Update mojo sdk to rev 1dc8a9a5db73d3718d99917fadf31f5fb2ebad4f
[chromium-blink-merge.git] / third_party / sqlite / sqlite-src-3080704 / src / util.c
blob9bb8d89157764c3cb98e7b5dfe3ca304e891cc3f
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #ifdef SQLITE_HAVE_ISNAN
21 # include <math.h>
22 #endif
25 ** Routine needed to support the testcase() macro.
27 #ifdef SQLITE_COVERAGE_TEST
28 void sqlite3Coverage(int x){
29 static unsigned dummy = 0;
30 dummy += (unsigned)x;
32 #endif
35 ** Give a callback to the test harness that can be used to simulate faults
36 ** in places where it is difficult or expensive to do so purely by means
37 ** of inputs.
39 ** The intent of the integer argument is to let the fault simulator know
40 ** which of multiple sqlite3FaultSim() calls has been hit.
42 ** Return whatever integer value the test callback returns, or return
43 ** SQLITE_OK if no test callback is installed.
45 #ifndef SQLITE_OMIT_BUILTIN_TEST
46 int sqlite3FaultSim(int iTest){
47 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
48 return xCallback ? xCallback(iTest) : SQLITE_OK;
50 #endif
52 #ifndef SQLITE_OMIT_FLOATING_POINT
54 ** Return true if the floating point value is Not a Number (NaN).
56 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
57 ** Otherwise, we have our own implementation that works on most systems.
59 int sqlite3IsNaN(double x){
60 int rc; /* The value return */
61 #if !defined(SQLITE_HAVE_ISNAN)
63 ** Systems that support the isnan() library function should probably
64 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have
65 ** found that many systems do not have a working isnan() function so
66 ** this implementation is provided as an alternative.
68 ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
69 ** On the other hand, the use of -ffast-math comes with the following
70 ** warning:
72 ** This option [-ffast-math] should never be turned on by any
73 ** -O option since it can result in incorrect output for programs
74 ** which depend on an exact implementation of IEEE or ISO
75 ** rules/specifications for math functions.
77 ** Under MSVC, this NaN test may fail if compiled with a floating-
78 ** point precision mode other than /fp:precise. From the MSDN
79 ** documentation:
81 ** The compiler [with /fp:precise] will properly handle comparisons
82 ** involving NaN. For example, x != x evaluates to true if x is NaN
83 ** ...
85 #ifdef __FAST_MATH__
86 # error SQLite will not work correctly with the -ffast-math option of GCC.
87 #endif
88 volatile double y = x;
89 volatile double z = y;
90 rc = (y!=z);
91 #else /* if defined(SQLITE_HAVE_ISNAN) */
92 rc = isnan(x);
93 #endif /* SQLITE_HAVE_ISNAN */
94 testcase( rc );
95 return rc;
97 #endif /* SQLITE_OMIT_FLOATING_POINT */
100 ** Compute a string length that is limited to what can be stored in
101 ** lower 30 bits of a 32-bit signed integer.
103 ** The value returned will never be negative. Nor will it ever be greater
104 ** than the actual length of the string. For very long strings (greater
105 ** than 1GiB) the value returned might be less than the true string length.
107 int sqlite3Strlen30(const char *z){
108 const char *z2 = z;
109 if( z==0 ) return 0;
110 while( *z2 ){ z2++; }
111 return 0x3fffffff & (int)(z2 - z);
115 ** Set the current error code to err_code and clear any prior error message.
117 void sqlite3Error(sqlite3 *db, int err_code){
118 assert( db!=0 );
119 db->errCode = err_code;
120 if( db->pErr ) sqlite3ValueSetNull(db->pErr);
124 ** Set the most recent error code and error string for the sqlite
125 ** handle "db". The error code is set to "err_code".
127 ** If it is not NULL, string zFormat specifies the format of the
128 ** error string in the style of the printf functions: The following
129 ** format characters are allowed:
131 ** %s Insert a string
132 ** %z A string that should be freed after use
133 ** %d Insert an integer
134 ** %T Insert a token
135 ** %S Insert the first element of a SrcList
137 ** zFormat and any string tokens that follow it are assumed to be
138 ** encoded in UTF-8.
140 ** To clear the most recent error for sqlite handle "db", sqlite3Error
141 ** should be called with err_code set to SQLITE_OK and zFormat set
142 ** to NULL.
144 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
145 assert( db!=0 );
146 db->errCode = err_code;
147 if( zFormat==0 ){
148 sqlite3Error(db, err_code);
149 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
150 char *z;
151 va_list ap;
152 va_start(ap, zFormat);
153 z = sqlite3VMPrintf(db, zFormat, ap);
154 va_end(ap);
155 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
160 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
161 ** The following formatting characters are allowed:
163 ** %s Insert a string
164 ** %z A string that should be freed after use
165 ** %d Insert an integer
166 ** %T Insert a token
167 ** %S Insert the first element of a SrcList
169 ** This function should be used to report any error that occurs while
170 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
171 ** last thing the sqlite3_prepare() function does is copy the error
172 ** stored by this function into the database handle using sqlite3Error().
