4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Trace output macros
20 #if SELECTTRACE_ENABLED
21 /***/ int sqlite3SelectTrace
= 0;
22 # define SELECTTRACE(K,P,S,X) \
23 if(sqlite3SelectTrace&(K)) \
24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",(S)->zSelName,(S)),\
27 # define SELECTTRACE(K,P,S,X)
32 ** An instance of the following object is used to record information about
33 ** how to process the DISTINCT keyword, to simplify passing that information
34 ** into the selectInnerLoop() routine.
36 typedef struct DistinctCtx DistinctCtx
;
38 u8 isTnct
; /* True if the DISTINCT keyword is present */
39 u8 eTnctType
; /* One of the WHERE_DISTINCT_* operators */
40 int tabTnct
; /* Ephemeral table used for DISTINCT processing */
41 int addrTnct
; /* Address of OP_OpenEphemeral opcode for tabTnct */
45 ** An instance of the following object is used to record information about
46 ** the ORDER BY (or GROUP BY) clause of query is being coded.
48 typedef struct SortCtx SortCtx
;
50 ExprList
*pOrderBy
; /* The ORDER BY (or GROUP BY clause) */
51 int nOBSat
; /* Number of ORDER BY terms satisfied by indices */
52 int iECursor
; /* Cursor number for the sorter */
53 int regReturn
; /* Register holding block-output return address */
54 int labelBkOut
; /* Start label for the block-output subroutine */
55 int addrSortIndex
; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56 u8 sortFlags
; /* Zero or more SORTFLAG_* bits */
58 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
61 ** Delete all the content of a Select structure but do not deallocate
62 ** the select structure itself.
64 static void clearSelect(sqlite3
*db
, Select
*p
){
65 sqlite3ExprListDelete(db
, p
->pEList
);
66 sqlite3SrcListDelete(db
, p
->pSrc
);
67 sqlite3ExprDelete(db
, p
->pWhere
);
68 sqlite3ExprListDelete(db
, p
->pGroupBy
);
69 sqlite3ExprDelete(db
, p
->pHaving
);
70 sqlite3ExprListDelete(db
, p
->pOrderBy
);
71 sqlite3SelectDelete(db
, p
->pPrior
);
72 sqlite3ExprDelete(db
, p
->pLimit
);
73 sqlite3ExprDelete(db
, p
->pOffset
);
74 sqlite3WithDelete(db
, p
->pWith
);
78 ** Initialize a SelectDest structure.
80 void sqlite3SelectDestInit(SelectDest
*pDest
, int eDest
, int iParm
){
81 pDest
->eDest
= (u8
)eDest
;
82 pDest
->iSDParm
= iParm
;
90 ** Allocate a new Select structure and return a pointer to that
93 Select
*sqlite3SelectNew(
94 Parse
*pParse
, /* Parsing context */
95 ExprList
*pEList
, /* which columns to include in the result */
96 SrcList
*pSrc
, /* the FROM clause -- which tables to scan */
97 Expr
*pWhere
, /* the WHERE clause */
98 ExprList
*pGroupBy
, /* the GROUP BY clause */
99 Expr
*pHaving
, /* the HAVING clause */
100 ExprList
*pOrderBy
, /* the ORDER BY clause */
101 u16 selFlags
, /* Flag parameters, such as SF_Distinct */
102 Expr
*pLimit
, /* LIMIT value. NULL means not used */
103 Expr
*pOffset
/* OFFSET value. NULL means no offset */
107 sqlite3
*db
= pParse
->db
;
108 pNew
= sqlite3DbMallocZero(db
, sizeof(*pNew
) );
109 assert( db
->mallocFailed
|| !pOffset
|| pLimit
); /* OFFSET implies LIMIT */
111 assert( db
->mallocFailed
);
113 memset(pNew
, 0, sizeof(*pNew
));
116 pEList
= sqlite3ExprListAppend(pParse
, 0, sqlite3Expr(db
,TK_ALL
,0));
118 pNew
->pEList
= pEList
;
119 if( pSrc
==0 ) pSrc
= sqlite3DbMallocZero(db
, sizeof(*pSrc
));
121 pNew
->pWhere
= pWhere
;
122 pNew
->pGroupBy
= pGroupBy
;
123 pNew
->pHaving
= pHaving
;
124 pNew
->pOrderBy
= pOrderBy
;
125 pNew
->selFlags
= selFlags
;
126 pNew
->op
= TK_SELECT
;
127 pNew
->pLimit
= pLimit
;
128 pNew
->pOffset
= pOffset
;
129 assert( pOffset
==0 || pLimit
!=0 );
130 pNew
->addrOpenEphm
[0] = -1;
131 pNew
->addrOpenEphm
[1] = -1;
132 if( db
->mallocFailed
) {
133 clearSelect(db
, pNew
);
134 if( pNew
!=&standin
) sqlite3DbFree(db
, pNew
);
137 assert( pNew
->pSrc
!=0 || pParse
->nErr
>0 );
139 assert( pNew
!=&standin
);
143 #if SELECTTRACE_ENABLED
145 ** Set the name of a Select object
147 void sqlite3SelectSetName(Select
*p
, const char *zName
){
149 sqlite3_snprintf(sizeof(p
->zSelName
), p
->zSelName
, "%s", zName
);
156 ** Delete the given Select structure and all of its substructures.
158 void sqlite3SelectDelete(sqlite3
*db
, Select
*p
){
161 sqlite3DbFree(db
, p
);
166 ** Return a pointer to the right-most SELECT statement in a compound.
168 static Select
*findRightmost(Select
*p
){
169 while( p
->pNext
) p
= p
->pNext
;
174 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
175 ** type of join. Return an integer constant that expresses that type
176 ** in terms of the following bit values:
185 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
187 ** If an illegal or unsupported join type is seen, then still return
188 ** a join type, but put an error in the pParse structure.
190 int sqlite3JoinType(Parse
*pParse
, Token
*pA
, Token
*pB
, Token
*pC
){
194 /* 0123456789 123456789 123456789 123 */
195 static const char zKeyText
[] = "naturaleftouterightfullinnercross";
196 static const struct {
197 u8 i
; /* Beginning of keyword text in zKeyText[] */
198 u8 nChar
; /* Length of the keyword in characters */
199 u8 code
; /* Join type mask */
201 /* natural */ { 0, 7, JT_NATURAL
},
202 /* left */ { 6, 4, JT_LEFT
|JT_OUTER
},
203 /* outer */ { 10, 5, JT_OUTER
},
204 /* right */ { 14, 5, JT_RIGHT
|JT_OUTER
},
205 /* full */ { 19, 4, JT_LEFT
|JT_RIGHT
|JT_OUTER
},
206 /* inner */ { 23, 5, JT_INNER
},
207 /* cross */ { 28, 5, JT_INNER
|JT_CROSS
},
213 for(i
=0; i
<3 && apAll
[i
]; i
++){
215 for(j
=0; j
<ArraySize(aKeyword
); j
++){
216 if( p
->n
==aKeyword
[j
].nChar
217 && sqlite3StrNICmp((char*)p
->z
, &zKeyText
[aKeyword
[j
].i
], p
->n
)==0 ){
218 jointype
|= aKeyword
[j
].code
;
222 testcase( j
==0 || j
==1 || j
==2 || j
==3 || j
==4 || j
==5 || j
==6 );
223 if( j
>=ArraySize(aKeyword
) ){
224 jointype
|= JT_ERROR
;
229 (jointype
& (JT_INNER
|JT_OUTER
))==(JT_INNER
|JT_OUTER
) ||
230 (jointype
& JT_ERROR
)!=0
232 const char *zSp
= " ";
234 if( pC
==0 ){ zSp
++; }
235 sqlite3ErrorMsg(pParse
, "unknown or unsupported join type: "
236 "%T %T%s%T", pA
, pB
, zSp
, pC
);
238 }else if( (jointype
& JT_OUTER
)!=0
239 && (jointype
& (JT_LEFT
|JT_RIGHT
))!=JT_LEFT
){
240 sqlite3ErrorMsg(pParse
,
241 "RIGHT and FULL OUTER JOINs are not currently supported");
248 ** Return the index of a column in a table. Return -1 if the column
249 ** is not contained in the table.
251 static int columnIndex(Table
*pTab
, const char *zCol
){
253 for(i
=0; i
<pTab
->nCol
; i
++){
254 if( sqlite3StrICmp(pTab
->aCol
[i
].zName
, zCol
)==0 ) return i
;
260 ** Search the first N tables in pSrc, from left to right, looking for a
261 ** table that has a column named zCol.
263 ** When found, set *piTab and *piCol to the table index and column index
264 ** of the matching column and return TRUE.
266 ** If not found, return FALSE.
268 static int tableAndColumnIndex(
269 SrcList
*pSrc
, /* Array of tables to search */
270 int N
, /* Number of tables in pSrc->a[] to search */
271 const char *zCol
, /* Name of the column we are looking for */
272 int *piTab
, /* Write index of pSrc->a[] here */
273 int *piCol
/* Write index of pSrc->a[*piTab].pTab->aCol[] here */
275 int i
; /* For looping over tables in pSrc */
276 int iCol
; /* Index of column matching zCol */
278 assert( (piTab
==0)==(piCol
==0) ); /* Both or neither are NULL */
280 iCol
= columnIndex(pSrc
->a
[i
].pTab
, zCol
);
293 ** This function is used to add terms implied by JOIN syntax to the
294 ** WHERE clause expression of a SELECT statement. The new term, which
295 ** is ANDed with the existing WHERE clause, is of the form:
297 ** (tab1.col1 = tab2.col2)
299 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
300 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
301 ** column iColRight of tab2.
303 static void addWhereTerm(
304 Parse
*pParse
, /* Parsing context */
305 SrcList
*pSrc
, /* List of tables in FROM clause */
306 int iLeft
, /* Index of first table to join in pSrc */
307 int iColLeft
, /* Index of column in first table */
308 int iRight
, /* Index of second table in pSrc */
309 int iColRight
, /* Index of column in second table */
310 int isOuterJoin
, /* True if this is an OUTER join */
311 Expr
**ppWhere
/* IN/OUT: The WHERE clause to add to */
313 sqlite3
*db
= pParse
->db
;
318 assert( iLeft
<iRight
);
319 assert( pSrc
->nSrc
>iRight
);
320 assert( pSrc
->a
[iLeft
].pTab
);
321 assert( pSrc
->a
[iRight
].pTab
);
323 pE1
= sqlite3CreateColumnExpr(db
, pSrc
, iLeft
, iColLeft
);
324 pE2
= sqlite3CreateColumnExpr(db
, pSrc
, iRight
, iColRight
);
326 pEq
= sqlite3PExpr(pParse
, TK_EQ
, pE1
, pE2
, 0);
327 if( pEq
&& isOuterJoin
){
328 ExprSetProperty(pEq
, EP_FromJoin
);
329 assert( !ExprHasProperty(pEq
, EP_TokenOnly
|EP_Reduced
) );
330 ExprSetVVAProperty(pEq
, EP_NoReduce
);
331 pEq
->iRightJoinTable
= (i16
)pE2
->iTable
;
333 *ppWhere
= sqlite3ExprAnd(db
, *ppWhere
, pEq
);
337 ** Set the EP_FromJoin property on all terms of the given expression.
338 ** And set the Expr.iRightJoinTable to iTable for every term in the
341 ** The EP_FromJoin property is used on terms of an expression to tell
342 ** the LEFT OUTER JOIN processing logic that this term is part of the
343 ** join restriction specified in the ON or USING clause and not a part
344 ** of the more general WHERE clause. These terms are moved over to the
345 ** WHERE clause during join processing but we need to remember that they
346 ** originated in the ON or USING clause.
348 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
349 ** expression depends on table iRightJoinTable even if that table is not
350 ** explicitly mentioned in the expression. That information is needed
351 ** for cases like this:
353 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
355 ** The where clause needs to defer the handling of the t1.x=5
356 ** term until after the t2 loop of the join. In that way, a
357 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
358 ** defer the handling of t1.x=5, it will be processed immediately
359 ** after the t1 loop and rows with t1.x!=5 will never appear in
360 ** the output, which is incorrect.
362 static void setJoinExpr(Expr
*p
, int iTable
){
364 ExprSetProperty(p
, EP_FromJoin
);
365 assert( !ExprHasProperty(p
, EP_TokenOnly
|EP_Reduced
) );
366 ExprSetVVAProperty(p
, EP_NoReduce
);
367 p
->iRightJoinTable
= (i16
)iTable
;
368 setJoinExpr(p
->pLeft
, iTable
);
374 ** This routine processes the join information for a SELECT statement.
375 ** ON and USING clauses are converted into extra terms of the WHERE clause.
376 ** NATURAL joins also create extra WHERE clause terms.
378 ** The terms of a FROM clause are contained in the Select.pSrc structure.
379 ** The left most table is the first entry in Select.pSrc. The right-most
380 ** table is the last entry. The join operator is held in the entry to
381 ** the left. Thus entry 0 contains the join operator for the join between
382 ** entries 0 and 1. Any ON or USING clauses associated with the join are
383 ** also attached to the left entry.
385 ** This routine returns the number of errors encountered.
387 static int sqliteProcessJoin(Parse
*pParse
, Select
*p
){
388 SrcList
*pSrc
; /* All tables in the FROM clause */
389 int i
, j
; /* Loop counters */
390 struct SrcList_item
*pLeft
; /* Left table being joined */
391 struct SrcList_item
*pRight
; /* Right table being joined */
396 for(i
=0; i
<pSrc
->nSrc
-1; i
++, pRight
++, pLeft
++){
397 Table
*pLeftTab
= pLeft
->pTab
;
398 Table
*pRightTab
= pRight
->pTab
;
401 if( NEVER(pLeftTab
==0 || pRightTab
==0) ) continue;
402 isOuter
= (pRight
->jointype
& JT_OUTER
)!=0;
404 /* When the NATURAL keyword is present, add WHERE clause terms for
405 ** every column that the two tables have in common.
407 if( pRight
->jointype
& JT_NATURAL
){
408 if( pRight
->pOn
|| pRight
->pUsing
){
409 sqlite3ErrorMsg(pParse
, "a NATURAL join may not have "
410 "an ON or USING clause", 0);
413 for(j
=0; j
<pRightTab
->nCol
; j
++){
414 char *zName
; /* Name of column in the right table */
415 int iLeft
; /* Matching left table */
416 int iLeftCol
; /* Matching column in the left table */
418 zName
= pRightTab
->aCol
[j
].zName
;
419 if( tableAndColumnIndex(pSrc
, i
+1, zName
, &iLeft
, &iLeftCol
) ){
420 addWhereTerm(pParse
, pSrc
, iLeft
, iLeftCol
, i
+1, j
,
421 isOuter
, &p
->pWhere
);
426 /* Disallow both ON and USING clauses in the same join
428 if( pRight
->pOn
&& pRight
->pUsing
){
429 sqlite3ErrorMsg(pParse
, "cannot have both ON and USING "
430 "clauses in the same join");
434 /* Add the ON clause to the end of the WHERE clause, connected by
438 if( isOuter
) setJoinExpr(pRight
->pOn
, pRight
->iCursor
);
439 p
->pWhere
= sqlite3ExprAnd(pParse
->db
, p
->pWhere
, pRight
->pOn
);
443 /* Create extra terms on the WHERE clause for each column named
444 ** in the USING clause. Example: If the two tables to be joined are
445 ** A and B and the USING clause names X, Y, and Z, then add this
446 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
447 ** Report an error if any column mentioned in the USING clause is
448 ** not contained in both tables to be joined.
450 if( pRight
->pUsing
){
451 IdList
*pList
= pRight
->pUsing
;
452 for(j
=0; j
<pList
->nId
; j
++){
453 char *zName
; /* Name of the term in the USING clause */
454 int iLeft
; /* Table on the left with matching column name */
455 int iLeftCol
; /* Column number of matching column on the left */
456 int iRightCol
; /* Column number of matching column on the right */
458 zName
= pList
->a
[j
].zName
;
459 iRightCol
= columnIndex(pRightTab
, zName
);
461 || !tableAndColumnIndex(pSrc
, i
+1, zName
, &iLeft
, &iLeftCol
)
463 sqlite3ErrorMsg(pParse
, "cannot join using column %s - column "
464 "not present in both tables", zName
);
467 addWhereTerm(pParse
, pSrc
, iLeft
, iLeftCol
, i
+1, iRightCol
,
468 isOuter
, &p
->pWhere
);
475 /* Forward reference */
476 static KeyInfo
*keyInfoFromExprList(
477 Parse
*pParse
, /* Parsing context */
478 ExprList
*pList
, /* Form the KeyInfo object from this ExprList */
479 int iStart
, /* Begin with this column of pList */
480 int nExtra
/* Add this many extra columns to the end */
484 ** Generate code that will push the record in registers regData
485 ** through regData+nData-1 onto the sorter.
487 static void pushOntoSorter(
488 Parse
*pParse
, /* Parser context */
489 SortCtx
*pSort
, /* Information about the ORDER BY clause */
490 Select
*pSelect
, /* The whole SELECT statement */
491 int regData
, /* First register holding data to be sorted */
492 int nData
, /* Number of elements in the data array */
493 int nPrefixReg
/* No. of reg prior to regData available for use */
495 Vdbe
*v
= pParse
->pVdbe
; /* Stmt under construction */
496 int bSeq
= ((pSort
->sortFlags
& SORTFLAG_UseSorter
)==0);
497 int nExpr
= pSort
->pOrderBy
->nExpr
; /* No. of ORDER BY terms */
498 int nBase
= nExpr
+ bSeq
+ nData
; /* Fields in sorter record */
499 int regBase
; /* Regs for sorter record */
500 int regRecord
= ++pParse
->nMem
; /* Assembled sorter record */
501 int nOBSat
= pSort
->nOBSat
; /* ORDER BY terms to skip */
502 int op
; /* Opcode to add sorter record to sorter */
504 assert( bSeq
==0 || bSeq
==1 );
506 assert( nPrefixReg
==nExpr
+bSeq
);
507 regBase
= regData
- nExpr
- bSeq
;
509 regBase
= pParse
->nMem
+ 1;
510 pParse
->nMem
+= nBase
;
512 sqlite3ExprCodeExprList(pParse
, pSort
->pOrderBy
, regBase
, SQLITE_ECEL_DUP
);
514 sqlite3VdbeAddOp2(v
, OP_Sequence
, pSort
->iECursor
, regBase
+nExpr
);
517 sqlite3ExprCodeMove(pParse
, regData
, regBase
+nExpr
+bSeq
, nData
);
520 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regBase
+nOBSat
, nBase
-nOBSat
, regRecord
);
522 int regPrevKey
; /* The first nOBSat columns of the previous row */
523 int addrFirst
; /* Address of the OP_IfNot opcode */
524 int addrJmp
; /* Address of the OP_Jump opcode */
525 VdbeOp
*pOp
; /* Opcode that opens the sorter */
526 int nKey
; /* Number of sorting key columns, including OP_Sequence */
527 KeyInfo
*pKI
; /* Original KeyInfo on the sorter table */
529 regPrevKey
= pParse
->nMem
+1;
530 pParse
->nMem
+= pSort
->nOBSat
;
531 nKey
= nExpr
- pSort
->nOBSat
+ bSeq
;
533 addrFirst
= sqlite3VdbeAddOp1(v
, OP_IfNot
, regBase
+nExpr
);
535 addrFirst
= sqlite3VdbeAddOp1(v
, OP_SequenceTest
, pSort
->iECursor
);
538 sqlite3VdbeAddOp3(v
, OP_Compare
, regPrevKey
, regBase
, pSort
->nOBSat
);
539 pOp
= sqlite3VdbeGetOp(v
, pSort
->addrSortIndex
);
540 if( pParse
->db
->mallocFailed
) return;
541 pOp
->p2
= nKey
+ nData
;
542 pKI
= pOp
->p4
.pKeyInfo
;
543 memset(pKI
->aSortOrder
, 0, pKI
->nField
); /* Makes OP_Jump below testable */
544 sqlite3VdbeChangeP4(v
, -1, (char*)pKI
, P4_KEYINFO
);
545 pOp
->p4
.pKeyInfo
= keyInfoFromExprList(pParse
, pSort
->pOrderBy
, nOBSat
, 1);
546 addrJmp
= sqlite3VdbeCurrentAddr(v
);
547 sqlite3VdbeAddOp3(v
, OP_Jump
, addrJmp
+1, 0, addrJmp
+1); VdbeCoverage(v
);
548 pSort
->labelBkOut
= sqlite3VdbeMakeLabel(v
);
549 pSort
->regReturn
= ++pParse
->nMem
;
550 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSort
->regReturn
, pSort
->labelBkOut
);
551 sqlite3VdbeAddOp1(v
, OP_ResetSorter
, pSort
->iECursor
);
552 sqlite3VdbeJumpHere(v
, addrFirst
);
553 sqlite3ExprCodeMove(pParse
, regBase
, regPrevKey
, pSort
->nOBSat
);
554 sqlite3VdbeJumpHere(v
, addrJmp
);
556 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
557 op
= OP_SorterInsert
;
561 sqlite3VdbeAddOp2(v
, op
, pSort
->iECursor
, regRecord
);
562 if( pSelect
->iLimit
){
565 if( pSelect
->iOffset
){
566 iLimit
= pSelect
->iOffset
+1;
568 iLimit
= pSelect
->iLimit
;
570 addr1
= sqlite3VdbeAddOp1(v
, OP_IfZero
, iLimit
); VdbeCoverage(v
);
571 sqlite3VdbeAddOp2(v
, OP_AddImm
, iLimit
, -1);
572 addr2
= sqlite3VdbeAddOp0(v
, OP_Goto
);
573 sqlite3VdbeJumpHere(v
, addr1
);
574 sqlite3VdbeAddOp1(v
, OP_Last
, pSort
->iECursor
);
575 sqlite3VdbeAddOp1(v
, OP_Delete
, pSort
->iECursor
);
576 sqlite3VdbeJumpHere(v
, addr2
);
581 ** Add code to implement the OFFSET
583 static void codeOffset(
584 Vdbe
*v
, /* Generate code into this VM */
585 int iOffset
, /* Register holding the offset counter */
586 int iContinue
/* Jump here to skip the current record */
590 addr
= sqlite3VdbeAddOp3(v
, OP_IfNeg
, iOffset
, 0, -1); VdbeCoverage(v
);
591 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, iContinue
);
592 VdbeComment((v
, "skip OFFSET records"));
593 sqlite3VdbeJumpHere(v
, addr
);
598 ** Add code that will check to make sure the N registers starting at iMem
599 ** form a distinct entry. iTab is a sorting index that holds previously
600 ** seen combinations of the N values. A new entry is made in iTab
601 ** if the current N values are new.
603 ** A jump to addrRepeat is made and the N+1 values are popped from the
604 ** stack if the top N elements are not distinct.
606 static void codeDistinct(
607 Parse
*pParse
, /* Parsing and code generating context */
608 int iTab
, /* A sorting index used to test for distinctness */
609 int addrRepeat
, /* Jump to here if not distinct */
610 int N
, /* Number of elements */
611 int iMem
/* First element */
617 r1
= sqlite3GetTempReg(pParse
);
618 sqlite3VdbeAddOp4Int(v
, OP_Found
, iTab
, addrRepeat
, iMem
, N
); VdbeCoverage(v
);
619 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, iMem
, N
, r1
);
620 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iTab
, r1
);
621 sqlite3ReleaseTempReg(pParse
, r1
);
624 #ifndef SQLITE_OMIT_SUBQUERY
626 ** Generate an error message when a SELECT is used within a subexpression
627 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result
628 ** column. We do this in a subroutine because the error used to occur
629 ** in multiple places. (The error only occurs in one place now, but we
630 ** retain the subroutine to minimize code disruption.)
632 static int checkForMultiColumnSelectError(
633 Parse
*pParse
, /* Parse context. */
634 SelectDest
*pDest
, /* Destination of SELECT results */
635 int nExpr
/* Number of result columns returned by SELECT */
637 int eDest
= pDest
->eDest
;
638 if( nExpr
>1 && (eDest
==SRT_Mem
|| eDest
==SRT_Set
) ){
639 sqlite3ErrorMsg(pParse
, "only a single result allowed for "
640 "a SELECT that is part of an expression");
649 ** This routine generates the code for the inside of the inner loop
652 ** If srcTab is negative, then the pEList expressions
653 ** are evaluated in order to get the data for this row. If srcTab is
654 ** zero or more, then data is pulled from srcTab and pEList is used only
655 ** to get number columns and the datatype for each column.
657 static void selectInnerLoop(
658 Parse
*pParse
, /* The parser context */
659 Select
*p
, /* The complete select statement being coded */
660 ExprList
*pEList
, /* List of values being extracted */
661 int srcTab
, /* Pull data from this table */
662 SortCtx
*pSort
, /* If not NULL, info on how to process ORDER BY */
663 DistinctCtx
*pDistinct
, /* If not NULL, info on how to process DISTINCT */
664 SelectDest
*pDest
, /* How to dispose of the results */
665 int iContinue
, /* Jump here to continue with next row */
666 int iBreak
/* Jump here to break out of the inner loop */
668 Vdbe
*v
= pParse
->pVdbe
;
670 int hasDistinct
; /* True if the DISTINCT keyword is present */
671 int regResult
; /* Start of memory holding result set */
672 int eDest
= pDest
->eDest
; /* How to dispose of results */
673 int iParm
= pDest
->iSDParm
; /* First argument to disposal method */
674 int nResultCol
; /* Number of result columns */
675 int nPrefixReg
= 0; /* Number of extra registers before regResult */
679 hasDistinct
= pDistinct
? pDistinct
->eTnctType
: WHERE_DISTINCT_NOOP
;
680 if( pSort
&& pSort
->pOrderBy
==0 ) pSort
= 0;
681 if( pSort
==0 && !hasDistinct
){
682 assert( iContinue
!=0 );
683 codeOffset(v
, p
->iOffset
, iContinue
);
686 /* Pull the requested columns.
688 nResultCol
= pEList
->nExpr
;
690 if( pDest
->iSdst
==0 ){
692 nPrefixReg
= pSort
->pOrderBy
->nExpr
;
693 if( !(pSort
->sortFlags
& SORTFLAG_UseSorter
) ) nPrefixReg
++;
694 pParse
->nMem
+= nPrefixReg
;
696 pDest
->iSdst
= pParse
->nMem
+1;
697 pParse
->nMem
+= nResultCol
;
698 }else if( pDest
->iSdst
+nResultCol
> pParse
->nMem
){
699 /* This is an error condition that can result, for example, when a SELECT
700 ** on the right-hand side of an INSERT contains more result columns than
701 ** there are columns in the table on the left. The error will be caught
702 ** and reported later. But we need to make sure enough memory is allocated
703 ** to avoid other spurious errors in the meantime. */
704 pParse
->nMem
+= nResultCol
;
706 pDest
->nSdst
= nResultCol
;
707 regResult
= pDest
->iSdst
;
709 for(i
=0; i
<nResultCol
; i
++){
710 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, i
, regResult
+i
);
711 VdbeComment((v
, "%s", pEList
->a
[i
].zName
));
713 }else if( eDest
!=SRT_Exists
){
714 /* If the destination is an EXISTS(...) expression, the actual
715 ** values returned by the SELECT are not required.
