Update mojo sdk to rev 1dc8a9a5db73d3718d99917fadf31f5fb2ebad4f
[chromium-blink-merge.git] / third_party / sqlite / sqlite-src-3080704 / src / pcache1.c
bloba8c3217382a10b170f017a2648a8759e0dd28b5f
1 /*
2 ** 2008 November 05
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file implements the default page cache implementation (the
14 ** sqlite3_pcache interface). It also contains part of the implementation
15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
16 ** If the default page cache implementation is overridden, then neither of
17 ** these two features are available.
20 #include "sqliteInt.h"
22 typedef struct PCache1 PCache1;
23 typedef struct PgHdr1 PgHdr1;
24 typedef struct PgFreeslot PgFreeslot;
25 typedef struct PGroup PGroup;
27 /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set
28 ** of one or more PCaches that are able to recycle each other's unpinned
29 ** pages when they are under memory pressure. A PGroup is an instance of
30 ** the following object.
32 ** This page cache implementation works in one of two modes:
34 ** (1) Every PCache is the sole member of its own PGroup. There is
35 ** one PGroup per PCache.
37 ** (2) There is a single global PGroup that all PCaches are a member
38 ** of.
40 ** Mode 1 uses more memory (since PCache instances are not able to rob
41 ** unused pages from other PCaches) but it also operates without a mutex,
42 ** and is therefore often faster. Mode 2 requires a mutex in order to be
43 ** threadsafe, but recycles pages more efficiently.
45 ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single
46 ** PGroup which is the pcache1.grp global variable and its mutex is
47 ** SQLITE_MUTEX_STATIC_LRU.
49 struct PGroup {
50 sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */
51 unsigned int nMaxPage; /* Sum of nMax for purgeable caches */
52 unsigned int nMinPage; /* Sum of nMin for purgeable caches */
53 unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */
54 unsigned int nCurrentPage; /* Number of purgeable pages allocated */
55 PgHdr1 *pLruHead, *pLruTail; /* LRU list of unpinned pages */
58 /* Each page cache is an instance of the following object. Every
59 ** open database file (including each in-memory database and each
60 ** temporary or transient database) has a single page cache which
61 ** is an instance of this object.
63 ** Pointers to structures of this type are cast and returned as
64 ** opaque sqlite3_pcache* handles.
66 struct PCache1 {
67 /* Cache configuration parameters. Page size (szPage) and the purgeable
68 ** flag (bPurgeable) are set when the cache is created. nMax may be
69 ** modified at any time by a call to the pcache1Cachesize() method.
70 ** The PGroup mutex must be held when accessing nMax.
72 PGroup *pGroup; /* PGroup this cache belongs to */
73 int szPage; /* Size of allocated pages in bytes */
74 int szExtra; /* Size of extra space in bytes */
75 int bPurgeable; /* True if cache is purgeable */
76 unsigned int nMin; /* Minimum number of pages reserved */
77 unsigned int nMax; /* Configured "cache_size" value */
78 unsigned int n90pct; /* nMax*9/10 */
79 unsigned int iMaxKey; /* Largest key seen since xTruncate() */
81 /* Hash table of all pages. The following variables may only be accessed
82 ** when the accessor is holding the PGroup mutex.
84 unsigned int nRecyclable; /* Number of pages in the LRU list */
85 unsigned int nPage; /* Total number of pages in apHash */
86 unsigned int nHash; /* Number of slots in apHash[] */
87 PgHdr1 **apHash; /* Hash table for fast lookup by key */
91 ** Each cache entry is represented by an instance of the following
92 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of
93 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure
94 ** in memory.
96 struct PgHdr1 {
97 sqlite3_pcache_page page;
98 unsigned int iKey; /* Key value (page number) */
99 u8 isPinned; /* Page in use, not on the LRU list */
100 PgHdr1 *pNext; /* Next in hash table chain */
101 PCache1 *pCache; /* Cache that currently owns this page */
102 PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */
103 PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */
107 ** Free slots in the allocator used to divide up the buffer provided using
108 ** the SQLITE_CONFIG_PAGECACHE mechanism.
110 struct PgFreeslot {
111 PgFreeslot *pNext; /* Next free slot */
115 ** Global data used by this cache.
117 static SQLITE_WSD struct PCacheGlobal {
118 PGroup grp; /* The global PGroup for mode (2) */
120 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The
121 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
122 ** fixed at sqlite3_initialize() time and do not require mutex protection.
