Update mojo sdk to rev 1dc8a9a5db73d3718d99917fadf31f5fb2ebad4f
[chromium-blink-merge.git] / third_party / sqlite / sqlite-src-3080704 / src / fkey.c
blobe816bd95daf30bcfa985eb89785c1e0c95d37a7a
1 /*
2 **
3 ** The author disclaims copyright to this source code. In place of
4 ** a legal notice, here is a blessing:
5 **
6 ** May you do good and not evil.
7 ** May you find forgiveness for yourself and forgive others.
8 ** May you share freely, never taking more than you give.
9 **
10 *************************************************************************
11 ** This file contains code used by the compiler to add foreign key
12 ** support to compiled SQL statements.
14 #include "sqliteInt.h"
16 #ifndef SQLITE_OMIT_FOREIGN_KEY
17 #ifndef SQLITE_OMIT_TRIGGER
20 ** Deferred and Immediate FKs
21 ** --------------------------
23 ** Foreign keys in SQLite come in two flavours: deferred and immediate.
24 ** If an immediate foreign key constraint is violated,
25 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current
26 ** statement transaction rolled back. If a
27 ** deferred foreign key constraint is violated, no action is taken
28 ** immediately. However if the application attempts to commit the
29 ** transaction before fixing the constraint violation, the attempt fails.
31 ** Deferred constraints are implemented using a simple counter associated
32 ** with the database handle. The counter is set to zero each time a
33 ** database transaction is opened. Each time a statement is executed
34 ** that causes a foreign key violation, the counter is incremented. Each
35 ** time a statement is executed that removes an existing violation from
36 ** the database, the counter is decremented. When the transaction is
37 ** committed, the commit fails if the current value of the counter is
38 ** greater than zero. This scheme has two big drawbacks:
40 ** * When a commit fails due to a deferred foreign key constraint,
41 ** there is no way to tell which foreign constraint is not satisfied,
42 ** or which row it is not satisfied for.
44 ** * If the database contains foreign key violations when the
45 ** transaction is opened, this may cause the mechanism to malfunction.
47 ** Despite these problems, this approach is adopted as it seems simpler
48 ** than the alternatives.
50 ** INSERT operations:
52 ** I.1) For each FK for which the table is the child table, search
53 ** the parent table for a match. If none is found increment the
54 ** constraint counter.
56 ** I.2) For each FK for which the table is the parent table,
57 ** search the child table for rows that correspond to the new
58 ** row in the parent table. Decrement the counter for each row
59 ** found (as the constraint is now satisfied).
61 ** DELETE operations:
63 ** D.1) For each FK for which the table is the child table,
64 ** search the parent table for a row that corresponds to the
65 ** deleted row in the child table. If such a row is not found,
66 ** decrement the counter.
68 ** D.2) For each FK for which the table is the parent table, search
69 ** the child table for rows that correspond to the deleted row
70 ** in the parent table. For each found increment the counter.
72 ** UPDATE operations:
74 ** An UPDATE command requires that all 4 steps above are taken, but only
75 ** for FK constraints for which the affected columns are actually
76 ** modified (values must be compared at runtime).
78 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
79 ** This simplifies the implementation a bit.
81 ** For the purposes of immediate FK constraints, the OR REPLACE conflict
82 ** resolution is considered to delete rows before the new row is inserted.
83 ** If a delete caused by OR REPLACE violates an FK constraint, an exception
84 ** is thrown, even if the FK constraint would be satisfied after the new
85 ** row is inserted.
87 ** Immediate constraints are usually handled similarly. The only difference
88 ** is that the counter used is stored as part of each individual statement
89 ** object (struct Vdbe). If, after the statement has run, its immediate
90 ** constraint counter is greater than zero,
91 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY
92 ** and the statement transaction is rolled back. An exception is an INSERT
93 ** statement that inserts a single row only (no triggers). In this case,
94 ** instead of using a counter, an exception is thrown immediately if the
95 ** INSERT violates a foreign key constraint. This is necessary as such
96 ** an INSERT does not open a statement transaction.
98 ** TODO: How should dropping a table be handled? How should renaming a
99 ** table be handled?
102 ** Query API Notes
103 ** ---------------
105 ** Before coding an UPDATE or DELETE row operation, the code-generator
106 ** for those two operations needs to know whether or not the operation
107 ** requires any FK processing and, if so, which columns of the original
108 ** row are required by the FK processing VDBE code (i.e. if FKs were
109 ** implemented using triggers, which of the old.* columns would be
110 ** accessed). No information is required by the code-generator before
111 ** coding an INSERT operation. The functions used by the UPDATE/DELETE
112 ** generation code to query for this information are:
114 ** sqlite3FkRequired() - Test to see if FK processing is required.
115 ** sqlite3FkOldmask() - Query for the set of required old.* columns.
118 ** Externally accessible module functions
119 ** --------------------------------------
121 ** sqlite3FkCheck() - Check for foreign key violations.
122 ** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions.
123 ** sqlite3FkDelete() - Delete an FKey structure.
127 ** VDBE Calling Convention
128 ** -----------------------
130 ** Example:
132 ** For the following INSERT statement:
134 ** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
135 ** INSERT INTO t1 VALUES(1, 2, 3.1);
137 ** Register (x): 2 (type integer)
138 ** Register (x+1): 1 (type integer)
139 ** Register (x+2): NULL (type NULL)
140 ** Register (x+3): 3.1 (type real)
144 ** A foreign key constraint requires that the key columns in the parent
145 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
146 ** Given that pParent is the parent table for foreign key constraint pFKey,
147 ** search the schema for a unique index on the parent key columns.
149 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY
150 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx
151 ** is set to point to the unique index.
153 ** If the parent key consists of a single column (the foreign key constraint
154 ** is not a composite foreign key), output variable *paiCol is set to NULL.
155 ** Otherwise, it is set to point to an allocated array of size N, where
156 ** N is the number of columns in the parent key. The first element of the
157 ** array is the index of the child table column that is mapped by the FK
158 ** constraint to the parent table column stored in the left-most column
159 ** of index *ppIdx. The second element of the array is the index of the
160 ** child table column that corresponds to the second left-most column of
161 ** *ppIdx, and so on.