717 sqlite3ExprCodeExprList(pParse
, pEList
, regResult
,
718 (eDest
==SRT_Output
||eDest
==SRT_Coroutine
)?SQLITE_ECEL_DUP
:0);
721 /* If the DISTINCT keyword was present on the SELECT statement
722 ** and this row has been seen before, then do not make this row
723 ** part of the result.
726 switch( pDistinct
->eTnctType
){
727 case WHERE_DISTINCT_ORDERED
: {
728 VdbeOp
*pOp
; /* No longer required OpenEphemeral instr. */
729 int iJump
; /* Jump destination */
730 int regPrev
; /* Previous row content */
732 /* Allocate space for the previous row */
733 regPrev
= pParse
->nMem
+1;
734 pParse
->nMem
+= nResultCol
;
736 /* Change the OP_OpenEphemeral coded earlier to an OP_Null
737 ** sets the MEM_Cleared bit on the first register of the
738 ** previous value. This will cause the OP_Ne below to always
739 ** fail on the first iteration of the loop even if the first
742 sqlite3VdbeChangeToNoop(v
, pDistinct
->addrTnct
);
743 pOp
= sqlite3VdbeGetOp(v
, pDistinct
->addrTnct
);
744 pOp
->opcode
= OP_Null
;
748 iJump
= sqlite3VdbeCurrentAddr(v
) + nResultCol
;
749 for(i
=0; i
<nResultCol
; i
++){
750 CollSeq
*pColl
= sqlite3ExprCollSeq(pParse
, pEList
->a
[i
].pExpr
);
751 if( i
<nResultCol
-1 ){
752 sqlite3VdbeAddOp3(v
, OP_Ne
, regResult
+i
, iJump
, regPrev
+i
);
755 sqlite3VdbeAddOp3(v
, OP_Eq
, regResult
+i
, iContinue
, regPrev
+i
);
758 sqlite3VdbeChangeP4(v
, -1, (const char *)pColl
, P4_COLLSEQ
);
759 sqlite3VdbeChangeP5(v
, SQLITE_NULLEQ
);
761 assert( sqlite3VdbeCurrentAddr(v
)==iJump
|| pParse
->db
->mallocFailed
);
762 sqlite3VdbeAddOp3(v
, OP_Copy
, regResult
, regPrev
, nResultCol
-1);
766 case WHERE_DISTINCT_UNIQUE
: {
767 sqlite3VdbeChangeToNoop(v
, pDistinct
->addrTnct
);
772 assert( pDistinct
->eTnctType
==WHERE_DISTINCT_UNORDERED
);
773 codeDistinct(pParse
, pDistinct
->tabTnct
, iContinue
, nResultCol
, regResult
);
778 codeOffset(v
, p
->iOffset
, iContinue
);
783 /* In this mode, write each query result to the key of the temporary
786 #ifndef SQLITE_OMIT_COMPOUND_SELECT
789 r1
= sqlite3GetTempReg(pParse
);
790 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r1
);
791 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iParm
, r1
);
792 sqlite3ReleaseTempReg(pParse
, r1
);
796 /* Construct a record from the query result, but instead of
797 ** saving that record, use it as a key to delete elements from
798 ** the temporary table iParm.
801 sqlite3VdbeAddOp3(v
, OP_IdxDelete
, iParm
, regResult
, nResultCol
);
804 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
806 /* Store the result as data using a unique key.
812 int r1
= sqlite3GetTempRange(pParse
, nPrefixReg
+1);
813 testcase( eDest
==SRT_Table
);
814 testcase( eDest
==SRT_EphemTab
);
815 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r1
+nPrefixReg
);
816 #ifndef SQLITE_OMIT_CTE
817 if( eDest
==SRT_DistFifo
){
818 /* If the destination is DistFifo, then cursor (iParm+1) is open
819 ** on an ephemeral index. If the current row is already present
820 ** in the index, do not write it to the output. If not, add the
821 ** current row to the index and proceed with writing it to the
822 ** output table as well. */
823 int addr
= sqlite3VdbeCurrentAddr(v
) + 4;
824 sqlite3VdbeAddOp4Int(v
, OP_Found
, iParm
+1, addr
, r1
, 0); VdbeCoverage(v
);
825 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iParm
+1, r1
);
830 pushOntoSorter(pParse
, pSort
, p
, r1
+nPrefixReg
, 1, nPrefixReg
);
832 int r2
= sqlite3GetTempReg(pParse
);
833 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iParm
, r2
);
834 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, r1
, r2
);
835 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
836 sqlite3ReleaseTempReg(pParse
, r2
);
838 sqlite3ReleaseTempRange(pParse
, r1
, nPrefixReg
+1);
842 #ifndef SQLITE_OMIT_SUBQUERY
843 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
844 ** then there should be a single item on the stack. Write this
845 ** item into the set table with bogus data.
848 assert( nResultCol
==1 );
850 sqlite3CompareAffinity(pEList
->a
[0].pExpr
, pDest
->affSdst
);
852 /* At first glance you would think we could optimize out the
853 ** ORDER BY in this case since the order of entries in the set
854 ** does not matter. But there might be a LIMIT clause, in which
855 ** case the order does matter */
856 pushOntoSorter(pParse
, pSort
, p
, regResult
, 1, nPrefixReg
);
858 int r1
= sqlite3GetTempReg(pParse
);
859 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, regResult
,1,r1
, &pDest
->affSdst
, 1);
860 sqlite3ExprCacheAffinityChange(pParse
, regResult
, 1);
861 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iParm
, r1
);
862 sqlite3ReleaseTempReg(pParse
, r1
);
867 /* If any row exist in the result set, record that fact and abort.
870 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iParm
);
871 /* The LIMIT clause will terminate the loop for us */
875 /* If this is a scalar select that is part of an expression, then
876 ** store the results in the appropriate memory cell and break out
880 assert( nResultCol
==1 );
882 pushOntoSorter(pParse
, pSort
, p
, regResult
, 1, nPrefixReg
);
884 assert( regResult
==iParm
);
885 /* The LIMIT clause will jump out of the loop for us */
889 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
891 case SRT_Coroutine
: /* Send data to a co-routine */
892 case SRT_Output
: { /* Return the results */
893 testcase( eDest
==SRT_Coroutine
);
894 testcase( eDest
==SRT_Output
);
896 pushOntoSorter(pParse
, pSort
, p
, regResult
, nResultCol
, nPrefixReg
);
897 }else if( eDest
==SRT_Coroutine
){
898 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
900 sqlite3VdbeAddOp2(v
, OP_ResultRow
, regResult
, nResultCol
);
901 sqlite3ExprCacheAffinityChange(pParse
, regResult
, nResultCol
);
906 #ifndef SQLITE_OMIT_CTE
907 /* Write the results into a priority queue that is order according to
908 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
909 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
910 ** pSO->nExpr columns, then make sure all keys are unique by adding a
911 ** final OP_Sequence column. The last column is the record as a blob.
919 pSO
= pDest
->pOrderBy
;
922 r1
= sqlite3GetTempReg(pParse
);
923 r2
= sqlite3GetTempRange(pParse
, nKey
+2);
925 if( eDest
==SRT_DistQueue
){
926 /* If the destination is DistQueue, then cursor (iParm+1) is open
927 ** on a second ephemeral index that holds all values every previously
928 ** added to the queue. */
929 addrTest
= sqlite3VdbeAddOp4Int(v
, OP_Found
, iParm
+1, 0,
930 regResult
, nResultCol
);
933 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r3
);
934 if( eDest
==SRT_DistQueue
){
935 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iParm
+1, r3
);
936 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
938 for(i
=0; i
<nKey
; i
++){
939 sqlite3VdbeAddOp2(v
, OP_SCopy
,
940 regResult
+ pSO
->a
[i
].u
.x
.iOrderByCol
- 1,
943 sqlite3VdbeAddOp2(v
, OP_Sequence
, iParm
, r2
+nKey
);
944 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, r2
, nKey
+2, r1
);
945 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iParm
, r1
);
946 if( addrTest
) sqlite3VdbeJumpHere(v
, addrTest
);
947 sqlite3ReleaseTempReg(pParse
, r1
);
948 sqlite3ReleaseTempRange(pParse
, r2
, nKey
+2);
951 #endif /* SQLITE_OMIT_CTE */
955 #if !defined(SQLITE_OMIT_TRIGGER)
956 /* Discard the results. This is used for SELECT statements inside
957 ** the body of a TRIGGER. The purpose of such selects is to call
958 ** user-defined functions that have side effects. We do not care
959 ** about the actual results of the select.
962 assert( eDest
==SRT_Discard
);
968 /* Jump to the end of the loop if the LIMIT is reached. Except, if
969 ** there is a sorter, in which case the sorter has already limited
970 ** the output for us.
972 if( pSort
==0 && p
->iLimit
){
973 sqlite3VdbeAddOp3(v
, OP_IfZero
, p
->iLimit
, iBreak
, -1); VdbeCoverage(v
);
978 ** Allocate a KeyInfo object sufficient for an index of N key columns and
981 KeyInfo
*sqlite3KeyInfoAlloc(sqlite3
*db
, int N
, int X
){
982 KeyInfo
*p
= sqlite3DbMallocZero(0,
983 sizeof(KeyInfo
) + (N
+X
)*(sizeof(CollSeq
*)+1));
985 p
->aSortOrder
= (u8
*)&p
->aColl
[N
+X
];
992 db
->mallocFailed
= 1;
998 ** Deallocate a KeyInfo object
1000 void sqlite3KeyInfoUnref(KeyInfo
*p
){
1002 assert( p
->nRef
>0 );
1004 if( p
->nRef
==0 ) sqlite3DbFree(0, p
);
1009 ** Make a new pointer to a KeyInfo object
1011 KeyInfo
*sqlite3KeyInfoRef(KeyInfo
*p
){
1013 assert( p
->nRef
>0 );
1021 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1022 ** can only be changed if this is just a single reference to the object.
1024 ** This routine is used only inside of assert() statements.
1026 int sqlite3KeyInfoIsWriteable(KeyInfo
*p
){ return p
->nRef
==1; }
1027 #endif /* SQLITE_DEBUG */
1030 ** Given an expression list, generate a KeyInfo structure that records
1031 ** the collating sequence for each expression in that expression list.
1033 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1034 ** KeyInfo structure is appropriate for initializing a virtual index to
1035 ** implement that clause. If the ExprList is the result set of a SELECT
1036 ** then the KeyInfo structure is appropriate for initializing a virtual
1037 ** index to implement a DISTINCT test.
1039 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1040 ** function is responsible for seeing that this structure is eventually
1043 static KeyInfo
*keyInfoFromExprList(
1044 Parse
*pParse
, /* Parsing context */
1045 ExprList
*pList
, /* Form the KeyInfo object from this ExprList */
1046 int iStart
, /* Begin with this column of pList */
1047 int nExtra
/* Add this many extra columns to the end */
1051 struct ExprList_item
*pItem
;
1052 sqlite3
*db
= pParse
->db
;
1055 nExpr
= pList
->nExpr
;
1056 pInfo
= sqlite3KeyInfoAlloc(db
, nExpr
+nExtra
-iStart
, 1);
1058 assert( sqlite3KeyInfoIsWriteable(pInfo
) );
1059 for(i
=iStart
, pItem
=pList
->a
+iStart
; i
<nExpr
; i
++, pItem
++){
1061 pColl
= sqlite3ExprCollSeq(pParse
, pItem
->pExpr
);
1062 if( !pColl
) pColl
= db
->pDfltColl
;
1063 pInfo
->aColl
[i
-iStart
] = pColl
;
1064 pInfo
->aSortOrder
[i
-iStart
] = pItem
->sortOrder
;
1070 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1072 ** Name of the connection operator, used for error messages.
1074 static const char *selectOpName(int id
){
1077 case TK_ALL
: z
= "UNION ALL"; break;
1078 case TK_INTERSECT
: z
= "INTERSECT"; break;
1079 case TK_EXCEPT
: z
= "EXCEPT"; break;
1080 default: z
= "UNION"; break;
1084 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1086 #ifndef SQLITE_OMIT_EXPLAIN
1088 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1089 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1090 ** where the caption is of the form:
1092 ** "USE TEMP B-TREE FOR xxx"
1094 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1095 ** is determined by the zUsage argument.
1097 static void explainTempTable(Parse
*pParse
, const char *zUsage
){
1098 if( pParse
->explain
==2 ){
1099 Vdbe
*v
= pParse
->pVdbe
;
1100 char *zMsg
= sqlite3MPrintf(pParse
->db
, "USE TEMP B-TREE FOR %s", zUsage
);
1101 sqlite3VdbeAddOp4(v
, OP_Explain
, pParse
->iSelectId
, 0, 0, zMsg
, P4_DYNAMIC
);
1106 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1107 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1108 ** in sqlite3Select() to assign values to structure member variables that
1109 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1110 ** code with #ifndef directives.
1112 # define explainSetInteger(a, b) a = b
1115 /* No-op versions of the explainXXX() functions and macros. */
1116 # define explainTempTable(y,z)
1117 # define explainSetInteger(y,z)
1120 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT)
1122 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1123 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1124 ** where the caption is of one of the two forms:
1126 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)"
1127 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)"
1129 ** where iSub1 and iSub2 are the integers passed as the corresponding
1130 ** function parameters, and op is the text representation of the parameter
1131 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT,
1132 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is
1133 ** false, or the second form if it is true.
1135 static void explainComposite(
1136 Parse
*pParse
, /* Parse context */
1137 int op
, /* One of TK_UNION, TK_EXCEPT etc. */
1138 int iSub1
, /* Subquery id 1 */
1139 int iSub2
, /* Subquery id 2 */
1140 int bUseTmp
/* True if a temp table was used */
1142 assert( op
==TK_UNION
|| op
==TK_EXCEPT
|| op
==TK_INTERSECT
|| op
==TK_ALL
);
1143 if( pParse
->explain
==2 ){
1144 Vdbe
*v
= pParse
->pVdbe
;
1145 char *zMsg
= sqlite3MPrintf(
1146 pParse
->db
, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1
, iSub2
,
1147 bUseTmp
?"USING TEMP B-TREE ":"", selectOpName(op
)
1149 sqlite3VdbeAddOp4(v
, OP_Explain
, pParse
->iSelectId
, 0, 0, zMsg
, P4_DYNAMIC
);
1153 /* No-op versions of the explainXXX() functions and macros. */
1154 # define explainComposite(v,w,x,y,z)
1158 ** If the inner loop was generated using a non-null pOrderBy argument,
1159 ** then the results were placed in a sorter. After the loop is terminated
1160 ** we need to run the sorter and output the results. The following
1161 ** routine generates the code needed to do that.
1163 static void generateSortTail(
1164 Parse
*pParse
, /* Parsing context */
1165 Select
*p
, /* The SELECT statement */
1166 SortCtx
*pSort
, /* Information on the ORDER BY clause */
1167 int nColumn
, /* Number of columns of data */
1168 SelectDest
*pDest
/* Write the sorted results here */
1170 Vdbe
*v
= pParse
->pVdbe
; /* The prepared statement */
1171 int addrBreak
= sqlite3VdbeMakeLabel(v
); /* Jump here to exit loop */
1172 int addrContinue
= sqlite3VdbeMakeLabel(v
); /* Jump here for next cycle */
1176 ExprList
*pOrderBy
= pSort
->pOrderBy
;
1177 int eDest
= pDest
->eDest
;
1178 int iParm
= pDest
->iSDParm
;
1182 int iSortTab
; /* Sorter cursor to read from */
1183 int nSortData
; /* Trailing values to read from sorter */
1185 int bSeq
; /* True if sorter record includes seq. no. */
1186 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1187 struct ExprList_item
*aOutEx
= p
->pEList
->a
;
1190 if( pSort
->labelBkOut
){
1191 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSort
->regReturn
, pSort
->labelBkOut
);
1192 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, addrBreak
);
1193 sqlite3VdbeResolveLabel(v
, pSort
->labelBkOut
);
1195 iTab
= pSort
->iECursor
;
1196 if( eDest
==SRT_Output
|| eDest
==SRT_Coroutine
){
1198 regRow
= pDest
->iSdst
;
1199 nSortData
= nColumn
;
1201 regRowid
= sqlite3GetTempReg(pParse
);
1202 regRow
= sqlite3GetTempReg(pParse
);
1205 nKey
= pOrderBy
->nExpr
- pSort
->nOBSat
;
1206 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
1207 int regSortOut
= ++pParse
->nMem
;
1208 iSortTab
= pParse
->nTab
++;
1209 if( pSort
->labelBkOut
){
1210 addrOnce
= sqlite3CodeOnce(pParse
); VdbeCoverage(v
);
1212 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, iSortTab
, regSortOut
, nKey
+1+nSortData
);
1213 if( addrOnce
) sqlite3VdbeJumpHere(v
, addrOnce
);
1214 addr
= 1 + sqlite3VdbeAddOp2(v
, OP_SorterSort
, iTab
, addrBreak
);
1216 codeOffset(v
, p
->iOffset
, addrContinue
);
1217 sqlite3VdbeAddOp3(v
, OP_SorterData
, iTab
, regSortOut
, iSortTab
);
1220 addr
= 1 + sqlite3VdbeAddOp2(v
, OP_Sort
, iTab
, addrBreak
); VdbeCoverage(v
);
1221 codeOffset(v
, p
->iOffset
, addrContinue
);
1225 for(i
=0; i
<nSortData
; i
++){
1226 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, nKey
+bSeq
+i
, regRow
+i
);
1227 VdbeComment((v
, "%s", aOutEx
[i
].zName
? aOutEx
[i
].zName
: aOutEx
[i
].zSpan
));
1231 case SRT_EphemTab
: {
1232 testcase( eDest
==SRT_Table
);
1233 testcase( eDest
==SRT_EphemTab
);
1234 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iParm
, regRowid
);
1235 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, regRow
, regRowid
);
1236 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
1239 #ifndef SQLITE_OMIT_SUBQUERY
1241 assert( nColumn
==1 );
1242 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, regRow
, 1, regRowid
,
1243 &pDest
->affSdst
, 1);
1244 sqlite3ExprCacheAffinityChange(pParse
, regRow
, 1);
1245 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iParm
, regRowid
);
1249 assert( nColumn
==1 );
1250 sqlite3ExprCodeMove(pParse
, regRow
, iParm
, 1);
1251 /* The LIMIT clause will terminate the loop for us */
1256 assert( eDest
==SRT_Output
|| eDest
==SRT_Coroutine
);
1257 testcase( eDest
==SRT_Output
);
1258 testcase( eDest
==SRT_Coroutine
);
1259 if( eDest
==SRT_Output
){
1260 sqlite3VdbeAddOp2(v
, OP_ResultRow
, pDest
->iSdst
, nColumn
);
1261 sqlite3ExprCacheAffinityChange(pParse
, pDest
->iSdst
, nColumn
);
1263 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
1269 sqlite3ReleaseTempReg(pParse
, regRow
);
1270 sqlite3ReleaseTempReg(pParse
, regRowid
);
1272 /* The bottom of the loop
1274 sqlite3VdbeResolveLabel(v
, addrContinue
);
1275 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
1276 sqlite3VdbeAddOp2(v
, OP_SorterNext
, iTab
, addr
); VdbeCoverage(v
);
1278 sqlite3VdbeAddOp2(v
, OP_Next
, iTab
, addr
); VdbeCoverage(v
);
1280 if( pSort
->regReturn
) sqlite3VdbeAddOp1(v
, OP_Return
, pSort
->regReturn
);
1281 sqlite3VdbeResolveLabel(v
, addrBreak
);
1285 ** Return a pointer to a string containing the 'declaration type' of the
1286 ** expression pExpr. The string may be treated as static by the caller.
1288 ** Also try to estimate the size of the returned value and return that
1289 ** result in *pEstWidth.
1291 ** The declaration type is the exact datatype definition extracted from the
1292 ** original CREATE TABLE statement if the expression is a column. The
1293 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1294 ** is considered a column can be complex in the presence of subqueries. The
1295 ** result-set expression in all of the following SELECT statements is
1296 ** considered a column by this function.
1298 ** SELECT col FROM tbl;
1299 ** SELECT (SELECT col FROM tbl;
1300 ** SELECT (SELECT col FROM tbl);
1301 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1303 ** The declaration type for any expression other than a column is NULL.
1305 ** This routine has either 3 or 6 parameters depending on whether or not
1306 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1308 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1309 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F)
1310 static const char *columnTypeImpl(
1313 const char **pzOrigDb
,
1314 const char **pzOrigTab
,
1315 const char **pzOrigCol
,
1318 char const *zOrigDb
= 0;
1319 char const *zOrigTab
= 0;
1320 char const *zOrigCol
= 0;
1321 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1322 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F)
1323 static const char *columnTypeImpl(
1328 #endif /* !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1329 char const *zType
= 0;
1333 if( NEVER(pExpr
==0) || pNC
->pSrcList
==0 ) return 0;
1334 switch( pExpr
->op
){
1337 /* The expression is a column. Locate the table the column is being
1338 ** extracted from in NameContext.pSrcList. This table may be real
1339 ** database table or a subquery.
1341 Table
*pTab
= 0; /* Table structure column is extracted from */
1342 Select
*pS
= 0; /* Select the column is extracted from */
1343 int iCol
= pExpr
->iColumn
; /* Index of column in pTab */
1344 testcase( pExpr
->op
==TK_AGG_COLUMN
);
1345 testcase( pExpr
->op
==TK_COLUMN
);
1346 while( pNC
&& !pTab
){
1347 SrcList
*pTabList
= pNC
->pSrcList
;
1348 for(j
=0;j
<pTabList
->nSrc
&& pTabList
->a
[j
].iCursor
!=pExpr
->iTable
;j
++);
1349 if( j
<pTabList
->nSrc
){
1350 pTab
= pTabList
->a
[j
].pTab
;
1351 pS
= pTabList
->a
[j
].pSelect
;
1358 /* At one time, code such as "SELECT new.x" within a trigger would
1359 ** cause this condition to run. Since then, we have restructured how
1360 ** trigger code is generated and so this condition is no longer
1361 ** possible. However, it can still be true for statements like
1364 ** CREATE TABLE t1(col INTEGER);
1365 ** SELECT (SELECT t1.col) FROM FROM t1;
1367 ** when columnType() is called on the expression "t1.col" in the
1368 ** sub-select. In this case, set the column type to NULL, even
1369 ** though it should really be "INTEGER".
1371 ** This is not a problem, as the column type of "t1.col" is never
1372 ** used. When columnType() is called on the expression
1373 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1378 assert( pTab
&& pExpr
->pTab
==pTab
);
1380 /* The "table" is actually a sub-select or a view in the FROM clause
1381 ** of the SELECT statement. Return the declaration type and origin
1382 ** data for the result-set column of the sub-select.
1384 if( iCol
>=0 && ALWAYS(iCol
<pS
->pEList
->nExpr
) ){
1385 /* If iCol is less than zero, then the expression requests the
1386 ** rowid of the sub-select or view. This expression is legal (see
1387 ** test case misc2.2.2) - it always evaluates to NULL.
1390 Expr
*p
= pS
->pEList
->a
[iCol
].pExpr
;
1391 sNC
.pSrcList
= pS
->pSrc
;
1393 sNC
.pParse
= pNC
->pParse
;
1394 zType
= columnType(&sNC
, p
,&zOrigDb
,&zOrigTab
,&zOrigCol
, &estWidth
);
1396 }else if( pTab
->pSchema
){
1399 if( iCol
<0 ) iCol
= pTab
->iPKey
;
1400 assert( iCol
==-1 || (iCol
>=0 && iCol
<pTab
->nCol
) );
1401 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1406 zType
= pTab
->aCol
[iCol
].zType
;
1407 zOrigCol
= pTab
->aCol
[iCol
].zName
;
1408 estWidth
= pTab
->aCol
[iCol
].szEst
;
1410 zOrigTab
= pTab
->zName
;
1412 int iDb
= sqlite3SchemaToIndex(pNC
->pParse
->db
, pTab
->pSchema
);
1413 zOrigDb
= pNC
->pParse
->db
->aDb
[iDb
].zName
;
1419 zType
= pTab
->aCol
[iCol
].zType
;
1420 estWidth
= pTab
->aCol
[iCol
].szEst
;
1426 #ifndef SQLITE_OMIT_SUBQUERY
1428 /* The expression is a sub-select. Return the declaration type and
1429 ** origin info for the single column in the result set of the SELECT
1433 Select
*pS
= pExpr
->x
.pSelect
;
1434 Expr
*p
= pS
->pEList
->a
[0].pExpr
;
1435 assert( ExprHasProperty(pExpr
, EP_xIsSelect
) );
1436 sNC
.pSrcList
= pS
->pSrc
;
1438 sNC
.pParse
= pNC
->pParse
;
1439 zType
= columnType(&sNC
, p
, &zOrigDb
, &zOrigTab
, &zOrigCol
, &estWidth
);
1445 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1447 assert( pzOrigTab
&& pzOrigCol
);
1448 *pzOrigDb
= zOrigDb
;
1449 *pzOrigTab
= zOrigTab
;
1450 *pzOrigCol
= zOrigCol
;
1453 if( pEstWidth
) *pEstWidth
= estWidth
;
1458 ** Generate code that will tell the VDBE the declaration types of columns
1459 ** in the result set.
1461 static void generateColumnTypes(
1462 Parse
*pParse
, /* Parser context */
1463 SrcList
*pTabList
, /* List of tables */
1464 ExprList
*pEList
/* Expressions defining the result set */
1466 #ifndef SQLITE_OMIT_DECLTYPE
1467 Vdbe
*v
= pParse
->pVdbe
;
1470 sNC
.pSrcList
= pTabList
;
1471 sNC
.pParse
= pParse
;
1472 for(i
=0; i
<pEList
->nExpr
; i
++){
1473 Expr
*p
= pEList
->a
[i
].pExpr
;
1475 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1476 const char *zOrigDb
= 0;
1477 const char *zOrigTab
= 0;
1478 const char *zOrigCol
= 0;
1479 zType
= columnType(&sNC
, p
, &zOrigDb
, &zOrigTab
, &zOrigCol
, 0);
1481 /* The vdbe must make its own copy of the column-type and other
1482 ** column specific strings, in case the schema is reset before this
1483 ** virtual machine is deleted.
1485 sqlite3VdbeSetColName(v
, i
, COLNAME_DATABASE
, zOrigDb
, SQLITE_TRANSIENT
);
1486 sqlite3VdbeSetColName(v
, i
, COLNAME_TABLE
, zOrigTab
, SQLITE_TRANSIENT
);
1487 sqlite3VdbeSetColName(v
, i
, COLNAME_COLUMN
, zOrigCol
, SQLITE_TRANSIENT
);
1489 zType
= columnType(&sNC
, p
, 0, 0, 0, 0);
1491 sqlite3VdbeSetColName(v
, i
, COLNAME_DECLTYPE
, zType
, SQLITE_TRANSIENT
);
1493 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1497 ** Generate code that will tell the VDBE the names of columns
1498 ** in the result set. This information is used to provide the
1499 ** azCol[] values in the callback.