173 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
174 ** during statement execution (sqlite3_step() etc.).
176 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
177 char *zMsg;
178 va_list ap;
179 sqlite3 *db = pParse->db;
180 va_start(ap, zFormat);
181 zMsg = sqlite3VMPrintf(db, zFormat, ap);
182 va_end(ap);
183 if( db->suppressErr ){
184 sqlite3DbFree(db, zMsg);
185 }else{
186 pParse->nErr++;
187 sqlite3DbFree(db, pParse->zErrMsg);
188 pParse->zErrMsg = zMsg;
189 pParse->rc = SQLITE_ERROR;
194 ** Convert an SQL-style quoted string into a normal string by removing
195 ** the quote characters. The conversion is done in-place. If the
196 ** input does not begin with a quote character, then this routine
197 ** is a no-op.
199 ** The input string must be zero-terminated. A new zero-terminator
200 ** is added to the dequoted string.
202 ** The return value is -1 if no dequoting occurs or the length of the
203 ** dequoted string, exclusive of the zero terminator, if dequoting does
204 ** occur.
206 ** 2002-Feb-14: This routine is extended to remove MS-Access style
207 ** brackets from around identifiers. For example: "[a-b-c]" becomes
208 ** "a-b-c".
210 int sqlite3Dequote(char *z){
211 char quote;
212 int i, j;
213 if( z==0 ) return -1;
214 quote = z[0];
215 switch( quote ){
216 case '\'': break;
217 case '"': break;
218 case '`': break; /* For MySQL compatibility */
219 case '[': quote = ']'; break; /* For MS SqlServer compatibility */
220 default: return -1;
222 for(i=1, j=0;; i++){
223 assert( z[i] );
224 if( z[i]==quote ){
225 if( z[i+1]==quote ){
226 z[j++] = quote;
227 i++;
228 }else{
229 break;
231 }else{
232 z[j++] = z[i];
235 z[j] = 0;
236 return j;
239 /* Convenient short-hand */
240 #define UpperToLower sqlite3UpperToLower
243 ** Some systems have stricmp(). Others have strcasecmp(). Because
244 ** there is no consistency, we will define our own.
246 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
247 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
248 ** the contents of two buffers containing UTF-8 strings in a
249 ** case-independent fashion, using the same definition of "case
250 ** independence" that SQLite uses internally when comparing identifiers.
252 int sqlite3_stricmp(const char *zLeft, const char *zRight){
253 register unsigned char *a, *b;
254 a = (unsigned char *)zLeft;
255 b = (unsigned char *)zRight;
256 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
257 return UpperToLower[*a] - UpperToLower[*b];
259 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
260 register unsigned char *a, *b;
261 a = (unsigned char *)zLeft;
262 b = (unsigned char *)zRight;
263 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
264 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
268 ** The string z[] is an text representation of a real number.
269 ** Convert this string to a double and write it into *pResult.
271 ** The string z[] is length bytes in length (bytes, not characters) and
272 ** uses the encoding enc. The string is not necessarily zero-terminated.
274 ** Return TRUE if the result is a valid real number (or integer) and FALSE
275 ** if the string is empty or contains extraneous text. Valid numbers
276 ** are in one of these formats:
278 ** [+-]digits[E[+-]digits]
279 ** [+-]digits.[digits][E[+-]digits]
280 ** [+-].digits[E[+-]digits]
282 ** Leading and trailing whitespace is ignored for the purpose of determining
283 ** validity.
285 ** If some prefix of the input string is a valid number, this routine
286 ** returns FALSE but it still converts the prefix and writes the result
287 ** into *pResult.
