or if an error occurs while
3489 ** saving a cursor position, an SQLite error code.
3491 int sqlite3BtreeTripAllCursors(Btree *pBtree, int errCode, int writeOnly){
3492 BtCursor *p;
3493 int rc = SQLITE_OK;
3495 assert( (writeOnly==0 || writeOnly==1) && BTCF_WriteFlag==1 );
3496 if( pBtree ){
3497 sqlite3BtreeEnter(pBtree);
3498 for(p=pBtree->pBt->pCursor; p; p=p->pNext){
3499 int i;
3500 if( writeOnly && (p->curFlags & BTCF_WriteFlag)==0 ){
3501 if( p->eState==CURSOR_VALID ){
3502 rc = saveCursorPosition(p);
3503 if( rc!=SQLITE_OK ){
3504 (void)sqlite3BtreeTripAllCursors(pBtree, rc, 0);
3505 break;
3508 }else{
3509 sqlite3BtreeClearCursor(p);
3510 p->eState = CURSOR_FAULT;
3511 p->skipNext = errCode;
3513 for(i=0; i<=p->iPage; i++){
3514 releasePage(p->apPage[i]);
3515 p->apPage[i] = 0;
3518 sqlite3BtreeLeave(pBtree);
3520 return rc;
3524 ** Rollback the transaction in progress.
3526 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
3527 ** Only write cursors are tripped if writeOnly is true but all cursors are
3528 ** tripped if writeOnly is false. Any attempt to use
3529 ** a tripped cursor will result in an error.
3531 ** This will release the write lock on the database file. If there
3532 ** are no active cursors, it also releases the read lock.
3534 int sqlite3BtreeRollback(Btree *p, int tripCode, int writeOnly){
3535 int rc;
3536 BtShared *pBt = p->pBt;
3537 MemPage *pPage1;
3539 assert( writeOnly==1 || writeOnly==0 );
3540 assert( tripCode==SQLITE_ABORT_ROLLBACK || tripCode==SQLITE_OK );
3541 sqlite3BtreeEnter(p);
3542 if( tripCode==SQLITE_OK ){
3543 rc = tripCode = saveAllCursors(pBt, 0, 0);
3544 if( rc ) writeOnly = 0;
3545 }else{
3546 rc = SQLITE_OK;
3548 if( tripCode ){
3549 int rc2 = sqlite3BtreeTripAllCursors(p, tripCode, writeOnly);
3550 assert( rc==SQLITE_OK || (writeOnly==0 && rc2==SQLITE_OK) );
3551 if( rc2!=SQLITE_OK ) rc = rc2;
3553 btreeIntegrity(p);
3555 if( p->inTrans==TRANS_WRITE ){
3556 int rc2;
3558 assert( TRANS_WRITE==pBt->inTransaction );
3559 rc2 = sqlite3PagerRollback(pBt->pPager);
3560 if( rc2!=SQLITE_OK ){
3561 rc = rc2;
3564 /* The rollback may have destroyed the pPage1->aData value. So
3565 ** call btreeGetPage() on page 1 again to make
3566 ** sure pPage1->aData is set correctly. */
3567 if( btreeGetPage(pBt, 1, &pPage1, 0)==SQLITE_OK ){
3568 int nPage = get4byte(28+(u8*)pPage1->aData);
3569 testcase( nPage==0 );
3570 if( nPage==0 ) sqlite3PagerPagecount(pBt->pPager, &nPage);
3571 testcase( pBt->nPage!=nPage );
3572 pBt->nPage = nPage;
3573 releasePage(pPage1);
3575 assert( countValidCursors(pBt, 1)==0 );
3576 pBt->inTransaction = TRANS_READ;
3577 btreeClearHasContent(pBt);
3580 btreeEndTransaction(p);
3581 sqlite3BtreeLeave(p);
3582 return rc;
3586 ** Start a statement subtransaction. The subtransaction can be rolled
3587 ** back independently of the main transaction. You must start a transaction
3588 ** before starting a subtransaction. The subtransaction is ended automatically
3589 ** if the main transaction commits or rolls back.
3591 ** Statement subtransactions are used around individual SQL statements
3592 ** that are contained within a BEGIN...COMMIT block. If a constraint
3593 ** error occurs within the statement, the effect of that one statement
3594 ** can be rolled back without having to rollback the entire transaction.
3596 ** A statement sub-transaction is implemented as an anonymous savepoint. The
3597 ** value passed as the second parameter is the total number of savepoints,
3598 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
3599 ** are no active savepoints and no other statement-transactions open,
3600 ** iStatement is 1. This anonymous savepoint can be released or rolled back
3601 ** using the sqlite3BtreeSavepoint() function.
3603 int sqlite3BtreeBeginStmt(Btree *p, int iStatement){
3604 int rc;
3605 BtShared *pBt = p->pBt;
3606 sqlite3BtreeEnter(p);
3607 assert( p->inTrans==TRANS_WRITE );
3608 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
3609 assert( iStatement>0 );
3610 assert( iStatement>p->db->nSavepoint );
3611 assert( pBt->inTransaction==TRANS_WRITE );
3612 /* At the pager level, a statement transaction is a savepoint with
3613 ** an index greater than all savepoints created explicitly using
3614 ** SQL statements. It is illegal to open, release or rollback any
3615 ** such savepoints while the statement transaction savepoint is active.
3617 rc = sqlite3PagerOpenSavepoint(pBt->pPager, iStatement);
3618 sqlite3BtreeLeave(p);
3619 return rc;
3623 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
3624 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
3625 ** savepoint identified by parameter iSavepoint, depending on the value
3626 ** of op.
3628 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
3629 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
3630 ** contents of the entire transaction are rolled back. This is different
3631 ** from a normal transaction rollback, as no locks are released and the
3632 ** transaction remains open.
3634 int sqlite3BtreeSavepoint(Btree *p, int op, int iSavepoint){
3635 int rc = SQLITE_OK;
3636 if( p && p->inTrans==TRANS_WRITE ){
3637 BtShared *pBt = p->pBt;
3638 assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
3639 assert( iSavepoint>=0 || (iSavepoint==-1 && op==SAVEPOINT_ROLLBACK) );
3640 sqlite3BtreeEnter(p);
3641 rc = sqlite3PagerSavepoint(pBt->pPager, op, iSavepoint);
3642 if( rc==SQLITE_OK ){
3643 if( iSavepoint<0 && (pBt->btsFlags & BTS_INITIALLY_EMPTY)!=0 ){
3644 pBt->nPage = 0;
3646 rc = newDatabase(pBt);
3647 pBt->nPage = get4byte(28 + pBt->pPage1->aData);
3649 /* The database size was written into the offset 28 of the header
3650 ** when the transaction started, so we know that the value at offset
3651 ** 28 is nonzero. */
3652 assert( pBt->nPage>0 );
3654 sqlite3BtreeLeave(p);
3656 return rc;
3660 ** Create a new cursor for the BTree whose root is on the page
3661 ** iTable. If a read-only cursor is requested, it is assumed that
3662 ** the caller already has at least a read-only transaction open
3663 ** on the database already. If a write-cursor is requested, then
3664 ** the caller is assumed to have an open write transaction.
3666 ** If wrFlag==0, then the cursor can only be used for reading.
3667 ** If wrFlag==1, then the cursor can be used for reading or for
3668 ** writing if other conditions for writing are also met. These
3669 ** are the conditions that must be met in order for writing to
3670 ** be allowed:
3672 ** 1: The cursor must have been opened with wrFlag==1
3674 ** 2: Other database connections that share the same pager cache
3675 ** but which are not in the READ_UNCOMMITTED state may not have
3676 ** cursors open with wrFlag==0 on the same table. Otherwise
3677 ** the changes made by this write cursor would be visible to
3678 ** the read cursors in the other database connection.
3680 ** 3: The database must be writable (not on read-only media)
3682 ** 4: There must be an active transaction.
3684 ** No checking is done to make sure that page iTable really is the
3685 ** root page of a b-tree. If it is not, then the cursor acquired
3686 ** will not work correctly.
3688 ** It is assumed that the sqlite3BtreeCursorZero() has been called
3689 ** on pCur to initialize the memory space prior to invoking this routine.
3691 static int btreeCursor(
3692 Btree *p, /* The btree */
3693 int iTable, /* Root page of table to open */
3694 int wrFlag, /* 1 to write. 0 read-only */
3695 struct KeyInfo *pKeyInfo, /* First arg to comparison function */
3696 BtCursor *pCur /* Space for new cursor */
3698 BtShared *pBt = p->pBt; /* Shared b-tree handle */
3700 assert( sqlite3BtreeHoldsMutex(p) );
3701 assert( wrFlag==0 || wrFlag==1 );
3703 /* The following assert statements verify that if this is a sharable
3704 ** b-tree database, the connection is holding the required table locks,
3705 ** and that no other connection has any open cursor that conflicts with
3706 ** this lock. */
3707 assert( hasSharedCacheTableLock(p, iTable, pKeyInfo!=0, wrFlag+1) );
3708 assert( wrFlag==0 || !hasReadConflicts(p, iTable) );
3710 /* Assert that the caller has opened the required transaction. */
3711 assert( p->inTrans>TRANS_NONE );
3712 assert( wrFlag==0 || p->inTrans==TRANS_WRITE );
3713 assert( pBt->pPage1 && pBt->pPage1->aData );
3715 if( NEVER(wrFlag && (pBt->btsFlags & BTS_READ_ONLY)!=0) ){
3716 return SQLITE_READONLY;
3718 if( wrFlag ){
3719 allocateTempSpace(pBt);
3720 if( pBt->pTmpSpace==0 ) return SQLITE_NOMEM;
3722 if( iTable==1 && btreePagecount(pBt)==0 ){
3723 assert( wrFlag==0 );
3724 iTable = 0;
3727 /* Now that no other errors can occur, finish filling in the BtCursor
3728 ** variables and link the cursor into the BtShared list. */
3729 pCur->pgnoRoot = (Pgno)iTable;
3730 pCur->iPage = -1;
3731 pCur->pKeyInfo = pKeyInfo;
3732 pCur->pBtree = p;
3733 pCur->pBt = pBt;
3734 assert( wrFlag==0 || wrFlag==BTCF_WriteFlag );
3735 pCur->curFlags = wrFlag;
3736 pCur->pNext = pBt->pCursor;
3737 if( pCur->pNext ){
3738 pCur->pNext->pPrev = pCur;
3740 pBt->pCursor = pCur;
3741 pCur->eState = CURSOR_INVALID;
3742 return SQLITE_OK;
3744 int sqlite3BtreeCursor(
3745 Btree *p, /* The btree */
3746 int iTable, /* Root page of table to open */
3747 int wrFlag, /* 1 to write. 0 read-only */
3748 struct KeyInfo *pKeyInfo, /* First arg to xCompare() */
3749 BtCursor *pCur /* Write new cursor here */
3751 int rc;
3752 sqlite3BtreeEnter(p);
3753 rc = btreeCursor(p, iTable, wrFlag, pKeyInfo, pCur);
3754 sqlite3BtreeLeave(p);
3755 return rc;
3759 ** Return the size of a BtCursor object in bytes.
3761 ** This interfaces is needed so that users of cursors can preallocate
3762 ** sufficient storage to hold a cursor. The BtCursor object is opaque
3763 ** to users so they cannot do the sizeof() themselves - they must call
3764 ** this routine.
3766 int sqlite3BtreeCursorSize(void){
3767 return ROUND8(sizeof(BtCursor));
3771 ** Initialize memory that will be converted into a BtCursor object.
3773 ** The simple approach here would be to memset() the entire object
3774 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays
3775 ** do not need to be zeroed and they are large, so we can save a lot
3776 ** of run-time by skipping the initialization of those elements.
3778 void sqlite3BtreeCursorZero(BtCursor *p){
3779 memset(p, 0, offsetof(BtCursor, iPage));
3783 ** Close a cursor. The read lock on the database file is released
3784 ** when the last cursor is closed.
3786 int sqlite3BtreeCloseCursor(BtCursor *pCur){
3787 Btree *pBtree = pCur->pBtree;
3788 if( pBtree ){
3789 int i;
3790 BtShared *pBt = pCur->pBt;
3791 sqlite3BtreeEnter(pBtree);
3792 sqlite3BtreeClearCursor(pCur);
3793 if( pCur->pPrev ){
3794 pCur->pPrev->pNext = pCur->pNext;
3795 }else{
3796 pBt->pCursor = pCur->pNext;
3798 if( pCur->pNext ){
3799 pCur->pNext->pPrev = pCur->pPrev;
3801 for(i=0; i<=pCur->iPage; i++){
3802 releasePage(pCur->apPage[i]);
3804 unlockBtreeIfUnused(pBt);
3805 sqlite3DbFree(pBtree->db, pCur->aOverflow);
3806 /* sqlite3_free(pCur); */
3807 sqlite3BtreeLeave(pBtree);
3809 return SQLITE_OK;
3813 ** Make sure the BtCursor* given in the argument has a valid
3814 ** BtCursor.info structure. If it is not already valid, call
3815 ** btreeParseCell() to fill it in.
3817 ** BtCursor.info is a cache of the information in the current cell.
3818 ** Using this cache reduces the number of calls to btreeParseCell().
3820 ** 2007-06-25: There is a bug in some versions of MSVC that cause the
3821 ** compiler to crash when getCellInfo() is implemented as a macro.
3822 ** But there is a measureable speed advantage to using the macro on gcc
3823 ** (when less compiler optimizations like -Os or -O0 are used and the
3824 ** compiler is not doing aggressive inlining.) So we use a real function
3825 ** for MSVC and a macro for everything else. Ticket #2457.
3827 #ifndef NDEBUG
3828 static void assertCellInfo(BtCursor *pCur){
3829 CellInfo info;
3830 int iPage = pCur->iPage;
3831 memset(&info, 0, sizeof(info));
3832 btreeParseCell(pCur->apPage[iPage], pCur->aiIdx[iPage], &info);
3833 assert( CORRUPT_DB || memcmp(&info, &pCur->info, sizeof(info))==0 );
3835 #else
3836 #define assertCellInfo(x)
3837 #endif
3838 #ifdef _MSC_VER
3839 /* Use a real function in MSVC to work around bugs in that compiler. */
3840 static void getCellInfo(BtCursor *pCur){
3841 if( pCur->info.nSize==0 ){
3842 int iPage = pCur->iPage;
3843 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info);
3844 pCur->curFlags |= BTCF_ValidNKey;
3845 }else{
3846 assertCellInfo(pCur);
3849 #else /* if not _MSC_VER */
3850 /* Use a macro in all other compilers so that the function is inlined */
3851 #define getCellInfo(pCur) \
3852 if( pCur->info.nSize==0 ){ \
3853 int iPage = pCur->iPage; \
3854 btreeParseCell(pCur->apPage[iPage],pCur->aiIdx[iPage],&pCur->info); \
3855 pCur->curFlags |= BTCF_ValidNKey; \
3856 }else{ \
3857 assertCellInfo(pCur); \
3859 #endif /* _MSC_VER */
3861 #ifndef NDEBUG /* The next routine used only within assert() statements */
3863 ** Return true if the given BtCursor is valid. A valid cursor is one
3864 ** that is currently pointing to a row in a (non-empty) table.
3865 ** This is a verification routine is used only within assert() statements.
3867 int sqlite3BtreeCursorIsValid(BtCursor *pCur){
3868 return pCur && pCur->eState==CURSOR_VALID;
3870 #endif /* NDEBUG */
3873 ** Set *pSize to the size of the buffer needed to hold the value of
3874 ** the key for the current entry. If the cursor is not pointing
3875 ** to a valid entry, *pSize is set to 0.
3877 ** For a table with the INTKEY flag set, this routine returns the key
3878 ** itself, not the number of bytes in the key.
3880 ** The caller must position the cursor prior to invoking this routine.
3882 ** This routine cannot fail. It always returns SQLITE_OK.
3884 int sqlite3BtreeKeySize(BtCursor *pCur, i64 *pSize){
3885 assert( cursorHoldsMutex(pCur) );
3886 assert( pCur->eState==CURSOR_VALID );
3887 getCellInfo(pCur);
3888 *pSize = pCur->info.nKey;
3889 return SQLITE_OK;
3893 ** Set *pSize to the number of bytes of data in the entry the
3894 ** cursor currently points to.
3896 ** The caller must guarantee that the cursor is pointing to a non-NULL
3897 ** valid entry. In other words, the calling procedure must guarantee
3898 ** that the cursor has Cursor.eState==CURSOR_VALID.
3900 ** Failure is not possible. This function always returns SQLITE_OK.
3901 ** It might just as well be a procedure (returning void) but we continue
3902 ** to return an integer result code for historical reasons.
3904 int sqlite3BtreeDataSize(BtCursor *pCur, u32 *pSize){
3905 assert( cursorHoldsMutex(pCur) );
3906 assert( pCur->eState==CURSOR_VALID );
3907 assert( pCur->apPage[pCur->iPage]->intKeyLeaf==1 );
3908 getCellInfo(pCur);
3909 *pSize = pCur->info.nPayload;
3910 return SQLITE_OK;
3914 ** Given the page number of an overflow page in the database (parameter
3915 ** ovfl), this function finds the page number of the next page in the
3916 ** linked list of overflow pages. If possible, it uses the auto-vacuum
3917 ** pointer-map data instead of reading the content of page ovfl to do so.
3919 ** If an error occurs an SQLite error code is returned. Otherwise:
3921 ** The page number of the next overflow page in the linked list is
3922 ** written to *pPgnoNext. If page ovfl is the last page in its linked
3923 ** list, *pPgnoNext is set to zero.
3925 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
3926 ** to page number pOvfl was obtained, then *ppPage is set to point to that
3927 ** reference. It is the responsibility of the caller to call releasePage()
3928 ** on *ppPage to free the reference. In no reference was obtained (because
3929 ** the pointer-map was used to obtain the value for *pPgnoNext), then
3930 ** *ppPage is set to zero.
3932 static int getOverflowPage(
3933 BtShared *pBt, /* The database file */
3934 Pgno ovfl, /* Current overflow page number */
3935 MemPage **ppPage, /* OUT: MemPage handle (may be NULL) */
3936 Pgno *pPgnoNext /* OUT: Next overflow page number */
3938 Pgno next = 0;
3939 MemPage *pPage = 0;
3940 int rc = SQLITE_OK;
3942 assert( sqlite3_mutex_held(pBt->mutex) );
3943 assert(pPgnoNext);
3945 #ifndef SQLITE_OMIT_AUTOVACUUM
3946 /* Try to find the next page in the overflow list using the
3947 ** autovacuum pointer-map pages. Guess that the next page in
3948 ** the overflow list is page number (ovfl+1). If that guess turns
3949 ** out to be wrong, fall back to loading the data of page
3950 ** number ovfl to determine the next page number.
3952 if( pBt->autoVacuum ){
3953 Pgno pgno;
3954 Pgno iGuess = ovfl+1;
3955 u8 eType;
3957 while( PTRMAP_ISPAGE(pBt, iGuess) || iGuess==PENDING_BYTE_PAGE(pBt) ){
3958 iGuess++;
3961 if( iGuess<=btreePagecount(pBt) ){
3962 rc = ptrmapGet(pBt, iGuess, &eType, &pgno);
3963 if( rc==SQLITE_OK && eType==PTRMAP_OVERFLOW2 && pgno==ovfl ){
3964 next = iGuess;
3965 rc = SQLITE_DONE;
3969 #endif
3971 assert( next==0 || rc==SQLITE_DONE );
3972 if( rc==SQLITE_OK ){
3973 rc = btreeGetPage(pBt, ovfl, &pPage, (ppPage==0) ? PAGER_GET_READONLY : 0);
3974 assert( rc==SQLITE_OK || pPage==0 );
3975 if( rc==SQLITE_OK ){
3976 next = get4byte(pPage->aData);
3980 *pPgnoNext = next;
3981 if( ppPage ){
3982 *ppPage = pPage;
3983 }else{
3984 releasePage(pPage);
3986 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
3990 ** Copy data from a buffer to a page, or from a page to a buffer.
3992 ** pPayload is a pointer to data stored on database page pDbPage.
3993 ** If argument eOp is false, then nByte bytes of data are copied
3994 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
3995 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
3996 ** of data are copied from the buffer pBuf to pPayload.
3998 ** SQLITE_OK is returned on success, otherwise an error code.
4000 static int copyPayload(
4001 void *pPayload, /* Pointer to page data */
4002 void *pBuf, /* Pointer to buffer */
4003 int nByte, /* Number of bytes to copy */
4004 int eOp, /* 0 -> copy from page, 1 -> copy to page */
4005 DbPage *pDbPage /* Page containing pPayload */
4007 if( eOp ){
4008 /* Copy data from buffer to page (a write operation) */
4009 int rc = sqlite3PagerWrite(pDbPage);
4010 if( rc!=SQLITE_OK ){
4011 return rc;
4013 memcpy(pPayload, pBuf, nByte);
4014 }else{
4015 /* Copy data from page to buffer (a read operation) */
4016 memcpy(pBuf, pPayload, nByte);
4018 return SQLITE_OK;
4022 ** This function is used to read or overwrite payload information
4023 ** for the entry that the pCur cursor is pointing to. The eOp
4024 ** argument is interpreted as follows:
4026 ** 0: The operation is a read. Populate the overflow cache.
4027 ** 1: The operation is a write. Populate the overflow cache.
4028 ** 2: The operation is a read. Do not populate the overflow cache.
4030 ** A total of "amt" bytes are read or written beginning at "offset".
4031 ** Data is read to or from the buffer pBuf.
4033 ** The content being read or written might appear on the main page
4034 ** or be scattered out on multiple overflow pages.
4036 ** If the current cursor entry uses one or more overflow pages and the
4037 ** eOp argument is not 2, this function may allocate space for and lazily
4038 ** populates the overflow page-list cache array (BtCursor.aOverflow).
4039 ** Subsequent calls use this cache to make seeking to the supplied offset
4040 ** more efficient.
4042 ** Once an overflow page-list cache has been allocated, it may be
4043 ** invalidated if some other cursor writes to the same table, or if
4044 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4045 ** mode, the following events may invalidate an overflow page-list cache.
4047 ** * An incremental vacuum,
4048 ** * A commit in auto_vacuum="full" mode,
4049 ** * Creating a table (may require moving an overflow page).
4051 static int accessPayload(
4052 BtCursor *pCur, /* Cursor pointing to entry to read from */
4053 u32 offset, /* Begin reading this far into payload */
4054 u32 amt, /* Read this many bytes */
4055 unsigned char *pBuf, /* Write the bytes into this buffer */
4056 int eOp /* zero to read. non-zero to write. */
4058 unsigned char *aPayload;
4059 int rc = SQLITE_OK;
4060 int iIdx = 0;
4061 MemPage *pPage = pCur->apPage[pCur->iPage]; /* Btree page of current entry */
4062 BtShared *pBt = pCur->pBt; /* Btree this cursor belongs to */
4063 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4064 unsigned char * const pBufStart = pBuf;
4065 int bEnd; /* True if reading to end of data */
4066 #endif
4068 assert( pPage );
4069 assert( pCur->eState==CURSOR_VALID );
4070 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4071 assert( cursorHoldsMutex(pCur) );
4072 assert( eOp!=2 || offset==0 ); /* Always start from beginning for eOp==2 */
4074 getCellInfo(pCur);
4075 aPayload = pCur->info.pPayload;
4076 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4077 bEnd = offset+amt==pCur->info.nPayload;
4078 #endif
4079 assert( offset+amt <= pCur->info.nPayload );
4081 if( &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize] ){
4082 /* Trying to read or write past the end of the data is an error */
4083 return SQLITE_CORRUPT_BKPT;
4086 /* Check if data must be read/written to/from the btree page itself. */
4087 if( offset<pCur->info.nLocal ){
4088 int a = amt;
4089 if( a+offset>pCur->info.nLocal ){
4090 a = pCur->info.nLocal - offset;
4092 rc = copyPayload(&aPayload[offset], pBuf, a, (eOp & 0x01), pPage->pDbPage);
4093 offset = 0;
4094 pBuf += a;
4095 amt -= a;
4096 }else{
4097 offset -= pCur->info.nLocal;
4100 if( rc==SQLITE_OK && amt>0 ){
4101 const u32 ovflSize = pBt->usableSize - 4; /* Bytes content per ovfl page */
4102 Pgno nextPage;
4104 nextPage = get4byte(&aPayload[pCur->info.nLocal]);
4106 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4107 ** Except, do not allocate aOverflow[] for eOp==2.
4109 ** The aOverflow[] array is sized at one entry for each overflow page
4110 ** in the overflow chain. The page number of the first overflow page is
4111 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4112 ** means "not yet known" (the cache is lazily populated).
4114 if( eOp!=2 && (pCur->curFlags & BTCF_ValidOvfl)==0 ){
4115 int nOvfl = (pCur->info.nPayload-pCur->info.nLocal+ovflSize-1)/ovflSize;
4116 if( nOvfl>pCur->nOvflAlloc ){
4117 Pgno *aNew = (Pgno*)sqlite3DbRealloc(
4118 pCur->pBtree->db, pCur->aOverflow, nOvfl*2*sizeof(Pgno)
4120 if( aNew==0 ){
4121 rc = SQLITE_NOMEM;
4122 }else{
4123 pCur->nOvflAlloc = nOvfl*2;
4124 pCur->aOverflow = aNew;
4127 if( rc==SQLITE_OK ){
4128 memset(pCur->aOverflow, 0, nOvfl*sizeof(Pgno));
4129 pCur->curFlags |= BTCF_ValidOvfl;
4133 /* If the overflow page-list cache has been allocated and the
4134 ** entry for the first required overflow page is valid, skip
4135 ** directly to it.