123 ** The nFreeSlot and pFree values do require mutex protection.
125 int isInit; /* True if initialized */
126 int szSlot; /* Size of each free slot */
127 int nSlot; /* The number of pcache slots */
128 int nReserve; /* Try to keep nFreeSlot above this */
129 void *pStart, *pEnd; /* Bounds of pagecache malloc range */
130 /* Above requires no mutex. Use mutex below for variable that follow. */
131 sqlite3_mutex *mutex; /* Mutex for accessing the following: */
132 PgFreeslot *pFree; /* Free page blocks */
133 int nFreeSlot; /* Number of unused pcache slots */
134 /* The following value requires a mutex to change. We skip the mutex on
135 ** reading because (1) most platforms read a 32-bit integer atomically and
136 ** (2) even if an incorrect value is read, no great harm is done since this
137 ** is really just an optimization. */
138 int bUnderPressure; /* True if low on PAGECACHE memory */
139 } pcache1_g;
142 ** All code in this file should access the global structure above via the
143 ** alias "pcache1". This ensures that the WSD emulation is used when
144 ** compiling for systems that do not support real WSD.
146 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
149 ** Macros to enter and leave the PCache LRU mutex.
151 #define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
152 #define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
154 /******************************************************************************/
155 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
158 ** This function is called during initialization if a static buffer is
159 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
160 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large
161 ** enough to contain 'n' buffers of 'sz' bytes each.
163 ** This routine is called from sqlite3_initialize() and so it is guaranteed
164 ** to be serialized already. There is no need for further mutexing.
166 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
167 if( pcache1.isInit ){
168 PgFreeslot *p;
169 sz = ROUNDDOWN8(sz);
170 pcache1.szSlot = sz;
171 pcache1.nSlot = pcache1.nFreeSlot = n;
172 pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
173 pcache1.pStart = pBuf;
174 pcache1.pFree = 0;
175 pcache1.bUnderPressure = 0;
176 while( n-- ){
177 p = (PgFreeslot*)pBuf;
178 p->pNext = pcache1.pFree;
179 pcache1.pFree = p;
180 pBuf = (void*)&((char*)pBuf)[sz];
182 pcache1.pEnd = pBuf;
187 ** Malloc function used within this file to allocate space from the buffer
188 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
189 ** such buffer exists or there is no space left in it, this function falls
190 ** back to sqlite3Malloc().
192 ** Multiple threads can run this routine at the same time. Global variables
193 ** in pcache1 need to be protected via mutex.
195 static void *pcache1Alloc(int nByte){
196 void *p = 0;
197 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
198 sqlite3StatusSet(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
199 if( nByte<=pcache1.szSlot ){
200 sqlite3_mutex_enter(pcache1.mutex);
201 p = (PgHdr1 *)pcache1.pFree;
202 if( p ){
203 pcache1.pFree = pcache1.pFree->pNext;
204 pcache1.nFreeSlot--;
205 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
206 assert( pcache1.nFreeSlot>=0 );
207 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, 1);
209 sqlite3_mutex_leave(pcache1.mutex);
211 if( p==0 ){
212 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get
213 ** it from sqlite3Malloc instead.
215 p = sqlite3Malloc(nByte);
216 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
217 if( p ){
218 int sz = sqlite3MallocSize(p);
219 sqlite3_mutex_enter(pcache1.mutex);
220 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
221 sqlite3_mutex_leave(pcache1.mutex);
223 #endif
224 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
226 return p;
230 ** Free an allocated buffer obtained from pcache1Alloc().
232 static int pcache1Free(void *p){
233 int nFreed = 0;
234 if( p==0 ) return 0;
235 if( p>=pcache1.pStart && p<pcache1.pEnd ){
236 PgFreeslot *pSlot;
237 sqlite3_mutex_enter(pcache1.mutex);
238 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_USED, -1);
239 pSlot = (PgFreeslot*)p;
240 pSlot->pNext = pcache1.pFree;
241 pcache1.pFree = pSlot;
242 pcache1.nFreeSlot++;
243 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
244 assert( pcache1.nFreeSlot<=pcache1.nSlot );
245 sqlite3_mutex_leave(pcache1.mutex);
246 }else{
247 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
248 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
249 nFreed = sqlite3MallocSize(p);
250 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
251 sqlite3_mutex_enter(pcache1.mutex);
252 sqlite3StatusAdd(SQLITE_STATUS_PAGECACHE_OVERFLOW, -nFreed);
253 sqlite3_mutex_leave(pcache1.mutex);
254 #endif
255 sqlite3_free(p);
257 return nFreed;
260 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
262 ** Return the size of a pcache allocation
264 static int pcache1MemSize(void *p){
265 if( p>=pcache1.pStart && p<pcache1.pEnd ){
266 return pcache1.szSlot;
267 }else{
268 int iSize;
269 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
270 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
271 iSize = sqlite3MallocSize(p);
272 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
273 return iSize;
276 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
279 ** Allocate a new page object initially associated with cache pCache.