289 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
290 #ifndef SQLITE_OMIT_FLOATING_POINT
291 int incr;
292 const char *zEnd = z + length;
293 /* sign * significand * (10 ^ (esign * exponent)) */
294 int sign = 1; /* sign of significand */
295 i64 s = 0; /* significand */
296 int d = 0; /* adjust exponent for shifting decimal point */
297 int esign = 1; /* sign of exponent */
298 int e = 0; /* exponent */
299 int eValid = 1; /* True exponent is either not used or is well-formed */
300 double result;
301 int nDigits = 0;
302 int nonNum = 0;
304 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
305 *pResult = 0.0; /* Default return value, in case of an error */
307 if( enc==SQLITE_UTF8 ){
308 incr = 1;
309 }else{
310 int i;
311 incr = 2;
312 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
313 for(i=3-enc; i<length && z[i]==0; i+=2){}
314 nonNum = i<length;
315 zEnd = z+i+enc-3;
316 z += (enc&1);
319 /* skip leading spaces */
320 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
321 if( z>=zEnd ) return 0;
323 /* get sign of significand */
324 if( *z=='-' ){
325 sign = -1;
326 z+=incr;
327 }else if( *z=='+' ){
328 z+=incr;
331 /* skip leading zeroes */
332 while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++;
334 /* copy max significant digits to significand */
335 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
336 s = s*10 + (*z - '0');
337 z+=incr, nDigits++;
340 /* skip non-significant significand digits
341 ** (increase exponent by d to shift decimal left) */
342 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++;
343 if( z>=zEnd ) goto do_atof_calc;
345 /* if decimal point is present */
346 if( *z=='.' ){
347 z+=incr;
348 /* copy digits from after decimal to significand
349 ** (decrease exponent by d to shift decimal right) */
350 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
351 s = s*10 + (*z - '0');
352 z+=incr, nDigits++, d--;
354 /* skip non-significant digits */
355 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++;
357 if( z>=zEnd ) goto do_atof_calc;
359 /* if exponent is present */
360 if( *z=='e' || *z=='E' ){
361 z+=incr;
362 eValid = 0;
363 if( z>=zEnd ) goto do_atof_calc;
364 /* get sign of exponent */
365 if( *z=='-' ){
366 esign = -1;
367 z+=incr;
368 }else if( *z=='+' ){
369 z+=incr;
371 /* copy digits to exponent */
372 while( z<zEnd && sqlite3Isdigit(*z) ){
373 e = e<10000 ? (e*10 + (*z - '0')) : 10000;
374 z+=incr;
375 eValid = 1;
379 /* skip trailing spaces */
380 if( nDigits && eValid ){
381 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
384 do_atof_calc:
385 /* adjust exponent by d, and update sign */
386 e = (e*esign) + d;
387 if( e<0 ) {
388 esign = -1;
389 e *= -1;
390 } else {
391 esign = 1;
394 /* if 0 significand */
395 if( !s ) {
396 /* In the IEEE 754 standard, zero is signed.
397 ** Add the sign if we've seen at least one digit */
398 result = (sign<0 && nDigits) ? -(double)0 : (double)0;
399 } else {
400 /* attempt to reduce exponent */
401 if( esign>0 ){
402 while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10;
403 }else{
404 while( !(s%10) && e>0 ) e--,s/=10;
407 /* adjust the sign of significand */
408 s = sign<0 ? -s : s;
410 /* if exponent, scale significand as appropriate
411 ** and store in result. */
412 if( e ){
413 LONGDOUBLE_TYPE scale = 1.0;
414 /* attempt to handle extremely small/large numbers better */
415 if( e>307 && e<342 ){
416 while( e%308 ) { scale *= 1.0e+1; e -= 1; }
417 if( esign<0 ){
418 result = s / scale;
419 result /= 1.0e+308;
420 }else{
421 result = s * scale;
422 result *= 1.0e+308;
424 }else if( e>=342 ){
425 if( esign<0 ){
426 result = 0.0*s;
427 }else{
428 result = 1e308*1e308*s; /* Infinity */
430 }else{
431 /* 1.0e+22 is the largest power of 10 than can be
432 ** represented exactly. */
433 while( e%22 ) { scale *= 1.0e+1; e -= 1; }
434 while( e>0 ) { scale *= 1.0e+22; e -= 22; }
435 if( esign<0 ){
436 result = s / scale;
437 }else{
438 result = s * scale;
441 } else {
442 result = (double)s;
446 /* store the result */
447 *pResult = result;
449 /* return true if number and no extra non-whitespace chracters after */
450 return z>=zEnd && nDigits>0 && eValid && nonNum==0;
451 #else
452 return !sqlite3Atoi64(z, pResult, length, enc);
453 #endif /* SQLITE_OMIT_FLOATING_POINT */
457 ** Compare the 19-character string zNum against the text representation
458 ** value 2^63: 9223372036854775808. Return negative, zero, or positive
459 ** if zNum is less than, equal to, or greater than the string.
460 ** Note that zNum must contain exactly 19 characters.
462 ** Unlike memcmp() this routine is guaranteed to return the difference
463 ** in the values of the last digit if the only difference is in the
464 ** last digit. So, for example,
466 ** compare2pow63("9223372036854775800", 1)
468 ** will return -8.
470 static int compare2pow63(const char *zNum, int incr){
471 int c = 0;
472 int i;
473 /* 012345678901234567 */
474 const char *pow63 = "922337203685477580";
475 for(i=0; c==0 && i<18; i++){
476 c = (zNum[i*incr]-pow63[i])*10;
478 if( c==0 ){
479 c = zNum[18*incr] - '8';
480 testcase( c==(-1) );
481 testcase( c==0 );
482 testcase( c==(+1) );
484 return c;
488 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
489 ** routine does *not* accept hexadecimal notation.
491 ** If the zNum value is representable as a 64-bit twos-complement
492 ** integer, then write that value into *pNum and return 0.