163 ** If the required index cannot be found, either because:
165 ** 1) The named parent key columns do not exist, or
167 ** 2) The named parent key columns do exist, but are not subject to a
168 ** UNIQUE or PRIMARY KEY constraint, or
170 ** 3) No parent key columns were provided explicitly as part of the
171 ** foreign key definition, and the parent table does not have a
172 ** PRIMARY KEY, or
174 ** 4) No parent key columns were provided explicitly as part of the
175 ** foreign key definition, and the PRIMARY KEY of the parent table
176 ** consists of a different number of columns to the child key in
177 ** the child table.
179 ** then non-zero is returned, and a "foreign key mismatch" error loaded
180 ** into pParse. If an OOM error occurs, non-zero is returned and the
181 ** pParse->db->mallocFailed flag is set.
183 int sqlite3FkLocateIndex(
184 Parse *pParse, /* Parse context to store any error in */
185 Table *pParent, /* Parent table of FK constraint pFKey */
186 FKey *pFKey, /* Foreign key to find index for */
187 Index **ppIdx, /* OUT: Unique index on parent table */
188 int **paiCol /* OUT: Map of index columns in pFKey */
190 Index *pIdx = 0; /* Value to return via *ppIdx */
191 int *aiCol = 0; /* Value to return via *paiCol */
192 int nCol = pFKey->nCol; /* Number of columns in parent key */
193 char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */
195 /* The caller is responsible for zeroing output parameters. */
196 assert( ppIdx && *ppIdx==0 );
197 assert( !paiCol || *paiCol==0 );
198 assert( pParse );
200 /* If this is a non-composite (single column) foreign key, check if it
201 ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx
202 ** and *paiCol set to zero and return early.
204 ** Otherwise, for a composite foreign key (more than one column), allocate
205 ** space for the aiCol array (returned via output parameter *paiCol).
206 ** Non-composite foreign keys do not require the aiCol array.
208 if( nCol==1 ){
209 /* The FK maps to the IPK if any of the following are true:
211 ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly
212 ** mapped to the primary key of table pParent, or
213 ** 2) The FK is explicitly mapped to a column declared as INTEGER
214 ** PRIMARY KEY.
216 if( pParent->iPKey>=0 ){
217 if( !zKey ) return 0;
218 if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0;
220 }else if( paiCol ){
221 assert( nCol>1 );
222 aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int));
223 if( !aiCol ) return 1;
224 *paiCol = aiCol;
227 for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){
228 if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) ){
229 /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
230 ** of columns. If each indexed column corresponds to a foreign key
231 ** column of pFKey, then this index is a winner. */
233 if( zKey==0 ){
234 /* If zKey is NULL, then this foreign key is implicitly mapped to
235 ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be
236 ** identified by the test. */
237 if( IsPrimaryKeyIndex(pIdx) ){
238 if( aiCol ){
239 int i;
240 for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom;
242 break;
244 }else{
245 /* If zKey is non-NULL, then this foreign key was declared to
246 ** map to an explicit list of columns in table pParent. Check if this
247 ** index matches those columns. Also, check that the index uses
248 ** the default collation sequences for each column. */
249 int i, j;
250 for(i=0; i<nCol; i++){
251 i16 iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */
252 char *zDfltColl; /* Def. collation for column */
253 char *zIdxCol; /* Name of indexed column */
255 /* If the index uses a collation sequence that is different from
256 ** the default collation sequence for the column, this index is
257 ** unusable. Bail out early in this case. */
258 zDfltColl = pParent->aCol[iCol].zColl;
259 if( !zDfltColl ){
260 zDfltColl = "BINARY";
262 if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break;
264 zIdxCol = pParent->aCol[iCol].zName;
265 for(j=0; j<nCol; j++){
266 if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){
267 if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom;
268 break;
271 if( j==nCol ) break;
273 if( i==nCol ) break; /* pIdx is usable */
278 if( !pIdx ){
279 if( !pParse->disableTriggers ){
280 sqlite3ErrorMsg(pParse,
281 "foreign key mismatch - \"%w\" referencing \"%w\"",
282 pFKey->pFrom->zName, pFKey->zTo);
284 sqlite3DbFree(pParse->db, aiCol);
285 return 1;
288 *ppIdx = pIdx;
289 return 0;
293 ** This function is called when a row is inserted into or deleted from the
294 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed
295 ** on the child table of pFKey, this function is invoked twice for each row
296 ** affected - once to "delete" the old row, and then again to "insert" the
297 ** new row.
299 ** Each time it is called, this function generates VDBE code to locate the
300 ** row in the parent table that corresponds to the row being inserted into
301 ** or deleted from the child table. If the parent row can be found, no
302 ** special action is taken. Otherwise, if the parent row can *not* be
303 ** found in the parent table:
305 ** Operation | FK type | Action taken
306 ** --------------------------------------------------------------------------
307 ** INSERT immediate Increment the "immediate constraint counter".
309 ** DELETE immediate Decrement the "immediate constraint counter".
311 ** INSERT deferred Increment the "deferred constraint counter".
313 ** DELETE deferred Decrement the "deferred constraint counter".
315 ** These operations are identified in the comment at the top of this file
316 ** (fkey.c) as "I.1" and "D.1".
318 static void fkLookupParent(
319 Parse *pParse, /* Parse context */
320 int iDb, /* Index of database housing pTab */
321 Table *pTab, /* Parent table of FK pFKey */
322 Index *pIdx, /* Unique index on parent key columns in pTab */
323 FKey *pFKey, /* Foreign key constraint */
324 int *aiCol, /* Map from parent key columns to child table columns */
325 int regData, /* Address of array containing child table row */
326 int nIncr, /* Increment constraint counter by this */
327 int isIgnore /* If true, pretend pTab contains all NULL values */
329 int i; /* Iterator variable */
330 Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */
331 int iCur = pParse->nTab - 1; /* Cursor number to use */
332 int iOk = sqlite3VdbeMakeLabel(v); /* jump here if parent key found */
334 /* If nIncr is less than zero, then check at runtime if there are any
335 ** outstanding constraints to resolve. If there are not, there is no need
336 ** to check if deleting this row resolves any outstanding violations.