1501 static void generateColumnNames(
1502 Parse
*pParse
, /* Parser context */
1503 SrcList
*pTabList
, /* List of tables */
1504 ExprList
*pEList
/* Expressions defining the result set */
1506 Vdbe
*v
= pParse
->pVdbe
;
1508 sqlite3
*db
= pParse
->db
;
1509 int fullNames
, shortNames
;
1511 #ifndef SQLITE_OMIT_EXPLAIN
1512 /* If this is an EXPLAIN, skip this step */
1513 if( pParse
->explain
){
1518 if( pParse
->colNamesSet
|| NEVER(v
==0) || db
->mallocFailed
) return;
1519 pParse
->colNamesSet
= 1;
1520 fullNames
= (db
->flags
& SQLITE_FullColNames
)!=0;
1521 shortNames
= (db
->flags
& SQLITE_ShortColNames
)!=0;
1522 sqlite3VdbeSetNumCols(v
, pEList
->nExpr
);
1523 for(i
=0; i
<pEList
->nExpr
; i
++){
1525 p
= pEList
->a
[i
].pExpr
;
1526 if( NEVER(p
==0) ) continue;
1527 if( pEList
->a
[i
].zName
){
1528 char *zName
= pEList
->a
[i
].zName
;
1529 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zName
, SQLITE_TRANSIENT
);
1530 }else if( (p
->op
==TK_COLUMN
|| p
->op
==TK_AGG_COLUMN
) && pTabList
){
1533 int iCol
= p
->iColumn
;
1534 for(j
=0; ALWAYS(j
<pTabList
->nSrc
); j
++){
1535 if( pTabList
->a
[j
].iCursor
==p
->iTable
) break;
1537 assert( j
<pTabList
->nSrc
);
1538 pTab
= pTabList
->a
[j
].pTab
;
1539 if( iCol
<0 ) iCol
= pTab
->iPKey
;
1540 assert( iCol
==-1 || (iCol
>=0 && iCol
<pTab
->nCol
) );
1544 zCol
= pTab
->aCol
[iCol
].zName
;
1546 if( !shortNames
&& !fullNames
){
1547 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
,
1548 sqlite3DbStrDup(db
, pEList
->a
[i
].zSpan
), SQLITE_DYNAMIC
);
1549 }else if( fullNames
){
1551 zName
= sqlite3MPrintf(db
, "%s.%s", pTab
->zName
, zCol
);
1552 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zName
, SQLITE_DYNAMIC
);
1554 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zCol
, SQLITE_TRANSIENT
);
1557 const char *z
= pEList
->a
[i
].zSpan
;
1558 z
= z
==0 ? sqlite3MPrintf(db
, "column%d", i
+1) : sqlite3DbStrDup(db
, z
);
1559 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, z
, SQLITE_DYNAMIC
);
1562 generateColumnTypes(pParse
, pTabList
, pEList
);
1566 ** Given an expression list (which is really the list of expressions
1567 ** that form the result set of a SELECT statement) compute appropriate
1568 ** column names for a table that would hold the expression list.
1570 ** All column names will be unique.
1572 ** Only the column names are computed. Column.zType, Column.zColl,
1573 ** and other fields of Column are zeroed.
1575 ** Return SQLITE_OK on success. If a memory allocation error occurs,
1576 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1578 static int selectColumnsFromExprList(
1579 Parse
*pParse
, /* Parsing context */
1580 ExprList
*pEList
, /* Expr list from which to derive column names */
1581 i16
*pnCol
, /* Write the number of columns here */
1582 Column
**paCol
/* Write the new column list here */
1584 sqlite3
*db
= pParse
->db
; /* Database connection */
1585 int i
, j
; /* Loop counters */
1586 int cnt
; /* Index added to make the name unique */
1587 Column
*aCol
, *pCol
; /* For looping over result columns */
1588 int nCol
; /* Number of columns in the result set */
1589 Expr
*p
; /* Expression for a single result column */
1590 char *zName
; /* Column name */
1591 int nName
; /* Size of name in zName[] */
1594 nCol
= pEList
->nExpr
;
1595 aCol
= sqlite3DbMallocZero(db
, sizeof(aCol
[0])*nCol
);
1596 testcase( aCol
==0 );
1604 for(i
=0, pCol
=aCol
; i
<nCol
; i
++, pCol
++){
1605 /* Get an appropriate name for the column
1607 p
= sqlite3ExprSkipCollate(pEList
->a
[i
].pExpr
);
1608 if( (zName
= pEList
->a
[i
].zName
)!=0 ){
1609 /* If the column contains an "AS <name>" phrase, use <name> as the name */
1610 zName
= sqlite3DbStrDup(db
, zName
);
1612 Expr
*pColExpr
= p
; /* The expression that is the result column name */
1613 Table
*pTab
; /* Table associated with this expression */
1614 while( pColExpr
->op
==TK_DOT
){
1615 pColExpr
= pColExpr
->pRight
;
1616 assert( pColExpr
!=0 );
1618 if( pColExpr
->op
==TK_COLUMN
&& ALWAYS(pColExpr
->pTab
!=0) ){
1619 /* For columns use the column name name */
1620 int iCol
= pColExpr
->iColumn
;
1621 pTab
= pColExpr
->pTab
;
1622 if( iCol
<0 ) iCol
= pTab
->iPKey
;
1623 zName
= sqlite3MPrintf(db
, "%s",
1624 iCol
>=0 ? pTab
->aCol
[iCol
].zName
: "rowid");
1625 }else if( pColExpr
->op
==TK_ID
){
1626 assert( !ExprHasProperty(pColExpr
, EP_IntValue
) );
1627 zName
= sqlite3MPrintf(db
, "%s", pColExpr
->u
.zToken
);
1629 /* Use the original text of the column expression as its name */
1630 zName
= sqlite3MPrintf(db
, "%s", pEList
->a
[i
].zSpan
);
1633 if( db
->mallocFailed
){
1634 sqlite3DbFree(db
, zName
);
1638 /* Make sure the column name is unique. If the name is not unique,
1639 ** append an integer to the name so that it becomes unique.
1641 nName
= sqlite3Strlen30(zName
);
1642 for(j
=cnt
=0; j
<i
; j
++){
1643 if( sqlite3StrICmp(aCol
[j
].zName
, zName
)==0 ){
1646 for(k
=nName
-1; k
>1 && sqlite3Isdigit(zName
[k
]); k
--){}
1647 if( k
>=0 && zName
[k
]==':' ) nName
= k
;
1649 zNewName
= sqlite3MPrintf(db
, "%s:%d", zName
, ++cnt
);
1650 sqlite3DbFree(db
, zName
);
1653 if( zName
==0 ) break;
1656 pCol
->zName
= zName
;
1658 if( db
->mallocFailed
){
1660 sqlite3DbFree(db
, aCol
[j
].zName
);
1662 sqlite3DbFree(db
, aCol
);
1665 return SQLITE_NOMEM
;
1671 ** Add type and collation information to a column list based on
1672 ** a SELECT statement.
1674 ** The column list presumably came from selectColumnNamesFromExprList().
1675 ** The column list has only names, not types or collations. This
1676 ** routine goes through and adds the types and collations.
1678 ** This routine requires that all identifiers in the SELECT
1679 ** statement be resolved.
1681 static void selectAddColumnTypeAndCollation(
1682 Parse
*pParse
, /* Parsing contexts */
1683 Table
*pTab
, /* Add column type information to this table */
1684 Select
*pSelect
/* SELECT used to determine types and collations */
1686 sqlite3
*db
= pParse
->db
;
1692 struct ExprList_item
*a
;
1695 assert( pSelect
!=0 );
1696 assert( (pSelect
->selFlags
& SF_Resolved
)!=0 );
1697 assert( pTab
->nCol
==pSelect
->pEList
->nExpr
|| db
->mallocFailed
);
1698 if( db
->mallocFailed
) return;
1699 memset(&sNC
, 0, sizeof(sNC
));
1700 sNC
.pSrcList
= pSelect
->pSrc
;
1701 a
= pSelect
->pEList
->a
;
1702 for(i
=0, pCol
=pTab
->aCol
; i
<pTab
->nCol
; i
++, pCol
++){
1704 pCol
->zType
= sqlite3DbStrDup(db
, columnType(&sNC
, p
,0,0,0, &pCol
->szEst
));
1705 szAll
+= pCol
->szEst
;
1706 pCol
->affinity
= sqlite3ExprAffinity(p
);
1707 if( pCol
->affinity
==0 ) pCol
->affinity
= SQLITE_AFF_NONE
;
1708 pColl
= sqlite3ExprCollSeq(pParse
, p
);
1710 pCol
->zColl
= sqlite3DbStrDup(db
, pColl
->zName
);
1713 pTab
->szTabRow
= sqlite3LogEst(szAll
*4);
1717 ** Given a SELECT statement, generate a Table structure that describes
1718 ** the result set of that SELECT.
1720 Table
*sqlite3ResultSetOfSelect(Parse
*pParse
, Select
*pSelect
){
1722 sqlite3
*db
= pParse
->db
;
1725 savedFlags
= db
->flags
;
1726 db
->flags
&= ~SQLITE_FullColNames
;
1727 db
->flags
|= SQLITE_ShortColNames
;
1728 sqlite3SelectPrep(pParse
, pSelect
, 0);
1729 if( pParse
->nErr
) return 0;
1730 while( pSelect
->pPrior
) pSelect
= pSelect
->pPrior
;
1731 db
->flags
= savedFlags
;
1732 pTab
= sqlite3DbMallocZero(db
, sizeof(Table
) );
1736 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside
1738 assert( db
->lookaside
.bEnabled
==0 );
1741 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
1742 selectColumnsFromExprList(pParse
, pSelect
->pEList
, &pTab
->nCol
, &pTab
->aCol
);
1743 selectAddColumnTypeAndCollation(pParse
, pTab
, pSelect
);
1745 if( db
->mallocFailed
){
1746 sqlite3DeleteTable(db
, pTab
);
1753 ** Get a VDBE for the given parser context. Create a new one if necessary.
1754 ** If an error occurs, return NULL and leave a message in pParse.
1756 Vdbe
*sqlite3GetVdbe(Parse
*pParse
){
1757 Vdbe
*v
= pParse
->pVdbe
;
1759 v
= pParse
->pVdbe
= sqlite3VdbeCreate(pParse
);
1760 if( v
) sqlite3VdbeAddOp0(v
, OP_Init
);
1761 if( pParse
->pToplevel
==0
1762 && OptimizationEnabled(pParse
->db
,SQLITE_FactorOutConst
)
1764 pParse
->okConstFactor
= 1;
1773 ** Compute the iLimit and iOffset fields of the SELECT based on the
1774 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions
1775 ** that appear in the original SQL statement after the LIMIT and OFFSET
1776 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
1777 ** are the integer memory register numbers for counters used to compute
1778 ** the limit and offset. If there is no limit and/or offset, then
1779 ** iLimit and iOffset are negative.
1781 ** This routine changes the values of iLimit and iOffset only if
1782 ** a limit or offset is defined by pLimit and pOffset. iLimit and
1783 ** iOffset should have been preset to appropriate default values (zero)
1784 ** prior to calling this routine.
1786 ** The iOffset register (if it exists) is initialized to the value
1787 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
1788 ** iOffset+1 is initialized to LIMIT+OFFSET.
1790 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get
1791 ** redefined. The UNION ALL operator uses this property to force
1792 ** the reuse of the same limit and offset registers across multiple
1793 ** SELECT statements.
1795 static void computeLimitRegisters(Parse
*pParse
, Select
*p
, int iBreak
){
1800 if( p
->iLimit
) return;
1803 ** "LIMIT -1" always shows all rows. There is some
1804 ** controversy about what the correct behavior should be.
1805 ** The current implementation interprets "LIMIT 0" to mean
1808 sqlite3ExprCacheClear(pParse
);
1809 assert( p
->pOffset
==0 || p
->pLimit
!=0 );
1811 p
->iLimit
= iLimit
= ++pParse
->nMem
;
1812 v
= sqlite3GetVdbe(pParse
);
1814 if( sqlite3ExprIsInteger(p
->pLimit
, &n
) ){
1815 sqlite3VdbeAddOp2(v
, OP_Integer
, n
, iLimit
);
1816 VdbeComment((v
, "LIMIT counter"));
1818 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, iBreak
);
1819 }else if( n
>=0 && p
->nSelectRow
>(u64
)n
){
1823 sqlite3ExprCode(pParse
, p
->pLimit
, iLimit
);
1824 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, iLimit
); VdbeCoverage(v
);
1825 VdbeComment((v
, "LIMIT counter"));
1826 sqlite3VdbeAddOp2(v
, OP_IfZero
, iLimit
, iBreak
); VdbeCoverage(v
);
1829 p
->iOffset
= iOffset
= ++pParse
->nMem
;
1830 pParse
->nMem
++; /* Allocate an extra register for limit+offset */
1831 sqlite3ExprCode(pParse
, p
->pOffset
, iOffset
);
1832 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, iOffset
); VdbeCoverage(v
);
1833 VdbeComment((v
, "OFFSET counter"));
1834 addr1
= sqlite3VdbeAddOp1(v
, OP_IfPos
, iOffset
); VdbeCoverage(v
);
1835 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, iOffset
);
1836 sqlite3VdbeJumpHere(v
, addr1
);
1837 sqlite3VdbeAddOp3(v
, OP_Add
, iLimit
, iOffset
, iOffset
+1);
1838 VdbeComment((v
, "LIMIT+OFFSET"));
1839 addr1
= sqlite3VdbeAddOp1(v
, OP_IfPos
, iLimit
); VdbeCoverage(v
);
1840 sqlite3VdbeAddOp2(v
, OP_Integer
, -1, iOffset
+1);
1841 sqlite3VdbeJumpHere(v
, addr1
);
1846 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1848 ** Return the appropriate collating sequence for the iCol-th column of
1849 ** the result set for the compound-select statement "p". Return NULL if
1850 ** the column has no default collating sequence.
1852 ** The collating sequence for the compound select is taken from the
1853 ** left-most term of the select that has a collating sequence.
1855 static CollSeq
*multiSelectCollSeq(Parse
*pParse
, Select
*p
, int iCol
){
1858 pRet
= multiSelectCollSeq(pParse
, p
->pPrior
, iCol
);
1863 if( pRet
==0 && iCol
<p
->pEList
->nExpr
){
1864 pRet
= sqlite3ExprCollSeq(pParse
, p
->pEList
->a
[iCol
].pExpr
);
1870 ** The select statement passed as the second parameter is a compound SELECT
1871 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
1872 ** structure suitable for implementing the ORDER BY.
1874 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1875 ** function is responsible for ensuring that this structure is eventually
1878 static KeyInfo
*multiSelectOrderByKeyInfo(Parse
*pParse
, Select
*p
, int nExtra
){
1879 ExprList
*pOrderBy
= p
->pOrderBy
;
1880 int nOrderBy
= p
->pOrderBy
->nExpr
;
1881 sqlite3
*db
= pParse
->db
;
1882 KeyInfo
*pRet
= sqlite3KeyInfoAlloc(db
, nOrderBy
+nExtra
, 1);
1885 for(i
=0; i
<nOrderBy
; i
++){
1886 struct ExprList_item
*pItem
= &pOrderBy
->a
[i
];
1887 Expr
*pTerm
= pItem
->pExpr
;
1890 if( pTerm
->flags
& EP_Collate
){
1891 pColl
= sqlite3ExprCollSeq(pParse
, pTerm
);
1893 pColl
= multiSelectCollSeq(pParse
, p
, pItem
->u
.x
.iOrderByCol
-1);
1894 if( pColl
==0 ) pColl
= db
->pDfltColl
;
1895 pOrderBy
->a
[i
].pExpr
=
1896 sqlite3ExprAddCollateString(pParse
, pTerm
, pColl
->zName
);
1898 assert( sqlite3KeyInfoIsWriteable(pRet
) );
1899 pRet
->aColl
[i
] = pColl
;
1900 pRet
->aSortOrder
[i
] = pOrderBy
->a
[i
].sortOrder
;
1907 #ifndef SQLITE_OMIT_CTE
1909 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
1910 ** query of the form:
1912 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
1913 ** \___________/ \_______________/
1917 ** There is exactly one reference to the recursive-table in the FROM clause
1918 ** of recursive-query, marked with the SrcList->a[].isRecursive flag.
1920 ** The setup-query runs once to generate an initial set of rows that go
1921 ** into a Queue table. Rows are extracted from the Queue table one by
1922 ** one. Each row extracted from Queue is output to pDest. Then the single
1923 ** extracted row (now in the iCurrent table) becomes the content of the
1924 ** recursive-table for a recursive-query run. The output of the recursive-query
1925 ** is added back into the Queue table. Then another row is extracted from Queue
1926 ** and the iteration continues until the Queue table is empty.
1928 ** If the compound query operator is UNION then no duplicate rows are ever
1929 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
1930 ** that have ever been inserted into Queue and causes duplicates to be
1931 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
1933 ** If the query has an ORDER BY, then entries in the Queue table are kept in
1934 ** ORDER BY order and the first entry is extracted for each cycle. Without
1935 ** an ORDER BY, the Queue table is just a FIFO.
1937 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
1938 ** have been output to pDest. A LIMIT of zero means to output no rows and a
1939 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
1940 ** with a positive value, then the first OFFSET outputs are discarded rather
1941 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
1942 ** rows have been skipped.
1944 static void generateWithRecursiveQuery(
1945 Parse
*pParse
, /* Parsing context */
1946 Select
*p
, /* The recursive SELECT to be coded */
1947 SelectDest
*pDest
/* What to do with query results */
1949 SrcList
*pSrc
= p
->pSrc
; /* The FROM clause of the recursive query */
1950 int nCol
= p
->pEList
->nExpr
; /* Number of columns in the recursive table */
1951 Vdbe
*v
= pParse
->pVdbe
; /* The prepared statement under construction */
1952 Select
*pSetup
= p
->pPrior
; /* The setup query */
1953 int addrTop
; /* Top of the loop */
1954 int addrCont
, addrBreak
; /* CONTINUE and BREAK addresses */
1955 int iCurrent
= 0; /* The Current table */
1956 int regCurrent
; /* Register holding Current table */
1957 int iQueue
; /* The Queue table */
1958 int iDistinct
= 0; /* To ensure unique results if UNION */
1959 int eDest
= SRT_Fifo
; /* How to write to Queue */
1960 SelectDest destQueue
; /* SelectDest targetting the Queue table */
1961 int i
; /* Loop counter */
1962 int rc
; /* Result code */
1963 ExprList
*pOrderBy
; /* The ORDER BY clause */
1964 Expr
*pLimit
, *pOffset
; /* Saved LIMIT and OFFSET */
1965 int regLimit
, regOffset
; /* Registers used by LIMIT and OFFSET */
1967 /* Obtain authorization to do a recursive query */
1968 if( sqlite3AuthCheck(pParse
, SQLITE_RECURSIVE
, 0, 0, 0) ) return;
1970 /* Process the LIMIT and OFFSET clauses, if they exist */
1971 addrBreak
= sqlite3VdbeMakeLabel(v
);
1972 computeLimitRegisters(pParse
, p
, addrBreak
);
1974 pOffset
= p
->pOffset
;
1975 regLimit
= p
->iLimit
;
1976 regOffset
= p
->iOffset
;
1977 p
->pLimit
= p
->pOffset
= 0;
1978 p
->iLimit
= p
->iOffset
= 0;
1979 pOrderBy
= p
->pOrderBy
;
1981 /* Locate the cursor number of the Current table */
1982 for(i
=0; ALWAYS(i
<pSrc
->nSrc
); i
++){
1983 if( pSrc
->a
[i
].isRecursive
){
1984 iCurrent
= pSrc
->a
[i
].iCursor
;
1989 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
1990 ** the Distinct table must be exactly one greater than Queue in order
1991 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
1992 iQueue
= pParse
->nTab
++;
1993 if( p
->op
==TK_UNION
){
1994 eDest
= pOrderBy
? SRT_DistQueue
: SRT_DistFifo
;
1995 iDistinct
= pParse
->nTab
++;
1997 eDest
= pOrderBy
? SRT_Queue
: SRT_Fifo
;
1999 sqlite3SelectDestInit(&destQueue
, eDest
, iQueue
);
2001 /* Allocate cursors for Current, Queue, and Distinct. */
2002 regCurrent
= ++pParse
->nMem
;
2003 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, iCurrent
, regCurrent
, nCol
);
2005 KeyInfo
*pKeyInfo
= multiSelectOrderByKeyInfo(pParse
, p
, 1);
2006 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
, iQueue
, pOrderBy
->nExpr
+2, 0,
2007 (char*)pKeyInfo
, P4_KEYINFO
);
2008 destQueue
.pOrderBy
= pOrderBy
;
2010 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, iQueue
, nCol
);
2012 VdbeComment((v
, "Queue table"));
2014 p
->addrOpenEphm
[0] = sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, iDistinct
, 0);
2015 p
->selFlags
|= SF_UsesEphemeral
;
2018 /* Detach the ORDER BY clause from the compound SELECT */
2021 /* Store the results of the setup-query in Queue. */
2023 rc
= sqlite3Select(pParse
, pSetup
, &destQueue
);
2025 if( rc
) goto end_of_recursive_query
;
2027 /* Find the next row in the Queue and output that row */
2028 addrTop
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iQueue
, addrBreak
); VdbeCoverage(v
);
2030 /* Transfer the next row in Queue over to Current */
2031 sqlite3VdbeAddOp1(v
, OP_NullRow
, iCurrent
); /* To reset column cache */
2033 sqlite3VdbeAddOp3(v
, OP_Column
, iQueue
, pOrderBy
->nExpr
+1, regCurrent
);
2035 sqlite3VdbeAddOp2(v
, OP_RowData
, iQueue
, regCurrent
);
2037 sqlite3VdbeAddOp1(v
, OP_Delete
, iQueue
);
2039 /* Output the single row in Current */
2040 addrCont
= sqlite3VdbeMakeLabel(v
);
2041 codeOffset(v
, regOffset
, addrCont
);
2042 selectInnerLoop(pParse
, p
, p
->pEList
, iCurrent
,
2043 0, 0, pDest
, addrCont
, addrBreak
);
2045 sqlite3VdbeAddOp3(v
, OP_IfZero
, regLimit
, addrBreak
, -1);
2048 sqlite3VdbeResolveLabel(v
, addrCont
);
2050 /* Execute the recursive SELECT taking the single row in Current as
2051 ** the value for the recursive-table. Store the results in the Queue.
2054 sqlite3Select(pParse
, p
, &destQueue
);
2055 assert( p
->pPrior
==0 );
2058 /* Keep running the loop until the Queue is empty */
2059 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, addrTop
);
2060 sqlite3VdbeResolveLabel(v
, addrBreak
);
2062 end_of_recursive_query
:
2063 sqlite3ExprListDelete(pParse
->db
, p
->pOrderBy
);
2064 p
->pOrderBy
= pOrderBy
;
2066 p
->pOffset
= pOffset
;
2069 #endif /* SQLITE_OMIT_CTE */
2071 /* Forward references */
2072 static int multiSelectOrderBy(
2073 Parse
*pParse
, /* Parsing context */
2074 Select
*p
, /* The right-most of SELECTs to be coded */
2075 SelectDest
*pDest
/* What to do with query results */
2080 ** This routine is called to process a compound query form from
2081 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2084 ** "p" points to the right-most of the two queries. the query on the
2085 ** left is p->pPrior. The left query could also be a compound query
2086 ** in which case this routine will be called recursively.
2088 ** The results of the total query are to be written into a destination
2089 ** of type eDest with parameter iParm.
2091 ** Example 1: Consider a three-way compound SQL statement.
2093 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2095 ** This statement is parsed up as follows:
2099 ** `-----> SELECT b FROM t2
2101 ** `------> SELECT a FROM t1
2103 ** The arrows in the diagram above represent the Select.pPrior pointer.
2104 ** So if this routine is called with p equal to the t3 query, then
2105 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2107 ** Notice that because of the way SQLite parses compound SELECTs, the
2108 ** individual selects always group from left to right.
2110 static int multiSelect(
2111 Parse
*pParse
, /* Parsing context */
2112 Select
*p
, /* The right-most of SELECTs to be coded */
2113 SelectDest
*pDest
/* What to do with query results */
2115 int rc
= SQLITE_OK
; /* Success code from a subroutine */
2116 Select
*pPrior
; /* Another SELECT immediately to our left */
2117 Vdbe
*v
; /* Generate code to this VDBE */
2118 SelectDest dest
; /* Alternative data destination */
2119 Select
*pDelete
= 0; /* Chain of simple selects to delete */
2120 sqlite3
*db
; /* Database connection */
2121 #ifndef SQLITE_OMIT_EXPLAIN
2122 int iSub1
= 0; /* EQP id of left-hand query */
2123 int iSub2
= 0; /* EQP id of right-hand query */
2126 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2127 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2129 assert( p
&& p
->pPrior
); /* Calling function guarantees this much */
2130 assert( (p
->selFlags
& SF_Recursive
)==0 || p
->op
==TK_ALL
|| p
->op
==TK_UNION
);
2134 if( pPrior
->pOrderBy
){
2135 sqlite3ErrorMsg(pParse
,"ORDER BY clause should come after %s not before",
2136 selectOpName(p
->op
));
2138 goto multi_select_end
;
2140 if( pPrior
->pLimit
){
2141 sqlite3ErrorMsg(pParse
,"LIMIT clause should come after %s not before",
2142 selectOpName(p
->op
));
2144 goto multi_select_end
;
2147 v
= sqlite3GetVdbe(pParse
);
2148 assert( v
!=0 ); /* The VDBE already created by calling function */
2150 /* Create the destination temporary table if necessary
2152 if( dest
.eDest
==SRT_EphemTab
){
2153 assert( p
->pEList
);
2154 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, dest
.iSDParm
, p
->pEList
->nExpr
);
2155 sqlite3VdbeChangeP5(v
, BTREE_UNORDERED
);
2156 dest
.eDest
= SRT_Table
;
2159 /* Make sure all SELECTs in the statement have the same number of elements
2160 ** in their result sets.
2162 assert( p
->pEList
&& pPrior
->pEList
);
2163 if( p
->pEList
->nExpr
!=pPrior
->pEList
->nExpr
){
2164 if( p
->selFlags
& SF_Values
){
2165 sqlite3ErrorMsg(pParse
, "all VALUES must have the same number of terms");
2167 sqlite3ErrorMsg(pParse
, "SELECTs to the left and right of %s"
2168 " do not have the same number of result columns", selectOpName(p
->op
));
2171 goto multi_select_end
;
2174 #ifndef SQLITE_OMIT_CTE
2175 if( p
->selFlags
& SF_Recursive
){
2176 generateWithRecursiveQuery(pParse
, p
, &dest
);
2180 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2183 return multiSelectOrderBy(pParse
, p
, pDest
);
2186 /* Generate code for the left and right SELECT statements.