494 ** If zNum is exactly 9223372036854775808, return 2. This special
495 ** case is broken out because while 9223372036854775808 cannot be a
496 ** signed 64-bit integer, its negative -9223372036854775808 can be.
498 ** If zNum is too big for a 64-bit integer and is not
499 ** 9223372036854775808 or if zNum contains any non-numeric text,
500 ** then return 1.
502 ** length is the number of bytes in the string (bytes, not characters).
503 ** The string is not necessarily zero-terminated. The encoding is
504 ** given by enc.
506 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
507 int incr;
508 u64 u = 0;
509 int neg = 0; /* assume positive */
510 int i;
511 int c = 0;
512 int nonNum = 0;
513 const char *zStart;
514 const char *zEnd = zNum + length;
515 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
516 if( enc==SQLITE_UTF8 ){
517 incr = 1;
518 }else{
519 incr = 2;
520 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
521 for(i=3-enc; i<length && zNum[i]==0; i+=2){}
522 nonNum = i<length;
523 zEnd = zNum+i+enc-3;
524 zNum += (enc&1);
526 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
527 if( zNum<zEnd ){
528 if( *zNum=='-' ){
529 neg = 1;
530 zNum+=incr;
531 }else if( *zNum=='+' ){
532 zNum+=incr;
535 zStart = zNum;
536 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
537 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
538 u = u*10 + c - '0';
540 if( u>LARGEST_INT64 ){
541 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
542 }else if( neg ){
543 *pNum = -(i64)u;
544 }else{
545 *pNum = (i64)u;
547 testcase( i==18 );
548 testcase( i==19 );
549 testcase( i==20 );
550 if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr || nonNum ){
551 /* zNum is empty or contains non-numeric text or is longer
552 ** than 19 digits (thus guaranteeing that it is too large) */
553 return 1;
554 }else if( i<19*incr ){
555 /* Less than 19 digits, so we know that it fits in 64 bits */
556 assert( u<=LARGEST_INT64 );
557 return 0;
558 }else{
559 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
560 c = compare2pow63(zNum, incr);
561 if( c<0 ){
562 /* zNum is less than 9223372036854775808 so it fits */
563 assert( u<=LARGEST_INT64 );
564 return 0;
565 }else if( c>0 ){
566 /* zNum is greater than 9223372036854775808 so it overflows */
567 return 1;
568 }else{
569 /* zNum is exactly 9223372036854775808. Fits if negative. The
570 ** special case 2 overflow if positive */
571 assert( u-1==LARGEST_INT64 );
572 return neg ? 0 : 2;
578 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
579 ** into a 64-bit signed integer. This routine accepts hexadecimal literals,
580 ** whereas sqlite3Atoi64() does not.
582 ** Returns:
584 ** 0 Successful transformation. Fits in a 64-bit signed integer.
585 ** 1 Integer too large for a 64-bit signed integer or is malformed
586 ** 2 Special case of 9223372036854775808
588 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
589 #ifndef SQLITE_OMIT_HEX_INTEGER
590 if( z[0]=='0'
591 && (z[1]=='x' || z[1]=='X')
592 && sqlite3Isxdigit(z[2])
594 u64 u = 0;
595 int i, k;
596 for(i=2; z[i]=='0'; i++){}
597 for(k=i; sqlite3Isxdigit(z[k]); k++){
598 u = u*16 + sqlite3HexToInt(z[k]);
600 memcpy(pOut, &u, 8);
601 return (z[k]==0 && k-i<=16) ? 0 : 1;
602 }else
603 #endif /* SQLITE_OMIT_HEX_INTEGER */
605 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
610 ** If zNum represents an integer that will fit in 32-bits, then set
611 ** *pValue to that integer and return true. Otherwise return false.
613 ** This routine accepts both decimal and hexadecimal notation for integers.
615 ** Any non-numeric characters that following zNum are ignored.
616 ** This is different from sqlite3Atoi64() which requires the
617 ** input number to be zero-terminated.
619 int sqlite3GetInt32(const char *zNum, int *pValue){
620 sqlite_int64 v = 0;
621 int i, c;
622 int neg = 0;
623 if( zNum[0]=='-' ){
624 neg = 1;
625 zNum++;
626 }else if( zNum[0]=='+' ){
627 zNum++;
629 #ifndef SQLITE_OMIT_HEX_INTEGER
630 else if( zNum[0]=='0'
631 && (zNum[1]=='x' || zNum[1]=='X')
632 && sqlite3Isxdigit(zNum[2])
634 u32 u = 0;
635 zNum += 2;
636 while( zNum[0]=='0' ) zNum++;
637 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
638 u = u*16 + sqlite3HexToInt(zNum[i]);
640 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
641 memcpy(pValue, &u, 4);
642 return 1;
643 }else{
644 return 0;
647 #endif
648 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
649 v = v*10 + c;
652 /* The longest decimal representation of a 32 bit integer is 10 digits:
654 ** 1234567890
655 ** 2^31 -> 2147483648
657 testcase( i==10 );
658 if( i>10 ){
659 return 0;
661 testcase( v-neg==2147483647 );
662 if( v-neg>2147483647 ){
663 return 0;
665 if( neg ){
666 v = -v;
668 *pValue = (int)v;
669 return 1;
673 ** Return a 32-bit integer value extracted from a string. If the
674 ** string is not an integer, just return 0.