338 ** Check if any of the key columns in the child table row are NULL. If
339 ** any are, then the constraint is considered satisfied. No need to
340 ** search for a matching row in the parent table. */
341 if( nIncr<0 ){
342 sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk);
343 VdbeCoverage(v);
345 for(i=0; i<pFKey->nCol; i++){
346 int iReg = aiCol[i] + regData + 1;
347 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v);
350 if( isIgnore==0 ){
351 if( pIdx==0 ){
352 /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
353 ** column of the parent table (table pTab). */
354 int iMustBeInt; /* Address of MustBeInt instruction */
355 int regTemp = sqlite3GetTempReg(pParse);
357 /* Invoke MustBeInt to coerce the child key value to an integer (i.e.
358 ** apply the affinity of the parent key). If this fails, then there
359 ** is no matching parent key. Before using MustBeInt, make a copy of
360 ** the value. Otherwise, the value inserted into the child key column
361 ** will have INTEGER affinity applied to it, which may not be correct. */
362 sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp);
363 iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0);
364 VdbeCoverage(v);
366 /* If the parent table is the same as the child table, and we are about
367 ** to increment the constraint-counter (i.e. this is an INSERT operation),
368 ** then check if the row being inserted matches itself. If so, do not
369 ** increment the constraint-counter. */
370 if( pTab==pFKey->pFrom && nIncr==1 ){
371 sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v);
372 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
375 sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead);
376 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v);
377 sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
378 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
379 sqlite3VdbeJumpHere(v, iMustBeInt);
380 sqlite3ReleaseTempReg(pParse, regTemp);
381 }else{
382 int nCol = pFKey->nCol;
383 int regTemp = sqlite3GetTempRange(pParse, nCol);
384 int regRec = sqlite3GetTempReg(pParse);
386 sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb);
387 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
388 for(i=0; i<nCol; i++){
389 sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i);
392 /* If the parent table is the same as the child table, and we are about
393 ** to increment the constraint-counter (i.e. this is an INSERT operation),
394 ** then check if the row being inserted matches itself. If so, do not
395 ** increment the constraint-counter.
397 ** If any of the parent-key values are NULL, then the row cannot match
398 ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any
399 ** of the parent-key values are NULL (at this point it is known that
400 ** none of the child key values are).
402 if( pTab==pFKey->pFrom && nIncr==1 ){
403 int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1;
404 for(i=0; i<nCol; i++){
405 int iChild = aiCol[i]+1+regData;
406 int iParent = pIdx->aiColumn[i]+1+regData;
407 assert( aiCol[i]!=pTab->iPKey );
408 if( pIdx->aiColumn[i]==pTab->iPKey ){
409 /* The parent key is a composite key that includes the IPK column */
410 iParent = regData;
412 sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v);
413 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
415 sqlite3VdbeAddOp2(v, OP_Goto, 0, iOk);
418 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTemp, nCol, regRec,
419 sqlite3IndexAffinityStr(v,pIdx), nCol);
420 sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); VdbeCoverage(v);
422 sqlite3ReleaseTempReg(pParse, regRec);
423 sqlite3ReleaseTempRange(pParse, regTemp, nCol);
427 if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs)
428 && !pParse->pToplevel
429 && !pParse->isMultiWrite
431 /* Special case: If this is an INSERT statement that will insert exactly
432 ** one row into the table, raise a constraint immediately instead of
433 ** incrementing a counter. This is necessary as the VM code is being
434 ** generated for will not open a statement transaction. */
435 assert( nIncr==1 );
436 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
437 OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
438 }else{
439 if( nIncr>0 && pFKey->isDeferred==0 ){
440 sqlite3ParseToplevel(pParse)->mayAbort = 1;
442 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
445 sqlite3VdbeResolveLabel(v, iOk);
446 sqlite3VdbeAddOp1(v, OP_Close, iCur);
451 ** Return an Expr object that refers to a memory register corresponding
452 ** to column iCol of table pTab.
454 ** regBase is the first of an array of register that contains the data
455 ** for pTab. regBase itself holds the rowid. regBase+1 holds the first
456 ** column. regBase+2 holds the second column, and so forth.
458 static Expr *exprTableRegister(
459 Parse *pParse, /* Parsing and code generating context */
460 Table *pTab, /* The table whose content is at r[regBase]... */
461 int regBase, /* Contents of table pTab */
462 i16 iCol /* Which column of pTab is desired */
464 Expr *pExpr;
465 Column *pCol;
466 const char *zColl;
467 sqlite3 *db = pParse->db;
469 pExpr = sqlite3Expr(db, TK_REGISTER, 0);
470 if( pExpr ){
471 if( iCol>=0 && iCol!=pTab->iPKey ){
472 pCol = &pTab->aCol[iCol];
473 pExpr->iTable = regBase + iCol + 1;
474 pExpr->affinity = pCol->affinity;
475 zColl = pCol->zColl;
476 if( zColl==0 ) zColl = db->pDfltColl->zName;
477 pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl);
478 }else{
479 pExpr->iTable = regBase;
480 pExpr->affinity = SQLITE_AFF_INTEGER;
483 return pExpr;
487 ** Return an Expr object that refers to column iCol of table pTab which
488 ** has cursor iCur.
490 static Expr *exprTableColumn(
491 sqlite3 *db, /* The database connection */
492 Table *pTab, /* The table whose column is desired */
493 int iCursor, /* The open cursor on the table */
494 i16 iCol /* The column that is wanted */
496 Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0);
497 if( pExpr ){
498 pExpr->pTab = pTab;
499 pExpr->iTable = iCursor;
500 pExpr->iColumn = iCol;
502 return pExpr;
506 ** This function is called to generate code executed when a row is deleted
507 ** from the parent table of foreign key constraint pFKey and, if pFKey is
508 ** deferred, when a row is inserted into the same table. When generating
509 ** code for an SQL UPDATE operation, this function may be called twice -
510 ** once to "delete" the old row and once to "insert" the new row.