2192 assert( !pPrior
->pLimit
);
2193 pPrior
->iLimit
= p
->iLimit
;
2194 pPrior
->iOffset
= p
->iOffset
;
2195 pPrior
->pLimit
= p
->pLimit
;
2196 pPrior
->pOffset
= p
->pOffset
;
2197 explainSetInteger(iSub1
, pParse
->iNextSelectId
);
2198 rc
= sqlite3Select(pParse
, pPrior
, &dest
);
2202 goto multi_select_end
;
2205 p
->iLimit
= pPrior
->iLimit
;
2206 p
->iOffset
= pPrior
->iOffset
;
2208 addr
= sqlite3VdbeAddOp1(v
, OP_IfZero
, p
->iLimit
); VdbeCoverage(v
);
2209 VdbeComment((v
, "Jump ahead if LIMIT reached"));
2211 explainSetInteger(iSub2
, pParse
->iNextSelectId
);
2212 rc
= sqlite3Select(pParse
, p
, &dest
);
2213 testcase( rc
!=SQLITE_OK
);
2214 pDelete
= p
->pPrior
;
2216 p
->nSelectRow
+= pPrior
->nSelectRow
;
2218 && sqlite3ExprIsInteger(pPrior
->pLimit
, &nLimit
)
2219 && nLimit
>0 && p
->nSelectRow
> (u64
)nLimit
2221 p
->nSelectRow
= nLimit
;
2224 sqlite3VdbeJumpHere(v
, addr
);
2230 int unionTab
; /* Cursor number of the temporary table holding result */
2231 u8 op
= 0; /* One of the SRT_ operations to apply to self */
2232 int priorOp
; /* The SRT_ operation to apply to prior selects */
2233 Expr
*pLimit
, *pOffset
; /* Saved values of p->nLimit and p->nOffset */
2235 SelectDest uniondest
;
2237 testcase( p
->op
==TK_EXCEPT
);
2238 testcase( p
->op
==TK_UNION
);
2239 priorOp
= SRT_Union
;
2240 if( dest
.eDest
==priorOp
){
2241 /* We can reuse a temporary table generated by a SELECT to our
2244 assert( p
->pLimit
==0 ); /* Not allowed on leftward elements */
2245 assert( p
->pOffset
==0 ); /* Not allowed on leftward elements */
2246 unionTab
= dest
.iSDParm
;
2248 /* We will need to create our own temporary table to hold the
2249 ** intermediate results.
2251 unionTab
= pParse
->nTab
++;
2252 assert( p
->pOrderBy
==0 );
2253 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, unionTab
, 0);
2254 assert( p
->addrOpenEphm
[0] == -1 );
2255 p
->addrOpenEphm
[0] = addr
;
2256 findRightmost(p
)->selFlags
|= SF_UsesEphemeral
;
2257 assert( p
->pEList
);
2260 /* Code the SELECT statements to our left
2262 assert( !pPrior
->pOrderBy
);
2263 sqlite3SelectDestInit(&uniondest
, priorOp
, unionTab
);
2264 explainSetInteger(iSub1
, pParse
->iNextSelectId
);
2265 rc
= sqlite3Select(pParse
, pPrior
, &uniondest
);
2267 goto multi_select_end
;
2270 /* Code the current SELECT statement
2272 if( p
->op
==TK_EXCEPT
){
2275 assert( p
->op
==TK_UNION
);
2281 pOffset
= p
->pOffset
;
2283 uniondest
.eDest
= op
;
2284 explainSetInteger(iSub2
, pParse
->iNextSelectId
);
2285 rc
= sqlite3Select(pParse
, p
, &uniondest
);
2286 testcase( rc
!=SQLITE_OK
);
2287 /* Query flattening in sqlite3Select() might refill p->pOrderBy.
2288 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */
2289 sqlite3ExprListDelete(db
, p
->pOrderBy
);
2290 pDelete
= p
->pPrior
;
2293 if( p
->op
==TK_UNION
) p
->nSelectRow
+= pPrior
->nSelectRow
;
2294 sqlite3ExprDelete(db
, p
->pLimit
);
2296 p
->pOffset
= pOffset
;
2300 /* Convert the data in the temporary table into whatever form
2301 ** it is that we currently need.
2303 assert( unionTab
==dest
.iSDParm
|| dest
.eDest
!=priorOp
);
2304 if( dest
.eDest
!=priorOp
){
2305 int iCont
, iBreak
, iStart
;
2306 assert( p
->pEList
);
2307 if( dest
.eDest
==SRT_Output
){
2309 while( pFirst
->pPrior
) pFirst
= pFirst
->pPrior
;
2310 generateColumnNames(pParse
, 0, pFirst
->pEList
);
2312 iBreak
= sqlite3VdbeMakeLabel(v
);
2313 iCont
= sqlite3VdbeMakeLabel(v
);
2314 computeLimitRegisters(pParse
, p
, iBreak
);
2315 sqlite3VdbeAddOp2(v
, OP_Rewind
, unionTab
, iBreak
); VdbeCoverage(v
);
2316 iStart
= sqlite3VdbeCurrentAddr(v
);
2317 selectInnerLoop(pParse
, p
, p
->pEList
, unionTab
,
2318 0, 0, &dest
, iCont
, iBreak
);
2319 sqlite3VdbeResolveLabel(v
, iCont
);
2320 sqlite3VdbeAddOp2(v
, OP_Next
, unionTab
, iStart
); VdbeCoverage(v
);
2321 sqlite3VdbeResolveLabel(v
, iBreak
);
2322 sqlite3VdbeAddOp2(v
, OP_Close
, unionTab
, 0);
2326 default: assert( p
->op
==TK_INTERSECT
); {
2328 int iCont
, iBreak
, iStart
;
2329 Expr
*pLimit
, *pOffset
;
2331 SelectDest intersectdest
;
2334 /* INTERSECT is different from the others since it requires
2335 ** two temporary tables. Hence it has its own case. Begin
2336 ** by allocating the tables we will need.
2338 tab1
= pParse
->nTab
++;
2339 tab2
= pParse
->nTab
++;
2340 assert( p
->pOrderBy
==0 );
2342 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, tab1
, 0);
2343 assert( p
->addrOpenEphm
[0] == -1 );
2344 p
->addrOpenEphm
[0] = addr
;
2345 findRightmost(p
)->selFlags
|= SF_UsesEphemeral
;
2346 assert( p
->pEList
);
2348 /* Code the SELECTs to our left into temporary table "tab1".
2350 sqlite3SelectDestInit(&intersectdest
, SRT_Union
, tab1
);
2351 explainSetInteger(iSub1
, pParse
->iNextSelectId
);
2352 rc
= sqlite3Select(pParse
, pPrior
, &intersectdest
);
2354 goto multi_select_end
;
2357 /* Code the current SELECT into temporary table "tab2"
2359 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, tab2
, 0);
2360 assert( p
->addrOpenEphm
[1] == -1 );
2361 p
->addrOpenEphm
[1] = addr
;
2365 pOffset
= p
->pOffset
;
2367 intersectdest
.iSDParm
= tab2
;
2368 explainSetInteger(iSub2
, pParse
->iNextSelectId
);
2369 rc
= sqlite3Select(pParse
, p
, &intersectdest
);
2370 testcase( rc
!=SQLITE_OK
);
2371 pDelete
= p
->pPrior
;
2373 if( p
->nSelectRow
>pPrior
->nSelectRow
) p
->nSelectRow
= pPrior
->nSelectRow
;
2374 sqlite3ExprDelete(db
, p
->pLimit
);
2376 p
->pOffset
= pOffset
;
2378 /* Generate code to take the intersection of the two temporary
2381 assert( p
->pEList
);
2382 if( dest
.eDest
==SRT_Output
){
2384 while( pFirst
->pPrior
) pFirst
= pFirst
->pPrior
;
2385 generateColumnNames(pParse
, 0, pFirst
->pEList
);
2387 iBreak
= sqlite3VdbeMakeLabel(v
);
2388 iCont
= sqlite3VdbeMakeLabel(v
);
2389 computeLimitRegisters(pParse
, p
, iBreak
);
2390 sqlite3VdbeAddOp2(v
, OP_Rewind
, tab1
, iBreak
); VdbeCoverage(v
);
2391 r1
= sqlite3GetTempReg(pParse
);
2392 iStart
= sqlite3VdbeAddOp2(v
, OP_RowKey
, tab1
, r1
);
2393 sqlite3VdbeAddOp4Int(v
, OP_NotFound
, tab2
, iCont
, r1
, 0); VdbeCoverage(v
);
2394 sqlite3ReleaseTempReg(pParse
, r1
);
2395 selectInnerLoop(pParse
, p
, p
->pEList
, tab1
,
2396 0, 0, &dest
, iCont
, iBreak
);
2397 sqlite3VdbeResolveLabel(v
, iCont
);
2398 sqlite3VdbeAddOp2(v
, OP_Next
, tab1
, iStart
); VdbeCoverage(v
);
2399 sqlite3VdbeResolveLabel(v
, iBreak
);
2400 sqlite3VdbeAddOp2(v
, OP_Close
, tab2
, 0);
2401 sqlite3VdbeAddOp2(v
, OP_Close
, tab1
, 0);
2406 explainComposite(pParse
, p
->op
, iSub1
, iSub2
, p
->op
!=TK_ALL
);
2408 /* Compute collating sequences used by
2409 ** temporary tables needed to implement the compound select.
2410 ** Attach the KeyInfo structure to all temporary tables.
2412 ** This section is run by the right-most SELECT statement only.
2413 ** SELECT statements to the left always skip this part. The right-most
2414 ** SELECT might also skip this part if it has no ORDER BY clause and
2415 ** no temp tables are required.
2417 if( p
->selFlags
& SF_UsesEphemeral
){
2418 int i
; /* Loop counter */
2419 KeyInfo
*pKeyInfo
; /* Collating sequence for the result set */
2420 Select
*pLoop
; /* For looping through SELECT statements */
2421 CollSeq
**apColl
; /* For looping through pKeyInfo->aColl[] */
2422 int nCol
; /* Number of columns in result set */
2424 assert( p
->pNext
==0 );
2425 nCol
= p
->pEList
->nExpr
;
2426 pKeyInfo
= sqlite3KeyInfoAlloc(db
, nCol
, 1);
2429 goto multi_select_end
;
2431 for(i
=0, apColl
=pKeyInfo
->aColl
; i
<nCol
; i
++, apColl
++){
2432 *apColl
= multiSelectCollSeq(pParse
, p
, i
);
2434 *apColl
= db
->pDfltColl
;
2438 for(pLoop
=p
; pLoop
; pLoop
=pLoop
->pPrior
){
2440 int addr
= pLoop
->addrOpenEphm
[i
];
2442 /* If [0] is unused then [1] is also unused. So we can
2443 ** always safely abort as soon as the first unused slot is found */
2444 assert( pLoop
->addrOpenEphm
[1]<0 );
2447 sqlite3VdbeChangeP2(v
, addr
, nCol
);
2448 sqlite3VdbeChangeP4(v
, addr
, (char*)sqlite3KeyInfoRef(pKeyInfo
),
2450 pLoop
->addrOpenEphm
[i
] = -1;
2453 sqlite3KeyInfoUnref(pKeyInfo
);
2457 pDest
->iSdst
= dest
.iSdst
;
2458 pDest
->nSdst
= dest
.nSdst
;
2459 sqlite3SelectDelete(db
, pDelete
);
2462 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2465 ** Code an output subroutine for a coroutine implementation of a
2468 ** The data to be output is contained in pIn->iSdst. There are
2469 ** pIn->nSdst columns to be output. pDest is where the output should
2472 ** regReturn is the number of the register holding the subroutine
2475 ** If regPrev>0 then it is the first register in a vector that
2476 ** records the previous output. mem[regPrev] is a flag that is false
2477 ** if there has been no previous output. If regPrev>0 then code is
2478 ** generated to suppress duplicates. pKeyInfo is used for comparing
2481 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2484 static int generateOutputSubroutine(
2485 Parse
*pParse
, /* Parsing context */
2486 Select
*p
, /* The SELECT statement */
2487 SelectDest
*pIn
, /* Coroutine supplying data */
2488 SelectDest
*pDest
, /* Where to send the data */
2489 int regReturn
, /* The return address register */
2490 int regPrev
, /* Previous result register. No uniqueness if 0 */
2491 KeyInfo
*pKeyInfo
, /* For comparing with previous entry */
2492 int iBreak
/* Jump here if we hit the LIMIT */
2494 Vdbe
*v
= pParse
->pVdbe
;
2498 addr
= sqlite3VdbeCurrentAddr(v
);
2499 iContinue
= sqlite3VdbeMakeLabel(v
);
2501 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2505 j1
= sqlite3VdbeAddOp1(v
, OP_IfNot
, regPrev
); VdbeCoverage(v
);
2506 j2
= sqlite3VdbeAddOp4(v
, OP_Compare
, pIn
->iSdst
, regPrev
+1, pIn
->nSdst
,
2507 (char*)sqlite3KeyInfoRef(pKeyInfo
), P4_KEYINFO
);
2508 sqlite3VdbeAddOp3(v
, OP_Jump
, j2
+2, iContinue
, j2
+2); VdbeCoverage(v
);
2509 sqlite3VdbeJumpHere(v
, j1
);
2510 sqlite3VdbeAddOp3(v
, OP_Copy
, pIn
->iSdst
, regPrev
+1, pIn
->nSdst
-1);
2511 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, regPrev
);
2513 if( pParse
->db
->mallocFailed
) return 0;
2515 /* Suppress the first OFFSET entries if there is an OFFSET clause
2517 codeOffset(v
, p
->iOffset
, iContinue
);
2519 switch( pDest
->eDest
){
2520 /* Store the result as data using a unique key.
2523 case SRT_EphemTab
: {
2524 int r1
= sqlite3GetTempReg(pParse
);
2525 int r2
= sqlite3GetTempReg(pParse
);
2526 testcase( pDest
->eDest
==SRT_Table
);
2527 testcase( pDest
->eDest
==SRT_EphemTab
);
2528 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, pIn
->iSdst
, pIn
->nSdst
, r1
);
2529 sqlite3VdbeAddOp2(v
, OP_NewRowid
, pDest
->iSDParm
, r2
);
2530 sqlite3VdbeAddOp3(v
, OP_Insert
, pDest
->iSDParm
, r1
, r2
);
2531 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
2532 sqlite3ReleaseTempReg(pParse
, r2
);
2533 sqlite3ReleaseTempReg(pParse
, r1
);
2537 #ifndef SQLITE_OMIT_SUBQUERY
2538 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
2539 ** then there should be a single item on the stack. Write this
2540 ** item into the set table with bogus data.
2544 assert( pIn
->nSdst
==1 );
2546 sqlite3CompareAffinity(p
->pEList
->a
[0].pExpr
, pDest
->affSdst
);
2547 r1
= sqlite3GetTempReg(pParse
);
2548 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, pIn
->iSdst
, 1, r1
, &pDest
->affSdst
,1);
2549 sqlite3ExprCacheAffinityChange(pParse
, pIn
->iSdst
, 1);
2550 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, pDest
->iSDParm
, r1
);
2551 sqlite3ReleaseTempReg(pParse
, r1
);
2555 #if 0 /* Never occurs on an ORDER BY query */
2556 /* If any row exist in the result set, record that fact and abort.
2559 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, pDest
->iSDParm
);
2560 /* The LIMIT clause will terminate the loop for us */
2565 /* If this is a scalar select that is part of an expression, then
2566 ** store the results in the appropriate memory cell and break out
2567 ** of the scan loop.
2570 assert( pIn
->nSdst
==1 );
2571 sqlite3ExprCodeMove(pParse
, pIn
->iSdst
, pDest
->iSDParm
, 1);
2572 /* The LIMIT clause will jump out of the loop for us */
2575 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
2577 /* The results are stored in a sequence of registers
2578 ** starting at pDest->iSdst. Then the co-routine yields.
2580 case SRT_Coroutine
: {
2581 if( pDest
->iSdst
==0 ){
2582 pDest
->iSdst
= sqlite3GetTempRange(pParse
, pIn
->nSdst
);
2583 pDest
->nSdst
= pIn
->nSdst
;
2585 sqlite3ExprCodeMove(pParse
, pIn
->iSdst
, pDest
->iSdst
, pDest
->nSdst
);
2586 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
2590 /* If none of the above, then the result destination must be
2591 ** SRT_Output. This routine is never called with any other
2592 ** destination other than the ones handled above or SRT_Output.
2594 ** For SRT_Output, results are stored in a sequence of registers.
2595 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
2596 ** return the next row of result.
2599 assert( pDest
->eDest
==SRT_Output
);
2600 sqlite3VdbeAddOp2(v
, OP_ResultRow
, pIn
->iSdst
, pIn
->nSdst
);
2601 sqlite3ExprCacheAffinityChange(pParse
, pIn
->iSdst
, pIn
->nSdst
);
2606 /* Jump to the end of the loop if the LIMIT is reached.
2609 sqlite3VdbeAddOp3(v
, OP_IfZero
, p
->iLimit
, iBreak
, -1); VdbeCoverage(v
);
2612 /* Generate the subroutine return
2614 sqlite3VdbeResolveLabel(v
, iContinue
);
2615 sqlite3VdbeAddOp1(v
, OP_Return
, regReturn
);
2621 ** Alternative compound select code generator for cases when there
2622 ** is an ORDER BY clause.
2624 ** We assume a query of the following form:
2626 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
2628 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
2629 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
2630 ** co-routines. Then run the co-routines in parallel and merge the results
2631 ** into the output. In addition to the two coroutines (called selectA and
2632 ** selectB) there are 7 subroutines:
2634 ** outA: Move the output of the selectA coroutine into the output
2635 ** of the compound query.
2637 ** outB: Move the output of the selectB coroutine into the output
2638 ** of the compound query. (Only generated for UNION and
2639 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
2640 ** appears only in B.)
2642 ** AltB: Called when there is data from both coroutines and A<B.
2644 ** AeqB: Called when there is data from both coroutines and A==B.
2646 ** AgtB: Called when there is data from both coroutines and A>B.
2648 ** EofA: Called when data is exhausted from selectA.
2650 ** EofB: Called when data is exhausted from selectB.
2652 ** The implementation of the latter five subroutines depend on which
2653 ** <operator> is used:
2656 ** UNION ALL UNION EXCEPT INTERSECT
2657 ** ------------- ----------------- -------------- -----------------
2658 ** AltB: outA, nextA outA, nextA outA, nextA nextA
2660 ** AeqB: outA, nextA nextA nextA outA, nextA
2662 ** AgtB: outB, nextB outB, nextB nextB nextB
2664 ** EofA: outB, nextB outB, nextB halt halt
2666 ** EofB: outA, nextA outA, nextA outA, nextA halt
2668 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
2669 ** causes an immediate jump to EofA and an EOF on B following nextB causes
2670 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
2671 ** following nextX causes a jump to the end of the select processing.
2673 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
2674 ** within the output subroutine. The regPrev register set holds the previously
2675 ** output value. A comparison is made against this value and the output
2676 ** is skipped if the next results would be the same as the previous.
2678 ** The implementation plan is to implement the two coroutines and seven
2679 ** subroutines first, then put the control logic at the bottom. Like this:
2682 ** coA: coroutine for left query (A)
2683 ** coB: coroutine for right query (B)
2684 ** outA: output one row of A
2685 ** outB: output one row of B (UNION and UNION ALL only)
2691 ** Init: initialize coroutine registers
2693 ** if eof(A) goto EofA
2695 ** if eof(B) goto EofB
2696 ** Cmpr: Compare A, B
2697 ** Jump AltB, AeqB, AgtB
2700 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
2701 ** actually called using Gosub and they do not Return. EofA and EofB loop
2702 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
2703 ** and AgtB jump to either L2 or to one of EofA or EofB.
2705 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2706 static int multiSelectOrderBy(
2707 Parse
*pParse
, /* Parsing context */
2708 Select
*p
, /* The right-most of SELECTs to be coded */
2709 SelectDest
*pDest
/* What to do with query results */
2711 int i
, j
; /* Loop counters */
2712 Select
*pPrior
; /* Another SELECT immediately to our left */
2713 Vdbe
*v
; /* Generate code to this VDBE */
2714 SelectDest destA
; /* Destination for coroutine A */
2715 SelectDest destB
; /* Destination for coroutine B */
2716 int regAddrA
; /* Address register for select-A coroutine */
2717 int regAddrB
; /* Address register for select-B coroutine */
2718 int addrSelectA
; /* Address of the select-A coroutine */
2719 int addrSelectB
; /* Address of the select-B coroutine */
2720 int regOutA
; /* Address register for the output-A subroutine */
2721 int regOutB
; /* Address register for the output-B subroutine */
2722 int addrOutA
; /* Address of the output-A subroutine */
2723 int addrOutB
= 0; /* Address of the output-B subroutine */
2724 int addrEofA
; /* Address of the select-A-exhausted subroutine */
2725 int addrEofA_noB
; /* Alternate addrEofA if B is uninitialized */
2726 int addrEofB
; /* Address of the select-B-exhausted subroutine */
2727 int addrAltB
; /* Address of the A<B subroutine */
2728 int addrAeqB
; /* Address of the A==B subroutine */
2729 int addrAgtB
; /* Address of the A>B subroutine */
2730 int regLimitA
; /* Limit register for select-A */
2731 int regLimitB
; /* Limit register for select-A */
2732 int regPrev
; /* A range of registers to hold previous output */
2733 int savedLimit
; /* Saved value of p->iLimit */
2734 int savedOffset
; /* Saved value of p->iOffset */
2735 int labelCmpr
; /* Label for the start of the merge algorithm */
2736 int labelEnd
; /* Label for the end of the overall SELECT stmt */
2737 int j1
; /* Jump instructions that get retargetted */
2738 int op
; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
2739 KeyInfo
*pKeyDup
= 0; /* Comparison information for duplicate removal */
2740 KeyInfo
*pKeyMerge
; /* Comparison information for merging rows */
2741 sqlite3
*db
; /* Database connection */
2742 ExprList
*pOrderBy
; /* The ORDER BY clause */
2743 int nOrderBy
; /* Number of terms in the ORDER BY clause */
2744 int *aPermute
; /* Mapping from ORDER BY terms to result set columns */
2745 #ifndef SQLITE_OMIT_EXPLAIN
2746 int iSub1
; /* EQP id of left-hand query */
2747 int iSub2
; /* EQP id of right-hand query */
2750 assert( p
->pOrderBy
!=0 );
2751 assert( pKeyDup
==0 ); /* "Managed" code needs this. Ticket #3382. */
2754 assert( v
!=0 ); /* Already thrown the error if VDBE alloc failed */
2755 labelEnd
= sqlite3VdbeMakeLabel(v
);
2756 labelCmpr
= sqlite3VdbeMakeLabel(v
);
2759 /* Patch up the ORDER BY clause
2763 assert( pPrior
->pOrderBy
==0 );
2764 pOrderBy
= p
->pOrderBy
;
2766 nOrderBy
= pOrderBy
->nExpr
;
2768 /* For operators other than UNION ALL we have to make sure that
2769 ** the ORDER BY clause covers every term of the result set. Add
2770 ** terms to the ORDER BY clause as necessary.
2773 for(i
=1; db
->mallocFailed
==0 && i
<=p
->pEList
->nExpr
; i
++){
2774 struct ExprList_item
*pItem
;
2775 for(j
=0, pItem
=pOrderBy
->a
; j
<nOrderBy
; j
++, pItem
++){
2776 assert( pItem
->u
.x
.iOrderByCol
>0 );
2777 if( pItem
->u
.x
.iOrderByCol
==i
) break;
2780 Expr
*pNew
= sqlite3Expr(db
, TK_INTEGER
, 0);
2781 if( pNew
==0 ) return SQLITE_NOMEM
;
2782 pNew
->flags
|= EP_IntValue
;
2784 pOrderBy
= sqlite3ExprListAppend(pParse
, pOrderBy
, pNew
);
2785 if( pOrderBy
) pOrderBy
->a
[nOrderBy
++].u
.x
.iOrderByCol
= (u16
)i
;
2790 /* Compute the comparison permutation and keyinfo that is used with
2791 ** the permutation used to determine if the next
2792 ** row of results comes from selectA or selectB. Also add explicit
2793 ** collations to the ORDER BY clause terms so that when the subqueries
2794 ** to the right and the left are evaluated, they use the correct
2797 aPermute
= sqlite3DbMallocRaw(db
, sizeof(int)*nOrderBy
);
2799 struct ExprList_item
*pItem
;
2800 for(i
=0, pItem
=pOrderBy
->a
; i
<nOrderBy
; i
++, pItem
++){
2801 assert( pItem
->u
.x
.iOrderByCol
>0
2802 && pItem
->u
.x
.iOrderByCol
<=p
->pEList
->nExpr
);
2803 aPermute
[i
] = pItem
->u
.x
.iOrderByCol
- 1;
2805 pKeyMerge
= multiSelectOrderByKeyInfo(pParse
, p
, 1);
2810 /* Reattach the ORDER BY clause to the query.
2812 p
->pOrderBy
= pOrderBy
;
2813 pPrior
->pOrderBy
= sqlite3ExprListDup(pParse
->db
, pOrderBy
, 0);
2815 /* Allocate a range of temporary registers and the KeyInfo needed
2816 ** for the logic that removes duplicate result rows when the
2817 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
2822 int nExpr
= p
->pEList
->nExpr
;
2823 assert( nOrderBy
>=nExpr
|| db
->mallocFailed
);
2824 regPrev
= pParse
->nMem
+1;
2825 pParse
->nMem
+= nExpr
+1;
2826 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regPrev
);
2827 pKeyDup
= sqlite3KeyInfoAlloc(db
, nExpr
, 1);
2829 assert( sqlite3KeyInfoIsWriteable(pKeyDup
) );
2830 for(i
=0; i
<nExpr
; i
++){
2831 pKeyDup
->aColl
[i
] = multiSelectCollSeq(pParse
, p
, i
);
2832 pKeyDup
->aSortOrder
[i
] = 0;
2837 /* Separate the left and the right query from one another
2841 sqlite3ResolveOrderGroupBy(pParse
, p
, p
->pOrderBy
, "ORDER");
2842 if( pPrior
->pPrior
==0 ){
2843 sqlite3ResolveOrderGroupBy(pParse
, pPrior
, pPrior
->pOrderBy
, "ORDER");
2846 /* Compute the limit registers */
2847 computeLimitRegisters(pParse
, p
, labelEnd
);
2848 if( p
->iLimit
&& op
==TK_ALL
){
2849 regLimitA
= ++pParse
->nMem
;
2850 regLimitB
= ++pParse
->nMem
;
2851 sqlite3VdbeAddOp2(v
, OP_Copy
, p
->iOffset
? p
->iOffset
+1 : p
->iLimit
,
2853 sqlite3VdbeAddOp2(v
, OP_Copy
, regLimitA
, regLimitB
);
2855 regLimitA
= regLimitB
= 0;
2857 sqlite3ExprDelete(db
, p
->pLimit
);
2859 sqlite3ExprDelete(db
, p
->pOffset
);
2862 regAddrA
= ++pParse
->nMem
;
2863 regAddrB
= ++pParse
->nMem
;
2864 regOutA
= ++pParse
->nMem
;
2865 regOutB
= ++pParse
->nMem
;
2866 sqlite3SelectDestInit(&destA
, SRT_Coroutine
, regAddrA
);
2867 sqlite3SelectDestInit(&destB
, SRT_Coroutine
, regAddrB
);
2869 /* Generate a coroutine to evaluate the SELECT statement to the
2870 ** left of the compound operator - the "A" select.