676 int sqlite3Atoi(const char *z){
677 int x = 0;
678 if( z ) sqlite3GetInt32(z, &x);
679 return x;
683 ** The variable-length integer encoding is as follows:
685 ** KEY:
686 ** A = 0xxxxxxx 7 bits of data and one flag bit
687 ** B = 1xxxxxxx 7 bits of data and one flag bit
688 ** C = xxxxxxxx 8 bits of data
690 ** 7 bits - A
691 ** 14 bits - BA
692 ** 21 bits - BBA
693 ** 28 bits - BBBA
694 ** 35 bits - BBBBA
695 ** 42 bits - BBBBBA
696 ** 49 bits - BBBBBBA
697 ** 56 bits - BBBBBBBA
698 ** 64 bits - BBBBBBBBC
702 ** Write a 64-bit variable-length integer to memory starting at p[0].
703 ** The length of data write will be between 1 and 9 bytes. The number
704 ** of bytes written is returned.
706 ** A variable-length integer consists of the lower 7 bits of each byte
707 ** for all bytes that have the 8th bit set and one byte with the 8th
708 ** bit clear. Except, if we get to the 9th byte, it stores the full
709 ** 8 bits and is the last byte.
711 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
712 int i, j, n;
713 u8 buf[10];
714 if( v & (((u64)0xff000000)<<32) ){
715 p[8] = (u8)v;
716 v >>= 8;
717 for(i=7; i>=0; i--){
718 p[i] = (u8)((v & 0x7f) | 0x80);
719 v >>= 7;
721 return 9;
723 n = 0;
725 buf[n++] = (u8)((v & 0x7f) | 0x80);
726 v >>= 7;
727 }while( v!=0 );
728 buf[0] &= 0x7f;
729 assert( n<=9 );
730 for(i=0, j=n-1; j>=0; j--, i++){
731 p[i] = buf[j];
733 return n;
735 int sqlite3PutVarint(unsigned char *p, u64 v){
736 if( v<=0x7f ){
737 p[0] = v&0x7f;
738 return 1;
740 if( v<=0x3fff ){
741 p[0] = ((v>>7)&0x7f)|0x80;
742 p[1] = v&0x7f;
743 return 2;
745 return putVarint64(p,v);
749 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants
750 ** are defined here rather than simply putting the constant expressions
751 ** inline in order to work around bugs in the RVT compiler.
753 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
755 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
757 #define SLOT_2_0 0x001fc07f
758 #define SLOT_4_2_0 0xf01fc07f
762 ** Read a 64-bit variable-length integer from memory starting at p[0].
763 ** Return the number of bytes read. The value is stored in *v.
765 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
766 u32 a,b,s;
768 a = *p;
769 /* a: p0 (unmasked) */
770 if (!(a&0x80))
772 *v = a;
773 return 1;
776 p++;
777 b = *p;
778 /* b: p1 (unmasked) */
779 if (!(b&0x80))
781 a &= 0x7f;
782 a = a<<7;
783 a |= b;
784 *v = a;
785 return 2;
788 /* Verify that constants are precomputed correctly */
789 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
790 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
792 p++;
793 a = a<<14;
794 a |= *p;
795 /* a: p0<<14 | p2 (unmasked) */
796 if (!(a&0x80))
798 a &= SLOT_2_0;
799 b &= 0x7f;
800 b = b<<7;
801 a |= b;
802 *v = a;
803 return 3;
806 /* CSE1 from below */
807 a &= SLOT_2_0;
808 p++;
809 b = b<<14;
810 b |= *p;
811 /* b: p1<<14 | p3 (unmasked) */
812 if (!(b&0x80))
814 b &= SLOT_2_0;
815 /* moved CSE1 up */
816 /* a &= (0x7f<<14)|(0x7f); */
817 a = a<<7;
818 a |= b;
819 *v = a;
820 return 4;
823 /* a: p0<<14 | p2 (masked) */
824 /* b: p1<<14 | p3 (unmasked) */
825 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
826 /* moved CSE1 up */
827 /* a &= (0x7f<<14)|(0x7f); */
828 b &= SLOT_2_0;
829 s = a;
830 /* s: p0<<14 | p2 (masked) */
832 p++;
833 a = a<<14;
834 a |= *p;
835 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
836 if (!(a&0x80))
838 /* we can skip these cause they were (effectively) done above in calc'ing s */
839 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
840 /* b &= (0x7f<<14)|(0x7f); */
841 b = b<<7;
842 a |= b;
843 s = s>>18;
844 *v = ((u64)s)<<32 | a;
845 return 5;
848 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
849 s = s<<7;
850 s |= b;
851 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
853 p++;
854 b = b<<14;
855 b |= *p;
856 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
857 if (!(b&0x80))
859 /* we can skip this cause it was (effectively) done above in calc'ing s */
860 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