512 ** The code generated by this function scans through the rows in the child
513 ** table that correspond to the parent table row being deleted or inserted.
514 ** For each child row found, one of the following actions is taken:
516 ** Operation | FK type | Action taken
517 ** --------------------------------------------------------------------------
518 ** DELETE immediate Increment the "immediate constraint counter".
519 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT,
520 ** throw a "FOREIGN KEY constraint failed" exception.
522 ** INSERT immediate Decrement the "immediate constraint counter".
524 ** DELETE deferred Increment the "deferred constraint counter".
525 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT,
526 ** throw a "FOREIGN KEY constraint failed" exception.
528 ** INSERT deferred Decrement the "deferred constraint counter".
530 ** These operations are identified in the comment at the top of this file
531 ** (fkey.c) as "I.2" and "D.2".
533 static void fkScanChildren(
534 Parse *pParse, /* Parse context */
535 SrcList *pSrc, /* The child table to be scanned */
536 Table *pTab, /* The parent table */
537 Index *pIdx, /* Index on parent covering the foreign key */
538 FKey *pFKey, /* The foreign key linking pSrc to pTab */
539 int *aiCol, /* Map from pIdx cols to child table cols */
540 int regData, /* Parent row data starts here */
541 int nIncr /* Amount to increment deferred counter by */
543 sqlite3 *db = pParse->db; /* Database handle */
544 int i; /* Iterator variable */
545 Expr *pWhere = 0; /* WHERE clause to scan with */
546 NameContext sNameContext; /* Context used to resolve WHERE clause */
547 WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */
548 int iFkIfZero = 0; /* Address of OP_FkIfZero */
549 Vdbe *v = sqlite3GetVdbe(pParse);
551 assert( pIdx==0 || pIdx->pTable==pTab );
552 assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol );
553 assert( pIdx!=0 || pFKey->nCol==1 );
554 assert( pIdx!=0 || HasRowid(pTab) );
556 if( nIncr<0 ){
557 iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0);
558 VdbeCoverage(v);
561 /* Create an Expr object representing an SQL expression like:
563 ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
565 ** The collation sequence used for the comparison should be that of
566 ** the parent key columns. The affinity of the parent key column should
567 ** be applied to each child key value before the comparison takes place.
569 for(i=0; i<pFKey->nCol; i++){
570 Expr *pLeft; /* Value from parent table row */
571 Expr *pRight; /* Column ref to child table */
572 Expr *pEq; /* Expression (pLeft = pRight) */
573 i16 iCol; /* Index of column in child table */
574 const char *zCol; /* Name of column in child table */
576 iCol = pIdx ? pIdx->aiColumn[i] : -1;
577 pLeft = exprTableRegister(pParse, pTab, regData, iCol);
578 iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
579 assert( iCol>=0 );
580 zCol = pFKey->pFrom->aCol[iCol].zName;
581 pRight = sqlite3Expr(db, TK_ID, zCol);
582 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0);
583 pWhere = sqlite3ExprAnd(db, pWhere, pEq);
586 /* If the child table is the same as the parent table, then add terms
587 ** to the WHERE clause that prevent this entry from being scanned.
588 ** The added WHERE clause terms are like this:
590 ** $current_rowid!=rowid
591 ** NOT( $current_a==a AND $current_b==b AND ... )
593 ** The first form is used for rowid tables. The second form is used
594 ** for WITHOUT ROWID tables. In the second form, the primary key is
595 ** (a,b,...)
597 if( pTab==pFKey->pFrom && nIncr>0 ){
598 Expr *pNe; /* Expression (pLeft != pRight) */
599 Expr *pLeft; /* Value from parent table row */
600 Expr *pRight; /* Column ref to child table */
601 if( HasRowid(pTab) ){
602 pLeft = exprTableRegister(pParse, pTab, regData, -1);
603 pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1);
604 pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0);
605 }else{
606 Expr *pEq, *pAll = 0;
607 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
608 assert( pIdx!=0 );
609 for(i=0; i<pPk->nKeyCol; i++){
610 i16 iCol = pIdx->aiColumn[i];
611 pLeft = exprTableRegister(pParse, pTab, regData, iCol);
612 pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, iCol);
613 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0);
614 pAll = sqlite3ExprAnd(db, pAll, pEq);
616 pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0, 0);
618 pWhere = sqlite3ExprAnd(db, pWhere, pNe);
621 /* Resolve the references in the WHERE clause. */
622 memset(&sNameContext, 0, sizeof(NameContext));
623 sNameContext.pSrcList = pSrc;
624 sNameContext.pParse = pParse;
625 sqlite3ResolveExprNames(&sNameContext, pWhere);
627 /* Create VDBE to loop through the entries in pSrc that match the WHERE
628 ** clause. If the constraint is not deferred, throw an exception for
629 ** each row found. Otherwise, for deferred constraints, increment the
630 ** deferred constraint counter by nIncr for each row selected. */
631 pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0);
632 if( nIncr>0 && pFKey->isDeferred==0 ){
633 sqlite3ParseToplevel(pParse)->mayAbort = 1;
635 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr);
636 if( pWInfo ){
637 sqlite3WhereEnd(pWInfo);
640 /* Clean up the WHERE clause constructed above. */
641 sqlite3ExprDelete(db, pWhere);
642 if( iFkIfZero ){
643 sqlite3VdbeJumpHere(v, iFkIfZero);
648 ** This function returns a linked list of FKey objects (connected by
649 ** FKey.pNextTo) holding all children of table pTab. For example,
650 ** given the following schema:
652 ** CREATE TABLE t1(a PRIMARY KEY);
653 ** CREATE TABLE t2(b REFERENCES t1(a);
655 ** Calling this function with table "t1" as an argument returns a pointer
656 ** to the FKey structure representing the foreign key constraint on table
657 ** "t2". Calling this function with "t2" as the argument would return a
658 ** NULL pointer (as there are no FK constraints for which t2 is the parent
659 ** table).
661 FKey *sqlite3FkReferences(Table *pTab){
662 return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName);
666 ** The second argument is a Trigger structure allocated by the
667 ** fkActionTrigger() routine. This function deletes the Trigger structure
668 ** and all of its sub-components.