4137 if( (pCur->curFlags & BTCF_ValidOvfl)!=0
4138 && pCur->aOverflow[offset/ovflSize]
4140 iIdx = (offset/ovflSize);
4141 nextPage = pCur->aOverflow[iIdx];
4142 offset = (offset%ovflSize);
4145 for( ; rc==SQLITE_OK && amt>0 && nextPage; iIdx++){
4147 /* If required, populate the overflow page-list cache. */
4148 if( (pCur->curFlags & BTCF_ValidOvfl)!=0 ){
4149 assert(!pCur->aOverflow[iIdx] || pCur->aOverflow[iIdx]==nextPage);
4150 pCur->aOverflow[iIdx] = nextPage;
4153 if( offset>=ovflSize ){
4154 /* The only reason to read this page is to obtain the page
4155 ** number for the next page in the overflow chain. The page
4156 ** data is not required. So first try to lookup the overflow
4157 ** page-list cache, if any, then fall back to the getOverflowPage()
4158 ** function.
4160 ** Note that the aOverflow[] array must be allocated because eOp!=2
4161 ** here. If eOp==2, then offset==0 and this branch is never taken.
4163 assert( eOp!=2 );
4164 assert( pCur->curFlags & BTCF_ValidOvfl );
4165 if( pCur->aOverflow[iIdx+1] ){
4166 nextPage = pCur->aOverflow[iIdx+1];
4167 }else{
4168 rc = getOverflowPage(pBt, nextPage, 0, &nextPage);
4170 offset -= ovflSize;
4171 }else{
4172 /* Need to read this page properly. It contains some of the
4173 ** range of data that is being read (eOp==0) or written (eOp!=0).
4175 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4176 sqlite3_file *fd;
4177 #endif
4178 int a = amt;
4179 if( a + offset > ovflSize ){
4180 a = ovflSize - offset;
4183 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4184 /* If all the following are true:
4186 ** 1) this is a read operation, and
4187 ** 2) data is required from the start of this overflow page, and
4188 ** 3) the database is file-backed, and
4189 ** 4) there is no open write-transaction, and
4190 ** 5) the database is not a WAL database,
4191 ** 6) all data from the page is being read.
4192 ** 7) at least 4 bytes have already been read into the output buffer
4194 ** then data can be read directly from the database file into the
4195 ** output buffer, bypassing the page-cache altogether. This speeds
4196 ** up loading large records that span many overflow pages.
4198 if( (eOp&0x01)==0 /* (1) */
4199 && offset==0 /* (2) */
4200 && (bEnd || a==ovflSize) /* (6) */
4201 && pBt->inTransaction==TRANS_READ /* (4) */
4202 && (fd = sqlite3PagerFile(pBt->pPager))->pMethods /* (3) */
4203 && pBt->pPage1->aData[19]==0x01 /* (5) */
4204 && &pBuf[-4]>=pBufStart /* (7) */
4206 u8 aSave[4];
4207 u8 *aWrite = &pBuf[-4];
4208 assert( aWrite>=pBufStart ); /* hence (7) */
4209 memcpy(aSave, aWrite, 4);
4210 rc = sqlite3OsRead(fd, aWrite, a+4, (i64)pBt->pageSize*(nextPage-1));
4211 nextPage = get4byte(aWrite);
4212 memcpy(aWrite, aSave, 4);
4213 }else
4214 #endif
4217 DbPage *pDbPage;
4218 rc = sqlite3PagerAcquire(pBt->pPager, nextPage, &pDbPage,
4219 ((eOp&0x01)==0 ? PAGER_GET_READONLY : 0)
4221 if( rc==SQLITE_OK ){
4222 aPayload = sqlite3PagerGetData(pDbPage);
4223 nextPage = get4byte(aPayload);
4224 rc = copyPayload(&aPayload[offset+4], pBuf, a, (eOp&0x01), pDbPage);
4225 sqlite3PagerUnref(pDbPage);
4226 offset = 0;
4229 amt -= a;
4230 pBuf += a;
4235 if( rc==SQLITE_OK && amt>0 ){
4236 return SQLITE_CORRUPT_BKPT;
4238 return rc;
4242 ** Read part of the key associated with cursor pCur. Exactly
4243 ** "amt" bytes will be transferred into pBuf[]. The transfer
4244 ** begins at "offset".
4246 ** The caller must ensure that pCur is pointing to a valid row
4247 ** in the table.
4249 ** Return SQLITE_OK on success or an error code if anything goes
4250 ** wrong. An error is returned if "offset+amt" is larger than
4251 ** the available payload.
4253 int sqlite3BtreeKey(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4254 assert( cursorHoldsMutex(pCur) );
4255 assert( pCur->eState==CURSOR_VALID );
4256 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4257 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4258 return accessPayload(pCur, offset, amt, (unsigned char*)pBuf, 0);
4262 ** Read part of the data associated with cursor pCur. Exactly
4263 ** "amt" bytes will be transfered into pBuf[]. The transfer
4264 ** begins at "offset".
4266 ** Return SQLITE_OK on success or an error code if anything goes
4267 ** wrong. An error is returned if "offset+amt" is larger than
4268 ** the available payload.
4270 int sqlite3BtreeData(BtCursor *pCur, u32 offset, u32 amt, void *pBuf){
4271 int rc;
4273 #ifndef SQLITE_OMIT_INCRBLOB
4274 if ( pCur->eState==CURSOR_INVALID ){
4275 return SQLITE_ABORT;
4277 #endif
4279 assert( cursorHoldsMutex(pCur) );
4280 rc = restoreCursorPosition(pCur);
4281 if( rc==SQLITE_OK ){
4282 assert( pCur->eState==CURSOR_VALID );
4283 assert( pCur->iPage>=0 && pCur->apPage[pCur->iPage] );
4284 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4285 rc = accessPayload(pCur, offset, amt, pBuf, 0);
4287 return rc;
4291 ** Return a pointer to payload information from the entry that the
4292 ** pCur cursor is pointing to. The pointer is to the beginning of
4293 ** the key if index btrees (pPage->intKey==0) and is the data for
4294 ** table btrees (pPage->intKey==1). The number of bytes of available
4295 ** key/data is written into *pAmt. If *pAmt==0, then the value
4296 ** returned will not be a valid pointer.
4298 ** This routine is an optimization. It is common for the entire key
4299 ** and data to fit on the local page and for there to be no overflow
4300 ** pages. When that is so, this routine can be used to access the
4301 ** key and data without making a copy. If the key and/or data spills
4302 ** onto overflow pages, then accessPayload() must be used to reassemble
4303 ** the key/data and copy it into a preallocated buffer.
4305 ** The pointer returned by this routine looks directly into the cached
4306 ** page of the database. The data might change or move the next time
4307 ** any btree routine is called.
4309 static const void *fetchPayload(
4310 BtCursor *pCur, /* Cursor pointing to entry to read from */
4311 u32 *pAmt /* Write the number of available bytes here */
4313 assert( pCur!=0 && pCur->iPage>=0 && pCur->apPage[pCur->iPage]);
4314 assert( pCur->eState==CURSOR_VALID );
4315 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4316 assert( cursorHoldsMutex(pCur) );
4317 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4318 assert( pCur->info.nSize>0 );
4319 *pAmt = pCur->info.nLocal;
4320 return (void*)pCur->info.pPayload;
4325 ** For the entry that cursor pCur is point to, return as
4326 ** many bytes of the key or data as are available on the local
4327 ** b-tree page. Write the number of available bytes into *pAmt.
4329 ** The pointer returned is ephemeral. The key/data may move
4330 ** or be destroyed on the next call to any Btree routine,
4331 ** including calls from other threads against the same cache.
4332 ** Hence, a mutex on the BtShared should be held prior to calling
4333 ** this routine.
4335 ** These routines is used to get quick access to key and data
4336 ** in the common case where no overflow pages are used.
4338 const void *sqlite3BtreeKeyFetch(BtCursor *pCur, u32 *pAmt){
4339 return fetchPayload(pCur, pAmt);
4341 const void *sqlite3BtreeDataFetch(BtCursor *pCur, u32 *pAmt){
4342 return fetchPayload(pCur, pAmt);
4347 ** Move the cursor down to a new child page. The newPgno argument is the
4348 ** page number of the child page to move to.
4350 ** This function returns SQLITE_CORRUPT if the page-header flags field of
4351 ** the new child page does not match the flags field of the parent (i.e.
4352 ** if an intkey page appears to be the parent of a non-intkey page, or
4353 ** vice-versa).
4355 static int moveToChild(BtCursor *pCur, u32 newPgno){
4356 int rc;
4357 int i = pCur->iPage;
4358 MemPage *pNewPage;
4359 BtShared *pBt = pCur->pBt;
4361 assert( cursorHoldsMutex(pCur) );
4362 assert( pCur->eState==CURSOR_VALID );
4363 assert( pCur->iPage<BTCURSOR_MAX_DEPTH );
4364 assert( pCur->iPage>=0 );
4365 if( pCur->iPage>=(BTCURSOR_MAX_DEPTH-1) ){
4366 return SQLITE_CORRUPT_BKPT;
4368 rc = getAndInitPage(pBt, newPgno, &pNewPage,
4369 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
4370 if( rc ) return rc;
4371 pCur->apPage[i+1] = pNewPage;
4372 pCur->aiIdx[i+1] = 0;
4373 pCur->iPage++;
4375 pCur->info.nSize = 0;
4376 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4377 if( pNewPage->nCell<1 || pNewPage->intKey!=pCur->apPage[i]->intKey ){
4378 return SQLITE_CORRUPT_BKPT;
4380 return SQLITE_OK;
4383 #if 0
4385 ** Page pParent is an internal (non-leaf) tree page. This function
4386 ** asserts that page number iChild is the left-child if the iIdx'th
4387 ** cell in page pParent. Or, if iIdx is equal to the total number of
4388 ** cells in pParent, that page number iChild is the right-child of
4389 ** the page.
4391 static void assertParentIndex(MemPage *pParent, int iIdx, Pgno iChild){
4392 assert( iIdx<=pParent->nCell );
4393 if( iIdx==pParent->nCell ){
4394 assert( get4byte(&pParent->aData[pParent->hdrOffset+8])==iChild );
4395 }else{
4396 assert( get4byte(findCell(pParent, iIdx))==iChild );
4399 #else
4400 # define assertParentIndex(x,y,z)
4401 #endif
4404 ** Move the cursor up to the parent page.
4406 ** pCur->idx is set to the cell index that contains the pointer
4407 ** to the page we are coming from. If we are coming from the
4408 ** right-most child page then pCur->idx is set to one more than
4409 ** the largest cell index.
4411 static void moveToParent(BtCursor *pCur){
4412 assert( cursorHoldsMutex(pCur) );
4413 assert( pCur->eState==CURSOR_VALID );
4414 assert( pCur->iPage>0 );
4415 assert( pCur->apPage[pCur->iPage] );
4417 /* UPDATE: It is actually possible for the condition tested by the assert
4418 ** below to be untrue if the database file is corrupt. This can occur if
4419 ** one cursor has modified page pParent while a reference to it is held
4420 ** by a second cursor. Which can only happen if a single page is linked
4421 ** into more than one b-tree structure in a corrupt database. */
4422 #if 0
4423 assertParentIndex(
4424 pCur->apPage[pCur->iPage-1],
4425 pCur->aiIdx[pCur->iPage-1],
4426 pCur->apPage[pCur->iPage]->pgno
4428 #endif
4429 testcase( pCur->aiIdx[pCur->iPage-1] > pCur->apPage[pCur->iPage-1]->nCell );
4431 releasePage(pCur->apPage[pCur->iPage]);
4432 pCur->iPage--;
4433 pCur->info.nSize = 0;
4434 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4438 ** Move the cursor to point to the root page of its b-tree structure.
4440 ** If the table has a virtual root page, then the cursor is moved to point
4441 ** to the virtual root page instead of the actual root page. A table has a
4442 ** virtual root page when the actual root page contains no cells and a
4443 ** single child page. This can only happen with the table rooted at page 1.
4445 ** If the b-tree structure is empty, the cursor state is set to
4446 ** CURSOR_INVALID. Otherwise, the cursor is set to point to the first
4447 ** cell located on the root (or virtual root) page and the cursor state
4448 ** is set to CURSOR_VALID.
4450 ** If this function returns successfully, it may be assumed that the
4451 ** page-header flags indicate that the [virtual] root-page is the expected
4452 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
4453 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
4454 ** indicating a table b-tree, or if the caller did specify a KeyInfo
4455 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
4456 ** b-tree).
4458 static int moveToRoot(BtCursor *pCur){
4459 MemPage *pRoot;
4460 int rc = SQLITE_OK;
4462 assert( cursorHoldsMutex(pCur) );
4463 assert( CURSOR_INVALID < CURSOR_REQUIRESEEK );
4464 assert( CURSOR_VALID < CURSOR_REQUIRESEEK );
4465 assert( CURSOR_FAULT > CURSOR_REQUIRESEEK );
4466 if( pCur->eState>=CURSOR_REQUIRESEEK ){
4467 if( pCur->eState==CURSOR_FAULT ){
4468 assert( pCur->skipNext!=SQLITE_OK );
4469 return pCur->skipNext;
4471 sqlite3BtreeClearCursor(pCur);
4474 if( pCur->iPage>=0 ){
4475 while( pCur->iPage ) releasePage(pCur->apPage[pCur->iPage--]);
4476 }else if( pCur->pgnoRoot==0 ){
4477 pCur->eState = CURSOR_INVALID;
4478 return SQLITE_OK;
4479 }else{
4480 rc = getAndInitPage(pCur->pBtree->pBt, pCur->pgnoRoot, &pCur->apPage[0],
4481 (pCur->curFlags & BTCF_WriteFlag)==0 ? PAGER_GET_READONLY : 0);
4482 if( rc!=SQLITE_OK ){
4483 pCur->eState = CURSOR_INVALID;
4484 return rc;
4486 pCur->iPage = 0;
4488 pRoot = pCur->apPage[0];
4489 assert( pRoot->pgno==pCur->pgnoRoot );
4491 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
4492 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
4493 ** NULL, the caller expects a table b-tree. If this is not the case,
4494 ** return an SQLITE_CORRUPT error.
4496 ** Earlier versions of SQLite assumed that this test could not fail
4497 ** if the root page was already loaded when this function was called (i.e.
4498 ** if pCur->iPage>=0). But this is not so if the database is corrupted
4499 ** in such a way that page pRoot is linked into a second b-tree table
4500 ** (or the freelist). */
4501 assert( pRoot->intKey==1 || pRoot->intKey==0 );
4502 if( pRoot->isInit==0 || (pCur->pKeyInfo==0)!=pRoot->intKey ){
4503 return SQLITE_CORRUPT_BKPT;
4506 pCur->aiIdx[0] = 0;
4507 pCur->info.nSize = 0;
4508 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidNKey|BTCF_ValidOvfl);
4510 if( pRoot->nCell>0 ){
4511 pCur->eState = CURSOR_VALID;
4512 }else if( !pRoot->leaf ){
4513 Pgno subpage;
4514 if( pRoot->pgno!=1 ) return SQLITE_CORRUPT_BKPT;
4515 subpage = get4byte(&pRoot->aData[pRoot->hdrOffset+8]);
4516 pCur->eState = CURSOR_VALID;
4517 rc = moveToChild(pCur, subpage);
4518 }else{
4519 pCur->eState = CURSOR_INVALID;
4521 return rc;
4525 ** Move the cursor down to the left-most leaf entry beneath the
4526 ** entry to which it is currently pointing.
4528 ** The left-most leaf is the one with the smallest key - the first
4529 ** in ascending order.
4531 static int moveToLeftmost(BtCursor *pCur){
4532 Pgno pgno;
4533 int rc = SQLITE_OK;
4534 MemPage *pPage;
4536 assert( cursorHoldsMutex(pCur) );
4537 assert( pCur->eState==CURSOR_VALID );
4538 while( rc==SQLITE_OK && !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4539 assert( pCur->aiIdx[pCur->iPage]<pPage->nCell );
4540 pgno = get4byte(findCell(pPage, pCur->aiIdx[pCur->iPage]));
4541 rc = moveToChild(pCur, pgno);
4543 return rc;
4547 ** Move the cursor down to the right-most leaf entry beneath the
4548 ** page to which it is currently pointing. Notice the difference
4549 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
4550 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
4551 ** finds the right-most entry beneath the *page*.
4553 ** The right-most entry is the one with the largest key - the last
4554 ** key in ascending order.
4556 static int moveToRightmost(BtCursor *pCur){
4557 Pgno pgno;
4558 int rc = SQLITE_OK;
4559 MemPage *pPage = 0;
4561 assert( cursorHoldsMutex(pCur) );
4562 assert( pCur->eState==CURSOR_VALID );
4563 while( !(pPage = pCur->apPage[pCur->iPage])->leaf ){
4564 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
4565 pCur->aiIdx[pCur->iPage] = pPage->nCell;
4566 rc = moveToChild(pCur, pgno);
4567 if( rc ) return rc;
4569 pCur->aiIdx[pCur->iPage] = pPage->nCell-1;
4570 assert( pCur->info.nSize==0 );
4571 assert( (pCur->curFlags & BTCF_ValidNKey)==0 );
4572 return SQLITE_OK;
4575 /* Move the cursor to the first entry in the table. Return SQLITE_OK
4576 ** on success. Set *pRes to 0 if the cursor actually points to something
4577 ** or set *pRes to 1 if the table is empty.
4579 int sqlite3BtreeFirst(BtCursor *pCur, int *pRes){
4580 int rc;
4582 assert( cursorHoldsMutex(pCur) );
4583 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4584 rc = moveToRoot(pCur);
4585 if( rc==SQLITE_OK ){
4586 if( pCur->eState==CURSOR_INVALID ){
4587 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
4588 *pRes = 1;
4589 }else{
4590 assert( pCur->apPage[pCur->iPage]->nCell>0 );
4591 *pRes = 0;
4592 rc = moveToLeftmost(pCur);
4595 return rc;
4598 /* Move the cursor to the last entry in the table. Return SQLITE_OK
4599 ** on success. Set *pRes to 0 if the cursor actually points to something
4600 ** or set *pRes to 1 if the table is empty.
4602 int sqlite3BtreeLast(BtCursor *pCur, int *pRes){
4603 int rc;
4605 assert( cursorHoldsMutex(pCur) );
4606 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4608 /* If the cursor already points to the last entry, this is a no-op. */
4609 if( CURSOR_VALID==pCur->eState && (pCur->curFlags & BTCF_AtLast)!=0 ){
4610 #ifdef SQLITE_DEBUG
4611 /* This block serves to assert() that the cursor really does point
4612 ** to the last entry in the b-tree. */
4613 int ii;
4614 for(ii=0; ii<pCur->iPage; ii++){
4615 assert( pCur->aiIdx[ii]==pCur->apPage[ii]->nCell );
4617 assert( pCur->aiIdx[pCur->iPage]==pCur->apPage[pCur->iPage]->nCell-1 );
4618 assert( pCur->apPage[pCur->iPage]->leaf );
4619 #endif
4620 return SQLITE_OK;
4623 rc = moveToRoot(pCur);
4624 if( rc==SQLITE_OK ){
4625 if( CURSOR_INVALID==pCur->eState ){
4626 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
4627 *pRes = 1;
4628 }else{
4629 assert( pCur->eState==CURSOR_VALID );
4630 *pRes = 0;
4631 rc = moveToRightmost(pCur);
4632 if( rc==SQLITE_OK ){
4633 pCur->curFlags |= BTCF_AtLast;
4634 }else{
4635 pCur->curFlags &= ~BTCF_AtLast;
4640 return rc;
4643 /* Move the cursor so that it points to an entry near the key
4644 ** specified by pIdxKey or intKey. Return a success code.
4646 ** For INTKEY tables, the intKey parameter is used. pIdxKey
4647 ** must be NULL. For index tables, pIdxKey is used and intKey
4648 ** is ignored.
4650 ** If an exact match is not found, then the cursor is always
4651 ** left pointing at a leaf page which would hold the entry if it
4652 ** were present. The cursor might point to an entry that comes
4653 ** before or after the key.
4655 ** An integer is written into *pRes which is the result of
4656 ** comparing the key with the entry to which the cursor is
4657 ** pointing. The meaning of the integer written into
4658 ** *pRes is as follows:
4660 ** *pRes<0 The cursor is left pointing at an entry that
4661 ** is smaller than intKey/pIdxKey or if the table is empty
4662 ** and the cursor is therefore left point to nothing.
4664 ** *pRes==0 The cursor is left pointing at an entry that
4665 ** exactly matches intKey/pIdxKey.
4667 ** *pRes>0 The cursor is left pointing at an entry that
4668 ** is larger than intKey/pIdxKey.
4671 int sqlite3BtreeMovetoUnpacked(
4672 BtCursor *pCur, /* The cursor to be moved */
4673 UnpackedRecord *pIdxKey, /* Unpacked index key */
4674 i64 intKey, /* The table key */
4675 int biasRight, /* If true, bias the search to the high end */
4676 int *pRes /* Write search results here */
4678 int rc;
4679 RecordCompare xRecordCompare;
4681 assert( cursorHoldsMutex(pCur) );
4682 assert( sqlite3_mutex_held(pCur->pBtree->db->mutex) );
4683 assert( pRes );
4684 assert( (pIdxKey==0)==(pCur->pKeyInfo==0) );
4686 /* If the cursor is already positioned at the point we are trying
4687 ** to move to, then just return without doing any work */
4688 if( pCur->eState==CURSOR_VALID && (pCur->curFlags & BTCF_ValidNKey)!=0
4689 && pCur->apPage[0]->intKey
4691 if( pCur->info.nKey==intKey ){
4692 *pRes = 0;
4693 return SQLITE_OK;
4695 if( (pCur->curFlags & BTCF_AtLast)!=0 && pCur->info.nKey<intKey ){
4696 *pRes = -1;
4697 return SQLITE_OK;
4701 if( pIdxKey ){
4702 xRecordCompare = sqlite3VdbeFindCompare(pIdxKey);
4703 pIdxKey->errCode = 0;
4704 assert( pIdxKey->default_rc==1
4705 || pIdxKey->default_rc==0
4706 || pIdxKey->default_rc==-1
4708 }else{
4709 xRecordCompare = 0; /* All keys are integers */
4712 rc = moveToRoot(pCur);
4713 if( rc ){
4714 return rc;
4716 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage] );
4717 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->isInit );
4718 assert( pCur->eState==CURSOR_INVALID || pCur->apPage[pCur->iPage]->nCell>0 );
4719 if( pCur->eState==CURSOR_INVALID ){
4720 *pRes = -1;
4721 assert( pCur->pgnoRoot==0 || pCur->apPage[pCur->iPage]->nCell==0 );
4722 return SQLITE_OK;
4724 assert( pCur->apPage[0]->intKey || pIdxKey );
4725 for(;;){
4726 int lwr, upr, idx, c;
4727 Pgno chldPg;
4728 MemPage *pPage = pCur->apPage[pCur->iPage];
4729 u8 *pCell; /* Pointer to current cell in pPage */
4731 /* pPage->nCell must be greater than zero. If this is the root-page
4732 ** the cursor would have been INVALID above and this for(;;) loop
4733 ** not run. If this is not the root-page, then the moveToChild() routine
4734 ** would have already detected db corruption. Similarly, pPage must
4735 ** be the right kind (index or table) of b-tree page. Otherwise
4736 ** a moveToChild() or moveToRoot() call would have detected corruption. */
4737 assert( pPage->nCell>0 );
4738 assert( pPage->intKey==(pIdxKey==0) );
4739 lwr = 0;
4740 upr = pPage->nCell-1;
4741 assert( biasRight==0 || biasRight==1 );
4742 idx = upr>>(1-biasRight); /* idx = biasRight ? upr : (lwr+upr)/2; */
4743 pCur->aiIdx[pCur->iPage] = (u16)idx;
4744 if( xRecordCompare==0 ){
4745 for(;;){
4746 i64 nCellKey;
4747 pCell = findCell(pPage, idx) + pPage->childPtrSize;
4748 if( pPage->intKeyLeaf ){
4749 while( 0x80 <= *(pCell++) ){
4750 if( pCell>=pPage->aDataEnd ) return SQLITE_CORRUPT_BKPT;
4753 getVarint(pCell, (u64*)&nCellKey);
4754 if( nCellKey<intKey ){
4755 lwr = idx+1;
4756 if( lwr>upr ){ c = -1; break; }
4757 }else if( nCellKey>intKey ){
4758 upr = idx-1;
4759 if( lwr>upr ){ c = +1; break; }
4760 }else{
4761 assert( nCellKey==intKey );
4762 pCur->curFlags |= BTCF_ValidNKey;
4763 pCur->info.nKey = nCellKey;
4764 pCur->aiIdx[pCur->iPage] = (u16)idx;
4765 if( !pPage->leaf ){
4766 lwr = idx;
4767 goto moveto_next_layer;
4768 }else{
4769 *pRes = 0;
4770 rc = SQLITE_OK;
4771 goto moveto_finish;
4774 assert( lwr+upr>=0 );
4775 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2; */
4777 }else{
4778 for(;;){
4779 int nCell;
4780 pCell = findCell(pPage, idx) + pPage->childPtrSize;
4782 /* The maximum supported page-size is 65536 bytes. This means that
4783 ** the maximum number of record bytes stored on an index B-Tree
4784 ** page is less than 16384 bytes and may be stored as a 2-byte
4785 ** varint. This information is used to attempt to avoid parsing
4786 ** the entire cell by checking for the cases where the record is
4787 ** stored entirely within the b-tree page by inspecting the first
4788 ** 2 bytes of the cell.