861 a &= SLOT_2_0;
862 a = a<<7;
863 a |= b;
864 s = s>>18;
865 *v = ((u64)s)<<32 | a;
866 return 6;
869 p++;
870 a = a<<14;
871 a |= *p;
872 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
873 if (!(a&0x80))
875 a &= SLOT_4_2_0;
876 b &= SLOT_2_0;
877 b = b<<7;
878 a |= b;
879 s = s>>11;
880 *v = ((u64)s)<<32 | a;
881 return 7;
884 /* CSE2 from below */
885 a &= SLOT_2_0;
886 p++;
887 b = b<<14;
888 b |= *p;
889 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
890 if (!(b&0x80))
892 b &= SLOT_4_2_0;
893 /* moved CSE2 up */
894 /* a &= (0x7f<<14)|(0x7f); */
895 a = a<<7;
896 a |= b;
897 s = s>>4;
898 *v = ((u64)s)<<32 | a;
899 return 8;
902 p++;
903 a = a<<15;
904 a |= *p;
905 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
907 /* moved CSE2 up */
908 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
909 b &= SLOT_2_0;
910 b = b<<8;
911 a |= b;
913 s = s<<4;
914 b = p[-4];
915 b &= 0x7f;
916 b = b>>3;
917 s |= b;
919 *v = ((u64)s)<<32 | a;
921 return 9;
925 ** Read a 32-bit variable-length integer from memory starting at p[0].
926 ** Return the number of bytes read. The value is stored in *v.
928 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
929 ** integer, then set *v to 0xffffffff.
931 ** A MACRO version, getVarint32, is provided which inlines the
932 ** single-byte case. All code should use the MACRO version as
933 ** this function assumes the single-byte case has already been handled.
935 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
936 u32 a,b;
938 /* The 1-byte case. Overwhelmingly the most common. Handled inline
939 ** by the getVarin32() macro */
940 a = *p;
941 /* a: p0 (unmasked) */
942 #ifndef getVarint32
943 if (!(a&0x80))
945 /* Values between 0 and 127 */
946 *v = a;
947 return 1;
949 #endif
951 /* The 2-byte case */
952 p++;
953 b = *p;
954 /* b: p1 (unmasked) */
955 if (!(b&0x80))
957 /* Values between 128 and 16383 */
958 a &= 0x7f;
959 a = a<<7;
960 *v = a | b;
961 return 2;
964 /* The 3-byte case */
965 p++;
966 a = a<<14;
967 a |= *p;
968 /* a: p0<<14 | p2 (unmasked) */
969 if (!(a&0x80))
971 /* Values between 16384 and 2097151 */
972 a &= (0x7f<<14)|(0x7f);
973 b &= 0x7f;
974 b = b<<7;
975 *v = a | b;
976 return 3;
979 /* A 32-bit varint is used to store size information in btrees.
980 ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
981 ** A 3-byte varint is sufficient, for example, to record the size
982 ** of a 1048569-byte BLOB or string.
984 ** We only unroll the first 1-, 2-, and 3- byte cases. The very
985 ** rare larger cases can be handled by the slower 64-bit varint
986 ** routine.
988 #if 1
990 u64 v64;
991 u8 n;
993 p -= 2;
994 n = sqlite3GetVarint(p, &v64);
995 assert( n>3 && n<=9 );
996 if( (v64 & SQLITE_MAX_U32)!=v64 ){
997 *v = 0xffffffff;
998 }else{
999 *v = (u32)v64;
1001 return n;
1004 #else
1005 /* For following code (kept for historical record only) shows an
1006 ** unrolling for the 3- and 4-byte varint cases. This code is
1007 ** slightly faster, but it is also larger and much harder to test.
1009 p++;
1010 b = b<<14;
1011 b |= *p;
1012 /* b: p1<<14 | p3 (unmasked) */
1013 if (!(b&0x80))
1015 /* Values between 2097152 and 268435455 */
1016 b &= (0x7f<<14)|(0x7f);
1017 a &= (0x7f<<14)|(0x7f);
1018 a = a<<7;
1019 *v = a | b;
1020 return 4;
1023 p++;
1024 a = a<<14;
1025 a |= *p;
1026 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1027 if (!(a&0x80))
1029 /* Values between 268435456 and 34359738367 */
1030 a &= SLOT_4_2_0;
1031 b &= SLOT_4_2_0;
1032 b = b<<7;
1033 *v = a | b;
1034 return 5;
1037 /* We can only reach this point when reading a corrupt database
1038 ** file. In that case we are not in any hurry. Use the (relatively
1039 ** slow) general-purpose sqlite3GetVarint() routine to extract the
1040 ** value. */
1042 u64 v64;
1043 u8 n;
1045 p -= 4;
1046 n = sqlite3GetVarint(p, &v64);
1047 assert( n>5 && n<=9 );
1048 *v = (u32)v64;
1049 return n;
1051 #endif
1055 ** Return the number of bytes that will be needed to store the given
1056 ** 64-bit integer.