670 ** The Trigger structure or any of its sub-components may be allocated from
671 ** the lookaside buffer belonging to database handle dbMem.
673 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){
674 if( p ){
675 TriggerStep *pStep = p->step_list;
676 sqlite3ExprDelete(dbMem, pStep->pWhere);
677 sqlite3ExprListDelete(dbMem, pStep->pExprList);
678 sqlite3SelectDelete(dbMem, pStep->pSelect);
679 sqlite3ExprDelete(dbMem, p->pWhen);
680 sqlite3DbFree(dbMem, p);
685 ** This function is called to generate code that runs when table pTab is
686 ** being dropped from the database. The SrcList passed as the second argument
687 ** to this function contains a single entry guaranteed to resolve to
688 ** table pTab.
690 ** Normally, no code is required. However, if either
692 ** (a) The table is the parent table of a FK constraint, or
693 ** (b) The table is the child table of a deferred FK constraint and it is
694 ** determined at runtime that there are outstanding deferred FK
695 ** constraint violations in the database,
697 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping
698 ** the table from the database. Triggers are disabled while running this
699 ** DELETE, but foreign key actions are not.
701 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){
702 sqlite3 *db = pParse->db;
703 if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){
704 int iSkip = 0;
705 Vdbe *v = sqlite3GetVdbe(pParse);
707 assert( v ); /* VDBE has already been allocated */
708 if( sqlite3FkReferences(pTab)==0 ){
709 /* Search for a deferred foreign key constraint for which this table
710 ** is the child table. If one cannot be found, return without
711 ** generating any VDBE code. If one can be found, then jump over
712 ** the entire DELETE if there are no outstanding deferred constraints
713 ** when this statement is run. */
714 FKey *p;
715 for(p=pTab->pFKey; p; p=p->pNextFrom){
716 if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break;
718 if( !p ) return;
719 iSkip = sqlite3VdbeMakeLabel(v);
720 sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v);
723 pParse->disableTriggers = 1;
724 sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0);
725 pParse->disableTriggers = 0;
727 /* If the DELETE has generated immediate foreign key constraint
728 ** violations, halt the VDBE and return an error at this point, before
729 ** any modifications to the schema are made. This is because statement
730 ** transactions are not able to rollback schema changes.
732 ** If the SQLITE_DeferFKs flag is set, then this is not required, as
733 ** the statement transaction will not be rolled back even if FK
734 ** constraints are violated.
736 if( (db->flags & SQLITE_DeferFKs)==0 ){
737 sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2);
738 VdbeCoverage(v);
739 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY,
740 OE_Abort, 0, P4_STATIC, P5_ConstraintFK);
743 if( iSkip ){
744 sqlite3VdbeResolveLabel(v, iSkip);
751 ** The second argument points to an FKey object representing a foreign key
752 ** for which pTab is the child table. An UPDATE statement against pTab
753 ** is currently being processed. For each column of the table that is
754 ** actually updated, the corresponding element in the aChange[] array
755 ** is zero or greater (if a column is unmodified the corresponding element
756 ** is set to -1). If the rowid column is modified by the UPDATE statement
757 ** the bChngRowid argument is non-zero.
759 ** This function returns true if any of the columns that are part of the
760 ** child key for FK constraint *p are modified.
762 static int fkChildIsModified(
763 Table *pTab, /* Table being updated */
764 FKey *p, /* Foreign key for which pTab is the child */
765 int *aChange, /* Array indicating modified columns */
766 int bChngRowid /* True if rowid is modified by this update */
768 int i;
769 for(i=0; i<p->nCol; i++){
770 int iChildKey = p->aCol[i].iFrom;
771 if( aChange[iChildKey]>=0 ) return 1;
772 if( iChildKey==pTab->iPKey && bChngRowid ) return 1;
774 return 0;
778 ** The second argument points to an FKey object representing a foreign key
779 ** for which pTab is the parent table. An UPDATE statement against pTab
780 ** is currently being processed. For each column of the table that is
781 ** actually updated, the corresponding element in the aChange[] array
782 ** is zero or greater (if a column is unmodified the corresponding element
783 ** is set to -1). If the rowid column is modified by the UPDATE statement
784 ** the bChngRowid argument is non-zero.
786 ** This function returns true if any of the columns that are part of the
787 ** parent key for FK constraint *p are modified.
789 static int fkParentIsModified(
790 Table *pTab,
791 FKey *p,
792 int *aChange,
793 int bChngRowid
795 int i;
796 for(i=0; i<p->nCol; i++){
797 char *zKey = p->aCol[i].zCol;
798 int iKey;
799 for(iKey=0; iKey<pTab->nCol; iKey++){
800 if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){
801 Column *pCol = &pTab->aCol[iKey];
802 if( zKey ){
803 if( 0==sqlite3StrICmp(pCol->zName, zKey) ) return 1;
804 }else if( pCol->colFlags & COLFLAG_PRIMKEY ){
805 return 1;
810 return 0;
814 ** This function is called when inserting, deleting or updating a row of
815 ** table pTab to generate VDBE code to perform foreign key constraint
816 ** processing for the operation.
818 ** For a DELETE operation, parameter regOld is passed the index of the
819 ** first register in an array of (pTab->nCol+1) registers containing the
820 ** rowid of the row being deleted, followed by each of the column values
821 ** of the row being deleted, from left to right. Parameter regNew is passed
822 ** zero in this case.
824 ** For an INSERT operation, regOld is passed zero and regNew is passed the
825 ** first register of an array of (pTab->nCol+1) registers containing the new
826 ** row data.
828 ** For an UPDATE operation, this function is called twice. Once before
829 ** the original record is deleted from the table using the calling convention
830 ** described for DELETE. Then again after the original record is deleted
831 ** but before the new record is inserted using the INSERT convention.