2872 addrSelectA
= sqlite3VdbeCurrentAddr(v
) + 1;
2873 j1
= sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regAddrA
, 0, addrSelectA
);
2874 VdbeComment((v
, "left SELECT"));
2875 pPrior
->iLimit
= regLimitA
;
2876 explainSetInteger(iSub1
, pParse
->iNextSelectId
);
2877 sqlite3Select(pParse
, pPrior
, &destA
);
2878 sqlite3VdbeAddOp1(v
, OP_EndCoroutine
, regAddrA
);
2879 sqlite3VdbeJumpHere(v
, j1
);
2881 /* Generate a coroutine to evaluate the SELECT statement on
2882 ** the right - the "B" select
2884 addrSelectB
= sqlite3VdbeCurrentAddr(v
) + 1;
2885 j1
= sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regAddrB
, 0, addrSelectB
);
2886 VdbeComment((v
, "right SELECT"));
2887 savedLimit
= p
->iLimit
;
2888 savedOffset
= p
->iOffset
;
2889 p
->iLimit
= regLimitB
;
2891 explainSetInteger(iSub2
, pParse
->iNextSelectId
);
2892 sqlite3Select(pParse
, p
, &destB
);
2893 p
->iLimit
= savedLimit
;
2894 p
->iOffset
= savedOffset
;
2895 sqlite3VdbeAddOp1(v
, OP_EndCoroutine
, regAddrB
);
2897 /* Generate a subroutine that outputs the current row of the A
2898 ** select as the next output row of the compound select.
2900 VdbeNoopComment((v
, "Output routine for A"));
2901 addrOutA
= generateOutputSubroutine(pParse
,
2902 p
, &destA
, pDest
, regOutA
,
2903 regPrev
, pKeyDup
, labelEnd
);
2905 /* Generate a subroutine that outputs the current row of the B
2906 ** select as the next output row of the compound select.
2908 if( op
==TK_ALL
|| op
==TK_UNION
){
2909 VdbeNoopComment((v
, "Output routine for B"));
2910 addrOutB
= generateOutputSubroutine(pParse
,
2911 p
, &destB
, pDest
, regOutB
,
2912 regPrev
, pKeyDup
, labelEnd
);
2914 sqlite3KeyInfoUnref(pKeyDup
);
2916 /* Generate a subroutine to run when the results from select A
2917 ** are exhausted and only data in select B remains.
2919 if( op
==TK_EXCEPT
|| op
==TK_INTERSECT
){
2920 addrEofA_noB
= addrEofA
= labelEnd
;
2922 VdbeNoopComment((v
, "eof-A subroutine"));
2923 addrEofA
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutB
, addrOutB
);
2924 addrEofA_noB
= sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, labelEnd
);
2926 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, addrEofA
);
2927 p
->nSelectRow
+= pPrior
->nSelectRow
;
2930 /* Generate a subroutine to run when the results from select B
2931 ** are exhausted and only data in select A remains.
2933 if( op
==TK_INTERSECT
){
2934 addrEofB
= addrEofA
;
2935 if( p
->nSelectRow
> pPrior
->nSelectRow
) p
->nSelectRow
= pPrior
->nSelectRow
;
2937 VdbeNoopComment((v
, "eof-B subroutine"));
2938 addrEofB
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutA
, addrOutA
);
2939 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, labelEnd
); VdbeCoverage(v
);
2940 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, addrEofB
);
2943 /* Generate code to handle the case of A<B
2945 VdbeNoopComment((v
, "A-lt-B subroutine"));
2946 addrAltB
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutA
, addrOutA
);
2947 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA
); VdbeCoverage(v
);
2948 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, labelCmpr
);
2950 /* Generate code to handle the case of A==B
2953 addrAeqB
= addrAltB
;
2954 }else if( op
==TK_INTERSECT
){
2955 addrAeqB
= addrAltB
;
2958 VdbeNoopComment((v
, "A-eq-B subroutine"));
2960 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA
); VdbeCoverage(v
);
2961 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, labelCmpr
);
2964 /* Generate code to handle the case of A>B
2966 VdbeNoopComment((v
, "A-gt-B subroutine"));
2967 addrAgtB
= sqlite3VdbeCurrentAddr(v
);
2968 if( op
==TK_ALL
|| op
==TK_UNION
){
2969 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutB
, addrOutB
);
2971 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, addrEofB
); VdbeCoverage(v
);
2972 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, labelCmpr
);
2974 /* This code runs once to initialize everything.
2976 sqlite3VdbeJumpHere(v
, j1
);
2977 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA_noB
); VdbeCoverage(v
);
2978 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, addrEofB
); VdbeCoverage(v
);
2980 /* Implement the main merge loop
2982 sqlite3VdbeResolveLabel(v
, labelCmpr
);
2983 sqlite3VdbeAddOp4(v
, OP_Permutation
, 0, 0, 0, (char*)aPermute
, P4_INTARRAY
);
2984 sqlite3VdbeAddOp4(v
, OP_Compare
, destA
.iSdst
, destB
.iSdst
, nOrderBy
,
2985 (char*)pKeyMerge
, P4_KEYINFO
);
2986 sqlite3VdbeChangeP5(v
, OPFLAG_PERMUTE
);
2987 sqlite3VdbeAddOp3(v
, OP_Jump
, addrAltB
, addrAeqB
, addrAgtB
); VdbeCoverage(v
);
2989 /* Jump to the this point in order to terminate the query.
2991 sqlite3VdbeResolveLabel(v
, labelEnd
);
2993 /* Set the number of output columns
2995 if( pDest
->eDest
==SRT_Output
){
2996 Select
*pFirst
= pPrior
;
2997 while( pFirst
->pPrior
) pFirst
= pFirst
->pPrior
;
2998 generateColumnNames(pParse
, 0, pFirst
->pEList
);
3001 /* Reassembly the compound query so that it will be freed correctly
3002 ** by the calling function */
3004 sqlite3SelectDelete(db
, p
->pPrior
);
3009 /*** TBD: Insert subroutine calls to close cursors on incomplete
3010 **** subqueries ****/
3011 explainComposite(pParse
, p
->op
, iSub1
, iSub2
, 0);
3016 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3017 /* Forward Declarations */
3018 static void substExprList(sqlite3
*, ExprList
*, int, ExprList
*);
3019 static void substSelect(sqlite3
*, Select
*, int, ExprList
*);
3022 ** Scan through the expression pExpr. Replace every reference to
3023 ** a column in table number iTable with a copy of the iColumn-th
3024 ** entry in pEList. (But leave references to the ROWID column
3027 ** This routine is part of the flattening procedure. A subquery
3028 ** whose result set is defined by pEList appears as entry in the
3029 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3030 ** FORM clause entry is iTable. This routine make the necessary
3031 ** changes to pExpr so that it refers directly to the source table
3032 ** of the subquery rather the result set of the subquery.
3034 static Expr
*substExpr(
3035 sqlite3
*db
, /* Report malloc errors to this connection */
3036 Expr
*pExpr
, /* Expr in which substitution occurs */
3037 int iTable
, /* Table to be substituted */
3038 ExprList
*pEList
/* Substitute expressions */
3040 if( pExpr
==0 ) return 0;
3041 if( pExpr
->op
==TK_COLUMN
&& pExpr
->iTable
==iTable
){
3042 if( pExpr
->iColumn
<0 ){
3043 pExpr
->op
= TK_NULL
;
3046 assert( pEList
!=0 && pExpr
->iColumn
<pEList
->nExpr
);
3047 assert( pExpr
->pLeft
==0 && pExpr
->pRight
==0 );
3048 pNew
= sqlite3ExprDup(db
, pEList
->a
[pExpr
->iColumn
].pExpr
, 0);
3049 sqlite3ExprDelete(db
, pExpr
);
3053 pExpr
->pLeft
= substExpr(db
, pExpr
->pLeft
, iTable
, pEList
);
3054 pExpr
->pRight
= substExpr(db
, pExpr
->pRight
, iTable
, pEList
);
3055 if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
3056 substSelect(db
, pExpr
->x
.pSelect
, iTable
, pEList
);
3058 substExprList(db
, pExpr
->x
.pList
, iTable
, pEList
);
3063 static void substExprList(
3064 sqlite3
*db
, /* Report malloc errors here */
3065 ExprList
*pList
, /* List to scan and in which to make substitutes */
3066 int iTable
, /* Table to be substituted */
3067 ExprList
*pEList
/* Substitute values */
3070 if( pList
==0 ) return;
3071 for(i
=0; i
<pList
->nExpr
; i
++){
3072 pList
->a
[i
].pExpr
= substExpr(db
, pList
->a
[i
].pExpr
, iTable
, pEList
);
3075 static void substSelect(
3076 sqlite3
*db
, /* Report malloc errors here */
3077 Select
*p
, /* SELECT statement in which to make substitutions */
3078 int iTable
, /* Table to be replaced */
3079 ExprList
*pEList
/* Substitute values */
3082 struct SrcList_item
*pItem
;
3085 substExprList(db
, p
->pEList
, iTable
, pEList
);
3086 substExprList(db
, p
->pGroupBy
, iTable
, pEList
);
3087 substExprList(db
, p
->pOrderBy
, iTable
, pEList
);
3088 p
->pHaving
= substExpr(db
, p
->pHaving
, iTable
, pEList
);
3089 p
->pWhere
= substExpr(db
, p
->pWhere
, iTable
, pEList
);
3090 substSelect(db
, p
->pPrior
, iTable
, pEList
);
3092 assert( pSrc
); /* Even for (SELECT 1) we have: pSrc!=0 but pSrc->nSrc==0 */
3094 for(i
=pSrc
->nSrc
, pItem
=pSrc
->a
; i
>0; i
--, pItem
++){
3095 substSelect(db
, pItem
->pSelect
, iTable
, pEList
);
3099 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3101 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3103 ** This routine attempts to flatten subqueries as a performance optimization.
3104 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3106 ** To understand the concept of flattening, consider the following
3109 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3111 ** The default way of implementing this query is to execute the
3112 ** subquery first and store the results in a temporary table, then
3113 ** run the outer query on that temporary table. This requires two
3114 ** passes over the data. Furthermore, because the temporary table
3115 ** has no indices, the WHERE clause on the outer query cannot be
3118 ** This routine attempts to rewrite queries such as the above into
3119 ** a single flat select, like this:
3121 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3123 ** The code generated for this simplification gives the same result
3124 ** but only has to scan the data once. And because indices might
3125 ** exist on the table t1, a complete scan of the data might be
3128 ** Flattening is only attempted if all of the following are true:
3130 ** (1) The subquery and the outer query do not both use aggregates.
3132 ** (2) The subquery is not an aggregate or the outer query is not a join.
3134 ** (3) The subquery is not the right operand of a left outer join
3135 ** (Originally ticket #306. Strengthened by ticket #3300)
3137 ** (4) The subquery is not DISTINCT.
3139 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
3140 ** sub-queries that were excluded from this optimization. Restriction
3141 ** (4) has since been expanded to exclude all DISTINCT subqueries.
3143 ** (6) The subquery does not use aggregates or the outer query is not
3146 ** (7) The subquery has a FROM clause. TODO: For subqueries without
3147 ** A FROM clause, consider adding a FROM close with the special
3148 ** table sqlite_once that consists of a single row containing a
3151 ** (8) The subquery does not use LIMIT or the outer query is not a join.
3153 ** (9) The subquery does not use LIMIT or the outer query does not use
3156 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
3157 ** accidently carried the comment forward until 2014-09-15. Original
3158 ** text: "The subquery does not use aggregates or the outer query does not
3161 ** (11) The subquery and the outer query do not both have ORDER BY clauses.
3163 ** (**) Not implemented. Subsumed into restriction (3). Was previously
3164 ** a separate restriction deriving from ticket #350.
3166 ** (13) The subquery and outer query do not both use LIMIT.
3168 ** (14) The subquery does not use OFFSET.
3170 ** (15) The outer query is not part of a compound select or the
3171 ** subquery does not have a LIMIT clause.
3172 ** (See ticket #2339 and ticket [02a8e81d44]).
3174 ** (16) The outer query is not an aggregate or the subquery does
3175 ** not contain ORDER BY. (Ticket #2942) This used to not matter
3176 ** until we introduced the group_concat() function.
3178 ** (17) The sub-query is not a compound select, or it is a UNION ALL
3179 ** compound clause made up entirely of non-aggregate queries, and
3180 ** the parent query:
3182 ** * is not itself part of a compound select,
3183 ** * is not an aggregate or DISTINCT query, and
3186 ** The parent and sub-query may contain WHERE clauses. Subject to
3187 ** rules (11), (13) and (14), they may also contain ORDER BY,
3188 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
3189 ** operator other than UNION ALL because all the other compound
3190 ** operators have an implied DISTINCT which is disallowed by
3193 ** Also, each component of the sub-query must return the same number
3194 ** of result columns. This is actually a requirement for any compound
3195 ** SELECT statement, but all the code here does is make sure that no
3196 ** such (illegal) sub-query is flattened. The caller will detect the
3197 ** syntax error and return a detailed message.
3199 ** (18) If the sub-query is a compound select, then all terms of the
3200 ** ORDER by clause of the parent must be simple references to
3201 ** columns of the sub-query.
3203 ** (19) The subquery does not use LIMIT or the outer query does not
3204 ** have a WHERE clause.
3206 ** (20) If the sub-query is a compound select, then it must not use
3207 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
3208 ** somewhat by saying that the terms of the ORDER BY clause must
3209 ** appear as unmodified result columns in the outer query. But we
3210 ** have other optimizations in mind to deal with that case.
3212 ** (21) The subquery does not use LIMIT or the outer query is not
3213 ** DISTINCT. (See ticket [752e1646fc]).
3215 ** (22) The subquery is not a recursive CTE.
3217 ** (23) The parent is not a recursive CTE, or the sub-query is not a
3218 ** compound query. This restriction is because transforming the
3219 ** parent to a compound query confuses the code that handles
3220 ** recursive queries in multiSelect().
3222 ** (24) The subquery is not an aggregate that uses the built-in min() or
3223 ** or max() functions. (Without this restriction, a query like:
3224 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3225 ** return the value X for which Y was maximal.)
3228 ** In this routine, the "p" parameter is a pointer to the outer query.
3229 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
3230 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates.
3232 ** If flattening is not attempted, this routine is a no-op and returns 0.
3233 ** If flattening is attempted this routine returns 1.
3235 ** All of the expression analysis must occur on both the outer query and
3236 ** the subquery before this routine runs.
3238 static int flattenSubquery(
3239 Parse
*pParse
, /* Parsing context */
3240 Select
*p
, /* The parent or outer SELECT statement */
3241 int iFrom
, /* Index in p->pSrc->a[] of the inner subquery */
3242 int isAgg
, /* True if outer SELECT uses aggregate functions */
3243 int subqueryIsAgg
/* True if the subquery uses aggregate functions */
3245 const char *zSavedAuthContext
= pParse
->zAuthContext
;
3247 Select
*pSub
; /* The inner query or "subquery" */
3248 Select
*pSub1
; /* Pointer to the rightmost select in sub-query */
3249 SrcList
*pSrc
; /* The FROM clause of the outer query */
3250 SrcList
*pSubSrc
; /* The FROM clause of the subquery */
3251 ExprList
*pList
; /* The result set of the outer query */
3252 int iParent
; /* VDBE cursor number of the pSub result set temp table */
3253 int i
; /* Loop counter */
3254 Expr
*pWhere
; /* The WHERE clause */
3255 struct SrcList_item
*pSubitem
; /* The subquery */
3256 sqlite3
*db
= pParse
->db
;
3258 /* Check to see if flattening is permitted. Return 0 if not.
3261 assert( p
->pPrior
==0 ); /* Unable to flatten compound queries */
3262 if( OptimizationDisabled(db
, SQLITE_QueryFlattener
) ) return 0;
3264 assert( pSrc
&& iFrom
>=0 && iFrom
<pSrc
->nSrc
);
3265 pSubitem
= &pSrc
->a
[iFrom
];
3266 iParent
= pSubitem
->iCursor
;
3267 pSub
= pSubitem
->pSelect
;
3269 if( isAgg
&& subqueryIsAgg
) return 0; /* Restriction (1) */
3270 if( subqueryIsAgg
&& pSrc
->nSrc
>1 ) return 0; /* Restriction (2) */
3271 pSubSrc
= pSub
->pSrc
;
3273 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3274 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3275 ** because they could be computed at compile-time. But when LIMIT and OFFSET
3276 ** became arbitrary expressions, we were forced to add restrictions (13)
3278 if( pSub
->pLimit
&& p
->pLimit
) return 0; /* Restriction (13) */
3279 if( pSub
->pOffset
) return 0; /* Restriction (14) */
3280 if( (p
->selFlags
& SF_Compound
)!=0 && pSub
->pLimit
){
3281 return 0; /* Restriction (15) */
3283 if( pSubSrc
->nSrc
==0 ) return 0; /* Restriction (7) */
3284 if( pSub
->selFlags
& SF_Distinct
) return 0; /* Restriction (5) */
3285 if( pSub
->pLimit
&& (pSrc
->nSrc
>1 || isAgg
) ){
3286 return 0; /* Restrictions (8)(9) */
3288 if( (p
->selFlags
& SF_Distinct
)!=0 && subqueryIsAgg
){
3289 return 0; /* Restriction (6) */
3291 if( p
->pOrderBy
&& pSub
->pOrderBy
){
3292 return 0; /* Restriction (11) */
3294 if( isAgg
&& pSub
->pOrderBy
) return 0; /* Restriction (16) */
3295 if( pSub
->pLimit
&& p
->pWhere
) return 0; /* Restriction (19) */
3296 if( pSub
->pLimit
&& (p
->selFlags
& SF_Distinct
)!=0 ){
3297 return 0; /* Restriction (21) */
3299 testcase( pSub
->selFlags
& SF_Recursive
);
3300 testcase( pSub
->selFlags
& SF_MinMaxAgg
);
3301 if( pSub
->selFlags
& (SF_Recursive
|SF_MinMaxAgg
) ){
3302 return 0; /* Restrictions (22) and (24) */
3304 if( (p
->selFlags
& SF_Recursive
) && pSub
->pPrior
){
3305 return 0; /* Restriction (23) */
3308 /* OBSOLETE COMMENT 1:
3309 ** Restriction 3: If the subquery is a join, make sure the subquery is
3310 ** not used as the right operand of an outer join. Examples of why this
3313 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
3315 ** If we flatten the above, we would get
3317 ** (t1 LEFT OUTER JOIN t2) JOIN t3
3319 ** which is not at all the same thing.
3321 ** OBSOLETE COMMENT 2:
3322 ** Restriction 12: If the subquery is the right operand of a left outer
3323 ** join, make sure the subquery has no WHERE clause.
3324 ** An examples of why this is not allowed:
3326 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0)
3328 ** If we flatten the above, we would get
3330 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0
3332 ** But the t2.x>0 test will always fail on a NULL row of t2, which
3333 ** effectively converts the OUTER JOIN into an INNER JOIN.
3335 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE:
3336 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN
3337 ** is fraught with danger. Best to avoid the whole thing. If the
3338 ** subquery is the right term of a LEFT JOIN, then do not flatten.
3340 if( (pSubitem
->jointype
& JT_OUTER
)!=0 ){
3344 /* Restriction 17: If the sub-query is a compound SELECT, then it must
3345 ** use only the UNION ALL operator. And none of the simple select queries
3346 ** that make up the compound SELECT are allowed to be aggregate or distinct
3350 if( pSub
->pOrderBy
){
3351 return 0; /* Restriction 20 */
3353 if( isAgg
|| (p
->selFlags
& SF_Distinct
)!=0 || pSrc
->nSrc
!=1 ){
3356 for(pSub1
=pSub
; pSub1
; pSub1
=pSub1
->pPrior
){
3357 testcase( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Distinct
);
3358 testcase( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Aggregate
);
3359 assert( pSub
->pSrc
!=0 );
3360 if( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))!=0
3361 || (pSub1
->pPrior
&& pSub1
->op
!=TK_ALL
)
3362 || pSub1
->pSrc
->nSrc
<1
3363 || pSub
->pEList
->nExpr
!=pSub1
->pEList
->nExpr
3367 testcase( pSub1
->pSrc
->nSrc
>1 );
3370 /* Restriction 18. */
3373 for(ii
=0; ii
<p
->pOrderBy
->nExpr
; ii
++){
3374 if( p
->pOrderBy
->a
[ii
].u
.x
.iOrderByCol
==0 ) return 0;
3379 /***** If we reach this point, flattening is permitted. *****/
3380 SELECTTRACE(1,pParse
,p
,("flatten %s.%p from term %d\n",
3381 pSub
->zSelName
, pSub
, iFrom
));
3383 /* Authorize the subquery */
3384 pParse
->zAuthContext
= pSubitem
->zName
;
3385 TESTONLY(i
=) sqlite3AuthCheck(pParse
, SQLITE_SELECT
, 0, 0, 0);
3386 testcase( i
==SQLITE_DENY
);
3387 pParse
->zAuthContext
= zSavedAuthContext
;
3389 /* If the sub-query is a compound SELECT statement, then (by restrictions
3390 ** 17 and 18 above) it must be a UNION ALL and the parent query must
3393 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
3395 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3396 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3397 ** OFFSET clauses and joins them to the left-hand-side of the original
3398 ** using UNION ALL operators. In this case N is the number of simple
3399 ** select statements in the compound sub-query.
3403 ** SELECT a+1 FROM (
3404 ** SELECT x FROM tab
3406 ** SELECT y FROM tab
3408 ** SELECT abs(z*2) FROM tab2
3409 ** ) WHERE a!=5 ORDER BY 1
3411 ** Transformed into:
3413 ** SELECT x+1 FROM tab WHERE x+1!=5
3415 ** SELECT y+1 FROM tab WHERE y+1!=5
3417 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3420 ** We call this the "compound-subquery flattening".
3422 for(pSub
=pSub
->pPrior
; pSub
; pSub
=pSub
->pPrior
){
3424 ExprList
*pOrderBy
= p
->pOrderBy
;
3425 Expr
*pLimit
= p
->pLimit
;
3426 Expr
*pOffset
= p
->pOffset
;
3427 Select
*pPrior
= p
->pPrior
;
3433 pNew
= sqlite3SelectDup(db
, p
, 0);
3434 sqlite3SelectSetName(pNew
, pSub
->zSelName
);
3435 p
->pOffset
= pOffset
;
3437 p
->pOrderBy
= pOrderBy
;
3443 pNew
->pPrior
= pPrior
;
3444 if( pPrior
) pPrior
->pNext
= pNew
;
3447 SELECTTRACE(2,pParse
,p
,
3448 ("compound-subquery flattener creates %s.%p as peer\n",
3449 pNew
->zSelName
, pNew
));
3451 if( db
->mallocFailed
) return 1;
3454 /* Begin flattening the iFrom-th entry of the FROM clause
3455 ** in the outer query.
3457 pSub
= pSub1
= pSubitem
->pSelect
;
3459 /* Delete the transient table structure associated with the
3462 sqlite3DbFree(db
, pSubitem
->zDatabase
);
3463 sqlite3DbFree(db
, pSubitem
->zName
);
3464 sqlite3DbFree(db
, pSubitem
->zAlias
);
3465 pSubitem
->zDatabase
= 0;
3466 pSubitem
->zName
= 0;
3467 pSubitem
->zAlias
= 0;
3468 pSubitem
->pSelect
= 0;
3470 /* Defer deleting the Table object associated with the
3471 ** subquery until code generation is
3472 ** complete, since there may still exist Expr.pTab entries that
3473 ** refer to the subquery even after flattening. Ticket #3346.
3475 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
3477 if( ALWAYS(pSubitem
->pTab
!=0) ){
3478 Table
*pTabToDel
= pSubitem
->pTab
;
3479 if( pTabToDel
->nRef
==1 ){
3480 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
3481 pTabToDel
->pNextZombie
= pToplevel
->pZombieTab
;
3482 pToplevel
->pZombieTab
= pTabToDel
;
3489 /* The following loop runs once for each term in a compound-subquery
3490 ** flattening (as described above). If we are doing a different kind
3491 ** of flattening - a flattening other than a compound-subquery flattening -
3492 ** then this loop only runs once.
3494 ** This loop moves all of the FROM elements of the subquery into the
3495 ** the FROM clause of the outer query. Before doing this, remember
3496 ** the cursor number for the original outer query FROM element in
3497 ** iParent. The iParent cursor will never be used. Subsequent code
3498 ** will scan expressions looking for iParent references and replace
3499 ** those references with expressions that resolve to the subquery FROM
3500 ** elements we are now copying in.
3502 for(pParent
=p
; pParent
; pParent
=pParent
->pPrior
, pSub
=pSub
->pPrior
){
3505 pSubSrc
= pSub
->pSrc
; /* FROM clause of subquery */
3506 nSubSrc
= pSubSrc
->nSrc
; /* Number of terms in subquery FROM clause */
3507 pSrc
= pParent
->pSrc
; /* FROM clause of the outer query */
3510 assert( pParent
==p
); /* First time through the loop */
3511 jointype
= pSubitem
->jointype
;
3513 assert( pParent
!=p
); /* 2nd and subsequent times through the loop */
3514 pSrc
= pParent
->pSrc
= sqlite3SrcListAppend(db
, 0, 0, 0);
3516 assert( db
->mallocFailed
);
3521 /* The subquery uses a single slot of the FROM clause of the outer
3522 ** query. If the subquery has more than one element in its FROM clause,
3523 ** then expand the outer query to make space for it to hold all elements
3528 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
3530 ** The outer query has 3 slots in its FROM clause. One slot of the
3531 ** outer query (the middle slot) is used by the subquery. The next
3532 ** block of code will expand the out query to 4 slots. The middle
3533 ** slot is expanded to two slots in order to make space for the
3534 ** two elements in the FROM clause of the subquery.
3537 pParent
->pSrc
= pSrc
= sqlite3SrcListEnlarge(db
, pSrc
, nSubSrc
-1,iFrom
+1);
3538 if( db
->mallocFailed
){
3543 /* Transfer the FROM clause terms from the subquery into the
3546 for(i
=0; i
<nSubSrc
; i
++){
3547 sqlite3IdListDelete(db
, pSrc
->a
[i
+iFrom
].pUsing
);
3548 pSrc
->a
[i
+iFrom
] = pSubSrc
->a
[i
];
3549 memset(&pSubSrc
->a
[i
], 0, sizeof(pSubSrc
->a
[i
]));
3551 pSrc
->a
[iFrom
].jointype
= jointype
;
3553 /* Now begin substituting subquery result set expressions for
3554 ** references to the iParent in the outer query.