1058 int sqlite3VarintLen(u64 v){
1059 int i = 0;
1061 i++;
1062 v >>= 7;
1063 }while( v!=0 && ALWAYS(i<9) );
1064 return i;
1069 ** Read or write a four-byte big-endian integer value.
1071 u32 sqlite3Get4byte(const u8 *p){
1072 testcase( p[0]&0x80 );
1073 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
1075 void sqlite3Put4byte(unsigned char *p, u32 v){
1076 p[0] = (u8)(v>>24);
1077 p[1] = (u8)(v>>16);
1078 p[2] = (u8)(v>>8);
1079 p[3] = (u8)v;
1085 ** Translate a single byte of Hex into an integer.
1086 ** This routine only works if h really is a valid hexadecimal
1087 ** character: 0..9a..fA..F
1089 u8 sqlite3HexToInt(int h){
1090 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
1091 #ifdef SQLITE_ASCII
1092 h += 9*(1&(h>>6));
1093 #endif
1094 #ifdef SQLITE_EBCDIC
1095 h += 9*(1&~(h>>4));
1096 #endif
1097 return (u8)(h & 0xf);
1100 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1102 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1103 ** value. Return a pointer to its binary value. Space to hold the
1104 ** binary value has been obtained from malloc and must be freed by
1105 ** the calling routine.
1107 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1108 char *zBlob;
1109 int i;
1111 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
1112 n--;
1113 if( zBlob ){
1114 for(i=0; i<n; i+=2){
1115 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
1117 zBlob[i/2] = 0;
1119 return zBlob;
1121 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1124 ** Log an error that is an API call on a connection pointer that should
1125 ** not have been used. The "type" of connection pointer is given as the
1126 ** argument. The zType is a word like "NULL" or "closed" or "invalid".
1128 static void logBadConnection(const char *zType){
1129 sqlite3_log(SQLITE_MISUSE,
1130 "API call with %s database connection pointer",
1131 zType
1136 ** Check to make sure we have a valid db pointer. This test is not
1137 ** foolproof but it does provide some measure of protection against
1138 ** misuse of the interface such as passing in db pointers that are
1139 ** NULL or which have been previously closed. If this routine returns
1140 ** 1 it means that the db pointer is valid and 0 if it should not be
1141 ** dereferenced for any reason. The calling function should invoke
1142 ** SQLITE_MISUSE immediately.
1144 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1145 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1146 ** open properly and is not fit for general use but which can be
1147 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1149 int sqlite3SafetyCheckOk(sqlite3 *db){
1150 u32 magic;
1151 if( db==0 ){
1152 logBadConnection("NULL");
1153 return 0;
1155 magic = db->magic;
1156 if( magic!=SQLITE_MAGIC_OPEN ){
1157 if( sqlite3SafetyCheckSickOrOk(db) ){
1158 testcase( sqlite3GlobalConfig.xLog!=0 );
1159 logBadConnection("unopened");
1161 return 0;
1162 }else{
1163 return 1;
1166 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1167 u32 magic;
1168 magic = db->magic;
1169 if( magic!=SQLITE_MAGIC_SICK &&
1170 magic!=SQLITE_MAGIC_OPEN &&
1171 magic!=SQLITE_MAGIC_BUSY ){
1172 testcase( sqlite3GlobalConfig.xLog!=0 );
1173 logBadConnection("invalid");
1174 return 0;
1175 }else{
1176 return 1;
1181 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1182 ** the other 64-bit signed integer at *pA and store the result in *pA.
1183 ** Return 0 on success. Or if the operation would have resulted in an
1184 ** overflow, leave *pA unchanged and return 1.