4790 nCell = pCell[0];
4791 if( nCell<=pPage->max1bytePayload ){
4792 /* This branch runs if the record-size field of the cell is a
4793 ** single byte varint and the record fits entirely on the main
4794 ** b-tree page. */
4795 testcase( pCell+nCell+1==pPage->aDataEnd );
4796 c = xRecordCompare(nCell, (void*)&pCell[1], pIdxKey);
4797 }else if( !(pCell[1] & 0x80)
4798 && (nCell = ((nCell&0x7f)<<7) + pCell[1])<=pPage->maxLocal
4800 /* The record-size field is a 2 byte varint and the record
4801 ** fits entirely on the main b-tree page. */
4802 testcase( pCell+nCell+2==pPage->aDataEnd );
4803 c = xRecordCompare(nCell, (void*)&pCell[2], pIdxKey);
4804 }else{
4805 /* The record flows over onto one or more overflow pages. In
4806 ** this case the whole cell needs to be parsed, a buffer allocated
4807 ** and accessPayload() used to retrieve the record into the
4808 ** buffer before VdbeRecordCompare() can be called. */
4809 void *pCellKey;
4810 u8 * const pCellBody = pCell - pPage->childPtrSize;
4811 btreeParseCellPtr(pPage, pCellBody, &pCur->info);
4812 nCell = (int)pCur->info.nKey;
4813 pCellKey = sqlite3Malloc( nCell );
4814 if( pCellKey==0 ){
4815 rc = SQLITE_NOMEM;
4816 goto moveto_finish;
4818 pCur->aiIdx[pCur->iPage] = (u16)idx;
4819 rc = accessPayload(pCur, 0, nCell, (unsigned char*)pCellKey, 2);
4820 if( rc ){
4821 sqlite3_free(pCellKey);
4822 goto moveto_finish;
4824 c = xRecordCompare(nCell, pCellKey, pIdxKey);
4825 sqlite3_free(pCellKey);
4827 assert(
4828 (pIdxKey->errCode!=SQLITE_CORRUPT || c==0)
4829 && (pIdxKey->errCode!=SQLITE_NOMEM || pCur->pBtree->db->mallocFailed)
4831 if( c<0 ){
4832 lwr = idx+1;
4833 }else if( c>0 ){
4834 upr = idx-1;
4835 }else{
4836 assert( c==0 );
4837 *pRes = 0;
4838 rc = SQLITE_OK;
4839 pCur->aiIdx[pCur->iPage] = (u16)idx;
4840 if( pIdxKey->errCode ) rc = SQLITE_CORRUPT;
4841 goto moveto_finish;
4843 if( lwr>upr ) break;
4844 assert( lwr+upr>=0 );
4845 idx = (lwr+upr)>>1; /* idx = (lwr+upr)/2 */
4848 assert( lwr==upr+1 || (pPage->intKey && !pPage->leaf) );
4849 assert( pPage->isInit );
4850 if( pPage->leaf ){
4851 assert( pCur->aiIdx[pCur->iPage]<pCur->apPage[pCur->iPage]->nCell );
4852 pCur->aiIdx[pCur->iPage] = (u16)idx;
4853 *pRes = c;
4854 rc = SQLITE_OK;
4855 goto moveto_finish;
4857 moveto_next_layer:
4858 if( lwr>=pPage->nCell ){
4859 chldPg = get4byte(&pPage->aData[pPage->hdrOffset+8]);
4860 }else{
4861 chldPg = get4byte(findCell(pPage, lwr));
4863 pCur->aiIdx[pCur->iPage] = (u16)lwr;
4864 rc = moveToChild(pCur, chldPg);
4865 if( rc ) break;
4867 moveto_finish:
4868 pCur->info.nSize = 0;
4869 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4870 return rc;
4875 ** Return TRUE if the cursor is not pointing at an entry of the table.
4877 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
4878 ** past the last entry in the table or sqlite3BtreePrev() moves past
4879 ** the first entry. TRUE is also returned if the table is empty.
4881 int sqlite3BtreeEof(BtCursor *pCur){
4882 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
4883 ** have been deleted? This API will need to change to return an error code
4884 ** as well as the boolean result value.
4886 return (CURSOR_VALID!=pCur->eState);
4890 ** Advance the cursor to the next entry in the database. If
4891 ** successful then set *pRes=0. If the cursor
4892 ** was already pointing to the last entry in the database before
4893 ** this routine was called, then set *pRes=1.
4895 ** The main entry point is sqlite3BtreeNext(). That routine is optimized
4896 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
4897 ** to the next cell on the current page. The (slower) btreeNext() helper
4898 ** routine is called when it is necessary to move to a different page or
4899 ** to restore the cursor.
4901 ** The calling function will set *pRes to 0 or 1. The initial *pRes value
4902 ** will be 1 if the cursor being stepped corresponds to an SQL index and
4903 ** if this routine could have been skipped if that SQL index had been
4904 ** a unique index. Otherwise the caller will have set *pRes to zero.
4905 ** Zero is the common case. The btree implementation is free to use the
4906 ** initial *pRes value as a hint to improve performance, but the current
4907 ** SQLite btree implementation does not. (Note that the comdb2 btree
4908 ** implementation does use this hint, however.)
4910 static SQLITE_NOINLINE int btreeNext(BtCursor *pCur, int *pRes){
4911 int rc;
4912 int idx;
4913 MemPage *pPage;
4915 assert( cursorHoldsMutex(pCur) );
4916 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
4917 assert( *pRes==0 );
4918 if( pCur->eState!=CURSOR_VALID ){
4919 assert( (pCur->curFlags & BTCF_ValidOvfl)==0 );
4920 rc = restoreCursorPosition(pCur);
4921 if( rc!=SQLITE_OK ){
4922 return rc;
4924 if( CURSOR_INVALID==pCur->eState ){
4925 *pRes = 1;
4926 return SQLITE_OK;
4928 if( pCur->skipNext ){
4929 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
4930 pCur->eState = CURSOR_VALID;
4931 if( pCur->skipNext>0 ){
4932 pCur->skipNext = 0;
4933 return SQLITE_OK;
4935 pCur->skipNext = 0;
4939 pPage = pCur->apPage[pCur->iPage];
4940 idx = ++pCur->aiIdx[pCur->iPage];
4941 assert( pPage->isInit );
4943 /* If the database file is corrupt, it is possible for the value of idx
4944 ** to be invalid here. This can only occur if a second cursor modifies
4945 ** the page while cursor pCur is holding a reference to it. Which can
4946 ** only happen if the database is corrupt in such a way as to link the
4947 ** page into more than one b-tree structure. */
4948 testcase( idx>pPage->nCell );
4950 if( idx>=pPage->nCell ){
4951 if( !pPage->leaf ){
4952 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
4953 if( rc ) return rc;
4954 return moveToLeftmost(pCur);
4957 if( pCur->iPage==0 ){
4958 *pRes = 1;
4959 pCur->eState = CURSOR_INVALID;
4960 return SQLITE_OK;
4962 moveToParent(pCur);
4963 pPage = pCur->apPage[pCur->iPage];
4964 }while( pCur->aiIdx[pCur->iPage]>=pPage->nCell );
4965 if( pPage->intKey ){
4966 return sqlite3BtreeNext(pCur, pRes);
4967 }else{
4968 return SQLITE_OK;
4971 if( pPage->leaf ){
4972 return SQLITE_OK;
4973 }else{
4974 return moveToLeftmost(pCur);
4977 int sqlite3BtreeNext(BtCursor *pCur, int *pRes){
4978 MemPage *pPage;
4979 assert( cursorHoldsMutex(pCur) );
4980 assert( pRes!=0 );
4981 assert( *pRes==0 || *pRes==1 );
4982 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
4983 pCur->info.nSize = 0;
4984 pCur->curFlags &= ~(BTCF_ValidNKey|BTCF_ValidOvfl);
4985 *pRes = 0;
4986 if( pCur->eState!=CURSOR_VALID ) return btreeNext(pCur, pRes);
4987 pPage = pCur->apPage[pCur->iPage];
4988 if( (++pCur->aiIdx[pCur->iPage])>=pPage->nCell ){
4989 pCur->aiIdx[pCur->iPage]--;
4990 return btreeNext(pCur, pRes);
4992 if( pPage->leaf ){
4993 return SQLITE_OK;
4994 }else{
4995 return moveToLeftmost(pCur);
5000 ** Step the cursor to the back to the previous entry in the database. If
5001 ** successful then set *pRes=0. If the cursor
5002 ** was already pointing to the first entry in the database before
5003 ** this routine was called, then set *pRes=1.
5005 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5006 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
5007 ** to the previous cell on the current page. The (slower) btreePrevious()
5008 ** helper routine is called when it is necessary to move to a different page
5009 ** or to restore the cursor.
5011 ** The calling function will set *pRes to 0 or 1. The initial *pRes value
5012 ** will be 1 if the cursor being stepped corresponds to an SQL index and
5013 ** if this routine could have been skipped if that SQL index had been
5014 ** a unique index. Otherwise the caller will have set *pRes to zero.
5015 ** Zero is the common case. The btree implementation is free to use the
5016 ** initial *pRes value as a hint to improve performance, but the current
5017 ** SQLite btree implementation does not. (Note that the comdb2 btree
5018 ** implementation does use this hint, however.)
5020 static SQLITE_NOINLINE int btreePrevious(BtCursor *pCur, int *pRes){
5021 int rc;
5022 MemPage *pPage;
5024 assert( cursorHoldsMutex(pCur) );
5025 assert( pRes!=0 );
5026 assert( *pRes==0 );
5027 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5028 assert( (pCur->curFlags & (BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey))==0 );
5029 assert( pCur->info.nSize==0 );
5030 if( pCur->eState!=CURSOR_VALID ){
5031 rc = restoreCursorPosition(pCur);
5032 if( rc!=SQLITE_OK ){
5033 return rc;
5035 if( CURSOR_INVALID==pCur->eState ){
5036 *pRes = 1;
5037 return SQLITE_OK;
5039 if( pCur->skipNext ){
5040 assert( pCur->eState==CURSOR_VALID || pCur->eState==CURSOR_SKIPNEXT );
5041 pCur->eState = CURSOR_VALID;
5042 if( pCur->skipNext<0 ){
5043 pCur->skipNext = 0;
5044 return SQLITE_OK;
5046 pCur->skipNext = 0;
5050 pPage = pCur->apPage[pCur->iPage];
5051 assert( pPage->isInit );
5052 if( !pPage->leaf ){
5053 int idx = pCur->aiIdx[pCur->iPage];
5054 rc = moveToChild(pCur, get4byte(findCell(pPage, idx)));
5055 if( rc ) return rc;
5056 rc = moveToRightmost(pCur);
5057 }else{
5058 while( pCur->aiIdx[pCur->iPage]==0 ){
5059 if( pCur->iPage==0 ){
5060 pCur->eState = CURSOR_INVALID;
5061 *pRes = 1;
5062 return SQLITE_OK;
5064 moveToParent(pCur);
5066 assert( pCur->info.nSize==0 );
5067 assert( (pCur->curFlags & (BTCF_ValidNKey|BTCF_ValidOvfl))==0 );
5069 pCur->aiIdx[pCur->iPage]--;
5070 pPage = pCur->apPage[pCur->iPage];
5071 if( pPage->intKey && !pPage->leaf ){
5072 rc = sqlite3BtreePrevious(pCur, pRes);
5073 }else{
5074 rc = SQLITE_OK;
5077 return rc;
5079 int sqlite3BtreePrevious(BtCursor *pCur, int *pRes){
5080 assert( cursorHoldsMutex(pCur) );
5081 assert( pRes!=0 );
5082 assert( *pRes==0 || *pRes==1 );
5083 assert( pCur->skipNext==0 || pCur->eState!=CURSOR_VALID );
5084 *pRes = 0;
5085 pCur->curFlags &= ~(BTCF_AtLast|BTCF_ValidOvfl|BTCF_ValidNKey);
5086 pCur->info.nSize = 0;
5087 if( pCur->eState!=CURSOR_VALID
5088 || pCur->aiIdx[pCur->iPage]==0
5089 || pCur->apPage[pCur->iPage]->leaf==0
5091 return btreePrevious(pCur, pRes);
5093 pCur->aiIdx[pCur->iPage]--;
5094 return SQLITE_OK;
5098 ** Allocate a new page from the database file.
5100 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
5101 ** has already been called on the new page.) The new page has also
5102 ** been referenced and the calling routine is responsible for calling
5103 ** sqlite3PagerUnref() on the new page when it is done.
5105 ** SQLITE_OK is returned on success. Any other return value indicates
5106 ** an error. *ppPage and *pPgno are undefined in the event of an error.
5107 ** Do not invoke sqlite3PagerUnref() on *ppPage if an error is returned.
5109 ** If the "nearby" parameter is not 0, then an effort is made to
5110 ** locate a page close to the page number "nearby". This can be used in an
5111 ** attempt to keep related pages close to each other in the database file,
5112 ** which in turn can make database access faster.
5114 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5115 ** anywhere on the free-list, then it is guaranteed to be returned. If
5116 ** eMode is BTALLOC_LT then the page returned will be less than or equal
5117 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5118 ** are no restrictions on which page is returned.
5120 static int allocateBtreePage(
5121 BtShared *pBt, /* The btree */
5122 MemPage **ppPage, /* Store pointer to the allocated page here */
5123 Pgno *pPgno, /* Store the page number here */
5124 Pgno nearby, /* Search for a page near this one */
5125 u8 eMode /* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
5127 MemPage *pPage1;
5128 int rc;
5129 u32 n; /* Number of pages on the freelist */
5130 u32 k; /* Number of leaves on the trunk of the freelist */
5131 MemPage *pTrunk = 0;
5132 MemPage *pPrevTrunk = 0;
5133 Pgno mxPage; /* Total size of the database file */
5135 assert( sqlite3_mutex_held(pBt->mutex) );
5136 assert( eMode==BTALLOC_ANY || (nearby>0 && IfNotOmitAV(pBt->autoVacuum)) );
5137 pPage1 = pBt->pPage1;
5138 mxPage = btreePagecount(pBt);
5139 n = get4byte(&pPage1->aData[36]);
5140 testcase( n==mxPage-1 );
5141 if( n>=mxPage ){
5142 return SQLITE_CORRUPT_BKPT;
5144 if( n>0 ){
5145 /* There are pages on the freelist. Reuse one of those pages. */
5146 Pgno iTrunk;
5147 u8 searchList = 0; /* If the free-list must be searched for 'nearby' */
5149 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
5150 ** shows that the page 'nearby' is somewhere on the free-list, then
5151 ** the entire-list will be searched for that page.
5153 #ifndef SQLITE_OMIT_AUTOVACUUM
5154 if( eMode==BTALLOC_EXACT ){
5155 if( nearby<=mxPage ){
5156 u8 eType;
5157 assert( nearby>0 );
5158 assert( pBt->autoVacuum );
5159 rc = ptrmapGet(pBt, nearby, &eType, 0);
5160 if( rc ) return rc;
5161 if( eType==PTRMAP_FREEPAGE ){
5162 searchList = 1;
5165 }else if( eMode==BTALLOC_LE ){
5166 searchList = 1;
5168 #endif
5170 /* Decrement the free-list count by 1. Set iTrunk to the index of the
5171 ** first free-list trunk page. iPrevTrunk is initially 1.
5173 rc = sqlite3PagerWrite(pPage1->pDbPage);
5174 if( rc ) return rc;
5175 put4byte(&pPage1->aData[36], n-1);
5177 /* The code within this loop is run only once if the 'searchList' variable
5178 ** is not true. Otherwise, it runs once for each trunk-page on the
5179 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
5180 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
5182 do {
5183 pPrevTrunk = pTrunk;
5184 if( pPrevTrunk ){
5185 iTrunk = get4byte(&pPrevTrunk->aData[0]);
5186 }else{
5187 iTrunk = get4byte(&pPage1->aData[32]);
5189 testcase( iTrunk==mxPage );
5190 if( iTrunk>mxPage ){
5191 rc = SQLITE_CORRUPT_BKPT;
5192 }else{
5193 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
5195 if( rc ){
5196 pTrunk = 0;
5197 goto end_allocate_page;
5199 assert( pTrunk!=0 );
5200 assert( pTrunk->aData!=0 );
5202 k = get4byte(&pTrunk->aData[4]); /* # of leaves on this trunk page */
5203 if( k==0 && !searchList ){
5204 /* The trunk has no leaves and the list is not being searched.
5205 ** So extract the trunk page itself and use it as the newly
5206 ** allocated page */
5207 assert( pPrevTrunk==0 );
5208 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5209 if( rc ){
5210 goto end_allocate_page;
5212 *pPgno = iTrunk;
5213 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5214 *ppPage = pTrunk;
5215 pTrunk = 0;
5216 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5217 }else if( k>(u32)(pBt->usableSize/4 - 2) ){
5218 /* Value of k is out of range. Database corruption */
5219 rc = SQLITE_CORRUPT_BKPT;
5220 goto end_allocate_page;
5221 #ifndef SQLITE_OMIT_AUTOVACUUM
5222 }else if( searchList
5223 && (nearby==iTrunk || (iTrunk<nearby && eMode==BTALLOC_LE))
5225 /* The list is being searched and this trunk page is the page
5226 ** to allocate, regardless of whether it has leaves.
5228 *pPgno = iTrunk;
5229 *ppPage = pTrunk;
5230 searchList = 0;
5231 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5232 if( rc ){
5233 goto end_allocate_page;
5235 if( k==0 ){
5236 if( !pPrevTrunk ){
5237 memcpy(&pPage1->aData[32], &pTrunk->aData[0], 4);
5238 }else{
5239 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5240 if( rc!=SQLITE_OK ){
5241 goto end_allocate_page;
5243 memcpy(&pPrevTrunk->aData[0], &pTrunk->aData[0], 4);
5245 }else{
5246 /* The trunk page is required by the caller but it contains
5247 ** pointers to free-list leaves. The first leaf becomes a trunk
5248 ** page in this case.
5250 MemPage *pNewTrunk;
5251 Pgno iNewTrunk = get4byte(&pTrunk->aData[8]);
5252 if( iNewTrunk>mxPage ){
5253 rc = SQLITE_CORRUPT_BKPT;
5254 goto end_allocate_page;
5256 testcase( iNewTrunk==mxPage );
5257 rc = btreeGetPage(pBt, iNewTrunk, &pNewTrunk, 0);
5258 if( rc!=SQLITE_OK ){
5259 goto end_allocate_page;
5261 rc = sqlite3PagerWrite(pNewTrunk->pDbPage);
5262 if( rc!=SQLITE_OK ){
5263 releasePage(pNewTrunk);
5264 goto end_allocate_page;
5266 memcpy(&pNewTrunk->aData[0], &pTrunk->aData[0], 4);
5267 put4byte(&pNewTrunk->aData[4], k-1);
5268 memcpy(&pNewTrunk->aData[8], &pTrunk->aData[12], (k-1)*4);
5269 releasePage(pNewTrunk);
5270 if( !pPrevTrunk ){
5271 assert( sqlite3PagerIswriteable(pPage1->pDbPage) );
5272 put4byte(&pPage1->aData[32], iNewTrunk);
5273 }else{
5274 rc = sqlite3PagerWrite(pPrevTrunk->pDbPage);
5275 if( rc ){
5276 goto end_allocate_page;
5278 put4byte(&pPrevTrunk->aData[0], iNewTrunk);
5281 pTrunk = 0;
5282 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno, n-1));
5283 #endif
5284 }else if( k>0 ){
5285 /* Extract a leaf from the trunk */
5286 u32 closest;
5287 Pgno iPage;
5288 unsigned char *aData = pTrunk->aData;
5289 if( nearby>0 ){
5290 u32 i;
5291 closest = 0;
5292 if( eMode==BTALLOC_LE ){
5293 for(i=0; i<k; i++){
5294 iPage = get4byte(&aData[8+i*4]);
5295 if( iPage<=nearby ){
5296 closest = i;
5297 break;
5300 }else{
5301 int dist;
5302 dist = sqlite3AbsInt32(get4byte(&aData[8]) - nearby);
5303 for(i=1; i<k; i++){
5304 int d2 = sqlite3AbsInt32(get4byte(&aData[8+i*4]) - nearby);
5305 if( d2<dist ){
5306 closest = i;
5307 dist = d2;
5311 }else{
5312 closest = 0;
5315 iPage = get4byte(&aData[8+closest*4]);
5316 testcase( iPage==mxPage );
5317 if( iPage>mxPage ){
5318 rc = SQLITE_CORRUPT_BKPT;
5319 goto end_allocate_page;
5321 testcase( iPage==mxPage );
5322 if( !searchList
5323 || (iPage==nearby || (iPage<nearby && eMode==BTALLOC_LE))
5325 int noContent;
5326 *pPgno = iPage;
5327 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
5328 ": %d more free pages\n",
5329 *pPgno, closest+1, k, pTrunk->pgno, n-1));
5330 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5331 if( rc ) goto end_allocate_page;
5332 if( closest<k-1 ){
5333 memcpy(&aData[8+closest*4], &aData[4+k*4], 4);
5335 put4byte(&aData[4], k-1);
5336 noContent = !btreeGetHasContent(pBt, *pPgno)? PAGER_GET_NOCONTENT : 0;
5337 rc = btreeGetPage(pBt, *pPgno, ppPage, noContent);
5338 if( rc==SQLITE_OK ){
5339 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
5340 if( rc!=SQLITE_OK ){
5341 releasePage(*ppPage);
5344 searchList = 0;
5347 releasePage(pPrevTrunk);
5348 pPrevTrunk = 0;
5349 }while( searchList );
5350 }else{
5351 /* There are no pages on the freelist, so append a new page to the
5352 ** database image.
5354 ** Normally, new pages allocated by this block can be requested from the
5355 ** pager layer with the 'no-content' flag set. This prevents the pager
5356 ** from trying to read the pages content from disk. However, if the
5357 ** current transaction has already run one or more incremental-vacuum
5358 ** steps, then the page we are about to allocate may contain content
5359 ** that is required in the event of a rollback. In this case, do
5360 ** not set the no-content flag. This causes the pager to load and journal
5361 ** the current page content before overwriting it.
5363 ** Note that the pager will not actually attempt to load or journal
5364 ** content for any page that really does lie past the end of the database
5365 ** file on disk. So the effects of disabling the no-content optimization
5366 ** here are confined to those pages that lie between the end of the
5367 ** database image and the end of the database file.
5369 int bNoContent = (0==IfNotOmitAV(pBt->bDoTruncate))? PAGER_GET_NOCONTENT:0;
5371 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
5372 if( rc ) return rc;
5373 pBt->nPage++;
5374 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ) pBt->nPage++;
5376 #ifndef SQLITE_OMIT_AUTOVACUUM
5377 if( pBt->autoVacuum && PTRMAP_ISPAGE(pBt, pBt->nPage) ){
5378 /* If *pPgno refers to a pointer-map page, allocate two new pages
5379 ** at the end of the file instead of one. The first allocated page
5380 ** becomes a new pointer-map page, the second is used by the caller.
5382 MemPage *pPg = 0;
5383 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt->nPage));
5384 assert( pBt->nPage!=PENDING_BYTE_PAGE(pBt) );
5385 rc = btreeGetPage(pBt, pBt->nPage, &pPg, bNoContent);
5386 if( rc==SQLITE_OK ){
5387 rc = sqlite3PagerWrite(pPg->pDbPage);
5388 releasePage(pPg);
5390 if( rc ) return rc;
5391 pBt->nPage++;
5392 if( pBt->nPage==PENDING_BYTE_PAGE(pBt) ){ pBt->nPage++; }
5394 #endif
5395 put4byte(28 + (u8*)pBt->pPage1->aData, pBt->nPage);
5396 *pPgno = pBt->nPage;
5398 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
5399 rc = btreeGetPage(pBt, *pPgno, ppPage, bNoContent);
5400 if( rc ) return rc;
5401 rc = sqlite3PagerWrite((*ppPage)->pDbPage);
5402 if( rc!=SQLITE_OK ){
5403 releasePage(*ppPage);
5405 TRACE(("ALLOCATE: %d from end of file\n", *pPgno));
5408 assert( *pPgno!=PENDING_BYTE_PAGE(pBt) );
5410 end_allocate_page:
5411 releasePage(pTrunk);
5412 releasePage(pPrevTrunk);
5413 if( rc==SQLITE_OK ){
5414 if( sqlite3PagerPageRefcount((*ppPage)->pDbPage)>1 ){
5415 releasePage(*ppPage);
5416 *ppPage = 0;
5417 return SQLITE_CORRUPT_BKPT;
5419 (*ppPage)->isInit = 0;
5420 }else{
5421 *ppPage = 0;
5423 assert( rc!=SQLITE_OK || sqlite3PagerIswriteable((*ppPage)->pDbPage) );
5424 return rc;
5428 ** This function is used to add page iPage to the database file free-list.
5429 ** It is assumed that the page is not already a part of the free-list.
5431 ** The value passed as the second argument to this function is optional.
5432 ** If the caller happens to have a pointer to the MemPage object
5433 ** corresponding to page iPage handy, it may pass it as the second value.
5434 ** Otherwise, it may pass NULL.
5436 ** If a pointer to a MemPage object is passed as the second argument,
5437 ** its reference count is not altered by this function.
5439 static int freePage2(BtShared *pBt, MemPage *pMemPage, Pgno iPage){
5440 MemPage *pTrunk = 0; /* Free-list trunk page */
5441 Pgno iTrunk = 0; /* Page number of free-list trunk page */
5442 MemPage *pPage1 = pBt->pPage1; /* Local reference to page 1 */
5443 MemPage *pPage; /* Page being freed. May be NULL. */
5444 int rc; /* Return Code */
5445 int nFree; /* Initial number of pages on free-list */
5447 assert( sqlite3_mutex_held(pBt->mutex) );
5448 assert( iPage>1 );
5449 assert( !pMemPage || pMemPage->pgno==iPage );
5451 if( pMemPage ){
5452 pPage = pMemPage;
5453 sqlite3PagerRef(pPage->pDbPage);
5454 }else{
5455 pPage = btreePageLookup(pBt, iPage);
5458 /* Increment the free page count on pPage1 */
5459 rc = sqlite3PagerWrite(pPage1->pDbPage);
5460 if( rc ) goto freepage_out;
5461 nFree = get4byte(&pPage1->aData[36]);
5462 put4byte(&pPage1->aData[36], nFree+1);
5464 if( pBt->btsFlags & BTS_SECURE_DELETE ){
5465 /* If the secure_delete option is enabled, then
5466 ** always fully overwrite deleted information with zeros.
5468 if( (!pPage && ((rc = btreeGetPage(pBt, iPage, &pPage, 0))!=0) )
5469 || ((rc = sqlite3PagerWrite(pPage->pDbPage))!=0)
5471 goto freepage_out;
5473 memset(pPage->aData, 0, pPage->pBt->pageSize);
5476 /* If the database supports auto-vacuum, write an entry in the pointer-map
5477 ** to indicate that the page is free.