281 static PgHdr1 *pcache1AllocPage(PCache1 *pCache){
282 PgHdr1 *p = 0;
283 void *pPg;
285 /* The group mutex must be released before pcache1Alloc() is called. This
286 ** is because it may call sqlite3_release_memory(), which assumes that
287 ** this mutex is not held. */
288 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
289 pcache1LeaveMutex(pCache->pGroup);
290 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
291 pPg = pcache1Alloc(pCache->szPage);
292 p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra);
293 if( !pPg || !p ){
294 pcache1Free(pPg);
295 sqlite3_free(p);
296 pPg = 0;
298 #else
299 pPg = pcache1Alloc(sizeof(PgHdr1) + pCache->szPage + pCache->szExtra);
300 p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
301 #endif
302 pcache1EnterMutex(pCache->pGroup);
304 if( pPg ){
305 p->page.pBuf = pPg;
306 p->page.pExtra = &p[1];
307 if( pCache->bPurgeable ){
308 pCache->pGroup->nCurrentPage++;
310 return p;
312 return 0;
316 ** Free a page object allocated by pcache1AllocPage().
318 ** The pointer is allowed to be NULL, which is prudent. But it turns out
319 ** that the current implementation happens to never call this routine
320 ** with a NULL pointer, so we mark the NULL test with ALWAYS().
322 static void pcache1FreePage(PgHdr1 *p){
323 if( ALWAYS(p) ){
324 PCache1 *pCache = p->pCache;
325 assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) );
326 pcache1Free(p->page.pBuf);
327 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
328 sqlite3_free(p);
329 #endif
330 if( pCache->bPurgeable ){
331 pCache->pGroup->nCurrentPage--;
337 ** Malloc function used by SQLite to obtain space from the buffer configured
338 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
339 ** exists, this function falls back to sqlite3Malloc().
341 void *sqlite3PageMalloc(int sz){
342 return pcache1Alloc(sz);
346 ** Free an allocated buffer obtained from sqlite3PageMalloc().
348 void sqlite3PageFree(void *p){
349 pcache1Free(p);
354 ** Return true if it desirable to avoid allocating a new page cache
355 ** entry.
357 ** If memory was allocated specifically to the page cache using
358 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
359 ** it is desirable to avoid allocating a new page cache entry because
360 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
361 ** for all page cache needs and we should not need to spill the
362 ** allocation onto the heap.
364 ** Or, the heap is used for all page cache memory but the heap is
365 ** under memory pressure, then again it is desirable to avoid
366 ** allocating a new page cache entry in order to avoid stressing
367 ** the heap even further.
369 static int pcache1UnderMemoryPressure(PCache1 *pCache){
370 if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
371 return pcache1.bUnderPressure;
372 }else{
373 return sqlite3HeapNearlyFull();
377 /******************************************************************************/
378 /******** General Implementation Functions ************************************/
381 ** This function is used to resize the hash table used by the cache passed
382 ** as the first argument.
384 ** The PCache mutex must be held when this function is called.
386 static void pcache1ResizeHash(PCache1 *p){
387 PgHdr1 **apNew;
388 unsigned int nNew;
389 unsigned int i;
391 assert( sqlite3_mutex_held(p->pGroup->mutex) );
393 nNew = p->nHash*2;
394 if( nNew<256 ){
395 nNew = 256;
398 pcache1LeaveMutex(p->pGroup);
399 if( p->nHash ){ sqlite3BeginBenignMalloc(); }
400 apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew);
401 if( p->nHash ){ sqlite3EndBenignMalloc(); }
402 pcache1EnterMutex(p->pGroup);
403 if( apNew ){
404 for(i=0; i<p->nHash; i++){
405 PgHdr1 *pPage;
406 PgHdr1 *pNext = p->apHash[i];
407 while( (pPage = pNext)!=0 ){
408 unsigned int h = pPage->iKey % nNew;
409 pNext = pPage->pNext;
410 pPage->pNext = apNew[h];
411 apNew[h] = pPage;
414 sqlite3_free(p->apHash);
415 p->apHash = apNew;
416 p->nHash = nNew;
421 ** This function is used internally to remove the page pPage from the
422 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
423 ** LRU list, then this function is a no-op.