1186 int sqlite3AddInt64(i64 *pA, i64 iB){
1187 i64 iA = *pA;
1188 testcase( iA==0 ); testcase( iA==1 );
1189 testcase( iB==-1 ); testcase( iB==0 );
1190 if( iB>=0 ){
1191 testcase( iA>0 && LARGEST_INT64 - iA == iB );
1192 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1193 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1194 }else{
1195 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1196 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1197 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1199 *pA += iB;
1200 return 0;
1202 int sqlite3SubInt64(i64 *pA, i64 iB){
1203 testcase( iB==SMALLEST_INT64+1 );
1204 if( iB==SMALLEST_INT64 ){
1205 testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1206 if( (*pA)>=0 ) return 1;
1207 *pA -= iB;
1208 return 0;
1209 }else{
1210 return sqlite3AddInt64(pA, -iB);
1213 #define TWOPOWER32 (((i64)1)<<32)
1214 #define TWOPOWER31 (((i64)1)<<31)
1215 int sqlite3MulInt64(i64 *pA, i64 iB){
1216 i64 iA = *pA;
1217 i64 iA1, iA0, iB1, iB0, r;
1219 iA1 = iA/TWOPOWER32;
1220 iA0 = iA % TWOPOWER32;
1221 iB1 = iB/TWOPOWER32;
1222 iB0 = iB % TWOPOWER32;
1223 if( iA1==0 ){
1224 if( iB1==0 ){
1225 *pA *= iB;
1226 return 0;
1228 r = iA0*iB1;
1229 }else if( iB1==0 ){
1230 r = iA1*iB0;
1231 }else{
1232 /* If both iA1 and iB1 are non-zero, overflow will result */
1233 return 1;
1235 testcase( r==(-TWOPOWER31)-1 );
1236 testcase( r==(-TWOPOWER31) );
1237 testcase( r==TWOPOWER31 );
1238 testcase( r==TWOPOWER31-1 );
1239 if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1;
1240 r *= TWOPOWER32;
1241 if( sqlite3AddInt64(&r, iA0*iB0) ) return 1;
1242 *pA = r;
1243 return 0;
1247 ** Compute the absolute value of a 32-bit signed integer, of possible. Or
1248 ** if the integer has a value of -2147483648, return +2147483647
1250 int sqlite3AbsInt32(int x){
1251 if( x>=0 ) return x;
1252 if( x==(int)0x80000000 ) return 0x7fffffff;
1253 return -x;
1256 #ifdef SQLITE_ENABLE_8_3_NAMES
1258 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1259 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1260 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1261 ** three characters, then shorten the suffix on z[] to be the last three
1262 ** characters of the original suffix.
1264 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1265 ** do the suffix shortening regardless of URI parameter.
1267 ** Examples:
1269 ** test.db-journal => test.nal
1270 ** test.db-wal => test.wal
1271 ** test.db-shm => test.shm
1272 ** test.db-mj7f3319fa => test.9fa
1274 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
1275 #if SQLITE_ENABLE_8_3_NAMES<2
1276 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
1277 #endif
1279 int i, sz;
1280 sz = sqlite3Strlen30(z);
1281 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
1282 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
1285 #endif
1288 ** Find (an approximate) sum of two LogEst values. This computation is
1289 ** not a simple "+" operator because LogEst is stored as a logarithmic
1290 ** value.
1293 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1294 static const unsigned char x[] = {
1295 10, 10, /* 0,1 */
1296 9, 9, /* 2,3 */
1297 8, 8, /* 4,5 */
1298 7, 7, 7, /* 6,7,8 */
1299 6, 6, 6, /* 9,10,11 */
1300 5, 5, 5, /* 12-14 */
1301 4, 4, 4, 4, /* 15-18 */
1302 3, 3, 3, 3, 3, 3, /* 19-24 */
1303 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
1305 if( a>=b ){
1306 if( a>b+49 ) return a;
1307 if( a>b+31 ) return a+1;
1308 return a+x[a-b];
1309 }else{
1310 if( b>a+49 ) return b;
1311 if( b>a+31 ) return b+1;
1312 return b+x[b-a];
1317 ** Convert an integer into a LogEst. In other words, compute an
1318 ** approximation for 10*log2(x).
1320 LogEst sqlite3LogEst(u64 x){
1321 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1322 LogEst y = 40;
1323 if( x<8 ){
1324 if( x<2 ) return 0;
1325 while( x<8 ){ y -= 10; x <<= 1; }
1326 }else{
1327 while( x>255 ){ y += 40; x >>= 4; }
1328 while( x>15 ){ y += 10; x >>= 1; }
1330 return a[x&7] + y - 10;
1333 #ifndef SQLITE_OMIT_VIRTUALTABLE
1335 ** Convert a double into a LogEst
1336 ** In other words, compute an approximation for 10*log2(x).
1338 LogEst sqlite3LogEstFromDouble(double x){
1339 u64 a;
1340 LogEst e;
1341 assert( sizeof(x)==8 && sizeof(a)==8 );
1342 if( x<=1 ) return 0;
1343 if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1344 memcpy(&a, &x, 8);
1345 e = (a>>52) - 1022;
1346 return e*10;
1348 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1351 ** Convert a LogEst into an integer.
1353 u64 sqlite3LogEstToInt(LogEst x){
1354 u64 n;
1355 if( x<10 ) return 1;
1356 n = x%10;
1357 x /= 10;
1358 if( n>=5 ) n -= 2;
1359 else if( n>=1 ) n -= 1;
1360 if( x>=3 ){
1361 return x>60 ? (u64)LARGEST_INT64 : (n+8)<<(x-3);
1363 return (n+8)>>(3-x);