833 void sqlite3FkCheck(
834 Parse *pParse, /* Parse context */
835 Table *pTab, /* Row is being deleted from this table */
836 int regOld, /* Previous row data is stored here */
837 int regNew, /* New row data is stored here */
838 int *aChange, /* Array indicating UPDATEd columns (or 0) */
839 int bChngRowid /* True if rowid is UPDATEd */
841 sqlite3 *db = pParse->db; /* Database handle */
842 FKey *pFKey; /* Used to iterate through FKs */
843 int iDb; /* Index of database containing pTab */
844 const char *zDb; /* Name of database containing pTab */
845 int isIgnoreErrors = pParse->disableTriggers;
847 /* Exactly one of regOld and regNew should be non-zero. */
848 assert( (regOld==0)!=(regNew==0) );
850 /* If foreign-keys are disabled, this function is a no-op. */
851 if( (db->flags&SQLITE_ForeignKeys)==0 ) return;
853 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
854 zDb = db->aDb[iDb].zName;
856 /* Loop through all the foreign key constraints for which pTab is the
857 ** child table (the table that the foreign key definition is part of). */
858 for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){
859 Table *pTo; /* Parent table of foreign key pFKey */
860 Index *pIdx = 0; /* Index on key columns in pTo */
861 int *aiFree = 0;
862 int *aiCol;
863 int iCol;
864 int i;
865 int isIgnore = 0;
867 if( aChange
868 && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0
869 && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0
871 continue;
874 /* Find the parent table of this foreign key. Also find a unique index
875 ** on the parent key columns in the parent table. If either of these
876 ** schema items cannot be located, set an error in pParse and return
877 ** early. */
878 if( pParse->disableTriggers ){
879 pTo = sqlite3FindTable(db, pFKey->zTo, zDb);
880 }else{
881 pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb);
883 if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){
884 assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) );
885 if( !isIgnoreErrors || db->mallocFailed ) return;
886 if( pTo==0 ){
887 /* If isIgnoreErrors is true, then a table is being dropped. In this
888 ** case SQLite runs a "DELETE FROM xxx" on the table being dropped
889 ** before actually dropping it in order to check FK constraints.
890 ** If the parent table of an FK constraint on the current table is
891 ** missing, behave as if it is empty. i.e. decrement the relevant
892 ** FK counter for each row of the current table with non-NULL keys.
894 Vdbe *v = sqlite3GetVdbe(pParse);
895 int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1;
896 for(i=0; i<pFKey->nCol; i++){
897 int iReg = pFKey->aCol[i].iFrom + regOld + 1;
898 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v);
900 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1);
902 continue;
904 assert( pFKey->nCol==1 || (aiFree && pIdx) );
906 if( aiFree ){
907 aiCol = aiFree;
908 }else{
909 iCol = pFKey->aCol[0].iFrom;
910 aiCol = &iCol;
912 for(i=0; i<pFKey->nCol; i++){
913 if( aiCol[i]==pTab->iPKey ){
914 aiCol[i] = -1;
916 #ifndef SQLITE_OMIT_AUTHORIZATION
917 /* Request permission to read the parent key columns. If the
918 ** authorization callback returns SQLITE_IGNORE, behave as if any
919 ** values read from the parent table are NULL. */
920 if( db->xAuth ){
921 int rcauth;
922 char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName;
923 rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb);
924 isIgnore = (rcauth==SQLITE_IGNORE);
926 #endif
929 /* Take a shared-cache advisory read-lock on the parent table. Allocate
930 ** a cursor to use to search the unique index on the parent key columns
931 ** in the parent table. */
932 sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName);
933 pParse->nTab++;
935 if( regOld!=0 ){
936 /* A row is being removed from the child table. Search for the parent.
937 ** If the parent does not exist, removing the child row resolves an
938 ** outstanding foreign key constraint violation. */
939 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1,isIgnore);
941 if( regNew!=0 ){
942 /* A row is being added to the child table. If a parent row cannot
943 ** be found, adding the child row has violated the FK constraint. */
944 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1,isIgnore);
947 sqlite3DbFree(db, aiFree);
950 /* Loop through all the foreign key constraints that refer to this table.
951 ** (the "child" constraints) */
952 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
953 Index *pIdx = 0; /* Foreign key index for pFKey */
954 SrcList *pSrc;
955 int *aiCol = 0;
957 if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){
958 continue;
961 if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs)
962 && !pParse->pToplevel && !pParse->isMultiWrite
964 assert( regOld==0 && regNew!=0 );
965 /* Inserting a single row into a parent table cannot cause an immediate
966 ** foreign key violation. So do nothing in this case. */
967 continue;
970 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){
971 if( !isIgnoreErrors || db->mallocFailed ) return;
972 continue;
974 assert( aiCol || pFKey->nCol==1 );
976 /* Create a SrcList structure containing the child table. We need the
977 ** child table as a SrcList for sqlite3WhereBegin() */
978 pSrc = sqlite3SrcListAppend(db, 0, 0, 0);
979 if( pSrc ){
980 struct SrcList_item *pItem = pSrc->a;
981 pItem->pTab = pFKey->pFrom;
982 pItem->zName = pFKey->pFrom->zName;
983 pItem->pTab->nRef++;
984 pItem->iCursor = pParse->nTab++;
986 if( regNew!=0 ){
987 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1);
989 if( regOld!=0 ){
990 /* If there is a RESTRICT action configured for the current operation
991 ** on the parent table of this FK, then throw an exception
992 ** immediately if the FK constraint is violated, even if this is a
993 ** deferred trigger. That's what RESTRICT means. To defer checking
994 ** the constraint, the FK should specify NO ACTION (represented
995 ** using OE_None). NO ACTION is the default. */
996 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1);
998 pItem->zName = 0;
999 sqlite3SrcListDelete(db, pSrc);
1001 sqlite3DbFree(db, aiCol);
1005 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
1008 ** This function is called before generating code to update or delete a
1009 ** row contained in table pTab.
1011 u32 sqlite3FkOldmask(
1012 Parse *pParse, /* Parse context */
1013 Table *pTab /* Table being modified */
1015 u32 mask = 0;
1016 if( pParse->db->flags&SQLITE_ForeignKeys ){
1017 FKey *p;
1018 int i;
1019 for(p=pTab->pFKey; p; p=p->pNextFrom){
1020 for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom);
1022 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
1023 Index *pIdx = 0;
1024 sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0);
1025 if( pIdx ){
1026 for(i=0; i<pIdx->nKeyCol; i++) mask |= COLUMN_MASK(pIdx->aiColumn[i]);
1030 return mask;
1035 ** This function is called before generating code to update or delete a
1036 ** row contained in table pTab. If the operation is a DELETE, then
1037 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points
1038 ** to an array of size N, where N is the number of columns in table pTab.