5479 if( ISAUTOVACUUM ){
5480 ptrmapPut(pBt, iPage, PTRMAP_FREEPAGE, 0, &rc);
5481 if( rc ) goto freepage_out;
5484 /* Now manipulate the actual database free-list structure. There are two
5485 ** possibilities. If the free-list is currently empty, or if the first
5486 ** trunk page in the free-list is full, then this page will become a
5487 ** new free-list trunk page. Otherwise, it will become a leaf of the
5488 ** first trunk page in the current free-list. This block tests if it
5489 ** is possible to add the page as a new free-list leaf.
5491 if( nFree!=0 ){
5492 u32 nLeaf; /* Initial number of leaf cells on trunk page */
5494 iTrunk = get4byte(&pPage1->aData[32]);
5495 rc = btreeGetPage(pBt, iTrunk, &pTrunk, 0);
5496 if( rc!=SQLITE_OK ){
5497 goto freepage_out;
5500 nLeaf = get4byte(&pTrunk->aData[4]);
5501 assert( pBt->usableSize>32 );
5502 if( nLeaf > (u32)pBt->usableSize/4 - 2 ){
5503 rc = SQLITE_CORRUPT_BKPT;
5504 goto freepage_out;
5506 if( nLeaf < (u32)pBt->usableSize/4 - 8 ){
5507 /* In this case there is room on the trunk page to insert the page
5508 ** being freed as a new leaf.
5510 ** Note that the trunk page is not really full until it contains
5511 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
5512 ** coded. But due to a coding error in versions of SQLite prior to
5513 ** 3.6.0, databases with freelist trunk pages holding more than
5514 ** usableSize/4 - 8 entries will be reported as corrupt. In order
5515 ** to maintain backwards compatibility with older versions of SQLite,
5516 ** we will continue to restrict the number of entries to usableSize/4 - 8
5517 ** for now. At some point in the future (once everyone has upgraded
5518 ** to 3.6.0 or later) we should consider fixing the conditional above
5519 ** to read "usableSize/4-2" instead of "usableSize/4-8".
5521 rc = sqlite3PagerWrite(pTrunk->pDbPage);
5522 if( rc==SQLITE_OK ){
5523 put4byte(&pTrunk->aData[4], nLeaf+1);
5524 put4byte(&pTrunk->aData[8+nLeaf*4], iPage);
5525 if( pPage && (pBt->btsFlags & BTS_SECURE_DELETE)==0 ){
5526 sqlite3PagerDontWrite(pPage->pDbPage);
5528 rc = btreeSetHasContent(pBt, iPage);
5530 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage->pgno,pTrunk->pgno));
5531 goto freepage_out;
5535 /* If control flows to this point, then it was not possible to add the
5536 ** the page being freed as a leaf page of the first trunk in the free-list.
5537 ** Possibly because the free-list is empty, or possibly because the
5538 ** first trunk in the free-list is full. Either way, the page being freed
5539 ** will become the new first trunk page in the free-list.
5541 if( pPage==0 && SQLITE_OK!=(rc = btreeGetPage(pBt, iPage, &pPage, 0)) ){
5542 goto freepage_out;
5544 rc = sqlite3PagerWrite(pPage->pDbPage);
5545 if( rc!=SQLITE_OK ){
5546 goto freepage_out;
5548 put4byte(pPage->aData, iTrunk);
5549 put4byte(&pPage->aData[4], 0);
5550 put4byte(&pPage1->aData[32], iPage);
5551 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage->pgno, iTrunk));
5553 freepage_out:
5554 if( pPage ){
5555 pPage->isInit = 0;
5557 releasePage(pPage);
5558 releasePage(pTrunk);
5559 return rc;
5561 static void freePage(MemPage *pPage, int *pRC){
5562 if( (*pRC)==SQLITE_OK ){
5563 *pRC = freePage2(pPage->pBt, pPage, pPage->pgno);
5568 ** Free any overflow pages associated with the given Cell. Write the
5569 ** local Cell size (the number of bytes on the original page, omitting
5570 ** overflow) into *pnSize.
5572 static int clearCell(
5573 MemPage *pPage, /* The page that contains the Cell */
5574 unsigned char *pCell, /* First byte of the Cell */
5575 u16 *pnSize /* Write the size of the Cell here */
5577 BtShared *pBt = pPage->pBt;
5578 CellInfo info;
5579 Pgno ovflPgno;
5580 int rc;
5581 int nOvfl;
5582 u32 ovflPageSize;
5584 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
5585 btreeParseCellPtr(pPage, pCell, &info);
5586 *pnSize = info.nSize;
5587 if( info.iOverflow==0 ){
5588 return SQLITE_OK; /* No overflow pages. Return without doing anything */
5590 if( pCell+info.iOverflow+3 > pPage->aData+pPage->maskPage ){
5591 return SQLITE_CORRUPT_BKPT; /* Cell extends past end of page */
5593 ovflPgno = get4byte(&pCell[info.iOverflow]);
5594 assert( pBt->usableSize > 4 );
5595 ovflPageSize = pBt->usableSize - 4;
5596 nOvfl = (info.nPayload - info.nLocal + ovflPageSize - 1)/ovflPageSize;
5597 assert( ovflPgno==0 || nOvfl>0 );
5598 while( nOvfl-- ){
5599 Pgno iNext = 0;
5600 MemPage *pOvfl = 0;
5601 if( ovflPgno<2 || ovflPgno>btreePagecount(pBt) ){
5602 /* 0 is not a legal page number and page 1 cannot be an
5603 ** overflow page. Therefore if ovflPgno<2 or past the end of the
5604 ** file the database must be corrupt. */
5605 return SQLITE_CORRUPT_BKPT;
5607 if( nOvfl ){
5608 rc = getOverflowPage(pBt, ovflPgno, &pOvfl, &iNext);
5609 if( rc ) return rc;
5612 if( ( pOvfl || ((pOvfl = btreePageLookup(pBt, ovflPgno))!=0) )
5613 && sqlite3PagerPageRefcount(pOvfl->pDbPage)!=1
5615 /* There is no reason any cursor should have an outstanding reference
5616 ** to an overflow page belonging to a cell that is being deleted/updated.
5617 ** So if there exists more than one reference to this page, then it
5618 ** must not really be an overflow page and the database must be corrupt.
5619 ** It is helpful to detect this before calling freePage2(), as
5620 ** freePage2() may zero the page contents if secure-delete mode is
5621 ** enabled. If this 'overflow' page happens to be a page that the
5622 ** caller is iterating through or using in some other way, this
5623 ** can be problematic.
5625 rc = SQLITE_CORRUPT_BKPT;
5626 }else{
5627 rc = freePage2(pBt, pOvfl, ovflPgno);
5630 if( pOvfl ){
5631 sqlite3PagerUnref(pOvfl->pDbPage);
5633 if( rc ) return rc;
5634 ovflPgno = iNext;
5636 return SQLITE_OK;
5640 ** Create the byte sequence used to represent a cell on page pPage
5641 ** and write that byte sequence into pCell[]. Overflow pages are
5642 ** allocated and filled in as necessary. The calling procedure
5643 ** is responsible for making sure sufficient space has been allocated
5644 ** for pCell[].
5646 ** Note that pCell does not necessary need to point to the pPage->aData
5647 ** area. pCell might point to some temporary storage. The cell will
5648 ** be constructed in this temporary area then copied into pPage->aData
5649 ** later.
5651 static int fillInCell(
5652 MemPage *pPage, /* The page that contains the cell */
5653 unsigned char *pCell, /* Complete text of the cell */
5654 const void *pKey, i64 nKey, /* The key */
5655 const void *pData,int nData, /* The data */
5656 int nZero, /* Extra zero bytes to append to pData */
5657 int *pnSize /* Write cell size here */
5659 int nPayload;
5660 const u8 *pSrc;
5661 int nSrc, n, rc;
5662 int spaceLeft;
5663 MemPage *pOvfl = 0;
5664 MemPage *pToRelease = 0;
5665 unsigned char *pPrior;
5666 unsigned char *pPayload;
5667 BtShared *pBt = pPage->pBt;
5668 Pgno pgnoOvfl = 0;
5669 int nHeader;
5671 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
5673 /* pPage is not necessarily writeable since pCell might be auxiliary
5674 ** buffer space that is separate from the pPage buffer area */
5675 assert( pCell<pPage->aData || pCell>=&pPage->aData[pBt->pageSize]
5676 || sqlite3PagerIswriteable(pPage->pDbPage) );
5678 /* Fill in the header. */
5679 nHeader = pPage->childPtrSize;
5680 nPayload = nData + nZero;
5681 if( pPage->intKeyLeaf ){
5682 nHeader += putVarint32(&pCell[nHeader], nPayload);
5683 }else{
5684 assert( nData==0 );
5685 assert( nZero==0 );
5687 nHeader += putVarint(&pCell[nHeader], *(u64*)&nKey);
5689 /* Fill in the payload size */
5690 if( pPage->intKey ){
5691 pSrc = pData;
5692 nSrc = nData;
5693 nData = 0;
5694 }else{
5695 if( NEVER(nKey>0x7fffffff || pKey==0) ){
5696 return SQLITE_CORRUPT_BKPT;
5698 nPayload = (int)nKey;
5699 pSrc = pKey;
5700 nSrc = (int)nKey;
5702 if( nPayload<=pPage->maxLocal ){
5703 n = nHeader + nPayload;
5704 testcase( n==3 );
5705 testcase( n==4 );
5706 if( n<4 ) n = 4;
5707 *pnSize = n;
5708 spaceLeft = nPayload;
5709 pPrior = pCell;
5710 }else{
5711 int mn = pPage->minLocal;
5712 n = mn + (nPayload - mn) % (pPage->pBt->usableSize - 4);
5713 testcase( n==pPage->maxLocal );
5714 testcase( n==pPage->maxLocal+1 );
5715 if( n > pPage->maxLocal ) n = mn;
5716 spaceLeft = n;
5717 *pnSize = n + nHeader + 4;
5718 pPrior = &pCell[nHeader+n];
5720 pPayload = &pCell[nHeader];
5722 /* At this point variables should be set as follows:
5724 ** nPayload Total payload size in bytes
5725 ** pPayload Begin writing payload here
5726 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
5727 ** that means content must spill into overflow pages.
5728 ** *pnSize Size of the local cell (not counting overflow pages)
5729 ** pPrior Where to write the pgno of the first overflow page
5731 ** Use a call to btreeParseCellPtr() to verify that the values above
5732 ** were computed correctly.
5734 #if SQLITE_DEBUG
5736 CellInfo info;
5737 btreeParseCellPtr(pPage, pCell, &info);
5738 assert( nHeader=(int)(info.pPayload - pCell) );
5739 assert( info.nKey==nKey );
5740 assert( *pnSize == info.nSize );
5741 assert( spaceLeft == info.nLocal );
5742 assert( pPrior == &pCell[info.iOverflow] );
5744 #endif
5746 /* Write the payload into the local Cell and any extra into overflow pages */
5747 while( nPayload>0 ){
5748 if( spaceLeft==0 ){
5749 #ifndef SQLITE_OMIT_AUTOVACUUM
5750 Pgno pgnoPtrmap = pgnoOvfl; /* Overflow page pointer-map entry page */
5751 if( pBt->autoVacuum ){
5753 pgnoOvfl++;
5754 } while(
5755 PTRMAP_ISPAGE(pBt, pgnoOvfl) || pgnoOvfl==PENDING_BYTE_PAGE(pBt)
5758 #endif
5759 rc = allocateBtreePage(pBt, &pOvfl, &pgnoOvfl, pgnoOvfl, 0);
5760 #ifndef SQLITE_OMIT_AUTOVACUUM
5761 /* If the database supports auto-vacuum, and the second or subsequent
5762 ** overflow page is being allocated, add an entry to the pointer-map
5763 ** for that page now.
5765 ** If this is the first overflow page, then write a partial entry
5766 ** to the pointer-map. If we write nothing to this pointer-map slot,
5767 ** then the optimistic overflow chain processing in clearCell()
5768 ** may misinterpret the uninitialized values and delete the
5769 ** wrong pages from the database.
5771 if( pBt->autoVacuum && rc==SQLITE_OK ){
5772 u8 eType = (pgnoPtrmap?PTRMAP_OVERFLOW2:PTRMAP_OVERFLOW1);
5773 ptrmapPut(pBt, pgnoOvfl, eType, pgnoPtrmap, &rc);
5774 if( rc ){
5775 releasePage(pOvfl);
5778 #endif
5779 if( rc ){
5780 releasePage(pToRelease);
5781 return rc;
5784 /* If pToRelease is not zero than pPrior points into the data area
5785 ** of pToRelease. Make sure pToRelease is still writeable. */
5786 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5788 /* If pPrior is part of the data area of pPage, then make sure pPage
5789 ** is still writeable */
5790 assert( pPrior<pPage->aData || pPrior>=&pPage->aData[pBt->pageSize]
5791 || sqlite3PagerIswriteable(pPage->pDbPage) );
5793 put4byte(pPrior, pgnoOvfl);
5794 releasePage(pToRelease);
5795 pToRelease = pOvfl;
5796 pPrior = pOvfl->aData;
5797 put4byte(pPrior, 0);
5798 pPayload = &pOvfl->aData[4];
5799 spaceLeft = pBt->usableSize - 4;
5801 n = nPayload;
5802 if( n>spaceLeft ) n = spaceLeft;
5804 /* If pToRelease is not zero than pPayload points into the data area
5805 ** of pToRelease. Make sure pToRelease is still writeable. */
5806 assert( pToRelease==0 || sqlite3PagerIswriteable(pToRelease->pDbPage) );
5808 /* If pPayload is part of the data area of pPage, then make sure pPage
5809 ** is still writeable */
5810 assert( pPayload<pPage->aData || pPayload>=&pPage->aData[pBt->pageSize]
5811 || sqlite3PagerIswriteable(pPage->pDbPage) );
5813 if( nSrc>0 ){
5814 if( n>nSrc ) n = nSrc;
5815 assert( pSrc );
5816 memcpy(pPayload, pSrc, n);
5817 }else{
5818 memset(pPayload, 0, n);
5820 nPayload -= n;
5821 pPayload += n;
5822 pSrc += n;
5823 nSrc -= n;
5824 spaceLeft -= n;
5825 if( nSrc==0 ){
5826 nSrc = nData;
5827 pSrc = pData;
5830 releasePage(pToRelease);
5831 return SQLITE_OK;
5835 ** Remove the i-th cell from pPage. This routine effects pPage only.
5836 ** The cell content is not freed or deallocated. It is assumed that
5837 ** the cell content has been copied someplace else. This routine just
5838 ** removes the reference to the cell from pPage.
5840 ** "sz" must be the number of bytes in the cell.
5842 static void dropCell(MemPage *pPage, int idx, int sz, int *pRC){
5843 u32 pc; /* Offset to cell content of cell being deleted */
5844 u8 *data; /* pPage->aData */
5845 u8 *ptr; /* Used to move bytes around within data[] */
5846 int rc; /* The return code */
5847 int hdr; /* Beginning of the header. 0 most pages. 100 page 1 */
5849 if( *pRC ) return;
5851 assert( idx>=0 && idx<pPage->nCell );
5852 assert( sz==cellSize(pPage, idx) );
5853 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
5854 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
5855 data = pPage->aData;
5856 ptr = &pPage->aCellIdx[2*idx];
5857 pc = get2byte(ptr);
5858 hdr = pPage->hdrOffset;
5859 testcase( pc==get2byte(&data[hdr+5]) );
5860 testcase( pc+sz==pPage->pBt->usableSize );
5861 if( pc < (u32)get2byte(&data[hdr+5]) || pc+sz > pPage->pBt->usableSize ){
5862 *pRC = SQLITE_CORRUPT_BKPT;
5863 return;
5865 rc = freeSpace(pPage, pc, sz);
5866 if( rc ){
5867 *pRC = rc;
5868 return;
5870 pPage->nCell--;
5871 memmove(ptr, ptr+2, 2*(pPage->nCell - idx));
5872 put2byte(&data[hdr+3], pPage->nCell);
5873 pPage->nFree += 2;
5877 ** Insert a new cell on pPage at cell index "i". pCell points to the
5878 ** content of the cell.
5880 ** If the cell content will fit on the page, then put it there. If it
5881 ** will not fit, then make a copy of the cell content into pTemp if
5882 ** pTemp is not null. Regardless of pTemp, allocate a new entry
5883 ** in pPage->apOvfl[] and make it point to the cell content (either
5884 ** in pTemp or the original pCell) and also record its index.
5885 ** Allocating a new entry in pPage->aCell[] implies that
5886 ** pPage->nOverflow is incremented.
5888 static void insertCell(
5889 MemPage *pPage, /* Page into which we are copying */
5890 int i, /* New cell becomes the i-th cell of the page */
5891 u8 *pCell, /* Content of the new cell */
5892 int sz, /* Bytes of content in pCell */
5893 u8 *pTemp, /* Temp storage space for pCell, if needed */
5894 Pgno iChild, /* If non-zero, replace first 4 bytes with this value */
5895 int *pRC /* Read and write return code from here */
5897 int idx = 0; /* Where to write new cell content in data[] */
5898 int j; /* Loop counter */
5899 int end; /* First byte past the last cell pointer in data[] */
5900 int ins; /* Index in data[] where new cell pointer is inserted */
5901 int cellOffset; /* Address of first cell pointer in data[] */
5902 u8 *data; /* The content of the whole page */
5904 if( *pRC ) return;
5906 assert( i>=0 && i<=pPage->nCell+pPage->nOverflow );
5907 assert( MX_CELL(pPage->pBt)<=10921 );
5908 assert( pPage->nCell<=MX_CELL(pPage->pBt) || CORRUPT_DB );
5909 assert( pPage->nOverflow<=ArraySize(pPage->apOvfl) );
5910 assert( ArraySize(pPage->apOvfl)==ArraySize(pPage->aiOvfl) );
5911 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
5912 /* The cell should normally be sized correctly. However, when moving a
5913 ** malformed cell from a leaf page to an interior page, if the cell size
5914 ** wanted to be less than 4 but got rounded up to 4 on the leaf, then size
5915 ** might be less than 8 (leaf-size + pointer) on the interior node. Hence
5916 ** the term after the || in the following assert(). */
5917 assert( sz==cellSizePtr(pPage, pCell) || (sz==8 && iChild>0) );
5918 if( pPage->nOverflow || sz+2>pPage->nFree ){
5919 if( pTemp ){
5920 memcpy(pTemp, pCell, sz);
5921 pCell = pTemp;
5923 if( iChild ){
5924 put4byte(pCell, iChild);
5926 j = pPage->nOverflow++;
5927 assert( j<(int)(sizeof(pPage->apOvfl)/sizeof(pPage->apOvfl[0])) );
5928 pPage->apOvfl[j] = pCell;
5929 pPage->aiOvfl[j] = (u16)i;
5930 }else{
5931 int rc = sqlite3PagerWrite(pPage->pDbPage);
5932 if( rc!=SQLITE_OK ){
5933 *pRC = rc;
5934 return;
5936 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
5937 data = pPage->aData;
5938 cellOffset = pPage->cellOffset;
5939 end = cellOffset + 2*pPage->nCell;
5940 ins = cellOffset + 2*i;
5941 rc = allocateSpace(pPage, sz, &idx);
5942 if( rc ){ *pRC = rc; return; }
5943 /* The allocateSpace() routine guarantees the following two properties
5944 ** if it returns success */
5945 assert( idx >= end+2 );
5946 assert( idx+sz <= (int)pPage->pBt->usableSize );
5947 pPage->nCell++;
5948 pPage->nFree -= (u16)(2 + sz);
5949 memcpy(&data[idx], pCell, sz);
5950 if( iChild ){
5951 put4byte(&data[idx], iChild);
5953 memmove(&data[ins+2], &data[ins], end-ins);
5954 put2byte(&data[ins], idx);
5955 put2byte(&data[pPage->hdrOffset+3], pPage->nCell);
5956 #ifndef SQLITE_OMIT_AUTOVACUUM
5957 if( pPage->pBt->autoVacuum ){
5958 /* The cell may contain a pointer to an overflow page. If so, write
5959 ** the entry for the overflow page into the pointer map.
5961 ptrmapPutOvflPtr(pPage, pCell, pRC);
5963 #endif
5968 ** Add a list of cells to a page. The page should be initially empty.
5969 ** The cells are guaranteed to fit on the page.
5971 static void assemblePage(
5972 MemPage *pPage, /* The page to be assembled */
5973 int nCell, /* The number of cells to add to this page */
5974 u8 **apCell, /* Pointers to cell bodies */
5975 u16 *aSize /* Sizes of the cells */
5977 int i; /* Loop counter */
5978 u8 *pCellptr; /* Address of next cell pointer */
5979 int cellbody; /* Address of next cell body */
5980 u8 * const data = pPage->aData; /* Pointer to data for pPage */
5981 const int hdr = pPage->hdrOffset; /* Offset of header on pPage */
5982 const int nUsable = pPage->pBt->usableSize; /* Usable size of page */
5984 assert( pPage->nOverflow==0 );
5985 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
5986 assert( nCell>=0 && nCell<=(int)MX_CELL(pPage->pBt)
5987 && (int)MX_CELL(pPage->pBt)<=10921);
5988 assert( sqlite3PagerIswriteable(pPage->pDbPage) );
5990 /* Check that the page has just been zeroed by zeroPage() */
5991 assert( pPage->nCell==0 );
5992 assert( get2byteNotZero(&data[hdr+5])==nUsable );
5994 pCellptr = &pPage->aCellIdx[nCell*2];
5995 cellbody = nUsable;
5996 for(i=nCell-1; i>=0; i--){
5997 u16 sz = aSize[i];
5998 pCellptr -= 2;
5999 cellbody -= sz;
6000 put2byte(pCellptr, cellbody);
6001 memcpy(&data[cellbody], apCell[i], sz);
6003 put2byte(&data[hdr+3], nCell);
6004 put2byte(&data[hdr+5], cellbody);
6005 pPage->nFree -= (nCell*2 + nUsable - cellbody);
6006 pPage->nCell = (u16)nCell;
6010 ** The following parameters determine how many adjacent pages get involved
6011 ** in a balancing operation. NN is the number of neighbors on either side
6012 ** of the page that participate in the balancing operation. NB is the
6013 ** total number of pages that participate, including the target page and
6014 ** NN neighbors on either side.
6016 ** The minimum value of NN is 1 (of course). Increasing NN above 1
6017 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6018 ** in exchange for a larger degradation in INSERT and UPDATE performance.
6019 ** The value of NN appears to give the best results overall.
6021 #define NN 1 /* Number of neighbors on either side of pPage */
6022 #define NB (NN*2+1) /* Total pages involved in the balance */
6025 #ifndef SQLITE_OMIT_QUICKBALANCE
6027 ** This version of balance() handles the common special case where
6028 ** a new entry is being inserted on the extreme right-end of the
6029 ** tree, in other words, when the new entry will become the largest
6030 ** entry in the tree.
6032 ** Instead of trying to balance the 3 right-most leaf pages, just add
6033 ** a new page to the right-hand side and put the one new entry in
6034 ** that page. This leaves the right side of the tree somewhat
6035 ** unbalanced. But odds are that we will be inserting new entries
6036 ** at the end soon afterwards so the nearly empty page will quickly
6037 ** fill up. On average.
6039 ** pPage is the leaf page which is the right-most page in the tree.
6040 ** pParent is its parent. pPage must have a single overflow entry
6041 ** which is also the right-most entry on the page.
6043 ** The pSpace buffer is used to store a temporary copy of the divider
6044 ** cell that will be inserted into pParent. Such a cell consists of a 4
6045 ** byte page number followed by a variable length integer. In other
6046 ** words, at most 13 bytes. Hence the pSpace buffer must be at
6047 ** least 13 bytes in size.
6049 static int balance_quick(MemPage *pParent, MemPage *pPage, u8 *pSpace){
6050 BtShared *const pBt = pPage->pBt; /* B-Tree Database */
6051 MemPage *pNew; /* Newly allocated page */
6052 int rc; /* Return Code */
6053 Pgno pgnoNew; /* Page number of pNew */
6055 assert( sqlite3_mutex_held(pPage->pBt->mutex) );
6056 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6057 assert( pPage->nOverflow==1 );
6059 /* This error condition is now caught prior to reaching this function */
6060 if( pPage->nCell==0 ) return SQLITE_CORRUPT_BKPT;
6062 /* Allocate a new page. This page will become the right-sibling of
6063 ** pPage. Make the parent page writable, so that the new divider cell
6064 ** may be inserted. If both these operations are successful, proceed.
6066 rc = allocateBtreePage(pBt, &pNew, &pgnoNew, 0, 0);
6068 if( rc==SQLITE_OK ){
6070 u8 *pOut = &pSpace[4];
6071 u8 *pCell = pPage->apOvfl[0];
6072 u16 szCell = cellSizePtr(pPage, pCell);
6073 u8 *pStop;
6075 assert( sqlite3PagerIswriteable(pNew->pDbPage) );
6076 assert( pPage->aData[0]==(PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF) );
6077 zeroPage(pNew, PTF_INTKEY|PTF_LEAFDATA|PTF_LEAF);
6078 assemblePage(pNew, 1, &pCell, &szCell);
6080 /* If this is an auto-vacuum database, update the pointer map
6081 ** with entries for the new page, and any pointer from the
6082 ** cell on the page to an overflow page. If either of these
6083 ** operations fails, the return code is set, but the contents
6084 ** of the parent page are still manipulated by thh code below.
6085 ** That is Ok, at this point the parent page is guaranteed to
6086 ** be marked as dirty. Returning an error code will cause a
6087 ** rollback, undoing any changes made to the parent page.
6089 if( ISAUTOVACUUM ){
6090 ptrmapPut(pBt, pgnoNew, PTRMAP_BTREE, pParent->pgno, &rc);
6091 if( szCell>pNew->minLocal ){
6092 ptrmapPutOvflPtr(pNew, pCell, &rc);
6096 /* Create a divider cell to insert into pParent. The divider cell
6097 ** consists of a 4-byte page number (the page number of pPage) and
6098 ** a variable length key value (which must be the same value as the
6099 ** largest key on pPage).