3558 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
3559 ** \ \_____________ subquery __________/ /
3560 ** \_____________________ outer query ______________________________/
3562 ** We look at every expression in the outer query and every place we see
3563 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
3565 pList
= pParent
->pEList
;
3566 for(i
=0; i
<pList
->nExpr
; i
++){
3567 if( pList
->a
[i
].zName
==0 ){
3568 char *zName
= sqlite3DbStrDup(db
, pList
->a
[i
].zSpan
);
3569 sqlite3Dequote(zName
);
3570 pList
->a
[i
].zName
= zName
;
3573 substExprList(db
, pParent
->pEList
, iParent
, pSub
->pEList
);
3575 substExprList(db
, pParent
->pGroupBy
, iParent
, pSub
->pEList
);
3576 pParent
->pHaving
= substExpr(db
, pParent
->pHaving
, iParent
, pSub
->pEList
);
3578 if( pSub
->pOrderBy
){
3579 /* At this point, any non-zero iOrderByCol values indicate that the
3580 ** ORDER BY column expression is identical to the iOrderByCol'th
3581 ** expression returned by SELECT statement pSub. Since these values
3582 ** do not necessarily correspond to columns in SELECT statement pParent,
3583 ** zero them before transfering the ORDER BY clause.
3585 ** Not doing this may cause an error if a subsequent call to this
3586 ** function attempts to flatten a compound sub-query into pParent
3587 ** (the only way this can happen is if the compound sub-query is
3588 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
3589 ExprList
*pOrderBy
= pSub
->pOrderBy
;
3590 for(i
=0; i
<pOrderBy
->nExpr
; i
++){
3591 pOrderBy
->a
[i
].u
.x
.iOrderByCol
= 0;
3593 assert( pParent
->pOrderBy
==0 );
3594 assert( pSub
->pPrior
==0 );
3595 pParent
->pOrderBy
= pOrderBy
;
3597 }else if( pParent
->pOrderBy
){
3598 substExprList(db
, pParent
->pOrderBy
, iParent
, pSub
->pEList
);
3601 pWhere
= sqlite3ExprDup(db
, pSub
->pWhere
, 0);
3605 if( subqueryIsAgg
){
3606 assert( pParent
->pHaving
==0 );
3607 pParent
->pHaving
= pParent
->pWhere
;
3608 pParent
->pWhere
= pWhere
;
3609 pParent
->pHaving
= substExpr(db
, pParent
->pHaving
, iParent
, pSub
->pEList
);
3610 pParent
->pHaving
= sqlite3ExprAnd(db
, pParent
->pHaving
,
3611 sqlite3ExprDup(db
, pSub
->pHaving
, 0));
3612 assert( pParent
->pGroupBy
==0 );
3613 pParent
->pGroupBy
= sqlite3ExprListDup(db
, pSub
->pGroupBy
, 0);
3615 pParent
->pWhere
= substExpr(db
, pParent
->pWhere
, iParent
, pSub
->pEList
);
3616 pParent
->pWhere
= sqlite3ExprAnd(db
, pParent
->pWhere
, pWhere
);
3619 /* The flattened query is distinct if either the inner or the
3620 ** outer query is distinct.
3622 pParent
->selFlags
|= pSub
->selFlags
& SF_Distinct
;
3625 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
3627 ** One is tempted to try to add a and b to combine the limits. But this
3628 ** does not work if either limit is negative.
3631 pParent
->pLimit
= pSub
->pLimit
;
3636 /* Finially, delete what is left of the subquery and return
3639 sqlite3SelectDelete(db
, pSub1
);
3641 #if SELECTTRACE_ENABLED
3642 if( sqlite3SelectTrace
& 0x100 ){
3643 sqlite3DebugPrintf("After flattening:\n");
3644 sqlite3TreeViewSelect(0, p
, 0);
3650 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3653 ** Based on the contents of the AggInfo structure indicated by the first
3654 ** argument, this function checks if the following are true:
3656 ** * the query contains just a single aggregate function,
3657 ** * the aggregate function is either min() or max(), and
3658 ** * the argument to the aggregate function is a column value.
3660 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX
3661 ** is returned as appropriate. Also, *ppMinMax is set to point to the
3662 ** list of arguments passed to the aggregate before returning.
3664 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and
3665 ** WHERE_ORDERBY_NORMAL is returned.
3667 static u8
minMaxQuery(AggInfo
*pAggInfo
, ExprList
**ppMinMax
){
3668 int eRet
= WHERE_ORDERBY_NORMAL
; /* Return value */
3671 if( pAggInfo
->nFunc
==1 ){
3672 Expr
*pExpr
= pAggInfo
->aFunc
[0].pExpr
; /* Aggregate function */
3673 ExprList
*pEList
= pExpr
->x
.pList
; /* Arguments to agg function */
3675 assert( pExpr
->op
==TK_AGG_FUNCTION
);
3676 if( pEList
&& pEList
->nExpr
==1 && pEList
->a
[0].pExpr
->op
==TK_AGG_COLUMN
){
3677 const char *zFunc
= pExpr
->u
.zToken
;
3678 if( sqlite3StrICmp(zFunc
, "min")==0 ){
3679 eRet
= WHERE_ORDERBY_MIN
;
3681 }else if( sqlite3StrICmp(zFunc
, "max")==0 ){
3682 eRet
= WHERE_ORDERBY_MAX
;
3688 assert( *ppMinMax
==0 || (*ppMinMax
)->nExpr
==1 );
3693 ** The select statement passed as the first argument is an aggregate query.
3694 ** The second argument is the associated aggregate-info object. This
3695 ** function tests if the SELECT is of the form:
3697 ** SELECT count(*) FROM <tbl>
3699 ** where table is a database table, not a sub-select or view. If the query
3700 ** does match this pattern, then a pointer to the Table object representing
3701 ** <tbl> is returned. Otherwise, 0 is returned.
3703 static Table
*isSimpleCount(Select
*p
, AggInfo
*pAggInfo
){
3707 assert( !p
->pGroupBy
);
3709 if( p
->pWhere
|| p
->pEList
->nExpr
!=1
3710 || p
->pSrc
->nSrc
!=1 || p
->pSrc
->a
[0].pSelect
3714 pTab
= p
->pSrc
->a
[0].pTab
;
3715 pExpr
= p
->pEList
->a
[0].pExpr
;
3716 assert( pTab
&& !pTab
->pSelect
&& pExpr
);
3718 if( IsVirtual(pTab
) ) return 0;
3719 if( pExpr
->op
!=TK_AGG_FUNCTION
) return 0;
3720 if( NEVER(pAggInfo
->nFunc
==0) ) return 0;
3721 if( (pAggInfo
->aFunc
[0].pFunc
->funcFlags
&SQLITE_FUNC_COUNT
)==0 ) return 0;
3722 if( pExpr
->flags
&EP_Distinct
) return 0;
3728 ** If the source-list item passed as an argument was augmented with an
3729 ** INDEXED BY clause, then try to locate the specified index. If there
3730 ** was such a clause and the named index cannot be found, return
3731 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
3732 ** pFrom->pIndex and return SQLITE_OK.
3734 int sqlite3IndexedByLookup(Parse
*pParse
, struct SrcList_item
*pFrom
){
3735 if( pFrom
->pTab
&& pFrom
->zIndex
){
3736 Table
*pTab
= pFrom
->pTab
;
3737 char *zIndex
= pFrom
->zIndex
;
3739 for(pIdx
=pTab
->pIndex
;
3740 pIdx
&& sqlite3StrICmp(pIdx
->zName
, zIndex
);
3744 sqlite3ErrorMsg(pParse
, "no such index: %s", zIndex
, 0);
3745 pParse
->checkSchema
= 1;
3746 return SQLITE_ERROR
;
3748 pFrom
->pIndex
= pIdx
;
3753 ** Detect compound SELECT statements that use an ORDER BY clause with
3754 ** an alternative collating sequence.
3756 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
3758 ** These are rewritten as a subquery:
3760 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
3761 ** ORDER BY ... COLLATE ...
3763 ** This transformation is necessary because the multiSelectOrderBy() routine
3764 ** above that generates the code for a compound SELECT with an ORDER BY clause
3765 ** uses a merge algorithm that requires the same collating sequence on the
3766 ** result columns as on the ORDER BY clause. See ticket
3767 ** http://www.sqlite.org/src/info/6709574d2a
3769 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
3770 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
3771 ** there are COLLATE terms in the ORDER BY.
3773 static int convertCompoundSelectToSubquery(Walker
*pWalker
, Select
*p
){
3778 struct ExprList_item
*a
;
3783 if( p
->pPrior
==0 ) return WRC_Continue
;
3784 if( p
->pOrderBy
==0 ) return WRC_Continue
;
3785 for(pX
=p
; pX
&& (pX
->op
==TK_ALL
|| pX
->op
==TK_SELECT
); pX
=pX
->pPrior
){}
3786 if( pX
==0 ) return WRC_Continue
;
3788 for(i
=p
->pOrderBy
->nExpr
-1; i
>=0; i
--){
3789 if( a
[i
].pExpr
->flags
& EP_Collate
) break;
3791 if( i
<0 ) return WRC_Continue
;
3793 /* If we reach this point, that means the transformation is required. */
3795 pParse
= pWalker
->pParse
;
3797 pNew
= sqlite3DbMallocZero(db
, sizeof(*pNew
) );
3798 if( pNew
==0 ) return WRC_Abort
;
3799 memset(&dummy
, 0, sizeof(dummy
));
3800 pNewSrc
= sqlite3SrcListAppendFromTerm(pParse
,0,0,0,&dummy
,pNew
,0,0);
3801 if( pNewSrc
==0 ) return WRC_Abort
;
3804 p
->pEList
= sqlite3ExprListAppend(pParse
, 0, sqlite3Expr(db
, TK_ALL
, 0));
3812 p
->selFlags
&= ~SF_Compound
;
3813 assert( pNew
->pPrior
!=0 );
3814 pNew
->pPrior
->pNext
= pNew
;
3817 return WRC_Continue
;
3820 #ifndef SQLITE_OMIT_CTE
3822 ** Argument pWith (which may be NULL) points to a linked list of nested
3823 ** WITH contexts, from inner to outermost. If the table identified by
3824 ** FROM clause element pItem is really a common-table-expression (CTE)
3825 ** then return a pointer to the CTE definition for that table. Otherwise
3828 ** If a non-NULL value is returned, set *ppContext to point to the With
3829 ** object that the returned CTE belongs to.
3831 static struct Cte
*searchWith(
3832 With
*pWith
, /* Current outermost WITH clause */
3833 struct SrcList_item
*pItem
, /* FROM clause element to resolve */
3834 With
**ppContext
/* OUT: WITH clause return value belongs to */
3837 if( pItem
->zDatabase
==0 && (zName
= pItem
->zName
)!=0 ){
3839 for(p
=pWith
; p
; p
=p
->pOuter
){
3841 for(i
=0; i
<p
->nCte
; i
++){
3842 if( sqlite3StrICmp(zName
, p
->a
[i
].zName
)==0 ){
3852 /* The code generator maintains a stack of active WITH clauses
3853 ** with the inner-most WITH clause being at the top of the stack.
3855 ** This routine pushes the WITH clause passed as the second argument
3856 ** onto the top of the stack. If argument bFree is true, then this
3857 ** WITH clause will never be popped from the stack. In this case it
3858 ** should be freed along with the Parse object. In other cases, when
3859 ** bFree==0, the With object will be freed along with the SELECT
3860 ** statement with which it is associated.
3862 void sqlite3WithPush(Parse
*pParse
, With
*pWith
, u8 bFree
){
3863 assert( bFree
==0 || pParse
->pWith
==0 );
3865 pWith
->pOuter
= pParse
->pWith
;
3866 pParse
->pWith
= pWith
;
3867 pParse
->bFreeWith
= bFree
;
3872 ** This function checks if argument pFrom refers to a CTE declared by
3873 ** a WITH clause on the stack currently maintained by the parser. And,
3874 ** if currently processing a CTE expression, if it is a recursive
3875 ** reference to the current CTE.
3877 ** If pFrom falls into either of the two categories above, pFrom->pTab
3878 ** and other fields are populated accordingly. The caller should check
3879 ** (pFrom->pTab!=0) to determine whether or not a successful match
3882 ** Whether or not a match is found, SQLITE_OK is returned if no error
3883 ** occurs. If an error does occur, an error message is stored in the
3884 ** parser and some error code other than SQLITE_OK returned.
3886 static int withExpand(
3888 struct SrcList_item
*pFrom
3890 Parse
*pParse
= pWalker
->pParse
;
3891 sqlite3
*db
= pParse
->db
;
3892 struct Cte
*pCte
; /* Matched CTE (or NULL if no match) */
3893 With
*pWith
; /* WITH clause that pCte belongs to */
3895 assert( pFrom
->pTab
==0 );
3897 pCte
= searchWith(pParse
->pWith
, pFrom
, &pWith
);
3902 Select
*pLeft
; /* Left-most SELECT statement */
3903 int bMayRecursive
; /* True if compound joined by UNION [ALL] */
3904 With
*pSavedWith
; /* Initial value of pParse->pWith */
3906 /* If pCte->zErr is non-NULL at this point, then this is an illegal
3907 ** recursive reference to CTE pCte. Leave an error in pParse and return
3908 ** early. If pCte->zErr is NULL, then this is not a recursive reference.
3909 ** In this case, proceed. */
3911 sqlite3ErrorMsg(pParse
, pCte
->zErr
, pCte
->zName
);
3912 return SQLITE_ERROR
;
3915 assert( pFrom
->pTab
==0 );
3916 pFrom
->pTab
= pTab
= sqlite3DbMallocZero(db
, sizeof(Table
));
3917 if( pTab
==0 ) return WRC_Abort
;
3919 pTab
->zName
= sqlite3DbStrDup(db
, pCte
->zName
);
3921 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
3922 pTab
->tabFlags
|= TF_Ephemeral
;
3923 pFrom
->pSelect
= sqlite3SelectDup(db
, pCte
->pSelect
, 0);
3924 if( db
->mallocFailed
) return SQLITE_NOMEM
;
3925 assert( pFrom
->pSelect
);
3927 /* Check if this is a recursive CTE. */
3928 pSel
= pFrom
->pSelect
;
3929 bMayRecursive
= ( pSel
->op
==TK_ALL
|| pSel
->op
==TK_UNION
);
3930 if( bMayRecursive
){
3932 SrcList
*pSrc
= pFrom
->pSelect
->pSrc
;
3933 for(i
=0; i
<pSrc
->nSrc
; i
++){
3934 struct SrcList_item
*pItem
= &pSrc
->a
[i
];
3935 if( pItem
->zDatabase
==0
3937 && 0==sqlite3StrICmp(pItem
->zName
, pCte
->zName
)
3940 pItem
->isRecursive
= 1;
3942 pSel
->selFlags
|= SF_Recursive
;
3947 /* Only one recursive reference is permitted. */
3950 pParse
, "multiple references to recursive table: %s", pCte
->zName
3952 return SQLITE_ERROR
;
3954 assert( pTab
->nRef
==1 || ((pSel
->selFlags
&SF_Recursive
) && pTab
->nRef
==2 ));
3956 pCte
->zErr
= "circular reference: %s";
3957 pSavedWith
= pParse
->pWith
;
3958 pParse
->pWith
= pWith
;
3959 sqlite3WalkSelect(pWalker
, bMayRecursive
? pSel
->pPrior
: pSel
);
3961 for(pLeft
=pSel
; pLeft
->pPrior
; pLeft
=pLeft
->pPrior
);
3962 pEList
= pLeft
->pEList
;
3964 if( pEList
->nExpr
!=pCte
->pCols
->nExpr
){
3965 sqlite3ErrorMsg(pParse
, "table %s has %d values for %d columns",
3966 pCte
->zName
, pEList
->nExpr
, pCte
->pCols
->nExpr
3968 pParse
->pWith
= pSavedWith
;
3969 return SQLITE_ERROR
;
3971 pEList
= pCte
->pCols
;
3974 selectColumnsFromExprList(pParse
, pEList
, &pTab
->nCol
, &pTab
->aCol
);
3975 if( bMayRecursive
){
3976 if( pSel
->selFlags
& SF_Recursive
){
3977 pCte
->zErr
= "multiple recursive references: %s";
3979 pCte
->zErr
= "recursive reference in a subquery: %s";
3981 sqlite3WalkSelect(pWalker
, pSel
);
3984 pParse
->pWith
= pSavedWith
;
3991 #ifndef SQLITE_OMIT_CTE
3993 ** If the SELECT passed as the second argument has an associated WITH
3994 ** clause, pop it from the stack stored as part of the Parse object.
3996 ** This function is used as the xSelectCallback2() callback by
3997 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
3998 ** names and other FROM clause elements.
4000 static void selectPopWith(Walker
*pWalker
, Select
*p
){
4001 Parse
*pParse
= pWalker
->pParse
;
4002 With
*pWith
= findRightmost(p
)->pWith
;
4004 assert( pParse
->pWith
==pWith
);
4005 pParse
->pWith
= pWith
->pOuter
;
4009 #define selectPopWith 0
4013 ** This routine is a Walker callback for "expanding" a SELECT statement.
4014 ** "Expanding" means to do the following:
4016 ** (1) Make sure VDBE cursor numbers have been assigned to every
4017 ** element of the FROM clause.
4019 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
4020 ** defines FROM clause. When views appear in the FROM clause,
4021 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
4022 ** that implements the view. A copy is made of the view's SELECT
4023 ** statement so that we can freely modify or delete that statement
4024 ** without worrying about messing up the persistent representation
4027 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
4028 ** on joins and the ON and USING clause of joins.
4030 ** (4) Scan the list of columns in the result set (pEList) looking
4031 ** for instances of the "*" operator or the TABLE.* operator.
4032 ** If found, expand each "*" to be every column in every table
4033 ** and TABLE.* to be every column in TABLE.
4036 static int selectExpander(Walker
*pWalker
, Select
*p
){
4037 Parse
*pParse
= pWalker
->pParse
;
4041 struct SrcList_item
*pFrom
;
4042 sqlite3
*db
= pParse
->db
;
4043 Expr
*pE
, *pRight
, *pExpr
;
4044 u16 selFlags
= p
->selFlags
;
4046 p
->selFlags
|= SF_Expanded
;
4047 if( db
->mallocFailed
){
4050 if( NEVER(p
->pSrc
==0) || (selFlags
& SF_Expanded
)!=0 ){
4055 sqlite3WithPush(pParse
, findRightmost(p
)->pWith
, 0);
4057 /* Make sure cursor numbers have been assigned to all entries in
4058 ** the FROM clause of the SELECT statement.
4060 sqlite3SrcListAssignCursors(pParse
, pTabList
);
4062 /* Look up every table named in the FROM clause of the select. If
4063 ** an entry of the FROM clause is a subquery instead of a table or view,
4064 ** then create a transient table structure to describe the subquery.
4066 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
4068 assert( pFrom
->isRecursive
==0 || pFrom
->pTab
);
4069 if( pFrom
->isRecursive
) continue;
4070 if( pFrom
->pTab
!=0 ){
4071 /* This statement has already been prepared. There is no need
4072 ** to go further. */
4074 #ifndef SQLITE_OMIT_CTE
4075 selectPopWith(pWalker
, p
);
4079 #ifndef SQLITE_OMIT_CTE
4080 if( withExpand(pWalker
, pFrom
) ) return WRC_Abort
;
4081 if( pFrom
->pTab
) {} else
4083 if( pFrom
->zName
==0 ){
4084 #ifndef SQLITE_OMIT_SUBQUERY
4085 Select
*pSel
= pFrom
->pSelect
;
4086 /* A sub-query in the FROM clause of a SELECT */
4088 assert( pFrom
->pTab
==0 );
4089 sqlite3WalkSelect(pWalker
, pSel
);
4090 pFrom
->pTab
= pTab
= sqlite3DbMallocZero(db
, sizeof(Table
));
4091 if( pTab
==0 ) return WRC_Abort
;
4093 pTab
->zName
= sqlite3MPrintf(db
, "sqlite_sq_%p", (void*)pTab
);
4094 while( pSel
->pPrior
){ pSel
= pSel
->pPrior
; }
4095 selectColumnsFromExprList(pParse
, pSel
->pEList
, &pTab
->nCol
, &pTab
->aCol
);
4097 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
4098 pTab
->tabFlags
|= TF_Ephemeral
;
4101 /* An ordinary table or view name in the FROM clause */
4102 assert( pFrom
->pTab
==0 );
4103 pFrom
->pTab
= pTab
= sqlite3LocateTableItem(pParse
, 0, pFrom
);
4104 if( pTab
==0 ) return WRC_Abort
;
4105 if( pTab
->nRef
==0xffff ){
4106 sqlite3ErrorMsg(pParse
, "too many references to \"%s\": max 65535",
4112 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE)
4113 if( pTab
->pSelect
|| IsVirtual(pTab
) ){
4114 /* We reach here if the named table is a really a view */
4115 if( sqlite3ViewGetColumnNames(pParse
, pTab
) ) return WRC_Abort
;
4116 assert( pFrom
->pSelect
==0 );
4117 pFrom
->pSelect
= sqlite3SelectDup(db
, pTab
->pSelect
, 0);
4118 sqlite3SelectSetName(pFrom
->pSelect
, pTab
->zName
);
4119 sqlite3WalkSelect(pWalker
, pFrom
->pSelect
);
4124 /* Locate the index named by the INDEXED BY clause, if any. */
4125 if( sqlite3IndexedByLookup(pParse
, pFrom
) ){
4130 /* Process NATURAL keywords, and ON and USING clauses of joins.
4132 if( db
->mallocFailed
|| sqliteProcessJoin(pParse
, p
) ){
4136 /* For every "*" that occurs in the column list, insert the names of
4137 ** all columns in all tables. And for every TABLE.* insert the names
4138 ** of all columns in TABLE. The parser inserted a special expression
4139 ** with the TK_ALL operator for each "*" that it found in the column list.
4140 ** The following code just has to locate the TK_ALL expressions and expand
4141 ** each one to the list of all columns in all tables.
4143 ** The first loop just checks to see if there are any "*" operators
4144 ** that need expanding.
4146 for(k
=0; k
<pEList
->nExpr
; k
++){
4147 pE
= pEList
->a
[k
].pExpr
;
4148 if( pE
->op
==TK_ALL
) break;
4149 assert( pE
->op
!=TK_DOT
|| pE
->pRight
!=0 );
4150 assert( pE
->op
!=TK_DOT
|| (pE
->pLeft
!=0 && pE
->pLeft
->op
==TK_ID
) );
4151 if( pE
->op
==TK_DOT
&& pE
->pRight
->op
==TK_ALL
) break;
4153 if( k
<pEList
->nExpr
){
4155 ** If we get here it means the result set contains one or more "*"
4156 ** operators that need to be expanded. Loop through each expression
4157 ** in the result set and expand them one by one.
4159 struct ExprList_item
*a
= pEList
->a
;
4161 int flags
= pParse
->db
->flags
;
4162 int longNames
= (flags
& SQLITE_FullColNames
)!=0
4163 && (flags
& SQLITE_ShortColNames
)==0;
4165 /* When processing FROM-clause subqueries, it is always the case
4166 ** that full_column_names=OFF and short_column_names=ON. The
4167 ** sqlite3ResultSetOfSelect() routine makes it so. */
4168 assert( (p
->selFlags
& SF_NestedFrom
)==0
4169 || ((flags
& SQLITE_FullColNames
)==0 &&
4170 (flags
& SQLITE_ShortColNames
)!=0) );
4172 for(k
=0; k
<pEList
->nExpr
; k
++){
4174 pRight
= pE
->pRight
;
4175 assert( pE
->op
!=TK_DOT
|| pRight
!=0 );
4176 if( pE
->op
!=TK_ALL
&& (pE
->op
!=TK_DOT
|| pRight
->op
!=TK_ALL
) ){
4177 /* This particular expression does not need to be expanded.
4179 pNew
= sqlite3ExprListAppend(pParse
, pNew
, a
[k
].pExpr
);
4181 pNew
->a
[pNew
->nExpr
-1].zName
= a
[k
].zName
;
4182 pNew
->a
[pNew
->nExpr
-1].zSpan
= a
[k
].zSpan
;
4188 /* This expression is a "*" or a "TABLE.*" and needs to be
4190 int tableSeen
= 0; /* Set to 1 when TABLE matches */
4191 char *zTName
= 0; /* text of name of TABLE */
4192 if( pE
->op
==TK_DOT
){
4193 assert( pE
->pLeft
!=0 );
4194 assert( !ExprHasProperty(pE
->pLeft
, EP_IntValue
) );
4195 zTName
= pE
->pLeft
->u
.zToken
;
4197 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
4198 Table
*pTab
= pFrom
->pTab
;
4199 Select
*pSub
= pFrom
->pSelect
;
4200 char *zTabName
= pFrom
->zAlias
;
4201 const char *zSchemaName
= 0;
4204 zTabName
= pTab
->zName
;
4206 if( db
->mallocFailed
) break;
4207 if( pSub
==0 || (pSub
->selFlags
& SF_NestedFrom
)==0 ){
4209 if( zTName
&& sqlite3StrICmp(zTName
, zTabName
)!=0 ){
4212 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
4213 zSchemaName
= iDb
>=0 ? db
->aDb
[iDb
].zName
: "*";
4215 for(j
=0; j
<pTab
->nCol
; j
++){
4216 char *zName
= pTab
->aCol
[j
].zName
;
4217 char *zColname
; /* The computed column name */
4218 char *zToFree
; /* Malloced string that needs to be freed */
4219 Token sColname
; /* Computed column name as a token */
4223 && sqlite3MatchSpanName(pSub
->pEList
->a
[j
].zSpan
, 0, zTName
, 0)==0
4228 /* If a column is marked as 'hidden' (currently only possible
4229 ** for virtual tables), do not include it in the expanded
4232 if( IsHiddenColumn(&pTab
->aCol
[j
]) ){
4233 assert(IsVirtual(pTab
));
4238 if( i
>0 && zTName
==0 ){
4239 if( (pFrom
->jointype
& JT_NATURAL
)!=0
4240 && tableAndColumnIndex(pTabList
, i
, zName
, 0, 0)
4242 /* In a NATURAL join, omit the join columns from the
4243 ** table to the right of the join */
4246 if( sqlite3IdListIndex(pFrom
->pUsing
, zName
)>=0 ){
4247 /* In a join with a USING clause, omit columns in the
4248 ** using clause from the table on the right. */
4252 pRight
= sqlite3Expr(db
, TK_ID
, zName
);
4255 if( longNames
|| pTabList
->nSrc
>1 ){
4257 pLeft
= sqlite3Expr(db
, TK_ID
, zTabName
);
4258 pExpr
= sqlite3PExpr(pParse
, TK_DOT
, pLeft
, pRight
, 0);
4260 pLeft
= sqlite3Expr(db
, TK_ID
, zSchemaName
);
4261 pExpr
= sqlite3PExpr(pParse
, TK_DOT
, pLeft
, pExpr
, 0);
4264 zColname
= sqlite3MPrintf(db
, "%s.%s", zTabName
, zName
);
4270 pNew
= sqlite3ExprListAppend(pParse
, pNew
, pExpr
);
4271 sColname
.z
= zColname
;
4272 sColname
.n
= sqlite3Strlen30(zColname
);
4273 sqlite3ExprListSetName(pParse
, pNew
, &sColname
, 0);
4274 if( pNew
&& (p
->selFlags
& SF_NestedFrom
)!=0 ){
4275 struct ExprList_item
*pX
= &pNew
->a
[pNew
->nExpr
-1];
4277 pX
->zSpan
= sqlite3DbStrDup(db
, pSub
->pEList
->a
[j
].zSpan
);
4278 testcase( pX
->zSpan
==0 );
4280 pX
->zSpan
= sqlite3MPrintf(db
, "%s.%s.%s",
4281 zSchemaName
, zTabName
, zColname
);
4282 testcase( pX
->zSpan
==0 );
4286 sqlite3DbFree(db
, zToFree
);
4291 sqlite3ErrorMsg(pParse
, "no such table: %s", zTName
);
4293 sqlite3ErrorMsg(pParse
, "no tables specified");
4298 sqlite3ExprListDelete(db
, pEList
);
4301 #if SQLITE_MAX_COLUMN
4302 if( p
->pEList
&& p
->pEList
->nExpr
>db
->aLimit
[SQLITE_LIMIT_COLUMN
] ){
4303 sqlite3ErrorMsg(pParse
, "too many columns in result set");
4306 return WRC_Continue
;
4310 ** No-op routine for the parse-tree walker.