425 ** The PGroup mutex must be held when this function is called.
427 static void pcache1PinPage(PgHdr1 *pPage){
428 PCache1 *pCache;
429 PGroup *pGroup;
431 assert( pPage!=0 );
432 assert( pPage->isPinned==0 );
433 pCache = pPage->pCache;
434 pGroup = pCache->pGroup;
435 assert( pPage->pLruNext || pPage==pGroup->pLruTail );
436 assert( pPage->pLruPrev || pPage==pGroup->pLruHead );
437 assert( sqlite3_mutex_held(pGroup->mutex) );
438 if( pPage->pLruPrev ){
439 pPage->pLruPrev->pLruNext = pPage->pLruNext;
440 }else{
441 pGroup->pLruHead = pPage->pLruNext;
443 if( pPage->pLruNext ){
444 pPage->pLruNext->pLruPrev = pPage->pLruPrev;
445 }else{
446 pGroup->pLruTail = pPage->pLruPrev;
448 pPage->pLruNext = 0;
449 pPage->pLruPrev = 0;
450 pPage->isPinned = 1;
451 pCache->nRecyclable--;
456 ** Remove the page supplied as an argument from the hash table
457 ** (PCache1.apHash structure) that it is currently stored in.
459 ** The PGroup mutex must be held when this function is called.
461 static void pcache1RemoveFromHash(PgHdr1 *pPage){
462 unsigned int h;
463 PCache1 *pCache = pPage->pCache;
464 PgHdr1 **pp;
466 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
467 h = pPage->iKey % pCache->nHash;
468 for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
469 *pp = (*pp)->pNext;
471 pCache->nPage--;
475 ** If there are currently more than nMaxPage pages allocated, try
476 ** to recycle pages to reduce the number allocated to nMaxPage.
478 static void pcache1EnforceMaxPage(PGroup *pGroup){
479 assert( sqlite3_mutex_held(pGroup->mutex) );
480 while( pGroup->nCurrentPage>pGroup->nMaxPage && pGroup->pLruTail ){
481 PgHdr1 *p = pGroup->pLruTail;
482 assert( p->pCache->pGroup==pGroup );
483 assert( p->isPinned==0 );
484 pcache1PinPage(p);
485 pcache1RemoveFromHash(p);
486 pcache1FreePage(p);
491 ** Discard all pages from cache pCache with a page number (key value)
492 ** greater than or equal to iLimit. Any pinned pages that meet this
493 ** criteria are unpinned before they are discarded.
495 ** The PCache mutex must be held when this function is called.
497 static void pcache1TruncateUnsafe(
498 PCache1 *pCache, /* The cache to truncate */
499 unsigned int iLimit /* Drop pages with this pgno or larger */
501 TESTONLY( unsigned int nPage = 0; ) /* To assert pCache->nPage is correct */
502 unsigned int h;
503 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
504 for(h=0; h<pCache->nHash; h++){
505 PgHdr1 **pp = &pCache->apHash[h];
506 PgHdr1 *pPage;
507 while( (pPage = *pp)!=0 ){
508 if( pPage->iKey>=iLimit ){
509 pCache->nPage--;
510 *pp = pPage->pNext;
511 if( !pPage->isPinned ) pcache1PinPage(pPage);
512 pcache1FreePage(pPage);
513 }else{
514 pp = &pPage->pNext;
515 TESTONLY( nPage++; )
519 assert( pCache->nPage==nPage );
522 /******************************************************************************/
523 /******** sqlite3_pcache Methods **********************************************/
526 ** Implementation of the sqlite3_pcache.xInit method.
528 static int pcache1Init(void *NotUsed){
529 UNUSED_PARAMETER(NotUsed);
530 assert( pcache1.isInit==0 );
531 memset(&pcache1, 0, sizeof(pcache1));
532 if( sqlite3GlobalConfig.bCoreMutex ){
533 pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU);
534 pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM);
536 pcache1.grp.mxPinned = 10;
537 pcache1.isInit = 1;
538 return SQLITE_OK;
542 ** Implementation of the sqlite3_pcache.xShutdown method.