6101 ** To find the largest key value on pPage, first find the right-most
6102 ** cell on pPage. The first two fields of this cell are the
6103 ** record-length (a variable length integer at most 32-bits in size)
6104 ** and the key value (a variable length integer, may have any value).
6105 ** The first of the while(...) loops below skips over the record-length
6106 ** field. The second while(...) loop copies the key value from the
6107 ** cell on pPage into the pSpace buffer.
6109 pCell = findCell(pPage, pPage->nCell-1);
6110 pStop = &pCell[9];
6111 while( (*(pCell++)&0x80) && pCell<pStop );
6112 pStop = &pCell[9];
6113 while( ((*(pOut++) = *(pCell++))&0x80) && pCell<pStop );
6115 /* Insert the new divider cell into pParent. */
6116 insertCell(pParent, pParent->nCell, pSpace, (int)(pOut-pSpace),
6117 0, pPage->pgno, &rc);
6119 /* Set the right-child pointer of pParent to point to the new page. */
6120 put4byte(&pParent->aData[pParent->hdrOffset+8], pgnoNew);
6122 /* Release the reference to the new page. */
6123 releasePage(pNew);
6126 return rc;
6128 #endif /* SQLITE_OMIT_QUICKBALANCE */
6130 #if 0
6132 ** This function does not contribute anything to the operation of SQLite.
6133 ** it is sometimes activated temporarily while debugging code responsible
6134 ** for setting pointer-map entries.
6136 static int ptrmapCheckPages(MemPage **apPage, int nPage){
6137 int i, j;
6138 for(i=0; i<nPage; i++){
6139 Pgno n;
6140 u8 e;
6141 MemPage *pPage = apPage[i];
6142 BtShared *pBt = pPage->pBt;
6143 assert( pPage->isInit );
6145 for(j=0; j<pPage->nCell; j++){
6146 CellInfo info;
6147 u8 *z;
6149 z = findCell(pPage, j);
6150 btreeParseCellPtr(pPage, z, &info);
6151 if( info.iOverflow ){
6152 Pgno ovfl = get4byte(&z[info.iOverflow]);
6153 ptrmapGet(pBt, ovfl, &e, &n);
6154 assert( n==pPage->pgno && e==PTRMAP_OVERFLOW1 );
6156 if( !pPage->leaf ){
6157 Pgno child = get4byte(z);
6158 ptrmapGet(pBt, child, &e, &n);
6159 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6162 if( !pPage->leaf ){
6163 Pgno child = get4byte(&pPage->aData[pPage->hdrOffset+8]);
6164 ptrmapGet(pBt, child, &e, &n);
6165 assert( n==pPage->pgno && e==PTRMAP_BTREE );
6168 return 1;
6170 #endif
6173 ** This function is used to copy the contents of the b-tree node stored
6174 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
6175 ** the pointer-map entries for each child page are updated so that the
6176 ** parent page stored in the pointer map is page pTo. If pFrom contained
6177 ** any cells with overflow page pointers, then the corresponding pointer
6178 ** map entries are also updated so that the parent page is page pTo.
6180 ** If pFrom is currently carrying any overflow cells (entries in the
6181 ** MemPage.apOvfl[] array), they are not copied to pTo.
6183 ** Before returning, page pTo is reinitialized using btreeInitPage().
6185 ** The performance of this function is not critical. It is only used by
6186 ** the balance_shallower() and balance_deeper() procedures, neither of
6187 ** which are called often under normal circumstances.
6189 static void copyNodeContent(MemPage *pFrom, MemPage *pTo, int *pRC){
6190 if( (*pRC)==SQLITE_OK ){
6191 BtShared * const pBt = pFrom->pBt;
6192 u8 * const aFrom = pFrom->aData;
6193 u8 * const aTo = pTo->aData;
6194 int const iFromHdr = pFrom->hdrOffset;
6195 int const iToHdr = ((pTo->pgno==1) ? 100 : 0);
6196 int rc;
6197 int iData;
6200 assert( pFrom->isInit );
6201 assert( pFrom->nFree>=iToHdr );
6202 assert( get2byte(&aFrom[iFromHdr+5]) <= (int)pBt->usableSize );
6204 /* Copy the b-tree node content from page pFrom to page pTo. */
6205 iData = get2byte(&aFrom[iFromHdr+5]);
6206 memcpy(&aTo[iData], &aFrom[iData], pBt->usableSize-iData);
6207 memcpy(&aTo[iToHdr], &aFrom[iFromHdr], pFrom->cellOffset + 2*pFrom->nCell);
6209 /* Reinitialize page pTo so that the contents of the MemPage structure
6210 ** match the new data. The initialization of pTo can actually fail under
6211 ** fairly obscure circumstances, even though it is a copy of initialized
6212 ** page pFrom.
6214 pTo->isInit = 0;
6215 rc = btreeInitPage(pTo);
6216 if( rc!=SQLITE_OK ){
6217 *pRC = rc;
6218 return;
6221 /* If this is an auto-vacuum database, update the pointer-map entries
6222 ** for any b-tree or overflow pages that pTo now contains the pointers to.
6224 if( ISAUTOVACUUM ){
6225 *pRC = setChildPtrmaps(pTo);
6231 ** This routine redistributes cells on the iParentIdx'th child of pParent
6232 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
6233 ** same amount of free space. Usually a single sibling on either side of the
6234 ** page are used in the balancing, though both siblings might come from one
6235 ** side if the page is the first or last child of its parent. If the page
6236 ** has fewer than 2 siblings (something which can only happen if the page
6237 ** is a root page or a child of a root page) then all available siblings
6238 ** participate in the balancing.
6240 ** The number of siblings of the page might be increased or decreased by
6241 ** one or two in an effort to keep pages nearly full but not over full.
6243 ** Note that when this routine is called, some of the cells on the page
6244 ** might not actually be stored in MemPage.aData[]. This can happen
6245 ** if the page is overfull. This routine ensures that all cells allocated
6246 ** to the page and its siblings fit into MemPage.aData[] before returning.
6248 ** In the course of balancing the page and its siblings, cells may be
6249 ** inserted into or removed from the parent page (pParent). Doing so
6250 ** may cause the parent page to become overfull or underfull. If this
6251 ** happens, it is the responsibility of the caller to invoke the correct
6252 ** balancing routine to fix this problem (see the balance() routine).
6254 ** If this routine fails for any reason, it might leave the database
6255 ** in a corrupted state. So if this routine fails, the database should
6256 ** be rolled back.
6258 ** The third argument to this function, aOvflSpace, is a pointer to a
6259 ** buffer big enough to hold one page. If while inserting cells into the parent
6260 ** page (pParent) the parent page becomes overfull, this buffer is
6261 ** used to store the parent's overflow cells. Because this function inserts
6262 ** a maximum of four divider cells into the parent page, and the maximum
6263 ** size of a cell stored within an internal node is always less than 1/4
6264 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
6265 ** enough for all overflow cells.
6267 ** If aOvflSpace is set to a null pointer, this function returns
6268 ** SQLITE_NOMEM.
6270 #if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6271 #pragma optimize("", off)
6272 #endif
6273 static int balance_nonroot(
6274 MemPage *pParent, /* Parent page of siblings being balanced */
6275 int iParentIdx, /* Index of "the page" in pParent */
6276 u8 *aOvflSpace, /* page-size bytes of space for parent ovfl */
6277 int isRoot, /* True if pParent is a root-page */
6278 int bBulk /* True if this call is part of a bulk load */
6280 BtShared *pBt; /* The whole database */
6281 int nCell = 0; /* Number of cells in apCell[] */
6282 int nMaxCells = 0; /* Allocated size of apCell, szCell, aFrom. */
6283 int nNew = 0; /* Number of pages in apNew[] */
6284 int nOld; /* Number of pages in apOld[] */
6285 int i, j, k; /* Loop counters */
6286 int nxDiv; /* Next divider slot in pParent->aCell[] */
6287 int rc = SQLITE_OK; /* The return code */
6288 u16 leafCorrection; /* 4 if pPage is a leaf. 0 if not */
6289 int leafData; /* True if pPage is a leaf of a LEAFDATA tree */
6290 int usableSpace; /* Bytes in pPage beyond the header */
6291 int pageFlags; /* Value of pPage->aData[0] */
6292 int subtotal; /* Subtotal of bytes in cells on one page */
6293 int iSpace1 = 0; /* First unused byte of aSpace1[] */
6294 int iOvflSpace = 0; /* First unused byte of aOvflSpace[] */
6295 int szScratch; /* Size of scratch memory requested */
6296 MemPage *apOld[NB]; /* pPage and up to two siblings */
6297 MemPage *apCopy[NB]; /* Private copies of apOld[] pages */
6298 MemPage *apNew[NB+2]; /* pPage and up to NB siblings after balancing */
6299 u8 *pRight; /* Location in parent of right-sibling pointer */
6300 u8 *apDiv[NB-1]; /* Divider cells in pParent */
6301 int cntNew[NB+2]; /* Index in aCell[] of cell after i-th page */
6302 int szNew[NB+2]; /* Combined size of cells place on i-th page */
6303 u8 **apCell = 0; /* All cells begin balanced */
6304 u16 *szCell; /* Local size of all cells in apCell[] */
6305 u8 *aSpace1; /* Space for copies of dividers cells */
6306 Pgno pgno; /* Temp var to store a page number in */
6308 pBt = pParent->pBt;
6309 assert( sqlite3_mutex_held(pBt->mutex) );
6310 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6312 #if 0
6313 TRACE(("BALANCE: begin page %d child of %d\n", pPage->pgno, pParent->pgno));
6314 #endif
6316 /* At this point pParent may have at most one overflow cell. And if
6317 ** this overflow cell is present, it must be the cell with
6318 ** index iParentIdx. This scenario comes about when this function
6319 ** is called (indirectly) from sqlite3BtreeDelete().
6321 assert( pParent->nOverflow==0 || pParent->nOverflow==1 );
6322 assert( pParent->nOverflow==0 || pParent->aiOvfl[0]==iParentIdx );
6324 if( !aOvflSpace ){
6325 return SQLITE_NOMEM;
6328 /* Find the sibling pages to balance. Also locate the cells in pParent
6329 ** that divide the siblings. An attempt is made to find NN siblings on
6330 ** either side of pPage. More siblings are taken from one side, however,
6331 ** if there are fewer than NN siblings on the other side. If pParent
6332 ** has NB or fewer children then all children of pParent are taken.
6334 ** This loop also drops the divider cells from the parent page. This
6335 ** way, the remainder of the function does not have to deal with any
6336 ** overflow cells in the parent page, since if any existed they will
6337 ** have already been removed.
6339 i = pParent->nOverflow + pParent->nCell;
6340 if( i<2 ){
6341 nxDiv = 0;
6342 }else{
6343 assert( bBulk==0 || bBulk==1 );
6344 if( iParentIdx==0 ){
6345 nxDiv = 0;
6346 }else if( iParentIdx==i ){
6347 nxDiv = i-2+bBulk;
6348 }else{
6349 assert( bBulk==0 );
6350 nxDiv = iParentIdx-1;
6352 i = 2-bBulk;
6354 nOld = i+1;
6355 if( (i+nxDiv-pParent->nOverflow)==pParent->nCell ){
6356 pRight = &pParent->aData[pParent->hdrOffset+8];
6357 }else{
6358 pRight = findCell(pParent, i+nxDiv-pParent->nOverflow);
6360 pgno = get4byte(pRight);
6361 while( 1 ){
6362 rc = getAndInitPage(pBt, pgno, &apOld[i], 0);
6363 if( rc ){
6364 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6365 goto balance_cleanup;
6367 nMaxCells += 1+apOld[i]->nCell+apOld[i]->nOverflow;
6368 if( (i--)==0 ) break;
6370 if( i+nxDiv==pParent->aiOvfl[0] && pParent->nOverflow ){
6371 apDiv[i] = pParent->apOvfl[0];
6372 pgno = get4byte(apDiv[i]);
6373 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6374 pParent->nOverflow = 0;
6375 }else{
6376 apDiv[i] = findCell(pParent, i+nxDiv-pParent->nOverflow);
6377 pgno = get4byte(apDiv[i]);
6378 szNew[i] = cellSizePtr(pParent, apDiv[i]);
6380 /* Drop the cell from the parent page. apDiv[i] still points to
6381 ** the cell within the parent, even though it has been dropped.
6382 ** This is safe because dropping a cell only overwrites the first
6383 ** four bytes of it, and this function does not need the first
6384 ** four bytes of the divider cell. So the pointer is safe to use
6385 ** later on.
6387 ** But not if we are in secure-delete mode. In secure-delete mode,
6388 ** the dropCell() routine will overwrite the entire cell with zeroes.
6389 ** In this case, temporarily copy the cell into the aOvflSpace[]
6390 ** buffer. It will be copied out again as soon as the aSpace[] buffer
6391 ** is allocated. */
6392 if( pBt->btsFlags & BTS_SECURE_DELETE ){
6393 int iOff;
6395 iOff = SQLITE_PTR_TO_INT(apDiv[i]) - SQLITE_PTR_TO_INT(pParent->aData);
6396 if( (iOff+szNew[i])>(int)pBt->usableSize ){
6397 rc = SQLITE_CORRUPT_BKPT;
6398 memset(apOld, 0, (i+1)*sizeof(MemPage*));
6399 goto balance_cleanup;
6400 }else{
6401 memcpy(&aOvflSpace[iOff], apDiv[i], szNew[i]);
6402 apDiv[i] = &aOvflSpace[apDiv[i]-pParent->aData];
6405 dropCell(pParent, i+nxDiv-pParent->nOverflow, szNew[i], &rc);
6409 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
6410 ** alignment */
6411 nMaxCells = (nMaxCells + 3)&~3;
6414 ** Allocate space for memory structures
6416 k = pBt->pageSize + ROUND8(sizeof(MemPage));
6417 szScratch =
6418 nMaxCells*sizeof(u8*) /* apCell */
6419 + nMaxCells*sizeof(u16) /* szCell */
6420 + pBt->pageSize /* aSpace1 */
6421 + k*nOld; /* Page copies (apCopy) */
6422 apCell = sqlite3ScratchMalloc( szScratch );
6423 if( apCell==0 ){
6424 rc = SQLITE_NOMEM;
6425 goto balance_cleanup;
6427 szCell = (u16*)&apCell[nMaxCells];
6428 aSpace1 = (u8*)&szCell[nMaxCells];
6429 assert( EIGHT_BYTE_ALIGNMENT(aSpace1) );
6432 ** Load pointers to all cells on sibling pages and the divider cells
6433 ** into the local apCell[] array. Make copies of the divider cells
6434 ** into space obtained from aSpace1[] and remove the divider cells
6435 ** from pParent.
6437 ** If the siblings are on leaf pages, then the child pointers of the
6438 ** divider cells are stripped from the cells before they are copied
6439 ** into aSpace1[]. In this way, all cells in apCell[] are without
6440 ** child pointers. If siblings are not leaves, then all cell in
6441 ** apCell[] include child pointers. Either way, all cells in apCell[]
6442 ** are alike.
6444 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
6445 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
6447 leafCorrection = apOld[0]->leaf*4;
6448 leafData = apOld[0]->intKeyLeaf;
6449 for(i=0; i<nOld; i++){
6450 int limit;
6452 /* Before doing anything else, take a copy of the i'th original sibling
6453 ** The rest of this function will use data from the copies rather
6454 ** that the original pages since the original pages will be in the
6455 ** process of being overwritten. */
6456 MemPage *pOld = apCopy[i] = (MemPage*)&aSpace1[pBt->pageSize + k*i];
6457 memcpy(pOld, apOld[i], sizeof(MemPage));
6458 pOld->aData = (void*)&pOld[1];
6459 memcpy(pOld->aData, apOld[i]->aData, pBt->pageSize);
6461 limit = pOld->nCell+pOld->nOverflow;
6462 if( pOld->nOverflow>0 ){
6463 for(j=0; j<limit; j++){
6464 assert( nCell<nMaxCells );
6465 apCell[nCell] = findOverflowCell(pOld, j);
6466 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6467 nCell++;
6469 }else{
6470 u8 *aData = pOld->aData;
6471 u16 maskPage = pOld->maskPage;
6472 u16 cellOffset = pOld->cellOffset;
6473 for(j=0; j<limit; j++){
6474 assert( nCell<nMaxCells );
6475 apCell[nCell] = findCellv2(aData, maskPage, cellOffset, j);
6476 szCell[nCell] = cellSizePtr(pOld, apCell[nCell]);
6477 nCell++;
6480 if( i<nOld-1 && !leafData){
6481 u16 sz = (u16)szNew[i];
6482 u8 *pTemp;
6483 assert( nCell<nMaxCells );
6484 szCell[nCell] = sz;
6485 pTemp = &aSpace1[iSpace1];
6486 iSpace1 += sz;
6487 assert( sz<=pBt->maxLocal+23 );
6488 assert( iSpace1 <= (int)pBt->pageSize );
6489 memcpy(pTemp, apDiv[i], sz);
6490 apCell[nCell] = pTemp+leafCorrection;
6491 assert( leafCorrection==0 || leafCorrection==4 );
6492 szCell[nCell] = szCell[nCell] - leafCorrection;
6493 if( !pOld->leaf ){
6494 assert( leafCorrection==0 );
6495 assert( pOld->hdrOffset==0 );
6496 /* The right pointer of the child page pOld becomes the left
6497 ** pointer of the divider cell */
6498 memcpy(apCell[nCell], &pOld->aData[8], 4);
6499 }else{
6500 assert( leafCorrection==4 );
6501 if( szCell[nCell]<4 ){
6502 /* Do not allow any cells smaller than 4 bytes. */
6503 szCell[nCell] = 4;
6506 nCell++;
6511 ** Figure out the number of pages needed to hold all nCell cells.
6512 ** Store this number in "k". Also compute szNew[] which is the total
6513 ** size of all cells on the i-th page and cntNew[] which is the index
6514 ** in apCell[] of the cell that divides page i from page i+1.
6515 ** cntNew[k] should equal nCell.
6517 ** Values computed by this block:
6519 ** k: The total number of sibling pages
6520 ** szNew[i]: Spaced used on the i-th sibling page.
6521 ** cntNew[i]: Index in apCell[] and szCell[] for the first cell to
6522 ** the right of the i-th sibling page.
6523 ** usableSpace: Number of bytes of space available on each sibling.
6526 usableSpace = pBt->usableSize - 12 + leafCorrection;
6527 for(subtotal=k=i=0; i<nCell; i++){
6528 assert( i<nMaxCells );
6529 subtotal += szCell[i] + 2;
6530 if( subtotal > usableSpace ){
6531 szNew[k] = subtotal - szCell[i];
6532 cntNew[k] = i;
6533 if( leafData ){ i--; }
6534 subtotal = 0;
6535 k++;
6536 if( k>NB+1 ){ rc = SQLITE_CORRUPT_BKPT; goto balance_cleanup; }
6539 szNew[k] = subtotal;
6540 cntNew[k] = nCell;
6541 k++;
6544 ** The packing computed by the previous block is biased toward the siblings
6545 ** on the left side. The left siblings are always nearly full, while the
6546 ** right-most sibling might be nearly empty. This block of code attempts
6547 ** to adjust the packing of siblings to get a better balance.
6549 ** This adjustment is more than an optimization. The packing above might
6550 ** be so out of balance as to be illegal. For example, the right-most
6551 ** sibling might be completely empty. This adjustment is not optional.
6553 for(i=k-1; i>0; i--){
6554 int szRight = szNew[i]; /* Size of sibling on the right */
6555 int szLeft = szNew[i-1]; /* Size of sibling on the left */
6556 int r; /* Index of right-most cell in left sibling */
6557 int d; /* Index of first cell to the left of right sibling */
6559 r = cntNew[i-1] - 1;
6560 d = r + 1 - leafData;
6561 assert( d<nMaxCells );
6562 assert( r<nMaxCells );
6563 while( szRight==0
6564 || (!bBulk && szRight+szCell[d]+2<=szLeft-(szCell[r]+2))
6566 szRight += szCell[d] + 2;
6567 szLeft -= szCell[r] + 2;
6568 cntNew[i-1]--;
6569 r = cntNew[i-1] - 1;
6570 d = r + 1 - leafData;
6572 szNew[i] = szRight;
6573 szNew[i-1] = szLeft;
6576 /* Either we found one or more cells (cntnew[0])>0) or pPage is
6577 ** a virtual root page. A virtual root page is when the real root
6578 ** page is page 1 and we are the only child of that page.
6580 ** UPDATE: The assert() below is not necessarily true if the database
6581 ** file is corrupt. The corruption will be detected and reported later
6582 ** in this procedure so there is no need to act upon it now.
6584 #if 0
6585 assert( cntNew[0]>0 || (pParent->pgno==1 && pParent->nCell==0) );
6586 #endif
6588 TRACE(("BALANCE: old: %d %d %d ",
6589 apOld[0]->pgno,
6590 nOld>=2 ? apOld[1]->pgno : 0,
6591 nOld>=3 ? apOld[2]->pgno : 0
6595 ** Allocate k new pages. Reuse old pages where possible.
6597 if( apOld[0]->pgno<=1 ){
6598 rc = SQLITE_CORRUPT_BKPT;
6599 goto balance_cleanup;
6601 pageFlags = apOld[0]->aData[0];
6602 for(i=0; i<k; i++){
6603 MemPage *pNew;
6604 if( i<nOld ){
6605 pNew = apNew[i] = apOld[i];
6606 apOld[i] = 0;
6607 rc = sqlite3PagerWrite(pNew->pDbPage);
6608 nNew++;
6609 if( rc ) goto balance_cleanup;
6610 }else{
6611 assert( i>0 );
6612 rc = allocateBtreePage(pBt, &pNew, &pgno, (bBulk ? 1 : pgno), 0);
6613 if( rc ) goto balance_cleanup;
6614 apNew[i] = pNew;
6615 nNew++;
6617 /* Set the pointer-map entry for the new sibling page. */
6618 if( ISAUTOVACUUM ){
6619 ptrmapPut(pBt, pNew->pgno, PTRMAP_BTREE, pParent->pgno, &rc);
6620 if( rc!=SQLITE_OK ){
6621 goto balance_cleanup;
6627 /* Free any old pages that were not reused as new pages.
6629 while( i<nOld ){
6630 freePage(apOld[i], &rc);
6631 if( rc ) goto balance_cleanup;
6632 releasePage(apOld[i]);
6633 apOld[i] = 0;
6634 i++;
6638 ** Put the new pages in ascending order. This helps to
6639 ** keep entries in the disk file in order so that a scan
6640 ** of the table is a linear scan through the file. That
6641 ** in turn helps the operating system to deliver pages
6642 ** from the disk more rapidly.
6644 ** An O(n^2) insertion sort algorithm is used, but since
6645 ** n is never more than NB (a small constant), that should
6646 ** not be a problem.
6648 ** When NB==3, this one optimization makes the database
6649 ** about 25% faster for large insertions and deletions.
6651 for(i=0; i<k-1; i++){
6652 int minV = apNew[i]->pgno;
6653 int minI = i;
6654 for(j=i+1; j<k; j++){
6655 if( apNew[j]->pgno<(unsigned)minV ){
6656 minI = j;
6657 minV = apNew[j]->pgno;
6660 if( minI>i ){
6661 MemPage *pT;
6662 pT = apNew[i];
6663 apNew[i] = apNew[minI];
6664 apNew[minI] = pT;
6667 TRACE(("new: %d(%d) %d(%d) %d(%d) %d(%d) %d(%d)\n",
6668 apNew[0]->pgno, szNew[0],
6669 nNew>=2 ? apNew[1]->pgno : 0, nNew>=2 ? szNew[1] : 0,
6670 nNew>=3 ? apNew[2]->pgno : 0, nNew>=3 ? szNew[2] : 0,
6671 nNew>=4 ? apNew[3]->pgno : 0, nNew>=4 ? szNew[3] : 0,
6672 nNew>=5 ? apNew[4]->pgno : 0, nNew>=5 ? szNew[4] : 0));
6674 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6675 put4byte(pRight, apNew[nNew-1]->pgno);
6678 ** Evenly distribute the data in apCell[] across the new pages.
6679 ** Insert divider cells into pParent as necessary.
6681 j = 0;
6682 for(i=0; i<nNew; i++){
6683 /* Assemble the new sibling page. */
6684 MemPage *pNew = apNew[i];
6685 assert( j<nMaxCells );
6686 zeroPage(pNew, pageFlags);
6687 assemblePage(pNew, cntNew[i]-j, &apCell[j], &szCell[j]);
6688 assert( pNew->nCell>0 || (nNew==1 && cntNew[0]==0) );
6689 assert( pNew->nOverflow==0 );
6691 j = cntNew[i];
6693 /* If the sibling page assembled above was not the right-most sibling,
6694 ** insert a divider cell into the parent page.
6696 assert( i<nNew-1 || j==nCell );
6697 if( j<nCell ){
6698 u8 *pCell;
6699 u8 *pTemp;
6700 int sz;
6702 assert( j<nMaxCells );
6703 pCell = apCell[j];
6704 sz = szCell[j] + leafCorrection;
6705 pTemp = &aOvflSpace[iOvflSpace];
6706 if( !pNew->leaf ){
6707 memcpy(&pNew->aData[8], pCell, 4);
6708 }else if( leafData ){
6709 /* If the tree is a leaf-data tree, and the siblings are leaves,
6710 ** then there is no divider cell in apCell[]. Instead, the divider
6711 ** cell consists of the integer key for the right-most cell of
6712 ** the sibling-page assembled above only.
6714 CellInfo info;
6715 j--;
6716 btreeParseCellPtr(pNew, apCell[j], &info);
6717 pCell = pTemp;
6718 sz = 4 + putVarint(&pCell[4], info.nKey);
6719 pTemp = 0;
6720 }else{
6721 pCell -= 4;
6722 /* Obscure case for non-leaf-data trees: If the cell at pCell was
6723 ** previously stored on a leaf node, and its reported size was 4
6724 ** bytes, then it may actually be smaller than this
6725 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
6726 ** any cell). But it is important to pass the correct size to
6727 ** insertCell(), so reparse the cell now.