4312 ** When this routine is the Walker.xExprCallback then expression trees
4313 ** are walked without any actions being taken at each node. Presumably,
4314 ** when this routine is used for Walker.xExprCallback then
4315 ** Walker.xSelectCallback is set to do something useful for every
4316 ** subquery in the parser tree.
4318 static int exprWalkNoop(Walker
*NotUsed
, Expr
*NotUsed2
){
4319 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
4320 return WRC_Continue
;
4324 ** This routine "expands" a SELECT statement and all of its subqueries.
4325 ** For additional information on what it means to "expand" a SELECT
4326 ** statement, see the comment on the selectExpand worker callback above.
4328 ** Expanding a SELECT statement is the first step in processing a
4329 ** SELECT statement. The SELECT statement must be expanded before
4330 ** name resolution is performed.
4332 ** If anything goes wrong, an error message is written into pParse.
4333 ** The calling function can detect the problem by looking at pParse->nErr
4334 ** and/or pParse->db->mallocFailed.
4336 static void sqlite3SelectExpand(Parse
*pParse
, Select
*pSelect
){
4338 memset(&w
, 0, sizeof(w
));
4339 w
.xExprCallback
= exprWalkNoop
;
4341 if( pParse
->hasCompound
){
4342 w
.xSelectCallback
= convertCompoundSelectToSubquery
;
4343 sqlite3WalkSelect(&w
, pSelect
);
4345 w
.xSelectCallback
= selectExpander
;
4346 w
.xSelectCallback2
= selectPopWith
;
4347 sqlite3WalkSelect(&w
, pSelect
);
4351 #ifndef SQLITE_OMIT_SUBQUERY
4353 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
4356 ** For each FROM-clause subquery, add Column.zType and Column.zColl
4357 ** information to the Table structure that represents the result set
4358 ** of that subquery.
4360 ** The Table structure that represents the result set was constructed
4361 ** by selectExpander() but the type and collation information was omitted
4362 ** at that point because identifiers had not yet been resolved. This
4363 ** routine is called after identifier resolution.
4365 static void selectAddSubqueryTypeInfo(Walker
*pWalker
, Select
*p
){
4369 struct SrcList_item
*pFrom
;
4371 assert( p
->selFlags
& SF_Resolved
);
4372 if( (p
->selFlags
& SF_HasTypeInfo
)==0 ){
4373 p
->selFlags
|= SF_HasTypeInfo
;
4374 pParse
= pWalker
->pParse
;
4376 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
4377 Table
*pTab
= pFrom
->pTab
;
4378 if( ALWAYS(pTab
!=0) && (pTab
->tabFlags
& TF_Ephemeral
)!=0 ){
4379 /* A sub-query in the FROM clause of a SELECT */
4380 Select
*pSel
= pFrom
->pSelect
;
4382 while( pSel
->pPrior
) pSel
= pSel
->pPrior
;
4383 selectAddColumnTypeAndCollation(pParse
, pTab
, pSel
);
4393 ** This routine adds datatype and collating sequence information to
4394 ** the Table structures of all FROM-clause subqueries in a
4395 ** SELECT statement.
4397 ** Use this routine after name resolution.
4399 static void sqlite3SelectAddTypeInfo(Parse
*pParse
, Select
*pSelect
){
4400 #ifndef SQLITE_OMIT_SUBQUERY
4402 memset(&w
, 0, sizeof(w
));
4403 w
.xSelectCallback2
= selectAddSubqueryTypeInfo
;
4404 w
.xExprCallback
= exprWalkNoop
;
4406 sqlite3WalkSelect(&w
, pSelect
);
4412 ** This routine sets up a SELECT statement for processing. The
4413 ** following is accomplished:
4415 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
4416 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
4417 ** * ON and USING clauses are shifted into WHERE statements
4418 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
4419 ** * Identifiers in expression are matched to tables.
4421 ** This routine acts recursively on all subqueries within the SELECT.
4423 void sqlite3SelectPrep(
4424 Parse
*pParse
, /* The parser context */
4425 Select
*p
, /* The SELECT statement being coded. */
4426 NameContext
*pOuterNC
/* Name context for container */
4429 if( NEVER(p
==0) ) return;
4431 if( db
->mallocFailed
) return;
4432 if( p
->selFlags
& SF_HasTypeInfo
) return;
4433 sqlite3SelectExpand(pParse
, p
);
4434 if( pParse
->nErr
|| db
->mallocFailed
) return;
4435 sqlite3ResolveSelectNames(pParse
, p
, pOuterNC
);
4436 if( pParse
->nErr
|| db
->mallocFailed
) return;
4437 sqlite3SelectAddTypeInfo(pParse
, p
);
4441 ** Reset the aggregate accumulator.
4443 ** The aggregate accumulator is a set of memory cells that hold
4444 ** intermediate results while calculating an aggregate. This
4445 ** routine generates code that stores NULLs in all of those memory
4448 static void resetAccumulator(Parse
*pParse
, AggInfo
*pAggInfo
){
4449 Vdbe
*v
= pParse
->pVdbe
;
4451 struct AggInfo_func
*pFunc
;
4452 int nReg
= pAggInfo
->nFunc
+ pAggInfo
->nColumn
;
4453 if( nReg
==0 ) return;
4455 /* Verify that all AggInfo registers are within the range specified by
4456 ** AggInfo.mnReg..AggInfo.mxReg */
4457 assert( nReg
==pAggInfo
->mxReg
-pAggInfo
->mnReg
+1 );
4458 for(i
=0; i
<pAggInfo
->nColumn
; i
++){
4459 assert( pAggInfo
->aCol
[i
].iMem
>=pAggInfo
->mnReg
4460 && pAggInfo
->aCol
[i
].iMem
<=pAggInfo
->mxReg
);
4462 for(i
=0; i
<pAggInfo
->nFunc
; i
++){
4463 assert( pAggInfo
->aFunc
[i
].iMem
>=pAggInfo
->mnReg
4464 && pAggInfo
->aFunc
[i
].iMem
<=pAggInfo
->mxReg
);
4467 sqlite3VdbeAddOp3(v
, OP_Null
, 0, pAggInfo
->mnReg
, pAggInfo
->mxReg
);
4468 for(pFunc
=pAggInfo
->aFunc
, i
=0; i
<pAggInfo
->nFunc
; i
++, pFunc
++){
4469 if( pFunc
->iDistinct
>=0 ){
4470 Expr
*pE
= pFunc
->pExpr
;
4471 assert( !ExprHasProperty(pE
, EP_xIsSelect
) );
4472 if( pE
->x
.pList
==0 || pE
->x
.pList
->nExpr
!=1 ){
4473 sqlite3ErrorMsg(pParse
, "DISTINCT aggregates must have exactly one "
4475 pFunc
->iDistinct
= -1;
4477 KeyInfo
*pKeyInfo
= keyInfoFromExprList(pParse
, pE
->x
.pList
, 0, 0);
4478 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
, pFunc
->iDistinct
, 0, 0,
4479 (char*)pKeyInfo
, P4_KEYINFO
);
4486 ** Invoke the OP_AggFinalize opcode for every aggregate function
4487 ** in the AggInfo structure.
4489 static void finalizeAggFunctions(Parse
*pParse
, AggInfo
*pAggInfo
){
4490 Vdbe
*v
= pParse
->pVdbe
;
4492 struct AggInfo_func
*pF
;
4493 for(i
=0, pF
=pAggInfo
->aFunc
; i
<pAggInfo
->nFunc
; i
++, pF
++){
4494 ExprList
*pList
= pF
->pExpr
->x
.pList
;
4495 assert( !ExprHasProperty(pF
->pExpr
, EP_xIsSelect
) );
4496 sqlite3VdbeAddOp4(v
, OP_AggFinal
, pF
->iMem
, pList
? pList
->nExpr
: 0, 0,
4497 (void*)pF
->pFunc
, P4_FUNCDEF
);
4502 ** Update the accumulator memory cells for an aggregate based on
4503 ** the current cursor position.
4505 static void updateAccumulator(Parse
*pParse
, AggInfo
*pAggInfo
){
4506 Vdbe
*v
= pParse
->pVdbe
;
4509 int addrHitTest
= 0;
4510 struct AggInfo_func
*pF
;
4511 struct AggInfo_col
*pC
;
4513 pAggInfo
->directMode
= 1;
4514 for(i
=0, pF
=pAggInfo
->aFunc
; i
<pAggInfo
->nFunc
; i
++, pF
++){
4518 ExprList
*pList
= pF
->pExpr
->x
.pList
;
4519 assert( !ExprHasProperty(pF
->pExpr
, EP_xIsSelect
) );
4521 nArg
= pList
->nExpr
;
4522 regAgg
= sqlite3GetTempRange(pParse
, nArg
);
4523 sqlite3ExprCodeExprList(pParse
, pList
, regAgg
, SQLITE_ECEL_DUP
);
4528 if( pF
->iDistinct
>=0 ){
4529 addrNext
= sqlite3VdbeMakeLabel(v
);
4531 codeDistinct(pParse
, pF
->iDistinct
, addrNext
, 1, regAgg
);
4533 if( pF
->pFunc
->funcFlags
& SQLITE_FUNC_NEEDCOLL
){
4535 struct ExprList_item
*pItem
;
4537 assert( pList
!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
4538 for(j
=0, pItem
=pList
->a
; !pColl
&& j
<nArg
; j
++, pItem
++){
4539 pColl
= sqlite3ExprCollSeq(pParse
, pItem
->pExpr
);
4542 pColl
= pParse
->db
->pDfltColl
;
4544 if( regHit
==0 && pAggInfo
->nAccumulator
) regHit
= ++pParse
->nMem
;
4545 sqlite3VdbeAddOp4(v
, OP_CollSeq
, regHit
, 0, 0, (char *)pColl
, P4_COLLSEQ
);
4547 sqlite3VdbeAddOp4(v
, OP_AggStep
, 0, regAgg
, pF
->iMem
,
4548 (void*)pF
->pFunc
, P4_FUNCDEF
);
4549 sqlite3VdbeChangeP5(v
, (u8
)nArg
);
4550 sqlite3ExprCacheAffinityChange(pParse
, regAgg
, nArg
);
4551 sqlite3ReleaseTempRange(pParse
, regAgg
, nArg
);
4553 sqlite3VdbeResolveLabel(v
, addrNext
);
4554 sqlite3ExprCacheClear(pParse
);
4558 /* Before populating the accumulator registers, clear the column cache.
4559 ** Otherwise, if any of the required column values are already present
4560 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value
4561 ** to pC->iMem. But by the time the value is used, the original register
4562 ** may have been used, invalidating the underlying buffer holding the
4563 ** text or blob value. See ticket [883034dcb5].
4565 ** Another solution would be to change the OP_SCopy used to copy cached
4566 ** values to an OP_Copy.
4569 addrHitTest
= sqlite3VdbeAddOp1(v
, OP_If
, regHit
); VdbeCoverage(v
);
4571 sqlite3ExprCacheClear(pParse
);
4572 for(i
=0, pC
=pAggInfo
->aCol
; i
<pAggInfo
->nAccumulator
; i
++, pC
++){
4573 sqlite3ExprCode(pParse
, pC
->pExpr
, pC
->iMem
);
4575 pAggInfo
->directMode
= 0;
4576 sqlite3ExprCacheClear(pParse
);
4578 sqlite3VdbeJumpHere(v
, addrHitTest
);
4583 ** Add a single OP_Explain instruction to the VDBE to explain a simple
4584 ** count(*) query ("SELECT count(*) FROM pTab").
4586 #ifndef SQLITE_OMIT_EXPLAIN
4587 static void explainSimpleCount(
4588 Parse
*pParse
, /* Parse context */
4589 Table
*pTab
, /* Table being queried */
4590 Index
*pIdx
/* Index used to optimize scan, or NULL */
4592 if( pParse
->explain
==2 ){
4593 int bCover
= (pIdx
!=0 && (HasRowid(pTab
) || !IsPrimaryKeyIndex(pIdx
)));
4594 char *zEqp
= sqlite3MPrintf(pParse
->db
, "SCAN TABLE %s%s%s",
4596 bCover
? " USING COVERING INDEX " : "",
4597 bCover
? pIdx
->zName
: ""
4600 pParse
->pVdbe
, OP_Explain
, pParse
->iSelectId
, 0, 0, zEqp
, P4_DYNAMIC
4605 # define explainSimpleCount(a,b,c)
4609 ** Generate code for the SELECT statement given in the p argument.
4611 ** The results are returned according to the SelectDest structure.
4612 ** See comments in sqliteInt.h for further information.
4614 ** This routine returns the number of errors. If any errors are
4615 ** encountered, then an appropriate error message is left in
4618 ** This routine does NOT free the Select structure passed in. The
4619 ** calling function needs to do that.
4622 Parse
*pParse
, /* The parser context */
4623 Select
*p
, /* The SELECT statement being coded. */
4624 SelectDest
*pDest
/* What to do with the query results */
4626 int i
, j
; /* Loop counters */
4627 WhereInfo
*pWInfo
; /* Return from sqlite3WhereBegin() */
4628 Vdbe
*v
; /* The virtual machine under construction */
4629 int isAgg
; /* True for select lists like "count(*)" */
4630 ExprList
*pEList
; /* List of columns to extract. */
4631 SrcList
*pTabList
; /* List of tables to select from */
4632 Expr
*pWhere
; /* The WHERE clause. May be NULL */
4633 ExprList
*pGroupBy
; /* The GROUP BY clause. May be NULL */
4634 Expr
*pHaving
; /* The HAVING clause. May be NULL */
4635 int rc
= 1; /* Value to return from this function */
4636 DistinctCtx sDistinct
; /* Info on how to code the DISTINCT keyword */
4637 SortCtx sSort
; /* Info on how to code the ORDER BY clause */
4638 AggInfo sAggInfo
; /* Information used by aggregate queries */
4639 int iEnd
; /* Address of the end of the query */
4640 sqlite3
*db
; /* The database connection */
4642 #ifndef SQLITE_OMIT_EXPLAIN
4643 int iRestoreSelectId
= pParse
->iSelectId
;
4644 pParse
->iSelectId
= pParse
->iNextSelectId
++;
4648 if( p
==0 || db
->mallocFailed
|| pParse
->nErr
){
4651 if( sqlite3AuthCheck(pParse
, SQLITE_SELECT
, 0, 0, 0) ) return 1;
4652 memset(&sAggInfo
, 0, sizeof(sAggInfo
));
4653 #if SELECTTRACE_ENABLED
4654 pParse
->nSelectIndent
++;
4655 SELECTTRACE(1,pParse
,p
, ("begin processing:\n"));
4656 if( sqlite3SelectTrace
& 0x100 ){
4657 sqlite3TreeViewSelect(0, p
, 0);
4661 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_DistFifo
);
4662 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_Fifo
);
4663 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_DistQueue
);
4664 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_Queue
);
4665 if( IgnorableOrderby(pDest
) ){
4666 assert(pDest
->eDest
==SRT_Exists
|| pDest
->eDest
==SRT_Union
||
4667 pDest
->eDest
==SRT_Except
|| pDest
->eDest
==SRT_Discard
||
4668 pDest
->eDest
==SRT_Queue
|| pDest
->eDest
==SRT_DistFifo
||
4669 pDest
->eDest
==SRT_DistQueue
|| pDest
->eDest
==SRT_Fifo
);
4670 /* If ORDER BY makes no difference in the output then neither does
4671 ** DISTINCT so it can be removed too. */
4672 sqlite3ExprListDelete(db
, p
->pOrderBy
);
4674 p
->selFlags
&= ~SF_Distinct
;
4676 sqlite3SelectPrep(pParse
, p
, 0);
4677 memset(&sSort
, 0, sizeof(sSort
));
4678 sSort
.pOrderBy
= p
->pOrderBy
;
4681 if( pParse
->nErr
|| db
->mallocFailed
){
4684 isAgg
= (p
->selFlags
& SF_Aggregate
)!=0;
4685 assert( pEList
!=0 );
4687 /* Begin generating code.
4689 v
= sqlite3GetVdbe(pParse
);
4690 if( v
==0 ) goto select_end
;
4692 /* If writing to memory or generating a set
4693 ** only a single column may be output.
4695 #ifndef SQLITE_OMIT_SUBQUERY
4696 if( checkForMultiColumnSelectError(pParse
, pDest
, pEList
->nExpr
) ){
4701 /* Generate code for all sub-queries in the FROM clause
4703 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4704 for(i
=0; !p
->pPrior
&& i
<pTabList
->nSrc
; i
++){
4705 struct SrcList_item
*pItem
= &pTabList
->a
[i
];
4707 Select
*pSub
= pItem
->pSelect
;
4710 if( pSub
==0 ) continue;
4712 /* Sometimes the code for a subquery will be generated more than
4713 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN,
4714 ** for example. In that case, do not regenerate the code to manifest
4715 ** a view or the co-routine to implement a view. The first instance
4716 ** is sufficient, though the subroutine to manifest the view does need
4717 ** to be invoked again. */
4718 if( pItem
->addrFillSub
){
4719 if( pItem
->viaCoroutine
==0 ){
4720 sqlite3VdbeAddOp2(v
, OP_Gosub
, pItem
->regReturn
, pItem
->addrFillSub
);
4725 /* Increment Parse.nHeight by the height of the largest expression
4726 ** tree referred to by this, the parent select. The child select
4727 ** may contain expression trees of at most
4728 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
4729 ** more conservative than necessary, but much easier than enforcing
4732 pParse
->nHeight
+= sqlite3SelectExprHeight(p
);
4734 isAggSub
= (pSub
->selFlags
& SF_Aggregate
)!=0;
4735 if( flattenSubquery(pParse
, p
, i
, isAgg
, isAggSub
) ){
4736 /* This subquery can be absorbed into its parent. */
4739 p
->selFlags
|= SF_Aggregate
;
4742 }else if( pTabList
->nSrc
==1
4743 && OptimizationEnabled(db
, SQLITE_SubqCoroutine
)
4745 /* Implement a co-routine that will return a single row of the result
4746 ** set on each invocation.
4748 int addrTop
= sqlite3VdbeCurrentAddr(v
)+1;
4749 pItem
->regReturn
= ++pParse
->nMem
;
4750 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, pItem
->regReturn
, 0, addrTop
);
4751 VdbeComment((v
, "%s", pItem
->pTab
->zName
));
4752 pItem
->addrFillSub
= addrTop
;
4753 sqlite3SelectDestInit(&dest
, SRT_Coroutine
, pItem
->regReturn
);
4754 explainSetInteger(pItem
->iSelectId
, (u8
)pParse
->iNextSelectId
);
4755 sqlite3Select(pParse
, pSub
, &dest
);
4756 pItem
->pTab
->nRowLogEst
= sqlite3LogEst(pSub
->nSelectRow
);
4757 pItem
->viaCoroutine
= 1;
4758 pItem
->regResult
= dest
.iSdst
;
4759 sqlite3VdbeAddOp1(v
, OP_EndCoroutine
, pItem
->regReturn
);
4760 sqlite3VdbeJumpHere(v
, addrTop
-1);
4761 sqlite3ClearTempRegCache(pParse
);
4763 /* Generate a subroutine that will fill an ephemeral table with
4764 ** the content of this subquery. pItem->addrFillSub will point
4765 ** to the address of the generated subroutine. pItem->regReturn
4766 ** is a register allocated to hold the subroutine return address
4771 assert( pItem
->addrFillSub
==0 );
4772 pItem
->regReturn
= ++pParse
->nMem
;
4773 topAddr
= sqlite3VdbeAddOp2(v
, OP_Integer
, 0, pItem
->regReturn
);
4774 pItem
->addrFillSub
= topAddr
+1;
4775 if( pItem
->isCorrelated
==0 ){
4776 /* If the subquery is not correlated and if we are not inside of
4777 ** a trigger, then we only need to compute the value of the subquery
4779 onceAddr
= sqlite3CodeOnce(pParse
); VdbeCoverage(v
);
4780 VdbeComment((v
, "materialize \"%s\"", pItem
->pTab
->zName
));
4782 VdbeNoopComment((v
, "materialize \"%s\"", pItem
->pTab
->zName
));
4784 sqlite3SelectDestInit(&dest
, SRT_EphemTab
, pItem
->iCursor
);
4785 explainSetInteger(pItem
->iSelectId
, (u8
)pParse
->iNextSelectId
);
4786 sqlite3Select(pParse
, pSub
, &dest
);
4787 pItem
->pTab
->nRowLogEst
= sqlite3LogEst(pSub
->nSelectRow
);
4788 if( onceAddr
) sqlite3VdbeJumpHere(v
, onceAddr
);
4789 retAddr
= sqlite3VdbeAddOp1(v
, OP_Return
, pItem
->regReturn
);
4790 VdbeComment((v
, "end %s", pItem
->pTab
->zName
));
4791 sqlite3VdbeChangeP1(v
, topAddr
, retAddr
);
4792 sqlite3ClearTempRegCache(pParse
);
4794 if( /*pParse->nErr ||*/ db
->mallocFailed
){
4797 pParse
->nHeight
-= sqlite3SelectExprHeight(p
);
4799 if( !IgnorableOrderby(pDest
) ){
4800 sSort
.pOrderBy
= p
->pOrderBy
;
4806 pGroupBy
= p
->pGroupBy
;
4807 pHaving
= p
->pHaving
;
4808 sDistinct
.isTnct
= (p
->selFlags
& SF_Distinct
)!=0;
4810 #ifndef SQLITE_OMIT_COMPOUND_SELECT
4811 /* If there is are a sequence of queries, do the earlier ones first.
4814 rc
= multiSelect(pParse
, p
, pDest
);
4815 explainSetInteger(pParse
->iSelectId
, iRestoreSelectId
);
4816 #if SELECTTRACE_ENABLED
4817 SELECTTRACE(1,pParse
,p
,("end compound-select processing\n"));
4818 pParse
->nSelectIndent
--;
4824 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
4825 ** if the select-list is the same as the ORDER BY list, then this query
4826 ** can be rewritten as a GROUP BY. In other words, this:
4828 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
4830 ** is transformed to:
4832 ** SELECT xyz FROM ... GROUP BY xyz
4834 ** The second form is preferred as a single index (or temp-table) may be
4835 ** used for both the ORDER BY and DISTINCT processing. As originally
4836 ** written the query must use a temp-table for at least one of the ORDER
4837 ** BY and DISTINCT, and an index or separate temp-table for the other.
4839 if( (p
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Distinct
4840 && sqlite3ExprListCompare(sSort
.pOrderBy
, p
->pEList
, -1)==0
4842 p
->selFlags
&= ~SF_Distinct
;
4843 p
->pGroupBy
= sqlite3ExprListDup(db
, p
->pEList
, 0);
4844 pGroupBy
= p
->pGroupBy
;
4846 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
4847 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
4848 ** original setting of the SF_Distinct flag, not the current setting */
4849 assert( sDistinct
.isTnct
);
4852 /* If there is an ORDER BY clause, then this sorting
4853 ** index might end up being unused if the data can be
4854 ** extracted in pre-sorted order. If that is the case, then the
4855 ** OP_OpenEphemeral instruction will be changed to an OP_Noop once
4856 ** we figure out that the sorting index is not needed. The addrSortIndex
4857 ** variable is used to facilitate that change.
4859 if( sSort
.pOrderBy
){
4861 pKeyInfo
= keyInfoFromExprList(pParse
, sSort
.pOrderBy
, 0, 0);
4862 sSort
.iECursor
= pParse
->nTab
++;
4863 sSort
.addrSortIndex
=
4864 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
4865 sSort
.iECursor
, sSort
.pOrderBy
->nExpr
+1+pEList
->nExpr
, 0,
4866 (char*)pKeyInfo
, P4_KEYINFO
4869 sSort
.addrSortIndex
= -1;
4872 /* If the output is destined for a temporary table, open that table.
4874 if( pDest
->eDest
==SRT_EphemTab
){
4875 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, pDest
->iSDParm
, pEList
->nExpr
);
4880 iEnd
= sqlite3VdbeMakeLabel(v
);
4881 p
->nSelectRow
= LARGEST_INT64
;
4882 computeLimitRegisters(pParse
, p
, iEnd
);
4883 if( p
->iLimit
==0 && sSort
.addrSortIndex
>=0 ){
4884 sqlite3VdbeGetOp(v
, sSort
.addrSortIndex
)->opcode
= OP_SorterOpen
;
4885 sSort
.sortFlags
|= SORTFLAG_UseSorter
;
4888 /* Open a virtual index to use for the distinct set.