543 ** Note that the static mutex allocated in xInit does
544 ** not need to be freed.
546 static void pcache1Shutdown(void *NotUsed){
547 UNUSED_PARAMETER(NotUsed);
548 assert( pcache1.isInit!=0 );
549 memset(&pcache1, 0, sizeof(pcache1));
552 /* forward declaration */
553 static void pcache1Destroy(sqlite3_pcache *p);
556 ** Implementation of the sqlite3_pcache.xCreate method.
558 ** Allocate a new cache.
560 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
561 PCache1 *pCache; /* The newly created page cache */
562 PGroup *pGroup; /* The group the new page cache will belong to */
563 int sz; /* Bytes of memory required to allocate the new cache */
566 ** The separateCache variable is true if each PCache has its own private
567 ** PGroup. In other words, separateCache is true for mode (1) where no
568 ** mutexing is required.
570 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
572 ** * Always use a unified cache in single-threaded applications
574 ** * Otherwise (if multi-threaded and ENABLE_MEMORY_MANAGEMENT is off)
575 ** use separate caches (mode-1)
577 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
578 const int separateCache = 0;
579 #else
580 int separateCache = sqlite3GlobalConfig.bCoreMutex>0;
581 #endif
583 assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
584 assert( szExtra < 300 );
586 sz = sizeof(PCache1) + sizeof(PGroup)*separateCache;
587 pCache = (PCache1 *)sqlite3MallocZero(sz);
588 if( pCache ){
589 if( separateCache ){
590 pGroup = (PGroup*)&pCache[1];
591 pGroup->mxPinned = 10;
592 }else{
593 pGroup = &pcache1.grp;
595 pCache->pGroup = pGroup;
596 pCache->szPage = szPage;
597 pCache->szExtra = szExtra;
598 pCache->bPurgeable = (bPurgeable ? 1 : 0);
599 pcache1EnterMutex(pGroup);
600 pcache1ResizeHash(pCache);
601 if( bPurgeable ){
602 pCache->nMin = 10;
603 pGroup->nMinPage += pCache->nMin;
604 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
606 pcache1LeaveMutex(pGroup);
607 if( pCache->nHash==0 ){
608 pcache1Destroy((sqlite3_pcache*)pCache);
609 pCache = 0;
612 return (sqlite3_pcache *)pCache;
616 ** Implementation of the sqlite3_pcache.xCachesize method.
618 ** Configure the cache_size limit for a cache.
620 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
621 PCache1 *pCache = (PCache1 *)p;
622 if( pCache->bPurgeable ){
623 PGroup *pGroup = pCache->pGroup;
624 pcache1EnterMutex(pGroup);
625 pGroup->nMaxPage += (nMax - pCache->nMax);
626 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
627 pCache->nMax = nMax;
628 pCache->n90pct = pCache->nMax*9/10;
629 pcache1EnforceMaxPage(pGroup);
630 pcache1LeaveMutex(pGroup);
635 ** Implementation of the sqlite3_pcache.xShrink method.
637 ** Free up as much memory as possible.
639 static void pcache1Shrink(sqlite3_pcache *p){
640 PCache1 *pCache = (PCache1*)p;
641 if( pCache->bPurgeable ){
642 PGroup *pGroup = pCache->pGroup;
643 int savedMaxPage;
644 pcache1EnterMutex(pGroup);
645 savedMaxPage = pGroup->nMaxPage;
646 pGroup->nMaxPage = 0;
647 pcache1EnforceMaxPage(pGroup);
648 pGroup->nMaxPage = savedMaxPage;
649 pcache1LeaveMutex(pGroup);
654 ** Implementation of the sqlite3_pcache.xPagecount method.
656 static int pcache1Pagecount(sqlite3_pcache *p){
657 int n;
658 PCache1 *pCache = (PCache1*)p;
659 pcache1EnterMutex(pCache->pGroup);
660 n = pCache->nPage;
661 pcache1LeaveMutex(pCache->pGroup);
662 return n;
667 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described
668 ** in the header of the pcache1Fetch() procedure.
670 ** This steps are broken out into a separate procedure because they are
671 ** usually not needed, and by avoiding the stack initialization required
672 ** for these steps, the main pcache1Fetch() procedure can run faster.