6729 ** Note that this can never happen in an SQLite data file, as all
6730 ** cells are at least 4 bytes. It only happens in b-trees used
6731 ** to evaluate "IN (SELECT ...)" and similar clauses.
6733 if( szCell[j]==4 ){
6734 assert(leafCorrection==4);
6735 sz = cellSizePtr(pParent, pCell);
6738 iOvflSpace += sz;
6739 assert( sz<=pBt->maxLocal+23 );
6740 assert( iOvflSpace <= (int)pBt->pageSize );
6741 insertCell(pParent, nxDiv, pCell, sz, pTemp, pNew->pgno, &rc);
6742 if( rc!=SQLITE_OK ) goto balance_cleanup;
6743 assert( sqlite3PagerIswriteable(pParent->pDbPage) );
6745 j++;
6746 nxDiv++;
6749 assert( j==nCell );
6750 assert( nOld>0 );
6751 assert( nNew>0 );
6752 if( (pageFlags & PTF_LEAF)==0 ){
6753 u8 *zChild = &apCopy[nOld-1]->aData[8];
6754 memcpy(&apNew[nNew-1]->aData[8], zChild, 4);
6757 if( isRoot && pParent->nCell==0 && pParent->hdrOffset<=apNew[0]->nFree ){
6758 /* The root page of the b-tree now contains no cells. The only sibling
6759 ** page is the right-child of the parent. Copy the contents of the
6760 ** child page into the parent, decreasing the overall height of the
6761 ** b-tree structure by one. This is described as the "balance-shallower"
6762 ** sub-algorithm in some documentation.
6764 ** If this is an auto-vacuum database, the call to copyNodeContent()
6765 ** sets all pointer-map entries corresponding to database image pages
6766 ** for which the pointer is stored within the content being copied.
6768 ** The second assert below verifies that the child page is defragmented
6769 ** (it must be, as it was just reconstructed using assemblePage()). This
6770 ** is important if the parent page happens to be page 1 of the database
6771 ** image. */
6772 assert( nNew==1 );
6773 assert( apNew[0]->nFree ==
6774 (get2byte(&apNew[0]->aData[5])-apNew[0]->cellOffset-apNew[0]->nCell*2)
6776 copyNodeContent(apNew[0], pParent, &rc);
6777 freePage(apNew[0], &rc);
6778 }else if( ISAUTOVACUUM ){
6779 /* Fix the pointer-map entries for all the cells that were shifted around.
6780 ** There are several different types of pointer-map entries that need to
6781 ** be dealt with by this routine. Some of these have been set already, but
6782 ** many have not. The following is a summary:
6784 ** 1) The entries associated with new sibling pages that were not
6785 ** siblings when this function was called. These have already
6786 ** been set. We don't need to worry about old siblings that were
6787 ** moved to the free-list - the freePage() code has taken care
6788 ** of those.
6790 ** 2) The pointer-map entries associated with the first overflow
6791 ** page in any overflow chains used by new divider cells. These
6792 ** have also already been taken care of by the insertCell() code.
6794 ** 3) If the sibling pages are not leaves, then the child pages of
6795 ** cells stored on the sibling pages may need to be updated.
6797 ** 4) If the sibling pages are not internal intkey nodes, then any
6798 ** overflow pages used by these cells may need to be updated
6799 ** (internal intkey nodes never contain pointers to overflow pages).
6801 ** 5) If the sibling pages are not leaves, then the pointer-map
6802 ** entries for the right-child pages of each sibling may need
6803 ** to be updated.
6805 ** Cases 1 and 2 are dealt with above by other code. The next
6806 ** block deals with cases 3 and 4 and the one after that, case 5. Since
6807 ** setting a pointer map entry is a relatively expensive operation, this
6808 ** code only sets pointer map entries for child or overflow pages that have
6809 ** actually moved between pages. */
6810 MemPage *pNew = apNew[0];
6811 MemPage *pOld = apCopy[0];
6812 int nOverflow = pOld->nOverflow;
6813 int iNextOld = pOld->nCell + nOverflow;
6814 int iOverflow = (nOverflow ? pOld->aiOvfl[0] : -1);
6815 j = 0; /* Current 'old' sibling page */
6816 k = 0; /* Current 'new' sibling page */
6817 for(i=0; i<nCell; i++){
6818 int isDivider = 0;
6819 while( i==iNextOld ){
6820 /* Cell i is the cell immediately following the last cell on old
6821 ** sibling page j. If the siblings are not leaf pages of an
6822 ** intkey b-tree, then cell i was a divider cell. */
6823 assert( j+1 < ArraySize(apCopy) );
6824 assert( j+1 < nOld );
6825 pOld = apCopy[++j];
6826 iNextOld = i + !leafData + pOld->nCell + pOld->nOverflow;
6827 if( pOld->nOverflow ){
6828 nOverflow = pOld->nOverflow;
6829 iOverflow = i + !leafData + pOld->aiOvfl[0];
6831 isDivider = !leafData;
6834 assert(nOverflow>0 || iOverflow<i );
6835 assert(nOverflow<2 || pOld->aiOvfl[0]==pOld->aiOvfl[1]-1);
6836 assert(nOverflow<3 || pOld->aiOvfl[1]==pOld->aiOvfl[2]-1);
6837 if( i==iOverflow ){
6838 isDivider = 1;
6839 if( (--nOverflow)>0 ){
6840 iOverflow++;
6844 if( i==cntNew[k] ){
6845 /* Cell i is the cell immediately following the last cell on new
6846 ** sibling page k. If the siblings are not leaf pages of an
6847 ** intkey b-tree, then cell i is a divider cell. */
6848 pNew = apNew[++k];
6849 if( !leafData ) continue;
6851 assert( j<nOld );
6852 assert( k<nNew );
6854 /* If the cell was originally divider cell (and is not now) or
6855 ** an overflow cell, or if the cell was located on a different sibling
6856 ** page before the balancing, then the pointer map entries associated
6857 ** with any child or overflow pages need to be updated. */
6858 if( isDivider || pOld->pgno!=pNew->pgno ){
6859 if( !leafCorrection ){
6860 ptrmapPut(pBt, get4byte(apCell[i]), PTRMAP_BTREE, pNew->pgno, &rc);
6862 if( szCell[i]>pNew->minLocal ){
6863 ptrmapPutOvflPtr(pNew, apCell[i], &rc);
6868 if( !leafCorrection ){
6869 for(i=0; i<nNew; i++){
6870 u32 key = get4byte(&apNew[i]->aData[8]);
6871 ptrmapPut(pBt, key, PTRMAP_BTREE, apNew[i]->pgno, &rc);
6875 #if 0
6876 /* The ptrmapCheckPages() contains assert() statements that verify that
6877 ** all pointer map pages are set correctly. This is helpful while
6878 ** debugging. This is usually disabled because a corrupt database may
6879 ** cause an assert() statement to fail. */
6880 ptrmapCheckPages(apNew, nNew);
6881 ptrmapCheckPages(&pParent, 1);
6882 #endif
6885 assert( pParent->isInit );
6886 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
6887 nOld, nNew, nCell));
6890 ** Cleanup before returning.
6892 balance_cleanup:
6893 sqlite3ScratchFree(apCell);
6894 for(i=0; i<nOld; i++){
6895 releasePage(apOld[i]);
6897 for(i=0; i<nNew; i++){
6898 releasePage(apNew[i]);
6901 return rc;
6903 #if defined(_MSC_VER) && _MSC_VER >= 1700 && defined(_M_ARM)
6904 #pragma optimize("", on)
6905 #endif
6909 ** This function is called when the root page of a b-tree structure is
6910 ** overfull (has one or more overflow pages).
6912 ** A new child page is allocated and the contents of the current root
6913 ** page, including overflow cells, are copied into the child. The root
6914 ** page is then overwritten to make it an empty page with the right-child
6915 ** pointer pointing to the new page.
6917 ** Before returning, all pointer-map entries corresponding to pages
6918 ** that the new child-page now contains pointers to are updated. The
6919 ** entry corresponding to the new right-child pointer of the root
6920 ** page is also updated.
6922 ** If successful, *ppChild is set to contain a reference to the child
6923 ** page and SQLITE_OK is returned. In this case the caller is required
6924 ** to call releasePage() on *ppChild exactly once. If an error occurs,
6925 ** an error code is returned and *ppChild is set to 0.
6927 static int balance_deeper(MemPage *pRoot, MemPage **ppChild){
6928 int rc; /* Return value from subprocedures */
6929 MemPage *pChild = 0; /* Pointer to a new child page */
6930 Pgno pgnoChild = 0; /* Page number of the new child page */
6931 BtShared *pBt = pRoot->pBt; /* The BTree */
6933 assert( pRoot->nOverflow>0 );
6934 assert( sqlite3_mutex_held(pBt->mutex) );
6936 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
6937 ** page that will become the new right-child of pPage. Copy the contents
6938 ** of the node stored on pRoot into the new child page.
6940 rc = sqlite3PagerWrite(pRoot->pDbPage);
6941 if( rc==SQLITE_OK ){
6942 rc = allocateBtreePage(pBt,&pChild,&pgnoChild,pRoot->pgno,0);
6943 copyNodeContent(pRoot, pChild, &rc);
6944 if( ISAUTOVACUUM ){
6945 ptrmapPut(pBt, pgnoChild, PTRMAP_BTREE, pRoot->pgno, &rc);
6948 if( rc ){
6949 *ppChild = 0;
6950 releasePage(pChild);
6951 return rc;
6953 assert( sqlite3PagerIswriteable(pChild->pDbPage) );
6954 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
6955 assert( pChild->nCell==pRoot->nCell );
6957 TRACE(("BALANCE: copy root %d into %d\n", pRoot->pgno, pChild->pgno));
6959 /* Copy the overflow cells from pRoot to pChild */
6960 memcpy(pChild->aiOvfl, pRoot->aiOvfl,
6961 pRoot->nOverflow*sizeof(pRoot->aiOvfl[0]));
6962 memcpy(pChild->apOvfl, pRoot->apOvfl,
6963 pRoot->nOverflow*sizeof(pRoot->apOvfl[0]));
6964 pChild->nOverflow = pRoot->nOverflow;
6966 /* Zero the contents of pRoot. Then install pChild as the right-child. */
6967 zeroPage(pRoot, pChild->aData[0] & ~PTF_LEAF);
6968 put4byte(&pRoot->aData[pRoot->hdrOffset+8], pgnoChild);
6970 *ppChild = pChild;
6971 return SQLITE_OK;
6975 ** The page that pCur currently points to has just been modified in
6976 ** some way. This function figures out if this modification means the
6977 ** tree needs to be balanced, and if so calls the appropriate balancing
6978 ** routine. Balancing routines are:
6980 ** balance_quick()
6981 ** balance_deeper()
6982 ** balance_nonroot()
6984 static int balance(BtCursor *pCur){
6985 int rc = SQLITE_OK;
6986 const int nMin = pCur->pBt->usableSize * 2 / 3;
6987 u8 aBalanceQuickSpace[13];
6988 u8 *pFree = 0;
6990 TESTONLY( int balance_quick_called = 0 );
6991 TESTONLY( int balance_deeper_called = 0 );
6993 do {
6994 int iPage = pCur->iPage;
6995 MemPage *pPage = pCur->apPage[iPage];
6997 if( iPage==0 ){
6998 if( pPage->nOverflow ){
6999 /* The root page of the b-tree is overfull. In this case call the
7000 ** balance_deeper() function to create a new child for the root-page
7001 ** and copy the current contents of the root-page to it. The
7002 ** next iteration of the do-loop will balance the child page.
7004 assert( (balance_deeper_called++)==0 );
7005 rc = balance_deeper(pPage, &pCur->apPage[1]);
7006 if( rc==SQLITE_OK ){
7007 pCur->iPage = 1;
7008 pCur->aiIdx[0] = 0;
7009 pCur->aiIdx[1] = 0;
7010 assert( pCur->apPage[1]->nOverflow );
7012 }else{
7013 break;
7015 }else if( pPage->nOverflow==0 && pPage->nFree<=nMin ){
7016 break;
7017 }else{
7018 MemPage * const pParent = pCur->apPage[iPage-1];
7019 int const iIdx = pCur->aiIdx[iPage-1];
7021 rc = sqlite3PagerWrite(pParent->pDbPage);
7022 if( rc==SQLITE_OK ){
7023 #ifndef SQLITE_OMIT_QUICKBALANCE
7024 if( pPage->intKeyLeaf
7025 && pPage->nOverflow==1
7026 && pPage->aiOvfl[0]==pPage->nCell
7027 && pParent->pgno!=1
7028 && pParent->nCell==iIdx
7030 /* Call balance_quick() to create a new sibling of pPage on which
7031 ** to store the overflow cell. balance_quick() inserts a new cell
7032 ** into pParent, which may cause pParent overflow. If this
7033 ** happens, the next iteration of the do-loop will balance pParent
7034 ** use either balance_nonroot() or balance_deeper(). Until this
7035 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
7036 ** buffer.
7038 ** The purpose of the following assert() is to check that only a
7039 ** single call to balance_quick() is made for each call to this
7040 ** function. If this were not verified, a subtle bug involving reuse
7041 ** of the aBalanceQuickSpace[] might sneak in.
7043 assert( (balance_quick_called++)==0 );
7044 rc = balance_quick(pParent, pPage, aBalanceQuickSpace);
7045 }else
7046 #endif
7048 /* In this case, call balance_nonroot() to redistribute cells
7049 ** between pPage and up to 2 of its sibling pages. This involves
7050 ** modifying the contents of pParent, which may cause pParent to
7051 ** become overfull or underfull. The next iteration of the do-loop
7052 ** will balance the parent page to correct this.
7054 ** If the parent page becomes overfull, the overflow cell or cells
7055 ** are stored in the pSpace buffer allocated immediately below.
7056 ** A subsequent iteration of the do-loop will deal with this by
7057 ** calling balance_nonroot() (balance_deeper() may be called first,
7058 ** but it doesn't deal with overflow cells - just moves them to a
7059 ** different page). Once this subsequent call to balance_nonroot()
7060 ** has completed, it is safe to release the pSpace buffer used by
7061 ** the previous call, as the overflow cell data will have been
7062 ** copied either into the body of a database page or into the new
7063 ** pSpace buffer passed to the latter call to balance_nonroot().
7065 u8 *pSpace = sqlite3PageMalloc(pCur->pBt->pageSize);
7066 rc = balance_nonroot(pParent, iIdx, pSpace, iPage==1, pCur->hints);
7067 if( pFree ){
7068 /* If pFree is not NULL, it points to the pSpace buffer used
7069 ** by a previous call to balance_nonroot(). Its contents are
7070 ** now stored either on real database pages or within the
7071 ** new pSpace buffer, so it may be safely freed here. */
7072 sqlite3PageFree(pFree);
7075 /* The pSpace buffer will be freed after the next call to
7076 ** balance_nonroot(), or just before this function returns, whichever
7077 ** comes first. */
7078 pFree = pSpace;
7082 pPage->nOverflow = 0;
7084 /* The next iteration of the do-loop balances the parent page. */
7085 releasePage(pPage);
7086 pCur->iPage--;
7088 }while( rc==SQLITE_OK );
7090 if( pFree ){
7091 sqlite3PageFree(pFree);
7093 return rc;
7098 ** Insert a new record into the BTree. The key is given by (pKey,nKey)
7099 ** and the data is given by (pData,nData). The cursor is used only to
7100 ** define what table the record should be inserted into. The cursor
7101 ** is left pointing at a random location.
7103 ** For an INTKEY table, only the nKey value of the key is used. pKey is
7104 ** ignored. For a ZERODATA table, the pData and nData are both ignored.
7106 ** If the seekResult parameter is non-zero, then a successful call to
7107 ** MovetoUnpacked() to seek cursor pCur to (pKey, nKey) has already
7108 ** been performed. seekResult is the search result returned (a negative
7109 ** number if pCur points at an entry that is smaller than (pKey, nKey), or
7110 ** a positive value if pCur points at an entry that is larger than
7111 ** (pKey, nKey)).
7113 ** If the seekResult parameter is non-zero, then the caller guarantees that
7114 ** cursor pCur is pointing at the existing copy of a row that is to be
7115 ** overwritten. If the seekResult parameter is 0, then cursor pCur may
7116 ** point to any entry or to no entry at all and so this function has to seek
7117 ** the cursor before the new key can be inserted.
7119 int sqlite3BtreeInsert(
7120 BtCursor *pCur, /* Insert data into the table of this cursor */
7121 const void *pKey, i64 nKey, /* The key of the new record */
7122 const void *pData, int nData, /* The data of the new record */
7123 int nZero, /* Number of extra 0 bytes to append to data */
7124 int appendBias, /* True if this is likely an append */
7125 int seekResult /* Result of prior MovetoUnpacked() call */
7127 int rc;
7128 int loc = seekResult; /* -1: before desired location +1: after */
7129 int szNew = 0;
7130 int idx;
7131 MemPage *pPage;
7132 Btree *p = pCur->pBtree;
7133 BtShared *pBt = p->pBt;
7134 unsigned char *oldCell;
7135 unsigned char *newCell = 0;
7137 if( pCur->eState==CURSOR_FAULT ){
7138 assert( pCur->skipNext!=SQLITE_OK );
7139 return pCur->skipNext;
7142 assert( cursorHoldsMutex(pCur) );
7143 assert( (pCur->curFlags & BTCF_WriteFlag)!=0
7144 && pBt->inTransaction==TRANS_WRITE
7145 && (pBt->btsFlags & BTS_READ_ONLY)==0 );
7146 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7148 /* Assert that the caller has been consistent. If this cursor was opened
7149 ** expecting an index b-tree, then the caller should be inserting blob
7150 ** keys with no associated data. If the cursor was opened expecting an
7151 ** intkey table, the caller should be inserting integer keys with a
7152 ** blob of associated data. */
7153 assert( (pKey==0)==(pCur->pKeyInfo==0) );
7155 /* Save the positions of any other cursors open on this table.
7157 ** In some cases, the call to btreeMoveto() below is a no-op. For
7158 ** example, when inserting data into a table with auto-generated integer
7159 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
7160 ** integer key to use. It then calls this function to actually insert the
7161 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
7162 ** that the cursor is already where it needs to be and returns without
7163 ** doing any work. To avoid thwarting these optimizations, it is important
7164 ** not to clear the cursor here.
7166 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7167 if( rc ) return rc;
7169 if( pCur->pKeyInfo==0 ){
7170 /* If this is an insert into a table b-tree, invalidate any incrblob
7171 ** cursors open on the row being replaced */
7172 invalidateIncrblobCursors(p, nKey, 0);
7174 /* If the cursor is currently on the last row and we are appending a
7175 ** new row onto the end, set the "loc" to avoid an unnecessary btreeMoveto()
7176 ** call */
7177 if( (pCur->curFlags&BTCF_ValidNKey)!=0 && nKey>0
7178 && pCur->info.nKey==nKey-1 ){
7179 loc = -1;
7183 if( !loc ){
7184 rc = btreeMoveto(pCur, pKey, nKey, appendBias, &loc);
7185 if( rc ) return rc;
7187 assert( pCur->eState==CURSOR_VALID || (pCur->eState==CURSOR_INVALID && loc) );
7189 pPage = pCur->apPage[pCur->iPage];
7190 assert( pPage->intKey || nKey>=0 );
7191 assert( pPage->leaf || !pPage->intKey );
7193 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
7194 pCur->pgnoRoot, nKey, nData, pPage->pgno,
7195 loc==0 ? "overwrite" : "new entry"));
7196 assert( pPage->isInit );
7197 newCell = pBt->pTmpSpace;
7198 assert( newCell!=0 );
7199 rc = fillInCell(pPage, newCell, pKey, nKey, pData, nData, nZero, &szNew);
7200 if( rc ) goto end_insert;
7201 assert( szNew==cellSizePtr(pPage, newCell) );
7202 assert( szNew <= MX_CELL_SIZE(pBt) );
7203 idx = pCur->aiIdx[pCur->iPage];
7204 if( loc==0 ){
7205 u16 szOld;
7206 assert( idx<pPage->nCell );
7207 rc = sqlite3PagerWrite(pPage->pDbPage);
7208 if( rc ){
7209 goto end_insert;
7211 oldCell = findCell(pPage, idx);
7212 if( !pPage->leaf ){
7213 memcpy(newCell, oldCell, 4);
7215 rc = clearCell(pPage, oldCell, &szOld);
7216 dropCell(pPage, idx, szOld, &rc);
7217 if( rc ) goto end_insert;
7218 }else if( loc<0 && pPage->nCell>0 ){
7219 assert( pPage->leaf );
7220 idx = ++pCur->aiIdx[pCur->iPage];
7221 }else{
7222 assert( pPage->leaf );
7224 insertCell(pPage, idx, newCell, szNew, 0, 0, &rc);
7225 assert( rc!=SQLITE_OK || pPage->nCell>0 || pPage->nOverflow>0 );
7227 /* If no error has occurred and pPage has an overflow cell, call balance()
7228 ** to redistribute the cells within the tree. Since balance() may move
7229 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
7230 ** variables.
7232 ** Previous versions of SQLite called moveToRoot() to move the cursor
7233 ** back to the root page as balance() used to invalidate the contents
7234 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
7235 ** set the cursor state to "invalid". This makes common insert operations
7236 ** slightly faster.
7238 ** There is a subtle but important optimization here too. When inserting
7239 ** multiple records into an intkey b-tree using a single cursor (as can
7240 ** happen while processing an "INSERT INTO ... SELECT" statement), it
7241 ** is advantageous to leave the cursor pointing to the last entry in
7242 ** the b-tree if possible. If the cursor is left pointing to the last
7243 ** entry in the table, and the next row inserted has an integer key
7244 ** larger than the largest existing key, it is possible to insert the
7245 ** row without seeking the cursor. This can be a big performance boost.
7247 pCur->info.nSize = 0;
7248 if( rc==SQLITE_OK && pPage->nOverflow ){
7249 pCur->curFlags &= ~(BTCF_ValidNKey);
7250 rc = balance(pCur);
7252 /* Must make sure nOverflow is reset to zero even if the balance()
7253 ** fails. Internal data structure corruption will result otherwise.
7254 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
7255 ** from trying to save the current position of the cursor. */
7256 pCur->apPage[pCur->iPage]->nOverflow = 0;
7257 pCur->eState = CURSOR_INVALID;
7259 assert( pCur->apPage[pCur->iPage]->nOverflow==0 );
7261 end_insert:
7262 return rc;
7266 ** Delete the entry that the cursor is pointing to. The cursor
7267 ** is left pointing at an arbitrary location.
7269 int sqlite3BtreeDelete(BtCursor *pCur){
7270 Btree *p = pCur->pBtree;
7271 BtShared *pBt = p->pBt;
7272 int rc; /* Return code */
7273 MemPage *pPage; /* Page to delete cell from */
7274 unsigned char *pCell; /* Pointer to cell to delete */
7275 int iCellIdx; /* Index of cell to delete */
7276 int iCellDepth; /* Depth of node containing pCell */
7277 u16 szCell; /* Size of the cell being deleted */
7279 assert( cursorHoldsMutex(pCur) );
7280 assert( pBt->inTransaction==TRANS_WRITE );
7281 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
7282 assert( pCur->curFlags & BTCF_WriteFlag );
7283 assert( hasSharedCacheTableLock(p, pCur->pgnoRoot, pCur->pKeyInfo!=0, 2) );
7284 assert( !hasReadConflicts(p, pCur->pgnoRoot) );
7286 if( NEVER(pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell)
7287 || NEVER(pCur->eState!=CURSOR_VALID)
7289 return SQLITE_ERROR; /* Something has gone awry. */
7292 iCellDepth = pCur->iPage;
7293 iCellIdx = pCur->aiIdx[iCellDepth];
7294 pPage = pCur->apPage[iCellDepth];
7295 pCell = findCell(pPage, iCellIdx);
7297 /* If the page containing the entry to delete is not a leaf page, move
7298 ** the cursor to the largest entry in the tree that is smaller than
7299 ** the entry being deleted. This cell will replace the cell being deleted
7300 ** from the internal node. The 'previous' entry is used for this instead
7301 ** of the 'next' entry, as the previous entry is always a part of the
7302 ** sub-tree headed by the child page of the cell being deleted. This makes
7303 ** balancing the tree following the delete operation easier. */
7304 if( !pPage->leaf ){
7305 int notUsed = 0;
7306 rc = sqlite3BtreePrevious(pCur, &notUsed);
7307 if( rc ) return rc;
7310 /* Save the positions of any other cursors open on this table before
7311 ** making any modifications. Make the page containing the entry to be
7312 ** deleted writable. Then free any overflow pages associated with the
7313 ** entry and finally remove the cell itself from within the page.
7315 rc = saveAllCursors(pBt, pCur->pgnoRoot, pCur);
7316 if( rc ) return rc;
7318 /* If this is a delete operation to remove a row from a table b-tree,
7319 ** invalidate any incrblob cursors open on the row being deleted. */
7320 if( pCur->pKeyInfo==0 ){
7321 invalidateIncrblobCursors(p, pCur->info.nKey, 0);
7324 rc = sqlite3PagerWrite(pPage->pDbPage);
7325 if( rc ) return rc;
7326 rc = clearCell(pPage, pCell, &szCell);
7327 dropCell(pPage, iCellIdx, szCell, &rc);
7328 if( rc ) return rc;
7330 /* If the cell deleted was not located on a leaf page, then the cursor
7331 ** is currently pointing to the largest entry in the sub-tree headed
7332 ** by the child-page of the cell that was just deleted from an internal
7333 ** node. The cell from the leaf node needs to be moved to the internal
7334 ** node to replace the deleted cell. */
7335 if( !pPage->leaf ){
7336 MemPage *pLeaf = pCur->apPage[pCur->iPage];
7337 int nCell;
7338 Pgno n = pCur->apPage[iCellDepth+1]->pgno;
7339 unsigned char *pTmp;
7341 pCell = findCell(pLeaf, pLeaf->nCell-1);
7342 nCell = cellSizePtr(pLeaf, pCell);
7343 assert( MX_CELL_SIZE(pBt) >= nCell );
7344 pTmp = pBt->pTmpSpace;
7345 assert( pTmp!=0 );
7346 rc = sqlite3PagerWrite(pLeaf->pDbPage);
7347 insertCell(pPage, iCellIdx, pCell-4, nCell+4, pTmp, n, &rc);
7348 dropCell(pLeaf, pLeaf->nCell-1, nCell, &rc);
7349 if( rc ) return rc;
7352 /* Balance the tree. If the entry deleted was located on a leaf page,
7353 ** then the cursor still points to that page. In this case the first
7354 ** call to balance() repairs the tree, and the if(...) condition is
7355 ** never true.