1039 ** If the i'th column is not modified by the UPDATE, then the corresponding
1040 ** entry in the aChange[] array is set to -1. If the column is modified,
1041 ** the value is 0 or greater. Parameter chngRowid is set to true if the
1042 ** UPDATE statement modifies the rowid fields of the table.
1044 ** If any foreign key processing will be required, this function returns
1045 ** true. If there is no foreign key related processing, this function
1046 ** returns false.
1048 int sqlite3FkRequired(
1049 Parse *pParse, /* Parse context */
1050 Table *pTab, /* Table being modified */
1051 int *aChange, /* Non-NULL for UPDATE operations */
1052 int chngRowid /* True for UPDATE that affects rowid */
1054 if( pParse->db->flags&SQLITE_ForeignKeys ){
1055 if( !aChange ){
1056 /* A DELETE operation. Foreign key processing is required if the
1057 ** table in question is either the child or parent table for any
1058 ** foreign key constraint. */
1059 return (sqlite3FkReferences(pTab) || pTab->pFKey);
1060 }else{
1061 /* This is an UPDATE. Foreign key processing is only required if the
1062 ** operation modifies one or more child or parent key columns. */
1063 FKey *p;
1065 /* Check if any child key columns are being modified. */
1066 for(p=pTab->pFKey; p; p=p->pNextFrom){
1067 if( fkChildIsModified(pTab, p, aChange, chngRowid) ) return 1;
1070 /* Check if any parent key columns are being modified. */
1071 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){
1072 if( fkParentIsModified(pTab, p, aChange, chngRowid) ) return 1;
1076 return 0;
1080 ** This function is called when an UPDATE or DELETE operation is being
1081 ** compiled on table pTab, which is the parent table of foreign-key pFKey.
1082 ** If the current operation is an UPDATE, then the pChanges parameter is
1083 ** passed a pointer to the list of columns being modified. If it is a
1084 ** DELETE, pChanges is passed a NULL pointer.
1086 ** It returns a pointer to a Trigger structure containing a trigger
1087 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
1088 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is
1089 ** returned (these actions require no special handling by the triggers
1090 ** sub-system, code for them is created by fkScanChildren()).
1092 ** For example, if pFKey is the foreign key and pTab is table "p" in
1093 ** the following schema:
1095 ** CREATE TABLE p(pk PRIMARY KEY);
1096 ** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
1098 ** then the returned trigger structure is equivalent to:
1100 ** CREATE TRIGGER ... DELETE ON p BEGIN
1101 ** DELETE FROM c WHERE ck = old.pk;
1102 ** END;
1104 ** The returned pointer is cached as part of the foreign key object. It
1105 ** is eventually freed along with the rest of the foreign key object by
1106 ** sqlite3FkDelete().
1108 static Trigger *fkActionTrigger(
1109 Parse *pParse, /* Parse context */
1110 Table *pTab, /* Table being updated or deleted from */
1111 FKey *pFKey, /* Foreign key to get action for */
1112 ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */
1114 sqlite3 *db = pParse->db; /* Database handle */
1115 int action; /* One of OE_None, OE_Cascade etc. */
1116 Trigger *pTrigger; /* Trigger definition to return */
1117 int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */
1119 action = pFKey->aAction[iAction];
1120 pTrigger = pFKey->apTrigger[iAction];
1122 if( action!=OE_None && !pTrigger ){
1123 u8 enableLookaside; /* Copy of db->lookaside.bEnabled */
1124 char const *zFrom; /* Name of child table */
1125 int nFrom; /* Length in bytes of zFrom */
1126 Index *pIdx = 0; /* Parent key index for this FK */
1127 int *aiCol = 0; /* child table cols -> parent key cols */
1128 TriggerStep *pStep = 0; /* First (only) step of trigger program */
1129 Expr *pWhere = 0; /* WHERE clause of trigger step */
1130 ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */
1131 Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */
1132 int i; /* Iterator variable */
1133 Expr *pWhen = 0; /* WHEN clause for the trigger */
1135 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0;
1136 assert( aiCol || pFKey->nCol==1 );
1138 for(i=0; i<pFKey->nCol; i++){
1139 Token tOld = { "old", 3 }; /* Literal "old" token */
1140 Token tNew = { "new", 3 }; /* Literal "new" token */
1141 Token tFromCol; /* Name of column in child table */
1142 Token tToCol; /* Name of column in parent table */
1143 int iFromCol; /* Idx of column in child table */
1144 Expr *pEq; /* tFromCol = OLD.tToCol */
1146 iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom;
1147 assert( iFromCol>=0 );
1148 tToCol.z = pIdx ? pTab->aCol[pIdx->aiColumn[i]].zName : "oid";
1149 tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName;
1151 tToCol.n = sqlite3Strlen30(tToCol.z);
1152 tFromCol.n = sqlite3Strlen30(tFromCol.z);
1154 /* Create the expression "OLD.zToCol = zFromCol". It is important
1155 ** that the "OLD.zToCol" term is on the LHS of the = operator, so
1156 ** that the affinity and collation sequence associated with the
1157 ** parent table are used for the comparison. */
1158 pEq = sqlite3PExpr(pParse, TK_EQ,
1159 sqlite3PExpr(pParse, TK_DOT,
1160 sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
1161 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
1162 , 0),
1163 sqlite3PExpr(pParse, TK_ID, 0, 0, &tFromCol)
1164 , 0);
1165 pWhere = sqlite3ExprAnd(db, pWhere, pEq);
1167 /* For ON UPDATE, construct the next term of the WHEN clause.