674 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2(
675 PCache1 *pCache,
676 unsigned int iKey,
677 int createFlag
679 unsigned int nPinned;
680 PGroup *pGroup = pCache->pGroup;
681 PgHdr1 *pPage = 0;
683 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
684 assert( pCache->nPage >= pCache->nRecyclable );
685 nPinned = pCache->nPage - pCache->nRecyclable;
686 assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
687 assert( pCache->n90pct == pCache->nMax*9/10 );
688 if( createFlag==1 && (
689 nPinned>=pGroup->mxPinned
690 || nPinned>=pCache->n90pct
691 || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned)
693 return 0;
696 if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache);
697 assert( pCache->nHash>0 && pCache->apHash );
699 /* Step 4. Try to recycle a page. */
700 if( pCache->bPurgeable && pGroup->pLruTail && (
701 (pCache->nPage+1>=pCache->nMax)
702 || pGroup->nCurrentPage>=pGroup->nMaxPage
703 || pcache1UnderMemoryPressure(pCache)
705 PCache1 *pOther;
706 pPage = pGroup->pLruTail;
707 assert( pPage->isPinned==0 );
708 pcache1RemoveFromHash(pPage);
709 pcache1PinPage(pPage);
710 pOther = pPage->pCache;
712 /* We want to verify that szPage and szExtra are the same for pOther
713 ** and pCache. Assert that we can verify this by comparing sums. */
714 assert( (pCache->szPage & (pCache->szPage-1))==0 && pCache->szPage>=512 );
715 assert( pCache->szExtra<512 );
716 assert( (pOther->szPage & (pOther->szPage-1))==0 && pOther->szPage>=512 );
717 assert( pOther->szExtra<512 );
719 if( pOther->szPage+pOther->szExtra != pCache->szPage+pCache->szExtra ){
720 pcache1FreePage(pPage);
721 pPage = 0;
722 }else{
723 pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable);
727 /* Step 5. If a usable page buffer has still not been found,
728 ** attempt to allocate a new one.
730 if( !pPage ){
731 if( createFlag==1 ) sqlite3BeginBenignMalloc();
732 pPage = pcache1AllocPage(pCache);
733 if( createFlag==1 ) sqlite3EndBenignMalloc();
736 if( pPage ){
737 unsigned int h = iKey % pCache->nHash;
738 pCache->nPage++;
739 pPage->iKey = iKey;
740 pPage->pNext = pCache->apHash[h];
741 pPage->pCache = pCache;
742 pPage->pLruPrev = 0;
743 pPage->pLruNext = 0;
744 pPage->isPinned = 1;
745 *(void **)pPage->page.pExtra = 0;
746 pCache->apHash[h] = pPage;
747 if( iKey>pCache->iMaxKey ){
748 pCache->iMaxKey = iKey;
751 return pPage;
755 ** Implementation of the sqlite3_pcache.xFetch method.
757 ** Fetch a page by key value.
759 ** Whether or not a new page may be allocated by this function depends on
760 ** the value of the createFlag argument. 0 means do not allocate a new
761 ** page. 1 means allocate a new page if space is easily available. 2
762 ** means to try really hard to allocate a new page.
764 ** For a non-purgeable cache (a cache used as the storage for an in-memory
765 ** database) there is really no difference between createFlag 1 and 2. So
766 ** the calling function (pcache.c) will never have a createFlag of 1 on
767 ** a non-purgeable cache.
769 ** There are three different approaches to obtaining space for a page,
770 ** depending on the value of parameter createFlag (which may be 0, 1 or 2).
772 ** 1. Regardless of the value of createFlag, the cache is searched for a
773 ** copy of the requested page. If one is found, it is returned.
775 ** 2. If createFlag==0 and the page is not already in the cache, NULL is
776 ** returned.
778 ** 3. If createFlag is 1, and the page is not already in the cache, then
779 ** return NULL (do not allocate a new page) if any of the following
780 ** conditions are true:
782 ** (a) the number of pages pinned by the cache is greater than
783 ** PCache1.nMax, or
785 ** (b) the number of pages pinned by the cache is greater than
786 ** the sum of nMax for all purgeable caches, less the sum of
787 ** nMin for all other purgeable caches, or
789 ** 4. If none of the first three conditions apply and the cache is marked
790 ** as purgeable, and if one of the following is true:
792 ** (a) The number of pages allocated for the cache is already
793 ** PCache1.nMax, or
795 ** (b) The number of pages allocated for all purgeable caches is
796 ** already equal to or greater than the sum of nMax for all
797 ** purgeable caches,
799 ** (c) The system is under memory pressure and wants to avoid
800 ** unnecessary pages cache entry allocations
802 ** then attempt to recycle a page from the LRU list. If it is the right
803 ** size, return the recycled buffer. Otherwise, free the buffer and
804 ** proceed to step 5.