7357 ** Otherwise, if the entry deleted was on an internal node page, then
7358 ** pCur is pointing to the leaf page from which a cell was removed to
7359 ** replace the cell deleted from the internal node. This is slightly
7360 ** tricky as the leaf node may be underfull, and the internal node may
7361 ** be either under or overfull. In this case run the balancing algorithm
7362 ** on the leaf node first. If the balance proceeds far enough up the
7363 ** tree that we can be sure that any problem in the internal node has
7364 ** been corrected, so be it. Otherwise, after balancing the leaf node,
7365 ** walk the cursor up the tree to the internal node and balance it as
7366 ** well. */
7367 rc = balance(pCur);
7368 if( rc==SQLITE_OK && pCur->iPage>iCellDepth ){
7369 while( pCur->iPage>iCellDepth ){
7370 releasePage(pCur->apPage[pCur->iPage--]);
7372 rc = balance(pCur);
7375 if( rc==SQLITE_OK ){
7376 moveToRoot(pCur);
7378 return rc;
7382 ** Create a new BTree table. Write into *piTable the page
7383 ** number for the root page of the new table.
7385 ** The type of type is determined by the flags parameter. Only the
7386 ** following values of flags are currently in use. Other values for
7387 ** flags might not work:
7389 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
7390 ** BTREE_ZERODATA Used for SQL indices
7392 static int btreeCreateTable(Btree *p, int *piTable, int createTabFlags){
7393 BtShared *pBt = p->pBt;
7394 MemPage *pRoot;
7395 Pgno pgnoRoot;
7396 int rc;
7397 int ptfFlags; /* Page-type flage for the root page of new table */
7399 assert( sqlite3BtreeHoldsMutex(p) );
7400 assert( pBt->inTransaction==TRANS_WRITE );
7401 assert( (pBt->btsFlags & BTS_READ_ONLY)==0 );
7403 #ifdef SQLITE_OMIT_AUTOVACUUM
7404 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
7405 if( rc ){
7406 return rc;
7408 #else
7409 if( pBt->autoVacuum ){
7410 Pgno pgnoMove; /* Move a page here to make room for the root-page */
7411 MemPage *pPageMove; /* The page to move to. */
7413 /* Creating a new table may probably require moving an existing database
7414 ** to make room for the new tables root page. In case this page turns
7415 ** out to be an overflow page, delete all overflow page-map caches
7416 ** held by open cursors.
7418 invalidateAllOverflowCache(pBt);
7420 /* Read the value of meta[3] from the database to determine where the
7421 ** root page of the new table should go. meta[3] is the largest root-page
7422 ** created so far, so the new root-page is (meta[3]+1).
7424 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &pgnoRoot);
7425 pgnoRoot++;
7427 /* The new root-page may not be allocated on a pointer-map page, or the
7428 ** PENDING_BYTE page.
7430 while( pgnoRoot==PTRMAP_PAGENO(pBt, pgnoRoot) ||
7431 pgnoRoot==PENDING_BYTE_PAGE(pBt) ){
7432 pgnoRoot++;
7434 assert( pgnoRoot>=3 );
7436 /* Allocate a page. The page that currently resides at pgnoRoot will
7437 ** be moved to the allocated page (unless the allocated page happens
7438 ** to reside at pgnoRoot).
7440 rc = allocateBtreePage(pBt, &pPageMove, &pgnoMove, pgnoRoot, BTALLOC_EXACT);
7441 if( rc!=SQLITE_OK ){
7442 return rc;
7445 if( pgnoMove!=pgnoRoot ){
7446 /* pgnoRoot is the page that will be used for the root-page of
7447 ** the new table (assuming an error did not occur). But we were
7448 ** allocated pgnoMove. If required (i.e. if it was not allocated
7449 ** by extending the file), the current page at position pgnoMove
7450 ** is already journaled.
7452 u8 eType = 0;
7453 Pgno iPtrPage = 0;
7455 /* Save the positions of any open cursors. This is required in
7456 ** case they are holding a reference to an xFetch reference
7457 ** corresponding to page pgnoRoot. */
7458 rc = saveAllCursors(pBt, 0, 0);
7459 releasePage(pPageMove);
7460 if( rc!=SQLITE_OK ){
7461 return rc;
7464 /* Move the page currently at pgnoRoot to pgnoMove. */
7465 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
7466 if( rc!=SQLITE_OK ){
7467 return rc;
7469 rc = ptrmapGet(pBt, pgnoRoot, &eType, &iPtrPage);
7470 if( eType==PTRMAP_ROOTPAGE || eType==PTRMAP_FREEPAGE ){
7471 rc = SQLITE_CORRUPT_BKPT;
7473 if( rc!=SQLITE_OK ){
7474 releasePage(pRoot);
7475 return rc;
7477 assert( eType!=PTRMAP_ROOTPAGE );
7478 assert( eType!=PTRMAP_FREEPAGE );
7479 rc = relocatePage(pBt, pRoot, eType, iPtrPage, pgnoMove, 0);
7480 releasePage(pRoot);
7482 /* Obtain the page at pgnoRoot */
7483 if( rc!=SQLITE_OK ){
7484 return rc;
7486 rc = btreeGetPage(pBt, pgnoRoot, &pRoot, 0);
7487 if( rc!=SQLITE_OK ){
7488 return rc;
7490 rc = sqlite3PagerWrite(pRoot->pDbPage);
7491 if( rc!=SQLITE_OK ){
7492 releasePage(pRoot);
7493 return rc;
7495 }else{
7496 pRoot = pPageMove;
7499 /* Update the pointer-map and meta-data with the new root-page number. */
7500 ptrmapPut(pBt, pgnoRoot, PTRMAP_ROOTPAGE, 0, &rc);
7501 if( rc ){
7502 releasePage(pRoot);
7503 return rc;
7506 /* When the new root page was allocated, page 1 was made writable in
7507 ** order either to increase the database filesize, or to decrement the
7508 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
7510 assert( sqlite3PagerIswriteable(pBt->pPage1->pDbPage) );
7511 rc = sqlite3BtreeUpdateMeta(p, 4, pgnoRoot);
7512 if( NEVER(rc) ){
7513 releasePage(pRoot);
7514 return rc;
7517 }else{
7518 rc = allocateBtreePage(pBt, &pRoot, &pgnoRoot, 1, 0);
7519 if( rc ) return rc;
7521 #endif
7522 assert( sqlite3PagerIswriteable(pRoot->pDbPage) );
7523 if( createTabFlags & BTREE_INTKEY ){
7524 ptfFlags = PTF_INTKEY | PTF_LEAFDATA | PTF_LEAF;
7525 }else{
7526 ptfFlags = PTF_ZERODATA | PTF_LEAF;
7528 zeroPage(pRoot, ptfFlags);
7529 sqlite3PagerUnref(pRoot->pDbPage);
7530 assert( (pBt->openFlags & BTREE_SINGLE)==0 || pgnoRoot==2 );
7531 *piTable = (int)pgnoRoot;
7532 return SQLITE_OK;
7534 int sqlite3BtreeCreateTable(Btree *p, int *piTable, int flags){
7535 int rc;
7536 sqlite3BtreeEnter(p);
7537 rc = btreeCreateTable(p, piTable, flags);
7538 sqlite3BtreeLeave(p);
7539 return rc;
7543 ** Erase the given database page and all its children. Return
7544 ** the page to the freelist.
7546 static int clearDatabasePage(
7547 BtShared *pBt, /* The BTree that contains the table */
7548 Pgno pgno, /* Page number to clear */
7549 int freePageFlag, /* Deallocate page if true */
7550 int *pnChange /* Add number of Cells freed to this counter */
7552 MemPage *pPage;
7553 int rc;
7554 unsigned char *pCell;
7555 int i;
7556 int hdr;
7557 u16 szCell;
7559 assert( sqlite3_mutex_held(pBt->mutex) );
7560 if( pgno>btreePagecount(pBt) ){
7561 return SQLITE_CORRUPT_BKPT;
7564 rc = getAndInitPage(pBt, pgno, &pPage, 0);
7565 if( rc ) return rc;
7566 hdr = pPage->hdrOffset;
7567 for(i=0; i<pPage->nCell; i++){
7568 pCell = findCell(pPage, i);
7569 if( !pPage->leaf ){
7570 rc = clearDatabasePage(pBt, get4byte(pCell), 1, pnChange);
7571 if( rc ) goto cleardatabasepage_out;
7573 rc = clearCell(pPage, pCell, &szCell);
7574 if( rc ) goto cleardatabasepage_out;
7576 if( !pPage->leaf ){
7577 rc = clearDatabasePage(pBt, get4byte(&pPage->aData[hdr+8]), 1, pnChange);
7578 if( rc ) goto cleardatabasepage_out;
7579 }else if( pnChange ){
7580 assert( pPage->intKey );
7581 *pnChange += pPage->nCell;
7583 if( freePageFlag ){
7584 freePage(pPage, &rc);
7585 }else if( (rc = sqlite3PagerWrite(pPage->pDbPage))==0 ){
7586 zeroPage(pPage, pPage->aData[hdr] | PTF_LEAF);
7589 cleardatabasepage_out:
7590 releasePage(pPage);
7591 return rc;
7595 ** Delete all information from a single table in the database. iTable is
7596 ** the page number of the root of the table. After this routine returns,
7597 ** the root page is empty, but still exists.
7599 ** This routine will fail with SQLITE_LOCKED if there are any open
7600 ** read cursors on the table. Open write cursors are moved to the
7601 ** root of the table.
7603 ** If pnChange is not NULL, then table iTable must be an intkey table. The
7604 ** integer value pointed to by pnChange is incremented by the number of
7605 ** entries in the table.
7607 int sqlite3BtreeClearTable(Btree *p, int iTable, int *pnChange){
7608 int rc;
7609 BtShared *pBt = p->pBt;
7610 sqlite3BtreeEnter(p);
7611 assert( p->inTrans==TRANS_WRITE );
7613 rc = saveAllCursors(pBt, (Pgno)iTable, 0);
7615 if( SQLITE_OK==rc ){
7616 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
7617 ** is the root of a table b-tree - if it is not, the following call is
7618 ** a no-op). */
7619 invalidateIncrblobCursors(p, 0, 1);
7620 rc = clearDatabasePage(pBt, (Pgno)iTable, 0, pnChange);
7622 sqlite3BtreeLeave(p);
7623 return rc;
7627 ** Delete all information from the single table that pCur is open on.
7629 ** This routine only work for pCur on an ephemeral table.
7631 int sqlite3BtreeClearTableOfCursor(BtCursor *pCur){
7632 return sqlite3BtreeClearTable(pCur->pBtree, pCur->pgnoRoot, 0);
7636 ** Erase all information in a table and add the root of the table to
7637 ** the freelist. Except, the root of the principle table (the one on
7638 ** page 1) is never added to the freelist.
7640 ** This routine will fail with SQLITE_LOCKED if there are any open
7641 ** cursors on the table.
7643 ** If AUTOVACUUM is enabled and the page at iTable is not the last
7644 ** root page in the database file, then the last root page
7645 ** in the database file is moved into the slot formerly occupied by
7646 ** iTable and that last slot formerly occupied by the last root page
7647 ** is added to the freelist instead of iTable. In this say, all
7648 ** root pages are kept at the beginning of the database file, which
7649 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the
7650 ** page number that used to be the last root page in the file before
7651 ** the move. If no page gets moved, *piMoved is set to 0.
7652 ** The last root page is recorded in meta[3] and the value of
7653 ** meta[3] is updated by this procedure.
7655 static int btreeDropTable(Btree *p, Pgno iTable, int *piMoved){
7656 int rc;
7657 MemPage *pPage = 0;
7658 BtShared *pBt = p->pBt;
7660 assert( sqlite3BtreeHoldsMutex(p) );
7661 assert( p->inTrans==TRANS_WRITE );
7663 /* It is illegal to drop a table if any cursors are open on the
7664 ** database. This is because in auto-vacuum mode the backend may
7665 ** need to move another root-page to fill a gap left by the deleted
7666 ** root page. If an open cursor was using this page a problem would
7667 ** occur.
7669 ** This error is caught long before control reaches this point.
7671 if( NEVER(pBt->pCursor) ){
7672 sqlite3ConnectionBlocked(p->db, pBt->pCursor->pBtree->db);
7673 return SQLITE_LOCKED_SHAREDCACHE;
7676 rc = btreeGetPage(pBt, (Pgno)iTable, &pPage, 0);
7677 if( rc ) return rc;
7678 rc = sqlite3BtreeClearTable(p, iTable, 0);
7679 if( rc ){
7680 releasePage(pPage);
7681 return rc;
7684 *piMoved = 0;
7686 if( iTable>1 ){
7687 #ifdef SQLITE_OMIT_AUTOVACUUM
7688 freePage(pPage, &rc);
7689 releasePage(pPage);
7690 #else
7691 if( pBt->autoVacuum ){
7692 Pgno maxRootPgno;
7693 sqlite3BtreeGetMeta(p, BTREE_LARGEST_ROOT_PAGE, &maxRootPgno);
7695 if( iTable==maxRootPgno ){
7696 /* If the table being dropped is the table with the largest root-page
7697 ** number in the database, put the root page on the free list.
7699 freePage(pPage, &rc);
7700 releasePage(pPage);
7701 if( rc!=SQLITE_OK ){
7702 return rc;
7704 }else{
7705 /* The table being dropped does not have the largest root-page
7706 ** number in the database. So move the page that does into the
7707 ** gap left by the deleted root-page.
7709 MemPage *pMove;
7710 releasePage(pPage);
7711 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
7712 if( rc!=SQLITE_OK ){
7713 return rc;
7715 rc = relocatePage(pBt, pMove, PTRMAP_ROOTPAGE, 0, iTable, 0);
7716 releasePage(pMove);
7717 if( rc!=SQLITE_OK ){
7718 return rc;
7720 pMove = 0;
7721 rc = btreeGetPage(pBt, maxRootPgno, &pMove, 0);
7722 freePage(pMove, &rc);
7723 releasePage(pMove);
7724 if( rc!=SQLITE_OK ){
7725 return rc;
7727 *piMoved = maxRootPgno;
7730 /* Set the new 'max-root-page' value in the database header. This
7731 ** is the old value less one, less one more if that happens to
7732 ** be a root-page number, less one again if that is the
7733 ** PENDING_BYTE_PAGE.
7735 maxRootPgno--;
7736 while( maxRootPgno==PENDING_BYTE_PAGE(pBt)
7737 || PTRMAP_ISPAGE(pBt, maxRootPgno) ){
7738 maxRootPgno--;
7740 assert( maxRootPgno!=PENDING_BYTE_PAGE(pBt) );
7742 rc = sqlite3BtreeUpdateMeta(p, 4, maxRootPgno);
7743 }else{
7744 freePage(pPage, &rc);
7745 releasePage(pPage);
7747 #endif
7748 }else{
7749 /* If sqlite3BtreeDropTable was called on page 1.
7750 ** This really never should happen except in a corrupt
7751 ** database.
7753 zeroPage(pPage, PTF_INTKEY|PTF_LEAF );
7754 releasePage(pPage);
7756 return rc;
7758 int sqlite3BtreeDropTable(Btree *p, int iTable, int *piMoved){
7759 int rc;
7760 sqlite3BtreeEnter(p);
7761 rc = btreeDropTable(p, iTable, piMoved);
7762 sqlite3BtreeLeave(p);
7763 return rc;
7768 ** This function may only be called if the b-tree connection already
7769 ** has a read or write transaction open on the database.
7771 ** Read the meta-information out of a database file. Meta[0]
7772 ** is the number of free pages currently in the database. Meta[1]
7773 ** through meta[15] are available for use by higher layers. Meta[0]
7774 ** is read-only, the others are read/write.
7776 ** The schema layer numbers meta values differently. At the schema
7777 ** layer (and the SetCookie and ReadCookie opcodes) the number of
7778 ** free pages is not visible. So Cookie[0] is the same as Meta[1].
7780 void sqlite3BtreeGetMeta(Btree *p, int idx, u32 *pMeta){
7781 BtShared *pBt = p->pBt;
7783 sqlite3BtreeEnter(p);
7784 assert( p->inTrans>TRANS_NONE );
7785 assert( SQLITE_OK==querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK) );
7786 assert( pBt->pPage1 );
7787 assert( idx>=0 && idx<=15 );
7789 *pMeta = get4byte(&pBt->pPage1->aData[36 + idx*4]);
7791 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
7792 ** database, mark the database as read-only. */
7793 #ifdef SQLITE_OMIT_AUTOVACUUM
7794 if( idx==BTREE_LARGEST_ROOT_PAGE && *pMeta>0 ){
7795 pBt->btsFlags |= BTS_READ_ONLY;
7797 #endif
7799 sqlite3BtreeLeave(p);
7803 ** Write meta-information back into the database. Meta[0] is
7804 ** read-only and may not be written.
7806 int sqlite3BtreeUpdateMeta(Btree *p, int idx, u32 iMeta){
7807 BtShared *pBt = p->pBt;
7808 unsigned char *pP1;
7809 int rc;
7810 assert( idx>=1 && idx<=15 );
7811 sqlite3BtreeEnter(p);
7812 assert( p->inTrans==TRANS_WRITE );
7813 assert( pBt->pPage1!=0 );
7814 pP1 = pBt->pPage1->aData;
7815 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
7816 if( rc==SQLITE_OK ){
7817 put4byte(&pP1[36 + idx*4], iMeta);
7818 #ifndef SQLITE_OMIT_AUTOVACUUM
7819 if( idx==BTREE_INCR_VACUUM ){
7820 assert( pBt->autoVacuum || iMeta==0 );
7821 assert( iMeta==0 || iMeta==1 );
7822 pBt->incrVacuum = (u8)iMeta;
7824 #endif
7826 sqlite3BtreeLeave(p);
7827 return rc;
7830 #ifndef SQLITE_OMIT_BTREECOUNT
7832 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
7833 ** number of entries in the b-tree and write the result to *pnEntry.
7835 ** SQLITE_OK is returned if the operation is successfully executed.
7836 ** Otherwise, if an error is encountered (i.e. an IO error or database
7837 ** corruption) an SQLite error code is returned.
7839 int sqlite3BtreeCount(BtCursor *pCur, i64 *pnEntry){
7840 i64 nEntry = 0; /* Value to return in *pnEntry */
7841 int rc; /* Return code */
7843 if( pCur->pgnoRoot==0 ){
7844 *pnEntry = 0;
7845 return SQLITE_OK;
7847 rc = moveToRoot(pCur);
7849 /* Unless an error occurs, the following loop runs one iteration for each
7850 ** page in the B-Tree structure (not including overflow pages).
7852 while( rc==SQLITE_OK ){
7853 int iIdx; /* Index of child node in parent */
7854 MemPage *pPage; /* Current page of the b-tree */
7856 /* If this is a leaf page or the tree is not an int-key tree, then
7857 ** this page contains countable entries. Increment the entry counter
7858 ** accordingly.
7860 pPage = pCur->apPage[pCur->iPage];
7861 if( pPage->leaf || !pPage->intKey ){
7862 nEntry += pPage->nCell;
7865 /* pPage is a leaf node. This loop navigates the cursor so that it
7866 ** points to the first interior cell that it points to the parent of
7867 ** the next page in the tree that has not yet been visited. The
7868 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
7869 ** of the page, or to the number of cells in the page if the next page
7870 ** to visit is the right-child of its parent.
7872 ** If all pages in the tree have been visited, return SQLITE_OK to the
7873 ** caller.
7875 if( pPage->leaf ){
7876 do {
7877 if( pCur->iPage==0 ){
7878 /* All pages of the b-tree have been visited. Return successfully. */
7879 *pnEntry = nEntry;
7880 return SQLITE_OK;
7882 moveToParent(pCur);
7883 }while ( pCur->aiIdx[pCur->iPage]>=pCur->apPage[pCur->iPage]->nCell );
7885 pCur->aiIdx[pCur->iPage]++;
7886 pPage = pCur->apPage[pCur->iPage];
7889 /* Descend to the child node of the cell that the cursor currently
7890 ** points at. This is the right-child if (iIdx==pPage->nCell).
7892 iIdx = pCur->aiIdx[pCur->iPage];
7893 if( iIdx==pPage->nCell ){
7894 rc = moveToChild(pCur, get4byte(&pPage->aData[pPage->hdrOffset+8]));
7895 }else{
7896 rc = moveToChild(pCur, get4byte(findCell(pPage, iIdx)));
7900 /* An error has occurred. Return an error code. */
7901 return rc;
7903 #endif
7906 ** Return the pager associated with a BTree. This routine is used for
7907 ** testing and debugging only.
7909 Pager *sqlite3BtreePager(Btree *p){
7910 return p->pBt->pPager;
7913 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
7915 ** Append a message to the error message string.
7917 static void checkAppendMsg(
7918 IntegrityCk *pCheck,
7919 const char *zFormat,
7922 va_list ap;
7923 char zBuf[200];
7924 if( !pCheck->mxErr ) return;
7925 pCheck->mxErr--;
7926 pCheck->nErr++;
7927 va_start(ap, zFormat);
7928 if( pCheck->errMsg.nChar ){
7929 sqlite3StrAccumAppend(&pCheck->errMsg, "\n", 1);
7931 if( pCheck->zPfx ){
7932 sqlite3_snprintf(sizeof(zBuf), zBuf, pCheck->zPfx, pCheck->v1, pCheck->v2);
7933 sqlite3StrAccumAppendAll(&pCheck->errMsg, zBuf);
7935 sqlite3VXPrintf(&pCheck->errMsg, 1, zFormat, ap);
7936 va_end(ap);
7937 if( pCheck->errMsg.accError==STRACCUM_NOMEM ){
7938 pCheck->mallocFailed = 1;
7941 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
7943 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
7946 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
7947 ** corresponds to page iPg is already set.
7949 static int getPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7950 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7951 return (pCheck->aPgRef[iPg/8] & (1 << (iPg & 0x07)));
7955 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
7957 static void setPageReferenced(IntegrityCk *pCheck, Pgno iPg){
7958 assert( iPg<=pCheck->nPage && sizeof(pCheck->aPgRef[0])==1 );
7959 pCheck->aPgRef[iPg/8] |= (1 << (iPg & 0x07));
7964 ** Add 1 to the reference count for page iPage. If this is the second
7965 ** reference to the page, add an error message to pCheck->zErrMsg.
7966 ** Return 1 if there are 2 or more references to the page and 0 if
7967 ** if this is the first reference to the page.
7969 ** Also check that the page number is in bounds.
7971 static int checkRef(IntegrityCk *pCheck, Pgno iPage){
7972 if( iPage==0 ) return 1;
7973 if( iPage>pCheck->nPage ){
7974 checkAppendMsg(pCheck, "invalid page number %d", iPage);
7975 return 1;
7977 if( getPageReferenced(pCheck, iPage) ){
7978 checkAppendMsg(pCheck, "2nd reference to page %d", iPage);
7979 return 1;
7981 setPageReferenced(pCheck, iPage);
7982 return 0;
7985 #ifndef SQLITE_OMIT_AUTOVACUUM
7987 ** Check that the entry in the pointer-map for page iChild maps to
7988 ** page iParent, pointer type ptrType. If not, append an error message
7989 ** to pCheck.
7991 static void checkPtrmap(
7992 IntegrityCk *pCheck, /* Integrity check context */
7993 Pgno iChild, /* Child page number */
7994 u8 eType, /* Expected pointer map type */
7995 Pgno iParent /* Expected pointer map parent page number */
7997 int rc;
7998 u8 ePtrmapType;
7999 Pgno iPtrmapParent;
8001 rc = ptrmapGet(pCheck->pBt, iChild, &ePtrmapType, &iPtrmapParent);
8002 if( rc!=SQLITE_OK ){
8003 if( rc==SQLITE_NOMEM || rc==SQLITE_IOERR_NOMEM ) pCheck->mallocFailed = 1;
8004 checkAppendMsg(pCheck, "Failed to read ptrmap key=%d", iChild);
8005 return;
8008 if( ePtrmapType!=eType || iPtrmapParent!=iParent ){
8009 checkAppendMsg(pCheck,
8010 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
8011 iChild, eType, iParent, ePtrmapType, iPtrmapParent);
8014 #endif
8017 ** Check the integrity of the freelist or of an overflow page list.
8018 ** Verify that the number of pages on the list is N.