4890 if( p
->selFlags
& SF_Distinct
){
4891 sDistinct
.tabTnct
= pParse
->nTab
++;
4892 sDistinct
.addrTnct
= sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
4893 sDistinct
.tabTnct
, 0, 0,
4894 (char*)keyInfoFromExprList(pParse
, p
->pEList
,0,0),
4896 sqlite3VdbeChangeP5(v
, BTREE_UNORDERED
);
4897 sDistinct
.eTnctType
= WHERE_DISTINCT_UNORDERED
;
4899 sDistinct
.eTnctType
= WHERE_DISTINCT_NOOP
;
4902 if( !isAgg
&& pGroupBy
==0 ){
4903 /* No aggregate functions and no GROUP BY clause */
4904 u16 wctrlFlags
= (sDistinct
.isTnct
? WHERE_WANT_DISTINCT
: 0);
4906 /* Begin the database scan. */
4907 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, sSort
.pOrderBy
,
4908 p
->pEList
, wctrlFlags
, 0);
4909 if( pWInfo
==0 ) goto select_end
;
4910 if( sqlite3WhereOutputRowCount(pWInfo
) < p
->nSelectRow
){
4911 p
->nSelectRow
= sqlite3WhereOutputRowCount(pWInfo
);
4913 if( sDistinct
.isTnct
&& sqlite3WhereIsDistinct(pWInfo
) ){
4914 sDistinct
.eTnctType
= sqlite3WhereIsDistinct(pWInfo
);
4916 if( sSort
.pOrderBy
){
4917 sSort
.nOBSat
= sqlite3WhereIsOrdered(pWInfo
);
4918 if( sSort
.nOBSat
==sSort
.pOrderBy
->nExpr
){
4923 /* If sorting index that was created by a prior OP_OpenEphemeral
4924 ** instruction ended up not being needed, then change the OP_OpenEphemeral
4927 if( sSort
.addrSortIndex
>=0 && sSort
.pOrderBy
==0 ){
4928 sqlite3VdbeChangeToNoop(v
, sSort
.addrSortIndex
);
4931 /* Use the standard inner loop. */
4932 selectInnerLoop(pParse
, p
, pEList
, -1, &sSort
, &sDistinct
, pDest
,
4933 sqlite3WhereContinueLabel(pWInfo
),
4934 sqlite3WhereBreakLabel(pWInfo
));
4936 /* End the database scan loop.
4938 sqlite3WhereEnd(pWInfo
);
4940 /* This case when there exist aggregate functions or a GROUP BY clause
4942 NameContext sNC
; /* Name context for processing aggregate information */
4943 int iAMem
; /* First Mem address for storing current GROUP BY */
4944 int iBMem
; /* First Mem address for previous GROUP BY */
4945 int iUseFlag
; /* Mem address holding flag indicating that at least
4946 ** one row of the input to the aggregator has been
4948 int iAbortFlag
; /* Mem address which causes query abort if positive */
4949 int groupBySort
; /* Rows come from source in GROUP BY order */
4950 int addrEnd
; /* End of processing for this SELECT */
4951 int sortPTab
= 0; /* Pseudotable used to decode sorting results */
4952 int sortOut
= 0; /* Output register from the sorter */
4953 int orderByGrp
= 0; /* True if the GROUP BY and ORDER BY are the same */
4955 /* Remove any and all aliases between the result set and the
4959 int k
; /* Loop counter */
4960 struct ExprList_item
*pItem
; /* For looping over expression in a list */
4962 for(k
=p
->pEList
->nExpr
, pItem
=p
->pEList
->a
; k
>0; k
--, pItem
++){
4963 pItem
->u
.x
.iAlias
= 0;
4965 for(k
=pGroupBy
->nExpr
, pItem
=pGroupBy
->a
; k
>0; k
--, pItem
++){
4966 pItem
->u
.x
.iAlias
= 0;
4968 if( p
->nSelectRow
>100 ) p
->nSelectRow
= 100;
4974 /* If there is both a GROUP BY and an ORDER BY clause and they are
4975 ** identical, then it may be possible to disable the ORDER BY clause
4976 ** on the grounds that the GROUP BY will cause elements to come out
4977 ** in the correct order. It also may not - the GROUP BY may use a
4978 ** database index that causes rows to be grouped together as required
4979 ** but not actually sorted. Either way, record the fact that the
4980 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
4982 if( sqlite3ExprListCompare(pGroupBy
, sSort
.pOrderBy
, -1)==0 ){
4986 /* Create a label to jump to when we want to abort the query */
4987 addrEnd
= sqlite3VdbeMakeLabel(v
);
4989 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
4990 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
4991 ** SELECT statement.
4993 memset(&sNC
, 0, sizeof(sNC
));
4994 sNC
.pParse
= pParse
;
4995 sNC
.pSrcList
= pTabList
;
4996 sNC
.pAggInfo
= &sAggInfo
;
4997 sAggInfo
.mnReg
= pParse
->nMem
+1;
4998 sAggInfo
.nSortingColumn
= pGroupBy
? pGroupBy
->nExpr
: 0;
4999 sAggInfo
.pGroupBy
= pGroupBy
;
5000 sqlite3ExprAnalyzeAggList(&sNC
, pEList
);
5001 sqlite3ExprAnalyzeAggList(&sNC
, sSort
.pOrderBy
);
5003 sqlite3ExprAnalyzeAggregates(&sNC
, pHaving
);
5005 sAggInfo
.nAccumulator
= sAggInfo
.nColumn
;
5006 for(i
=0; i
<sAggInfo
.nFunc
; i
++){
5007 assert( !ExprHasProperty(sAggInfo
.aFunc
[i
].pExpr
, EP_xIsSelect
) );
5008 sNC
.ncFlags
|= NC_InAggFunc
;
5009 sqlite3ExprAnalyzeAggList(&sNC
, sAggInfo
.aFunc
[i
].pExpr
->x
.pList
);
5010 sNC
.ncFlags
&= ~NC_InAggFunc
;
5012 sAggInfo
.mxReg
= pParse
->nMem
;
5013 if( db
->mallocFailed
) goto select_end
;
5015 /* Processing for aggregates with GROUP BY is very different and
5016 ** much more complex than aggregates without a GROUP BY.
5019 KeyInfo
*pKeyInfo
; /* Keying information for the group by clause */
5020 int j1
; /* A-vs-B comparision jump */
5021 int addrOutputRow
; /* Start of subroutine that outputs a result row */
5022 int regOutputRow
; /* Return address register for output subroutine */
5023 int addrSetAbort
; /* Set the abort flag and return */
5024 int addrTopOfLoop
; /* Top of the input loop */
5025 int addrSortingIdx
; /* The OP_OpenEphemeral for the sorting index */
5026 int addrReset
; /* Subroutine for resetting the accumulator */
5027 int regReset
; /* Return address register for reset subroutine */
5029 /* If there is a GROUP BY clause we might need a sorting index to
5030 ** implement it. Allocate that sorting index now. If it turns out
5031 ** that we do not need it after all, the OP_SorterOpen instruction
5032 ** will be converted into a Noop.
5034 sAggInfo
.sortingIdx
= pParse
->nTab
++;
5035 pKeyInfo
= keyInfoFromExprList(pParse
, pGroupBy
, 0, 0);
5036 addrSortingIdx
= sqlite3VdbeAddOp4(v
, OP_SorterOpen
,
5037 sAggInfo
.sortingIdx
, sAggInfo
.nSortingColumn
,
5038 0, (char*)pKeyInfo
, P4_KEYINFO
);
5040 /* Initialize memory locations used by GROUP BY aggregate processing
5042 iUseFlag
= ++pParse
->nMem
;
5043 iAbortFlag
= ++pParse
->nMem
;
5044 regOutputRow
= ++pParse
->nMem
;
5045 addrOutputRow
= sqlite3VdbeMakeLabel(v
);
5046 regReset
= ++pParse
->nMem
;
5047 addrReset
= sqlite3VdbeMakeLabel(v
);
5048 iAMem
= pParse
->nMem
+ 1;
5049 pParse
->nMem
+= pGroupBy
->nExpr
;
5050 iBMem
= pParse
->nMem
+ 1;
5051 pParse
->nMem
+= pGroupBy
->nExpr
;
5052 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, iAbortFlag
);
5053 VdbeComment((v
, "clear abort flag"));
5054 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, iUseFlag
);
5055 VdbeComment((v
, "indicate accumulator empty"));
5056 sqlite3VdbeAddOp3(v
, OP_Null
, 0, iAMem
, iAMem
+pGroupBy
->nExpr
-1);
5058 /* Begin a loop that will extract all source rows in GROUP BY order.
5059 ** This might involve two separate loops with an OP_Sort in between, or
5060 ** it might be a single loop that uses an index to extract information
5061 ** in the right order to begin with.
5063 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReset
, addrReset
);
5064 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, pGroupBy
, 0,
5065 WHERE_GROUPBY
| (orderByGrp
? WHERE_SORTBYGROUP
: 0), 0
5067 if( pWInfo
==0 ) goto select_end
;
5068 if( sqlite3WhereIsOrdered(pWInfo
)==pGroupBy
->nExpr
){
5069 /* The optimizer is able to deliver rows in group by order so
5070 ** we do not have to sort. The OP_OpenEphemeral table will be
5071 ** cancelled later because we still need to use the pKeyInfo
5075 /* Rows are coming out in undetermined order. We have to push
5076 ** each row into a sorting index, terminate the first loop,
5077 ** then loop over the sorting index in order to get the output
5085 explainTempTable(pParse
,
5086 (sDistinct
.isTnct
&& (p
->selFlags
&SF_Distinct
)==0) ?
5087 "DISTINCT" : "GROUP BY");
5090 nGroupBy
= pGroupBy
->nExpr
;
5093 for(i
=0; i
<sAggInfo
.nColumn
; i
++){
5094 if( sAggInfo
.aCol
[i
].iSorterColumn
>=j
){
5099 regBase
= sqlite3GetTempRange(pParse
, nCol
);
5100 sqlite3ExprCacheClear(pParse
);
5101 sqlite3ExprCodeExprList(pParse
, pGroupBy
, regBase
, 0);
5103 for(i
=0; i
<sAggInfo
.nColumn
; i
++){
5104 struct AggInfo_col
*pCol
= &sAggInfo
.aCol
[i
];
5105 if( pCol
->iSorterColumn
>=j
){
5106 int r1
= j
+ regBase
;
5109 r2
= sqlite3ExprCodeGetColumn(pParse
,
5110 pCol
->pTab
, pCol
->iColumn
, pCol
->iTable
, r1
, 0);
5112 sqlite3VdbeAddOp2(v
, OP_SCopy
, r2
, r1
);
5117 regRecord
= sqlite3GetTempReg(pParse
);
5118 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regBase
, nCol
, regRecord
);
5119 sqlite3VdbeAddOp2(v
, OP_SorterInsert
, sAggInfo
.sortingIdx
, regRecord
);
5120 sqlite3ReleaseTempReg(pParse
, regRecord
);
5121 sqlite3ReleaseTempRange(pParse
, regBase
, nCol
);
5122 sqlite3WhereEnd(pWInfo
);
5123 sAggInfo
.sortingIdxPTab
= sortPTab
= pParse
->nTab
++;
5124 sortOut
= sqlite3GetTempReg(pParse
);
5125 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, sortPTab
, sortOut
, nCol
);
5126 sqlite3VdbeAddOp2(v
, OP_SorterSort
, sAggInfo
.sortingIdx
, addrEnd
);
5127 VdbeComment((v
, "GROUP BY sort")); VdbeCoverage(v
);
5128 sAggInfo
.useSortingIdx
= 1;
5129 sqlite3ExprCacheClear(pParse
);
5133 /* If the index or temporary table used by the GROUP BY sort
5134 ** will naturally deliver rows in the order required by the ORDER BY
5135 ** clause, cancel the ephemeral table open coded earlier.
5137 ** This is an optimization - the correct answer should result regardless.
5138 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
5139 ** disable this optimization for testing purposes. */
5140 if( orderByGrp
&& OptimizationEnabled(db
, SQLITE_GroupByOrder
)
5141 && (groupBySort
|| sqlite3WhereIsSorted(pWInfo
))
5144 sqlite3VdbeChangeToNoop(v
, sSort
.addrSortIndex
);
5147 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
5148 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
5149 ** Then compare the current GROUP BY terms against the GROUP BY terms
5150 ** from the previous row currently stored in a0, a1, a2...
5152 addrTopOfLoop
= sqlite3VdbeCurrentAddr(v
);
5153 sqlite3ExprCacheClear(pParse
);
5155 sqlite3VdbeAddOp3(v
, OP_SorterData
, sAggInfo
.sortingIdx
, sortOut
,sortPTab
);
5157 for(j
=0; j
<pGroupBy
->nExpr
; j
++){
5159 sqlite3VdbeAddOp3(v
, OP_Column
, sortPTab
, j
, iBMem
+j
);
5161 sAggInfo
.directMode
= 1;
5162 sqlite3ExprCode(pParse
, pGroupBy
->a
[j
].pExpr
, iBMem
+j
);
5165 sqlite3VdbeAddOp4(v
, OP_Compare
, iAMem
, iBMem
, pGroupBy
->nExpr
,
5166 (char*)sqlite3KeyInfoRef(pKeyInfo
), P4_KEYINFO
);
5167 j1
= sqlite3VdbeCurrentAddr(v
);
5168 sqlite3VdbeAddOp3(v
, OP_Jump
, j1
+1, 0, j1
+1); VdbeCoverage(v
);
5170 /* Generate code that runs whenever the GROUP BY changes.
5171 ** Changes in the GROUP BY are detected by the previous code
5172 ** block. If there were no changes, this block is skipped.
5174 ** This code copies current group by terms in b0,b1,b2,...
5175 ** over to a0,a1,a2. It then calls the output subroutine
5176 ** and resets the aggregate accumulator registers in preparation
5177 ** for the next GROUP BY batch.
5179 sqlite3ExprCodeMove(pParse
, iBMem
, iAMem
, pGroupBy
->nExpr
);
5180 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutputRow
, addrOutputRow
);
5181 VdbeComment((v
, "output one row"));
5182 sqlite3VdbeAddOp2(v
, OP_IfPos
, iAbortFlag
, addrEnd
); VdbeCoverage(v
);
5183 VdbeComment((v
, "check abort flag"));
5184 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReset
, addrReset
);
5185 VdbeComment((v
, "reset accumulator"));
5187 /* Update the aggregate accumulators based on the content of
5190 sqlite3VdbeJumpHere(v
, j1
);
5191 updateAccumulator(pParse
, &sAggInfo
);
5192 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iUseFlag
);
5193 VdbeComment((v
, "indicate data in accumulator"));
5198 sqlite3VdbeAddOp2(v
, OP_SorterNext
, sAggInfo
.sortingIdx
, addrTopOfLoop
);
5201 sqlite3WhereEnd(pWInfo
);
5202 sqlite3VdbeChangeToNoop(v
, addrSortingIdx
);
5205 /* Output the final row of result
5207 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutputRow
, addrOutputRow
);
5208 VdbeComment((v
, "output final row"));
5210 /* Jump over the subroutines
5212 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, addrEnd
);
5214 /* Generate a subroutine that outputs a single row of the result
5215 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
5216 ** is less than or equal to zero, the subroutine is a no-op. If
5217 ** the processing calls for the query to abort, this subroutine
5218 ** increments the iAbortFlag memory location before returning in
5219 ** order to signal the caller to abort.
5221 addrSetAbort
= sqlite3VdbeCurrentAddr(v
);
5222 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iAbortFlag
);
5223 VdbeComment((v
, "set abort flag"));
5224 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
5225 sqlite3VdbeResolveLabel(v
, addrOutputRow
);
5226 addrOutputRow
= sqlite3VdbeCurrentAddr(v
);
5227 sqlite3VdbeAddOp2(v
, OP_IfPos
, iUseFlag
, addrOutputRow
+2); VdbeCoverage(v
);
5228 VdbeComment((v
, "Groupby result generator entry point"));
5229 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
5230 finalizeAggFunctions(pParse
, &sAggInfo
);
5231 sqlite3ExprIfFalse(pParse
, pHaving
, addrOutputRow
+1, SQLITE_JUMPIFNULL
);
5232 selectInnerLoop(pParse
, p
, p
->pEList
, -1, &sSort
,
5234 addrOutputRow
+1, addrSetAbort
);
5235 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
5236 VdbeComment((v
, "end groupby result generator"));
5238 /* Generate a subroutine that will reset the group-by accumulator
5240 sqlite3VdbeResolveLabel(v
, addrReset
);
5241 resetAccumulator(pParse
, &sAggInfo
);
5242 sqlite3VdbeAddOp1(v
, OP_Return
, regReset
);
5244 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
5247 #ifndef SQLITE_OMIT_BTREECOUNT
5249 if( (pTab
= isSimpleCount(p
, &sAggInfo
))!=0 ){
5250 /* If isSimpleCount() returns a pointer to a Table structure, then
5251 ** the SQL statement is of the form:
5253 ** SELECT count(*) FROM <tbl>
5255 ** where the Table structure returned represents table <tbl>.
5257 ** This statement is so common that it is optimized specially. The
5258 ** OP_Count instruction is executed either on the intkey table that
5259 ** contains the data for table <tbl> or on one of its indexes. It
5260 ** is better to execute the op on an index, as indexes are almost
5261 ** always spread across less pages than their corresponding tables.
5263 const int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
5264 const int iCsr
= pParse
->nTab
++; /* Cursor to scan b-tree */
5265 Index
*pIdx
; /* Iterator variable */
5266 KeyInfo
*pKeyInfo
= 0; /* Keyinfo for scanned index */
5267 Index
*pBest
= 0; /* Best index found so far */
5268 int iRoot
= pTab
->tnum
; /* Root page of scanned b-tree */
5270 sqlite3CodeVerifySchema(pParse
, iDb
);
5271 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
5273 /* Search for the index that has the lowest scan cost.
5275 ** (2011-04-15) Do not do a full scan of an unordered index.
5277 ** (2013-10-03) Do not count the entries in a partial index.
5279 ** In practice the KeyInfo structure will not be used. It is only
5280 ** passed to keep OP_OpenRead happy.
5282 if( !HasRowid(pTab
) ) pBest
= sqlite3PrimaryKeyIndex(pTab
);
5283 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
5284 if( pIdx
->bUnordered
==0
5285 && pIdx
->szIdxRow
<pTab
->szTabRow
5286 && pIdx
->pPartIdxWhere
==0
5287 && (!pBest
|| pIdx
->szIdxRow
<pBest
->szIdxRow
)
5293 iRoot
= pBest
->tnum
;
5294 pKeyInfo
= sqlite3KeyInfoOfIndex(pParse
, pBest
);
5297 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
5298 sqlite3VdbeAddOp4Int(v
, OP_OpenRead
, iCsr
, iRoot
, iDb
, 1);
5300 sqlite3VdbeChangeP4(v
, -1, (char *)pKeyInfo
, P4_KEYINFO
);
5302 sqlite3VdbeAddOp2(v
, OP_Count
, iCsr
, sAggInfo
.aFunc
[0].iMem
);
5303 sqlite3VdbeAddOp1(v
, OP_Close
, iCsr
);
5304 explainSimpleCount(pParse
, pTab
, pBest
);
5306 #endif /* SQLITE_OMIT_BTREECOUNT */
5308 /* Check if the query is of one of the following forms:
5310 ** SELECT min(x) FROM ...
5311 ** SELECT max(x) FROM ...
5313 ** If it is, then ask the code in where.c to attempt to sort results
5314 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause.
5315 ** If where.c is able to produce results sorted in this order, then
5316 ** add vdbe code to break out of the processing loop after the
5317 ** first iteration (since the first iteration of the loop is
5318 ** guaranteed to operate on the row with the minimum or maximum
5319 ** value of x, the only row required).
5321 ** A special flag must be passed to sqlite3WhereBegin() to slightly
5322 ** modify behavior as follows:
5324 ** + If the query is a "SELECT min(x)", then the loop coded by
5325 ** where.c should not iterate over any values with a NULL value
5328 ** + The optimizer code in where.c (the thing that decides which
5329 ** index or indices to use) should place a different priority on
5330 ** satisfying the 'ORDER BY' clause than it does in other cases.
5331 ** Refer to code and comments in where.c for details.
5333 ExprList
*pMinMax
= 0;
5334 u8 flag
= WHERE_ORDERBY_NORMAL
;
5336 assert( p
->pGroupBy
==0 );
5338 if( p
->pHaving
==0 ){
5339 flag
= minMaxQuery(&sAggInfo
, &pMinMax
);
5341 assert( flag
==0 || (pMinMax
!=0 && pMinMax
->nExpr
==1) );
5344 pMinMax
= sqlite3ExprListDup(db
, pMinMax
, 0);
5346 if( pMinMax
&& !db
->mallocFailed
){
5347 pMinMax
->a
[0].sortOrder
= flag
!=WHERE_ORDERBY_MIN
?1:0;
5348 pMinMax
->a
[0].pExpr
->op
= TK_COLUMN
;
5352 /* This case runs if the aggregate has no GROUP BY clause. The
5353 ** processing is much simpler since there is only a single row
5356 resetAccumulator(pParse
, &sAggInfo
);
5357 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, pMinMax
,0,flag
,0);
5359 sqlite3ExprListDelete(db
, pDel
);
5362 updateAccumulator(pParse
, &sAggInfo
);
5363 assert( pMinMax
==0 || pMinMax
->nExpr
==1 );
5364 if( sqlite3WhereIsOrdered(pWInfo
)>0 ){
5365 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, sqlite3WhereBreakLabel(pWInfo
));
5366 VdbeComment((v
, "%s() by index",
5367 (flag
==WHERE_ORDERBY_MIN
?"min":"max")));
5369 sqlite3WhereEnd(pWInfo
);
5370 finalizeAggFunctions(pParse
, &sAggInfo
);
5374 sqlite3ExprIfFalse(pParse
, pHaving
, addrEnd
, SQLITE_JUMPIFNULL
);
5375 selectInnerLoop(pParse
, p
, p
->pEList
, -1, 0, 0,
5376 pDest
, addrEnd
, addrEnd
);
5377 sqlite3ExprListDelete(db
, pDel
);
5379 sqlite3VdbeResolveLabel(v
, addrEnd
);
5381 } /* endif aggregate query */
5383 if( sDistinct
.eTnctType
==WHERE_DISTINCT_UNORDERED
){
5384 explainTempTable(pParse
, "DISTINCT");
5387 /* If there is an ORDER BY clause, then we need to sort the results
5388 ** and send them to the callback one by one.
5390 if( sSort
.pOrderBy
){
5391 explainTempTable(pParse
, sSort
.nOBSat
>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
5392 generateSortTail(pParse
, p
, &sSort
, pEList
->nExpr
, pDest
);
5395 /* Jump here to skip this query
5397 sqlite3VdbeResolveLabel(v
, iEnd
);
5399 /* The SELECT was successfully coded. Set the return code to 0
5400 ** to indicate no errors.
5404 /* Control jumps to here if an error is encountered above, or upon
5405 ** successful coding of the SELECT.
5408 explainSetInteger(pParse
->iSelectId
, iRestoreSelectId
);
5410 /* Identify column names if results of the SELECT are to be output.
5412 if( rc
==SQLITE_OK
&& pDest
->eDest
==SRT_Output
){
5413 generateColumnNames(pParse
, pTabList
, pEList
);
5416 sqlite3DbFree(db
, sAggInfo
.aCol
);
5417 sqlite3DbFree(db
, sAggInfo
.aFunc
);
5418 #if SELECTTRACE_ENABLED
5419 SELECTTRACE(1,pParse
,p
,("end processing\n"));
5420 pParse
->nSelectIndent
--;
5427 ** Generate a human-readable description of a the Select object.
5429 void sqlite3TreeViewSelect(TreeView
*pView
, const Select
*p
, u8 moreToFollow
){
5431 pView
= sqlite3TreeViewPush(pView
, moreToFollow
);
5432 sqlite3TreeViewLine(pView
, "SELECT%s%s",
5433 ((p
->selFlags
& SF_Distinct
) ? " DISTINCT" : ""),
5434 ((p
->selFlags
& SF_Aggregate
) ? " agg_flag" : "")
5436 if( p
->pSrc
&& p
->pSrc
->nSrc
) n
++;
5437 if( p
->pWhere
) n
++;
5438 if( p
->pGroupBy
) n
++;
5439 if( p
->pHaving
) n
++;
5440 if( p
->pOrderBy
) n
++;
5441 if( p
->pLimit
) n
++;
5442 if( p
->pOffset
) n
++;
5443 if( p
->pPrior
) n
++;
5444 sqlite3TreeViewExprList(pView
, p
->pEList
, (n
--)>0, "result-set");
5445 if( p
->pSrc
&& p
->pSrc
->nSrc
){
5447 pView
= sqlite3TreeViewPush(pView
, (n
--)>0);
5448 sqlite3TreeViewLine(pView
, "FROM");
5449 for(i
=0; i
<p
->pSrc
->nSrc
; i
++){
5450 struct SrcList_item
*pItem
= &p
->pSrc
->a
[i
];
5453 sqlite3StrAccumInit(&x
, zLine
, sizeof(zLine
), 0);
5454 sqlite3XPrintf(&x
, 0, "{%d,*}", pItem
->iCursor
);
5455 if( pItem
->zDatabase
){
5456 sqlite3XPrintf(&x
, 0, " %s.%s", pItem
->zDatabase
, pItem
->zName
);
5457 }else if( pItem
->zName
){
5458 sqlite3XPrintf(&x
, 0, " %s", pItem
->zName
);
5461 sqlite3XPrintf(&x
, 0, " tabname=%Q", pItem
->pTab
->zName
);
5463 if( pItem
->zAlias
){
5464 sqlite3XPrintf(&x
, 0, " (AS %s)", pItem
->zAlias
);
5466 if( pItem
->jointype
& JT_LEFT
){
5467 sqlite3XPrintf(&x
, 0, " LEFT-JOIN");
5469 sqlite3StrAccumFinish(&x
);
5470 sqlite3TreeViewItem(pView
, zLine
, i
<p
->pSrc
->nSrc
-1);
5471 if( pItem
->pSelect
){
5472 sqlite3TreeViewSelect(pView
, pItem
->pSelect
, 0);
5474 sqlite3TreeViewPop(pView
);
5476 sqlite3TreeViewPop(pView
);
5479 sqlite3TreeViewItem(pView
, "WHERE", (n
--)>0);
5480 sqlite3TreeViewExpr(pView
, p
->pWhere
, 0);
5481 sqlite3TreeViewPop(pView
);
5484 sqlite3TreeViewExprList(pView
, p
->pGroupBy
, (n
--)>0, "GROUPBY");
5487 sqlite3TreeViewItem(pView
, "HAVING", (n
--)>0);
5488 sqlite3TreeViewExpr(pView
, p
->pHaving
, 0);
5489 sqlite3TreeViewPop(pView
);
5492 sqlite3TreeViewExprList(pView
, p
->pOrderBy
, (n
--)>0, "ORDERBY");
5495 sqlite3TreeViewItem(pView
, "LIMIT", (n
--)>0);
5496 sqlite3TreeViewExpr(pView
, p
->pLimit
, 0);
5497 sqlite3TreeViewPop(pView
);
5500 sqlite3TreeViewItem(pView
, "OFFSET", (n
--)>0);
5501 sqlite3TreeViewExpr(pView
, p
->pOffset
, 0);
5502 sqlite3TreeViewPop(pView
);
5505 const char *zOp
= "UNION";
5507 case TK_ALL
: zOp
= "UNION ALL"; break;
5508 case TK_INTERSECT
: zOp
= "INTERSECT"; break;
5509 case TK_EXCEPT
: zOp
= "EXCEPT"; break;
5511 sqlite3TreeViewItem(pView
, zOp
, (n
--)>0);
5512 sqlite3TreeViewSelect(pView
, p
->pPrior
, 0);
5513 sqlite3TreeViewPop(pView
);
5515 sqlite3TreeViewPop(pView
);
5517 #endif /* SQLITE_DEBUG */