806 ** 5. Otherwise, allocate and return a new page buffer.
808 static sqlite3_pcache_page *pcache1Fetch(
809 sqlite3_pcache *p,
810 unsigned int iKey,
811 int createFlag
813 PCache1 *pCache = (PCache1 *)p;
814 PgHdr1 *pPage = 0;
816 assert( offsetof(PgHdr1,page)==0 );
817 assert( pCache->bPurgeable || createFlag!=1 );
818 assert( pCache->bPurgeable || pCache->nMin==0 );
819 assert( pCache->bPurgeable==0 || pCache->nMin==10 );
820 assert( pCache->nMin==0 || pCache->bPurgeable );
821 assert( pCache->nHash>0 );
822 pcache1EnterMutex(pCache->pGroup);
824 /* Step 1: Search the hash table for an existing entry. */
825 pPage = pCache->apHash[iKey % pCache->nHash];
826 while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; }
828 /* Step 2: Abort if no existing page is found and createFlag is 0 */
829 if( pPage ){
830 if( !pPage->isPinned ) pcache1PinPage(pPage);
831 }else if( createFlag ){
832 /* Steps 3, 4, and 5 implemented by this subroutine */
833 pPage = pcache1FetchStage2(pCache, iKey, createFlag);
835 assert( pPage==0 || pCache->iMaxKey>=iKey );
836 pcache1LeaveMutex(pCache->pGroup);
837 return (sqlite3_pcache_page*)pPage;
842 ** Implementation of the sqlite3_pcache.xUnpin method.
844 ** Mark a page as unpinned (eligible for asynchronous recycling).
846 static void pcache1Unpin(
847 sqlite3_pcache *p,
848 sqlite3_pcache_page *pPg,
849 int reuseUnlikely
851 PCache1 *pCache = (PCache1 *)p;
852 PgHdr1 *pPage = (PgHdr1 *)pPg;
853 PGroup *pGroup = pCache->pGroup;
855 assert( pPage->pCache==pCache );
856 pcache1EnterMutex(pGroup);
858 /* It is an error to call this function if the page is already
859 ** part of the PGroup LRU list.
861 assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
862 assert( pGroup->pLruHead!=pPage && pGroup->pLruTail!=pPage );
863 assert( pPage->isPinned==1 );
865 if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){
866 pcache1RemoveFromHash(pPage);
867 pcache1FreePage(pPage);
868 }else{
869 /* Add the page to the PGroup LRU list. */
870 if( pGroup->pLruHead ){
871 pGroup->pLruHead->pLruPrev = pPage;
872 pPage->pLruNext = pGroup->pLruHead;
873 pGroup->pLruHead = pPage;
874 }else{
875 pGroup->pLruTail = pPage;
876 pGroup->pLruHead = pPage;
878 pCache->nRecyclable++;
879 pPage->isPinned = 0;
882 pcache1LeaveMutex(pCache->pGroup);
886 ** Implementation of the sqlite3_pcache.xRekey method.
888 static void pcache1Rekey(
889 sqlite3_pcache *p,
890 sqlite3_pcache_page *pPg,
891 unsigned int iOld,
892 unsigned int iNew
894 PCache1 *pCache = (PCache1 *)p;
895 PgHdr1 *pPage = (PgHdr1 *)pPg;
896 PgHdr1 **pp;
897 unsigned int h;
898 assert( pPage->iKey==iOld );
899 assert( pPage->pCache==pCache );
901 pcache1EnterMutex(pCache->pGroup);
903 h = iOld%pCache->nHash;
904 pp = &pCache->apHash[h];
905 while( (*pp)!=pPage ){
906 pp = &(*pp)->pNext;
908 *pp = pPage->pNext;
910 h = iNew%pCache->nHash;
911 pPage->iKey = iNew;
912 pPage->pNext = pCache->apHash[h];
913 pCache->apHash[h] = pPage;
914 if( iNew>pCache->iMaxKey ){
915 pCache->iMaxKey = iNew;
918 pcache1LeaveMutex(pCache->pGroup);
922 ** Implementation of the sqlite3_pcache.xTruncate method.
924 ** Discard all unpinned pages in the cache with a page number equal to
925 ** or greater than parameter iLimit. Any pinned pages with a page number
926 ** equal to or greater than iLimit are implicitly unpinned.
928 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
929 PCache1 *pCache = (PCache1 *)p;
930 pcache1EnterMutex(pCache->pGroup);
931 if( iLimit<=pCache->iMaxKey ){
932 pcache1TruncateUnsafe(pCache, iLimit);
933 pCache->iMaxKey = iLimit-1;
935 pcache1LeaveMutex(pCache->pGroup);
939 ** Implementation of the sqlite3_pcache.xDestroy method.
941 ** Destroy a cache allocated using pcache1Create().
943 static void pcache1Destroy(sqlite3_pcache *p){
944 PCache1 *pCache = (PCache1 *)p;
945 PGroup *pGroup = pCache->pGroup;
946 assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
947 pcache1EnterMutex(pGroup);
948 pcache1TruncateUnsafe(pCache, 0);
949 assert( pGroup->nMaxPage >= pCache->nMax );
950 pGroup->nMaxPage -= pCache->nMax;
951 assert( pGroup->nMinPage >= pCache->nMin );
952 pGroup->nMinPage -= pCache->nMin;
953 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
954 pcache1EnforceMaxPage(pGroup);
955 pcache1LeaveMutex(pGroup);
956 sqlite3_free(pCache->apHash);
957 sqlite3_free(pCache);
961 ** This function is called during initialization (sqlite3_initialize()) to
962 ** install the default pluggable cache module, assuming the user has not
963 ** already provided an alternative.
965 void sqlite3PCacheSetDefault(void){
966 static const sqlite3_pcache_methods2 defaultMethods = {
967 1, /* iVersion */
968 0, /* pArg */
969 pcache1Init, /* xInit */
970 pcache1Shutdown, /* xShutdown */
971 pcache1Create, /* xCreate */
972 pcache1Cachesize, /* xCachesize */
973 pcache1Pagecount, /* xPagecount */
974 pcache1Fetch, /* xFetch */
975 pcache1Unpin, /* xUnpin */
976 pcache1Rekey, /* xRekey */
977 pcache1Truncate, /* xTruncate */
978 pcache1Destroy, /* xDestroy */
979 pcache1Shrink /* xShrink */
981 sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
984 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
986 ** This function is called to free superfluous dynamically allocated memory
987 ** held by the pager system. Memory in use by any SQLite pager allocated
988 ** by the current thread may be sqlite3_free()ed.
990 ** nReq is the number of bytes of memory required. Once this much has
991 ** been released, the function returns. The return value is the total number
992 ** of bytes of memory released.
994 int sqlite3PcacheReleaseMemory(int nReq){
995 int nFree = 0;
996 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
997 assert( sqlite3_mutex_notheld(pcache1.mutex) );
998 if( pcache1.pStart==0 ){
999 PgHdr1 *p;
1000 pcache1EnterMutex(&pcache1.grp);
1001 while( (nReq<0 || nFree<nReq) && ((p=pcache1.grp.pLruTail)!=0) ){
1002 nFree += pcache1MemSize(p->page.pBuf);
1003 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
1004 nFree += sqlite3MemSize(p);
1005 #endif
1006 assert( p->isPinned==0 );
1007 pcache1PinPage(p);
1008 pcache1RemoveFromHash(p);
1009 pcache1FreePage(p);
1011 pcache1LeaveMutex(&pcache1.grp);
1013 return nFree;
1015 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
1017 #ifdef SQLITE_TEST
1019 ** This function is used by test procedures to inspect the internal state
1020 ** of the global cache.
1022 void sqlite3PcacheStats(
1023 int *pnCurrent, /* OUT: Total number of pages cached */
1024 int *pnMax, /* OUT: Global maximum cache size */
1025 int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */
1026 int *pnRecyclable /* OUT: Total number of pages available for recycling */
1028 PgHdr1 *p;
1029 int nRecyclable = 0;
1030 for(p=pcache1.grp.pLruHead; p; p=p->pLruNext){
1031 assert( p->isPinned==0 );
1032 nRecyclable++;
1034 *pnCurrent = pcache1.grp.nCurrentPage;
1035 *pnMax = (int)pcache1.grp.nMaxPage;
1036 *pnMin = (int)pcache1.grp.nMinPage;
1037 *pnRecyclable = nRecyclable;
1039 #endif