8020 static void checkList(
8021 IntegrityCk *pCheck, /* Integrity checking context */
8022 int isFreeList, /* True for a freelist. False for overflow page list */
8023 int iPage, /* Page number for first page in the list */
8024 int N /* Expected number of pages in the list */
8026 int i;
8027 int expected = N;
8028 int iFirst = iPage;
8029 while( N-- > 0 && pCheck->mxErr ){
8030 DbPage *pOvflPage;
8031 unsigned char *pOvflData;
8032 if( iPage<1 ){
8033 checkAppendMsg(pCheck,
8034 "%d of %d pages missing from overflow list starting at %d",
8035 N+1, expected, iFirst);
8036 break;
8038 if( checkRef(pCheck, iPage) ) break;
8039 if( sqlite3PagerGet(pCheck->pPager, (Pgno)iPage, &pOvflPage) ){
8040 checkAppendMsg(pCheck, "failed to get page %d", iPage);
8041 break;
8043 pOvflData = (unsigned char *)sqlite3PagerGetData(pOvflPage);
8044 if( isFreeList ){
8045 int n = get4byte(&pOvflData[4]);
8046 #ifndef SQLITE_OMIT_AUTOVACUUM
8047 if( pCheck->pBt->autoVacuum ){
8048 checkPtrmap(pCheck, iPage, PTRMAP_FREEPAGE, 0);
8050 #endif
8051 if( n>(int)pCheck->pBt->usableSize/4-2 ){
8052 checkAppendMsg(pCheck,
8053 "freelist leaf count too big on page %d", iPage);
8054 N--;
8055 }else{
8056 for(i=0; i<n; i++){
8057 Pgno iFreePage = get4byte(&pOvflData[8+i*4]);
8058 #ifndef SQLITE_OMIT_AUTOVACUUM
8059 if( pCheck->pBt->autoVacuum ){
8060 checkPtrmap(pCheck, iFreePage, PTRMAP_FREEPAGE, 0);
8062 #endif
8063 checkRef(pCheck, iFreePage);
8065 N -= n;
8068 #ifndef SQLITE_OMIT_AUTOVACUUM
8069 else{
8070 /* If this database supports auto-vacuum and iPage is not the last
8071 ** page in this overflow list, check that the pointer-map entry for
8072 ** the following page matches iPage.
8074 if( pCheck->pBt->autoVacuum && N>0 ){
8075 i = get4byte(pOvflData);
8076 checkPtrmap(pCheck, i, PTRMAP_OVERFLOW2, iPage);
8079 #endif
8080 iPage = get4byte(pOvflData);
8081 sqlite3PagerUnref(pOvflPage);
8084 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
8086 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
8088 ** Do various sanity checks on a single page of a tree. Return
8089 ** the tree depth. Root pages return 0. Parents of root pages
8090 ** return 1, and so forth.
8092 ** These checks are done:
8094 ** 1. Make sure that cells and freeblocks do not overlap
8095 ** but combine to completely cover the page.
8096 ** NO 2. Make sure cell keys are in order.
8097 ** NO 3. Make sure no key is less than or equal to zLowerBound.
8098 ** NO 4. Make sure no key is greater than or equal to zUpperBound.
8099 ** 5. Check the integrity of overflow pages.
8100 ** 6. Recursively call checkTreePage on all children.
8101 ** 7. Verify that the depth of all children is the same.
8102 ** 8. Make sure this page is at least 33% full or else it is
8103 ** the root of the tree.
8105 static int checkTreePage(
8106 IntegrityCk *pCheck, /* Context for the sanity check */
8107 int iPage, /* Page number of the page to check */
8108 i64 *pnParentMinKey,
8109 i64 *pnParentMaxKey
8111 MemPage *pPage;
8112 int i, rc, depth, d2, pgno, cnt;
8113 int hdr, cellStart;
8114 int nCell;
8115 u8 *data;
8116 BtShared *pBt;
8117 int usableSize;
8118 char *hit = 0;
8119 i64 nMinKey = 0;
8120 i64 nMaxKey = 0;
8121 const char *saved_zPfx = pCheck->zPfx;
8122 int saved_v1 = pCheck->v1;
8123 int saved_v2 = pCheck->v2;
8125 /* Check that the page exists
8127 pBt = pCheck->pBt;
8128 usableSize = pBt->usableSize;
8129 if( iPage==0 ) return 0;
8130 if( checkRef(pCheck, iPage) ) return 0;
8131 pCheck->zPfx = "Page %d: ";
8132 pCheck->v1 = iPage;
8133 if( (rc = btreeGetPage(pBt, (Pgno)iPage, &pPage, 0))!=0 ){
8134 checkAppendMsg(pCheck,
8135 "unable to get the page. error code=%d", rc);
8136 depth = -1;
8137 goto end_of_check;
8140 /* Clear MemPage.isInit to make sure the corruption detection code in
8141 ** btreeInitPage() is executed. */
8142 pPage->isInit = 0;
8143 if( (rc = btreeInitPage(pPage))!=0 ){
8144 assert( rc==SQLITE_CORRUPT ); /* The only possible error from InitPage */
8145 checkAppendMsg(pCheck,
8146 "btreeInitPage() returns error code %d", rc);
8147 releasePage(pPage);
8148 depth = -1;
8149 goto end_of_check;
8152 /* Check out all the cells.
8154 depth = 0;
8155 for(i=0; i<pPage->nCell && pCheck->mxErr; i++){
8156 u8 *pCell;
8157 u32 sz;
8158 CellInfo info;
8160 /* Check payload overflow pages
8162 pCheck->zPfx = "On tree page %d cell %d: ";
8163 pCheck->v1 = iPage;
8164 pCheck->v2 = i;
8165 pCell = findCell(pPage,i);
8166 btreeParseCellPtr(pPage, pCell, &info);
8167 sz = info.nPayload;
8168 /* For intKey pages, check that the keys are in order.
8170 if( pPage->intKey ){
8171 if( i==0 ){
8172 nMinKey = nMaxKey = info.nKey;
8173 }else if( info.nKey <= nMaxKey ){
8174 checkAppendMsg(pCheck,
8175 "Rowid %lld out of order (previous was %lld)", info.nKey, nMaxKey);
8177 nMaxKey = info.nKey;
8179 if( (sz>info.nLocal)
8180 && (&pCell[info.iOverflow]<=&pPage->aData[pBt->usableSize])
8182 int nPage = (sz - info.nLocal + usableSize - 5)/(usableSize - 4);
8183 Pgno pgnoOvfl = get4byte(&pCell[info.iOverflow]);
8184 #ifndef SQLITE_OMIT_AUTOVACUUM
8185 if( pBt->autoVacuum ){
8186 checkPtrmap(pCheck, pgnoOvfl, PTRMAP_OVERFLOW1, iPage);
8188 #endif
8189 checkList(pCheck, 0, pgnoOvfl, nPage);
8192 /* Check sanity of left child page.
8194 if( !pPage->leaf ){
8195 pgno = get4byte(pCell);
8196 #ifndef SQLITE_OMIT_AUTOVACUUM
8197 if( pBt->autoVacuum ){
8198 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
8200 #endif
8201 d2 = checkTreePage(pCheck, pgno, &nMinKey, i==0?NULL:&nMaxKey);
8202 if( i>0 && d2!=depth ){
8203 checkAppendMsg(pCheck, "Child page depth differs");
8205 depth = d2;
8209 if( !pPage->leaf ){
8210 pgno = get4byte(&pPage->aData[pPage->hdrOffset+8]);
8211 pCheck->zPfx = "On page %d at right child: ";
8212 pCheck->v1 = iPage;
8213 #ifndef SQLITE_OMIT_AUTOVACUUM
8214 if( pBt->autoVacuum ){
8215 checkPtrmap(pCheck, pgno, PTRMAP_BTREE, iPage);
8217 #endif
8218 checkTreePage(pCheck, pgno, NULL, !pPage->nCell?NULL:&nMaxKey);
8221 /* For intKey leaf pages, check that the min/max keys are in order
8222 ** with any left/parent/right pages.
8224 pCheck->zPfx = "Page %d: ";
8225 pCheck->v1 = iPage;
8226 if( pPage->leaf && pPage->intKey ){
8227 /* if we are a left child page */
8228 if( pnParentMinKey ){
8229 /* if we are the left most child page */
8230 if( !pnParentMaxKey ){
8231 if( nMaxKey > *pnParentMinKey ){
8232 checkAppendMsg(pCheck,
8233 "Rowid %lld out of order (max larger than parent min of %lld)",
8234 nMaxKey, *pnParentMinKey);
8236 }else{
8237 if( nMinKey <= *pnParentMinKey ){
8238 checkAppendMsg(pCheck,
8239 "Rowid %lld out of order (min less than parent min of %lld)",
8240 nMinKey, *pnParentMinKey);
8242 if( nMaxKey > *pnParentMaxKey ){
8243 checkAppendMsg(pCheck,
8244 "Rowid %lld out of order (max larger than parent max of %lld)",
8245 nMaxKey, *pnParentMaxKey);
8247 *pnParentMinKey = nMaxKey;
8249 /* else if we're a right child page */
8250 } else if( pnParentMaxKey ){
8251 if( nMinKey <= *pnParentMaxKey ){
8252 checkAppendMsg(pCheck,
8253 "Rowid %lld out of order (min less than parent max of %lld)",
8254 nMinKey, *pnParentMaxKey);
8259 /* Check for complete coverage of the page
8261 data = pPage->aData;
8262 hdr = pPage->hdrOffset;
8263 hit = sqlite3PageMalloc( pBt->pageSize );
8264 pCheck->zPfx = 0;
8265 if( hit==0 ){
8266 pCheck->mallocFailed = 1;
8267 }else{
8268 int contentOffset = get2byteNotZero(&data[hdr+5]);
8269 assert( contentOffset<=usableSize ); /* Enforced by btreeInitPage() */
8270 memset(hit+contentOffset, 0, usableSize-contentOffset);
8271 memset(hit, 1, contentOffset);
8272 nCell = get2byte(&data[hdr+3]);
8273 cellStart = hdr + 12 - 4*pPage->leaf;
8274 for(i=0; i<nCell; i++){
8275 int pc = get2byte(&data[cellStart+i*2]);
8276 u32 size = 65536;
8277 int j;
8278 if( pc<=usableSize-4 ){
8279 size = cellSizePtr(pPage, &data[pc]);
8281 if( (int)(pc+size-1)>=usableSize ){
8282 pCheck->zPfx = 0;
8283 checkAppendMsg(pCheck,
8284 "Corruption detected in cell %d on page %d",i,iPage);
8285 }else{
8286 for(j=pc+size-1; j>=pc; j--) hit[j]++;
8289 i = get2byte(&data[hdr+1]);
8290 while( i>0 ){
8291 int size, j;
8292 assert( i<=usableSize-4 ); /* Enforced by btreeInitPage() */
8293 size = get2byte(&data[i+2]);
8294 assert( i+size<=usableSize ); /* Enforced by btreeInitPage() */
8295 for(j=i+size-1; j>=i; j--) hit[j]++;
8296 j = get2byte(&data[i]);
8297 assert( j==0 || j>i+size ); /* Enforced by btreeInitPage() */
8298 assert( j<=usableSize-4 ); /* Enforced by btreeInitPage() */
8299 i = j;
8301 for(i=cnt=0; i<usableSize; i++){
8302 if( hit[i]==0 ){
8303 cnt++;
8304 }else if( hit[i]>1 ){
8305 checkAppendMsg(pCheck,
8306 "Multiple uses for byte %d of page %d", i, iPage);
8307 break;
8310 if( cnt!=data[hdr+7] ){
8311 checkAppendMsg(pCheck,
8312 "Fragmentation of %d bytes reported as %d on page %d",
8313 cnt, data[hdr+7], iPage);
8316 sqlite3PageFree(hit);
8317 releasePage(pPage);
8319 end_of_check:
8320 pCheck->zPfx = saved_zPfx;
8321 pCheck->v1 = saved_v1;
8322 pCheck->v2 = saved_v2;
8323 return depth+1;
8325 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
8327 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
8329 ** This routine does a complete check of the given BTree file. aRoot[] is
8330 ** an array of pages numbers were each page number is the root page of
8331 ** a table. nRoot is the number of entries in aRoot.
8333 ** A read-only or read-write transaction must be opened before calling
8334 ** this function.
8336 ** Write the number of error seen in *pnErr. Except for some memory
8337 ** allocation errors, an error message held in memory obtained from
8338 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
8339 ** returned. If a memory allocation error occurs, NULL is returned.
8341 char *sqlite3BtreeIntegrityCheck(
8342 Btree *p, /* The btree to be checked */
8343 int *aRoot, /* An array of root pages numbers for individual trees */
8344 int nRoot, /* Number of entries in aRoot[] */
8345 int mxErr, /* Stop reporting errors after this many */
8346 int *pnErr /* Write number of errors seen to this variable */
8348 Pgno i;
8349 int nRef;
8350 IntegrityCk sCheck;
8351 BtShared *pBt = p->pBt;
8352 char zErr[100];
8354 sqlite3BtreeEnter(p);
8355 assert( p->inTrans>TRANS_NONE && pBt->inTransaction>TRANS_NONE );
8356 nRef = sqlite3PagerRefcount(pBt->pPager);
8357 sCheck.pBt = pBt;
8358 sCheck.pPager = pBt->pPager;
8359 sCheck.nPage = btreePagecount(sCheck.pBt);
8360 sCheck.mxErr = mxErr;
8361 sCheck.nErr = 0;
8362 sCheck.mallocFailed = 0;
8363 sCheck.zPfx = 0;
8364 sCheck.v1 = 0;
8365 sCheck.v2 = 0;
8366 *pnErr = 0;
8367 if( sCheck.nPage==0 ){
8368 sqlite3BtreeLeave(p);
8369 return 0;
8372 sCheck.aPgRef = sqlite3MallocZero((sCheck.nPage / 8)+ 1);
8373 if( !sCheck.aPgRef ){
8374 *pnErr = 1;
8375 sqlite3BtreeLeave(p);
8376 return 0;
8378 i = PENDING_BYTE_PAGE(pBt);
8379 if( i<=sCheck.nPage ) setPageReferenced(&sCheck, i);
8380 sqlite3StrAccumInit(&sCheck.errMsg, zErr, sizeof(zErr), SQLITE_MAX_LENGTH);
8381 sCheck.errMsg.useMalloc = 2;
8383 /* Check the integrity of the freelist
8385 sCheck.zPfx = "Main freelist: ";
8386 checkList(&sCheck, 1, get4byte(&pBt->pPage1->aData[32]),
8387 get4byte(&pBt->pPage1->aData[36]));
8388 sCheck.zPfx = 0;
8390 /* Check all the tables.
8392 for(i=0; (int)i<nRoot && sCheck.mxErr; i++){
8393 if( aRoot[i]==0 ) continue;
8394 #ifndef SQLITE_OMIT_AUTOVACUUM
8395 if( pBt->autoVacuum && aRoot[i]>1 ){
8396 checkPtrmap(&sCheck, aRoot[i], PTRMAP_ROOTPAGE, 0);
8398 #endif
8399 sCheck.zPfx = "List of tree roots: ";
8400 checkTreePage(&sCheck, aRoot[i], NULL, NULL);
8401 sCheck.zPfx = 0;
8404 /* Make sure every page in the file is referenced
8406 for(i=1; i<=sCheck.nPage && sCheck.mxErr; i++){
8407 #ifdef SQLITE_OMIT_AUTOVACUUM
8408 if( getPageReferenced(&sCheck, i)==0 ){
8409 checkAppendMsg(&sCheck, "Page %d is never used", i);
8411 #else
8412 /* If the database supports auto-vacuum, make sure no tables contain
8413 ** references to pointer-map pages.
8415 if( getPageReferenced(&sCheck, i)==0 &&
8416 (PTRMAP_PAGENO(pBt, i)!=i || !pBt->autoVacuum) ){
8417 checkAppendMsg(&sCheck, "Page %d is never used", i);
8419 if( getPageReferenced(&sCheck, i)!=0 &&
8420 (PTRMAP_PAGENO(pBt, i)==i && pBt->autoVacuum) ){
8421 checkAppendMsg(&sCheck, "Pointer map page %d is referenced", i);
8423 #endif
8426 /* Make sure this analysis did not leave any unref() pages.
8427 ** This is an internal consistency check; an integrity check
8428 ** of the integrity check.
8430 if( NEVER(nRef != sqlite3PagerRefcount(pBt->pPager)) ){
8431 checkAppendMsg(&sCheck,
8432 "Outstanding page count goes from %d to %d during this analysis",
8433 nRef, sqlite3PagerRefcount(pBt->pPager)
8437 /* Clean up and report errors.
8439 sqlite3BtreeLeave(p);
8440 sqlite3_free(sCheck.aPgRef);
8441 if( sCheck.mallocFailed ){
8442 sqlite3StrAccumReset(&sCheck.errMsg);
8443 *pnErr = sCheck.nErr+1;
8444 return 0;
8446 *pnErr = sCheck.nErr;
8447 if( sCheck.nErr==0 ) sqlite3StrAccumReset(&sCheck.errMsg);
8448 return sqlite3StrAccumFinish(&sCheck.errMsg);
8450 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
8453 ** Return the full pathname of the underlying database file. Return
8454 ** an empty string if the database is in-memory or a TEMP database.
8456 ** The pager filename is invariant as long as the pager is
8457 ** open so it is safe to access without the BtShared mutex.
8459 const char *sqlite3BtreeGetFilename(Btree *p){
8460 assert( p->pBt->pPager!=0 );
8461 return sqlite3PagerFilename(p->pBt->pPager, 1);
8465 ** Return the pathname of the journal file for this database. The return
8466 ** value of this routine is the same regardless of whether the journal file
8467 ** has been created or not.
8469 ** The pager journal filename is invariant as long as the pager is
8470 ** open so it is safe to access without the BtShared mutex.
8472 const char *sqlite3BtreeGetJournalname(Btree *p){
8473 assert( p->pBt->pPager!=0 );
8474 return sqlite3PagerJournalname(p->pBt->pPager);
8478 ** Return non-zero if a transaction is active.
8480 int sqlite3BtreeIsInTrans(Btree *p){
8481 assert( p==0 || sqlite3_mutex_held(p->db->mutex) );
8482 return (p && (p->inTrans==TRANS_WRITE));
8485 #ifndef SQLITE_OMIT_WAL
8487 ** Run a checkpoint on the Btree passed as the first argument.
8489 ** Return SQLITE_LOCKED if this or any other connection has an open
8490 ** transaction on the shared-cache the argument Btree is connected to.
8492 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
8494 int sqlite3BtreeCheckpoint(Btree *p, int eMode, int *pnLog, int *pnCkpt){
8495 int rc = SQLITE_OK;
8496 if( p ){
8497 BtShared *pBt = p->pBt;
8498 sqlite3BtreeEnter(p);
8499 if( pBt->inTransaction!=TRANS_NONE ){
8500 rc = SQLITE_LOCKED;
8501 }else{
8502 rc = sqlite3PagerCheckpoint(pBt->pPager, eMode, pnLog, pnCkpt);
8504 sqlite3BtreeLeave(p);
8506 return rc;
8508 #endif
8511 ** Return non-zero if a read (or write) transaction is active.
8513 int sqlite3BtreeIsInReadTrans(Btree *p){
8514 assert( p );
8515 assert( sqlite3_mutex_held(p->db->mutex) );
8516 return p->inTrans!=TRANS_NONE;
8519 int sqlite3BtreeIsInBackup(Btree *p){
8520 assert( p );
8521 assert( sqlite3_mutex_held(p->db->mutex) );
8522 return p->nBackup!=0;
8526 ** This function returns a pointer to a blob of memory associated with
8527 ** a single shared-btree. The memory is used by client code for its own
8528 ** purposes (for example, to store a high-level schema associated with
8529 ** the shared-btree). The btree layer manages reference counting issues.
8531 ** The first time this is called on a shared-btree, nBytes bytes of memory
8532 ** are allocated, zeroed, and returned to the caller. For each subsequent
8533 ** call the nBytes parameter is ignored and a pointer to the same blob
8534 ** of memory returned.
8536 ** If the nBytes parameter is 0 and the blob of memory has not yet been
8537 ** allocated, a null pointer is returned. If the blob has already been
8538 ** allocated, it is returned as normal.
8540 ** Just before the shared-btree is closed, the function passed as the
8541 ** xFree argument when the memory allocation was made is invoked on the
8542 ** blob of allocated memory. The xFree function should not call sqlite3_free()
8543 ** on the memory, the btree layer does that.
8545 void *sqlite3BtreeSchema(Btree *p, int nBytes, void(*xFree)(void *)){
8546 BtShared *pBt = p->pBt;
8547 sqlite3BtreeEnter(p);
8548 if( !pBt->pSchema && nBytes ){
8549 pBt->pSchema = sqlite3DbMallocZero(0, nBytes);
8550 pBt->xFreeSchema = xFree;
8552 sqlite3BtreeLeave(p);
8553 return pBt->pSchema;
8557 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
8558 ** btree as the argument handle holds an exclusive lock on the
8559 ** sqlite_master table. Otherwise SQLITE_OK.
8561 int sqlite3BtreeSchemaLocked(Btree *p){
8562 int rc;
8563 assert( sqlite3_mutex_held(p->db->mutex) );
8564 sqlite3BtreeEnter(p);
8565 rc = querySharedCacheTableLock(p, MASTER_ROOT, READ_LOCK);
8566 assert( rc==SQLITE_OK || rc==SQLITE_LOCKED_SHAREDCACHE );
8567 sqlite3BtreeLeave(p);
8568 return rc;
8572 #ifndef SQLITE_OMIT_SHARED_CACHE
8574 ** Obtain a lock on the table whose root page is iTab. The
8575 ** lock is a write lock if isWritelock is true or a read lock
8576 ** if it is false.
8578 int sqlite3BtreeLockTable(Btree *p, int iTab, u8 isWriteLock){
8579 int rc = SQLITE_OK;
8580 assert( p->inTrans!=TRANS_NONE );
8581 if( p->sharable ){
8582 u8 lockType = READ_LOCK + isWriteLock;
8583 assert( READ_LOCK+1==WRITE_LOCK );
8584 assert( isWriteLock==0 || isWriteLock==1 );
8586 sqlite3BtreeEnter(p);
8587 rc = querySharedCacheTableLock(p, iTab, lockType);
8588 if( rc==SQLITE_OK ){
8589 rc = setSharedCacheTableLock(p, iTab, lockType);
8591 sqlite3BtreeLeave(p);
8593 return rc;
8595 #endif
8597 #ifndef SQLITE_OMIT_INCRBLOB
8599 ** Argument pCsr must be a cursor opened for writing on an
8600 ** INTKEY table currently pointing at a valid table entry.
8601 ** This function modifies the data stored as part of that entry.
8603 ** Only the data content may only be modified, it is not possible to
8604 ** change the length of the data stored. If this function is called with
8605 ** parameters that attempt to write past the end of the existing data,
8606 ** no modifications are made and SQLITE_CORRUPT is returned.
8608 int sqlite3BtreePutData(BtCursor *pCsr, u32 offset, u32 amt, void *z){
8609 int rc;
8610 assert( cursorHoldsMutex(pCsr) );
8611 assert( sqlite3_mutex_held(pCsr->pBtree->db->mutex) );
8612 assert( pCsr->curFlags & BTCF_Incrblob );
8614 rc = restoreCursorPosition(pCsr);
8615 if( rc!=SQLITE_OK ){
8616 return rc;
8618 assert( pCsr->eState!=CURSOR_REQUIRESEEK );
8619 if( pCsr->eState!=CURSOR_VALID ){
8620 return SQLITE_ABORT;
8623 /* Save the positions of all other cursors open on this table. This is
8624 ** required in case any of them are holding references to an xFetch
8625 ** version of the b-tree page modified by the accessPayload call below.
8627 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
8628 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
8629 ** saveAllCursors can only return SQLITE_OK.
8631 VVA_ONLY(rc =) saveAllCursors(pCsr->pBt, pCsr->pgnoRoot, pCsr);
8632 assert( rc==SQLITE_OK );
8634 /* Check some assumptions:
8635 ** (a) the cursor is open for writing,
8636 ** (b) there is a read/write transaction open,
8637 ** (c) the connection holds a write-lock on the table (if required),
8638 ** (d) there are no conflicting read-locks, and
8639 ** (e) the cursor points at a valid row of an intKey table.
8641 if( (pCsr->curFlags & BTCF_WriteFlag)==0 ){
8642 return SQLITE_READONLY;
8644 assert( (pCsr->pBt->btsFlags & BTS_READ_ONLY)==0
8645 && pCsr->pBt->inTransaction==TRANS_WRITE );
8646 assert( hasSharedCacheTableLock(pCsr->pBtree, pCsr->pgnoRoot, 0, 2) );
8647 assert( !hasReadConflicts(pCsr->pBtree, pCsr->pgnoRoot) );
8648 assert( pCsr->apPage[pCsr->iPage]->intKey );
8650 return accessPayload(pCsr, offset, amt, (unsigned char *)z, 1);
8654 ** Mark this cursor as an incremental blob cursor.
8656 void sqlite3BtreeIncrblobCursor(BtCursor *pCur){
8657 pCur->curFlags |= BTCF_Incrblob;
8659 #endif
8662 ** Set both the "read version" (single byte at byte offset 18) and
8663 ** "write version" (single byte at byte offset 19) fields in the database
8664 ** header to iVersion.
8666 int sqlite3BtreeSetVersion(Btree *pBtree, int iVersion){
8667 BtShared *pBt = pBtree->pBt;
8668 int rc; /* Return code */
8670 assert( iVersion==1 || iVersion==2 );
8672 /* If setting the version fields to 1, do not automatically open the
8673 ** WAL connection, even if the version fields are currently set to 2.
8675 pBt->btsFlags &= ~BTS_NO_WAL;
8676 if( iVersion==1 ) pBt->btsFlags |= BTS_NO_WAL;
8678 rc = sqlite3BtreeBeginTrans(pBtree, 0);
8679 if( rc==SQLITE_OK ){
8680 u8 *aData = pBt->pPage1->aData;
8681 if( aData[18]!=(u8)iVersion || aData[19]!=(u8)iVersion ){
8682 rc = sqlite3BtreeBeginTrans(pBtree, 2);
8683 if( rc==SQLITE_OK ){
8684 rc = sqlite3PagerWrite(pBt->pPage1->pDbPage);
8685 if( rc==SQLITE_OK ){
8686 aData[18] = (u8)iVersion;
8687 aData[19] = (u8)iVersion;
8693 pBt->btsFlags &= ~BTS_NO_WAL;
8694 return rc;
8698 ** set the mask of hint flags for cursor pCsr. Currently the only valid
8699 ** values are 0 and BTREE_BULKLOAD.
8701 void sqlite3BtreeCursorHints(BtCursor *pCsr, unsigned int mask){
8702 assert( mask==BTREE_BULKLOAD || mask==0 );
8703 pCsr->hints = mask;
8707 ** Return true if the given Btree is read-only.
8709 int sqlite3BtreeIsReadonly(Btree *p){
8710 return (p->pBt->btsFlags & BTS_READ_ONLY)!=0;