1168 ** The final WHEN clause will be like this:
1170 ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
1172 if( pChanges ){
1173 pEq = sqlite3PExpr(pParse, TK_IS,
1174 sqlite3PExpr(pParse, TK_DOT,
1175 sqlite3PExpr(pParse, TK_ID, 0, 0, &tOld),
1176 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
1178 sqlite3PExpr(pParse, TK_DOT,
1179 sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
1180 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol),
1183 pWhen = sqlite3ExprAnd(db, pWhen, pEq);
1186 if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){
1187 Expr *pNew;
1188 if( action==OE_Cascade ){
1189 pNew = sqlite3PExpr(pParse, TK_DOT,
1190 sqlite3PExpr(pParse, TK_ID, 0, 0, &tNew),
1191 sqlite3PExpr(pParse, TK_ID, 0, 0, &tToCol)
1192 , 0);
1193 }else if( action==OE_SetDflt ){
1194 Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt;
1195 if( pDflt ){
1196 pNew = sqlite3ExprDup(db, pDflt, 0);
1197 }else{
1198 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
1200 }else{
1201 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0);
1203 pList = sqlite3ExprListAppend(pParse, pList, pNew);
1204 sqlite3ExprListSetName(pParse, pList, &tFromCol, 0);
1207 sqlite3DbFree(db, aiCol);
1209 zFrom = pFKey->pFrom->zName;
1210 nFrom = sqlite3Strlen30(zFrom);
1212 if( action==OE_Restrict ){
1213 Token tFrom;
1214 Expr *pRaise;
1216 tFrom.z = zFrom;
1217 tFrom.n = nFrom;
1218 pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed");
1219 if( pRaise ){
1220 pRaise->affinity = OE_Abort;
1222 pSelect = sqlite3SelectNew(pParse,
1223 sqlite3ExprListAppend(pParse, 0, pRaise),
1224 sqlite3SrcListAppend(db, 0, &tFrom, 0),
1225 pWhere,
1226 0, 0, 0, 0, 0, 0
1228 pWhere = 0;
1231 /* Disable lookaside memory allocation */
1232 enableLookaside = db->lookaside.bEnabled;
1233 db->lookaside.bEnabled = 0;
1235 pTrigger = (Trigger *)sqlite3DbMallocZero(db,
1236 sizeof(Trigger) + /* struct Trigger */
1237 sizeof(TriggerStep) + /* Single step in trigger program */
1238 nFrom + 1 /* Space for pStep->target.z */
1240 if( pTrigger ){
1241 pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1];
1242 pStep->target.z = (char *)&pStep[1];
1243 pStep->target.n = nFrom;
1244 memcpy((char *)pStep->target.z, zFrom, nFrom);
1246 pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE);
1247 pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE);
1248 pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
1249 if( pWhen ){
1250 pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0);
1251 pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE);
1255 /* Re-enable the lookaside buffer, if it was disabled earlier. */
1256 db->lookaside.bEnabled = enableLookaside;
1258 sqlite3ExprDelete(db, pWhere);
1259 sqlite3ExprDelete(db, pWhen);
1260 sqlite3ExprListDelete(db, pList);
1261 sqlite3SelectDelete(db, pSelect);
1262 if( db->mallocFailed==1 ){
1263 fkTriggerDelete(db, pTrigger);
1264 return 0;
1266 assert( pStep!=0 );
1268 switch( action ){
1269 case OE_Restrict:
1270 pStep->op = TK_SELECT;
1271 break;
1272 case OE_Cascade:
1273 if( !pChanges ){
1274 pStep->op = TK_DELETE;
1275 break;
1277 default:
1278 pStep->op = TK_UPDATE;
1280 pStep->pTrig = pTrigger;
1281 pTrigger->pSchema = pTab->pSchema;
1282 pTrigger->pTabSchema = pTab->pSchema;
1283 pFKey->apTrigger[iAction] = pTrigger;
1284 pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE);
1287 return pTrigger;
1291 ** This function is called when deleting or updating a row to implement
1292 ** any required CASCADE, SET NULL or SET DEFAULT actions.
1294 void sqlite3FkActions(
1295 Parse *pParse, /* Parse context */
1296 Table *pTab, /* Table being updated or deleted from */
1297 ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */
1298 int regOld, /* Address of array containing old row */
1299 int *aChange, /* Array indicating UPDATEd columns (or 0) */
1300 int bChngRowid /* True if rowid is UPDATEd */
1302 /* If foreign-key support is enabled, iterate through all FKs that
1303 ** refer to table pTab. If there is an action associated with the FK
1304 ** for this operation (either update or delete), invoke the associated
1305 ** trigger sub-program. */
1306 if( pParse->db->flags&SQLITE_ForeignKeys ){
1307 FKey *pFKey; /* Iterator variable */
1308 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){
1309 if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){
1310 Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges);
1311 if( pAct ){
1312 sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0);
1319 #endif /* ifndef SQLITE_OMIT_TRIGGER */
1322 ** Free all memory associated with foreign key definitions attached to
1323 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
1324 ** hash table.
1326 void sqlite3FkDelete(sqlite3 *db, Table *pTab){
1327 FKey *pFKey; /* Iterator variable */
1328 FKey *pNext; /* Copy of pFKey->pNextFrom */
1330 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) );
1331 for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){
1333 /* Remove the FK from the fkeyHash hash table. */
1334 if( !db || db->pnBytesFreed==0 ){
1335 if( pFKey->pPrevTo ){
1336 pFKey->pPrevTo->pNextTo = pFKey->pNextTo;
1337 }else{
1338 void *p = (void *)pFKey->pNextTo;
1339 const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo);
1340 sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, p);
1342 if( pFKey->pNextTo ){
1343 pFKey->pNextTo->pPrevTo = pFKey->pPrevTo;
1347 /* EV: R-30323-21917 Each foreign key constraint in SQLite is
1348 ** classified as either immediate or deferred.
1350 assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 );
1352 /* Delete any triggers created to implement actions for this FK. */
1353 #ifndef SQLITE_OMIT_TRIGGER
1354 fkTriggerDelete(db, pFKey->apTrigger[0]);
1355 fkTriggerDelete(db, pFKey->apTrigger[1]);
1356 #endif
1358 pNext = pFKey->pNextFrom;
1359 sqlite3DbFree(db, pFKey);
1362 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */