Update mojo sdk to rev 1dc8a9a5db73d3718d99917fadf31f5fb2ebad4f
[chromium-blink-merge.git] / third_party / sqlite / src / ext / fts3 / fts3_write.c
blob0da08c62d8bd05f7650b428d254d66369244193b
1 /*
2 ** 2009 Oct 23
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 ******************************************************************************
13 ** This file is part of the SQLite FTS3 extension module. Specifically,
14 ** this file contains code to insert, update and delete rows from FTS3
15 ** tables. It also contains code to merge FTS3 b-tree segments. Some
16 ** of the sub-routines used to merge segments are also used by the query
17 ** code in fts3.c.
20 #include "fts3Int.h"
21 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
23 #include <string.h>
24 #include <assert.h>
25 #include <stdlib.h>
28 #define FTS_MAX_APPENDABLE_HEIGHT 16
31 ** When full-text index nodes are loaded from disk, the buffer that they
32 ** are loaded into has the following number of bytes of padding at the end
33 ** of it. i.e. if a full-text index node is 900 bytes in size, then a buffer
34 ** of 920 bytes is allocated for it.
36 ** This means that if we have a pointer into a buffer containing node data,
37 ** it is always safe to read up to two varints from it without risking an
38 ** overread, even if the node data is corrupted.
40 #define FTS3_NODE_PADDING (FTS3_VARINT_MAX*2)
43 ** Under certain circumstances, b-tree nodes (doclists) can be loaded into
44 ** memory incrementally instead of all at once. This can be a big performance
45 ** win (reduced IO and CPU) if SQLite stops calling the virtual table xNext()
46 ** method before retrieving all query results (as may happen, for example,
47 ** if a query has a LIMIT clause).
49 ** Incremental loading is used for b-tree nodes FTS3_NODE_CHUNK_THRESHOLD
50 ** bytes and larger. Nodes are loaded in chunks of FTS3_NODE_CHUNKSIZE bytes.
51 ** The code is written so that the hard lower-limit for each of these values
52 ** is 1. Clearly such small values would be inefficient, but can be useful
53 ** for testing purposes.
55 ** If this module is built with SQLITE_TEST defined, these constants may
56 ** be overridden at runtime for testing purposes. File fts3_test.c contains
57 ** a Tcl interface to read and write the values.
59 #ifdef SQLITE_TEST
60 int test_fts3_node_chunksize = (4*1024);
61 int test_fts3_node_chunk_threshold = (4*1024)*4;
62 # define FTS3_NODE_CHUNKSIZE test_fts3_node_chunksize
63 # define FTS3_NODE_CHUNK_THRESHOLD test_fts3_node_chunk_threshold
64 #else
65 # define FTS3_NODE_CHUNKSIZE (4*1024)
66 # define FTS3_NODE_CHUNK_THRESHOLD (FTS3_NODE_CHUNKSIZE*4)
67 #endif
70 ** The two values that may be meaningfully bound to the :1 parameter in
71 ** statements SQL_REPLACE_STAT and SQL_SELECT_STAT.
73 #define FTS_STAT_DOCTOTAL 0
74 #define FTS_STAT_INCRMERGEHINT 1
75 #define FTS_STAT_AUTOINCRMERGE 2
78 ** If FTS_LOG_MERGES is defined, call sqlite3_log() to report each automatic
79 ** and incremental merge operation that takes place. This is used for
80 ** debugging FTS only, it should not usually be turned on in production
81 ** systems.
83 #ifdef FTS3_LOG_MERGES
84 static void fts3LogMerge(int nMerge, sqlite3_int64 iAbsLevel){
85 sqlite3_log(SQLITE_OK, "%d-way merge from level %d", nMerge, (int)iAbsLevel);
87 #else
88 #define fts3LogMerge(x, y)
89 #endif
92 typedef struct PendingList PendingList;
93 typedef struct SegmentNode SegmentNode;
94 typedef struct SegmentWriter SegmentWriter;
97 ** An instance of the following data structure is used to build doclists
98 ** incrementally. See function fts3PendingListAppend() for details.
100 struct PendingList {
101 int nData;
102 char *aData;
103 int nSpace;
104 sqlite3_int64 iLastDocid;
105 sqlite3_int64 iLastCol;
106 sqlite3_int64 iLastPos;
111 ** Each cursor has a (possibly empty) linked list of the following objects.
113 struct Fts3DeferredToken {
114 Fts3PhraseToken *pToken; /* Pointer to corresponding expr token */
115 int iCol; /* Column token must occur in */
116 Fts3DeferredToken *pNext; /* Next in list of deferred tokens */
117 PendingList *pList; /* Doclist is assembled here */
121 ** An instance of this structure is used to iterate through the terms on
122 ** a contiguous set of segment b-tree leaf nodes. Although the details of
123 ** this structure are only manipulated by code in this file, opaque handles
124 ** of type Fts3SegReader* are also used by code in fts3.c to iterate through
125 ** terms when querying the full-text index. See functions:
127 ** sqlite3Fts3SegReaderNew()
128 ** sqlite3Fts3SegReaderFree()
129 ** sqlite3Fts3SegReaderIterate()
131 ** Methods used to manipulate Fts3SegReader structures:
133 ** fts3SegReaderNext()
134 ** fts3SegReaderFirstDocid()
135 ** fts3SegReaderNextDocid()
137 struct Fts3SegReader {
138 int iIdx; /* Index within level, or 0x7FFFFFFF for PT */
139 u8 bLookup; /* True for a lookup only */
140 u8 rootOnly; /* True for a root-only reader */
142 sqlite3_int64 iStartBlock; /* Rowid of first leaf block to traverse */
143 sqlite3_int64 iLeafEndBlock; /* Rowid of final leaf block to traverse */
144 sqlite3_int64 iEndBlock; /* Rowid of final block in segment (or 0) */
145 sqlite3_int64 iCurrentBlock; /* Current leaf block (or 0) */
147 char *aNode; /* Pointer to node data (or NULL) */
148 int nNode; /* Size of buffer at aNode (or 0) */
149 int nPopulate; /* If >0, bytes of buffer aNode[] loaded */
150 sqlite3_blob *pBlob; /* If not NULL, blob handle to read node */
152 Fts3HashElem **ppNextElem;
154 /* Variables set by fts3SegReaderNext(). These may be read directly
155 ** by the caller. They are valid from the time SegmentReaderNew() returns
156 ** until SegmentReaderNext() returns something other than SQLITE_OK
157 ** (i.e. SQLITE_DONE).
159 int nTerm; /* Number of bytes in current term */
160 char *zTerm; /* Pointer to current term */
161 int nTermAlloc; /* Allocated size of zTerm buffer */
162 char *aDoclist; /* Pointer to doclist of current entry */
163 int nDoclist; /* Size of doclist in current entry */
165 /* The following variables are used by fts3SegReaderNextDocid() to iterate
166 ** through the current doclist (aDoclist/nDoclist).
168 char *pOffsetList;
169 int nOffsetList; /* For descending pending seg-readers only */
170 sqlite3_int64 iDocid;
173 #define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0)
174 #define fts3SegReaderIsRootOnly(p) ((p)->rootOnly!=0)
177 ** An instance of this structure is used to create a segment b-tree in the
178 ** database. The internal details of this type are only accessed by the
179 ** following functions:
181 ** fts3SegWriterAdd()
182 ** fts3SegWriterFlush()
183 ** fts3SegWriterFree()
185 struct SegmentWriter {
186 SegmentNode *pTree; /* Pointer to interior tree structure */
187 sqlite3_int64 iFirst; /* First slot in %_segments written */
188 sqlite3_int64 iFree; /* Next free slot in %_segments */
189 char *zTerm; /* Pointer to previous term buffer */
190 int nTerm; /* Number of bytes in zTerm */
191 int nMalloc; /* Size of malloc'd buffer at zMalloc */
192 char *zMalloc; /* Malloc'd space (possibly) used for zTerm */
193 int nSize; /* Size of allocation at aData */
194 int nData; /* Bytes of data in aData */
195 char *aData; /* Pointer to block from malloc() */
196 i64 nLeafData; /* Number of bytes of leaf data written */
200 ** Type SegmentNode is used by the following three functions to create
201 ** the interior part of the segment b+-tree structures (everything except
202 ** the leaf nodes). These functions and type are only ever used by code
203 ** within the fts3SegWriterXXX() family of functions described above.
205 ** fts3NodeAddTerm()
206 ** fts3NodeWrite()
207 ** fts3NodeFree()
209 ** When a b+tree is written to the database (either as a result of a merge
210 ** or the pending-terms table being flushed), leaves are written into the
211 ** database file as soon as they are completely populated. The interior of
212 ** the tree is assembled in memory and written out only once all leaves have
213 ** been populated and stored. This is Ok, as the b+-tree fanout is usually
214 ** very large, meaning that the interior of the tree consumes relatively
215 ** little memory.
217 struct SegmentNode {
218 SegmentNode *pParent; /* Parent node (or NULL for root node) */
219 SegmentNode *pRight; /* Pointer to right-sibling */
220 SegmentNode *pLeftmost; /* Pointer to left-most node of this depth */
221 int nEntry; /* Number of terms written to node so far */
222 char *zTerm; /* Pointer to previous term buffer */
223 int nTerm; /* Number of bytes in zTerm */
224 int nMalloc; /* Size of malloc'd buffer at zMalloc */
225 char *zMalloc; /* Malloc'd space (possibly) used for zTerm */
226 int nData; /* Bytes of valid data so far */
227 char *aData; /* Node data */
231 ** Valid values for the second argument to fts3SqlStmt().
233 #define SQL_DELETE_CONTENT 0
234 #define SQL_IS_EMPTY 1
235 #define SQL_DELETE_ALL_CONTENT 2
236 #define SQL_DELETE_ALL_SEGMENTS 3
237 #define SQL_DELETE_ALL_SEGDIR 4
238 #define SQL_DELETE_ALL_DOCSIZE 5
239 #define SQL_DELETE_ALL_STAT 6
240 #define SQL_SELECT_CONTENT_BY_ROWID 7
241 #define SQL_NEXT_SEGMENT_INDEX 8
242 #define SQL_INSERT_SEGMENTS 9
243 #define SQL_NEXT_SEGMENTS_ID 10
244 #define SQL_INSERT_SEGDIR 11
245 #define SQL_SELECT_LEVEL 12
246 #define SQL_SELECT_LEVEL_RANGE 13
247 #define SQL_SELECT_LEVEL_COUNT 14
248 #define SQL_SELECT_SEGDIR_MAX_LEVEL 15
249 #define SQL_DELETE_SEGDIR_LEVEL 16
250 #define SQL_DELETE_SEGMENTS_RANGE 17
251 #define SQL_CONTENT_INSERT 18
252 #define SQL_DELETE_DOCSIZE 19
253 #define SQL_REPLACE_DOCSIZE 20
254 #define SQL_SELECT_DOCSIZE 21
255 #define SQL_SELECT_STAT 22
256 #define SQL_REPLACE_STAT 23
258 #define SQL_SELECT_ALL_PREFIX_LEVEL 24
259 #define SQL_DELETE_ALL_TERMS_SEGDIR 25
260 #define SQL_DELETE_SEGDIR_RANGE 26
261 #define SQL_SELECT_ALL_LANGID 27
262 #define SQL_FIND_MERGE_LEVEL 28
263 #define SQL_MAX_LEAF_NODE_ESTIMATE 29
264 #define SQL_DELETE_SEGDIR_ENTRY 30
265 #define SQL_SHIFT_SEGDIR_ENTRY 31
266 #define SQL_SELECT_SEGDIR 32
267 #define SQL_CHOMP_SEGDIR 33
268 #define SQL_SEGMENT_IS_APPENDABLE 34
269 #define SQL_SELECT_INDEXES 35
270 #define SQL_SELECT_MXLEVEL 36
272 #define SQL_SELECT_LEVEL_RANGE2 37
273 #define SQL_UPDATE_LEVEL_IDX 38
274 #define SQL_UPDATE_LEVEL 39
277 ** This function is used to obtain an SQLite prepared statement handle
278 ** for the statement identified by the second argument. If successful,
279 ** *pp is set to the requested statement handle and SQLITE_OK returned.
280 ** Otherwise, an SQLite error code is returned and *pp is set to 0.
282 ** If argument apVal is not NULL, then it must point to an array with
283 ** at least as many entries as the requested statement has bound
284 ** parameters. The values are bound to the statements parameters before
285 ** returning.
287 static int fts3SqlStmt(
288 Fts3Table *p, /* Virtual table handle */
289 int eStmt, /* One of the SQL_XXX constants above */
290 sqlite3_stmt **pp, /* OUT: Statement handle */
291 sqlite3_value **apVal /* Values to bind to statement */
293 const char *azSql[] = {
294 /* 0 */ "DELETE FROM %Q.'%q_content' WHERE rowid = ?",
295 /* 1 */ "SELECT NOT EXISTS(SELECT docid FROM %Q.'%q_content' WHERE rowid!=?)",
296 /* 2 */ "DELETE FROM %Q.'%q_content'",
297 /* 3 */ "DELETE FROM %Q.'%q_segments'",
298 /* 4 */ "DELETE FROM %Q.'%q_segdir'",
299 /* 5 */ "DELETE FROM %Q.'%q_docsize'",
300 /* 6 */ "DELETE FROM %Q.'%q_stat'",
301 /* 7 */ "SELECT %s WHERE rowid=?",
302 /* 8 */ "SELECT (SELECT max(idx) FROM %Q.'%q_segdir' WHERE level = ?) + 1",
303 /* 9 */ "REPLACE INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)",
304 /* 10 */ "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)",
305 /* 11 */ "REPLACE INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)",
307 /* Return segments in order from oldest to newest.*/
308 /* 12 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
309 "FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC",
310 /* 13 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
311 "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?"
312 "ORDER BY level DESC, idx ASC",
314 /* 14 */ "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?",
315 /* 15 */ "SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",
317 /* 16 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ?",
318 /* 17 */ "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?",
319 /* 18 */ "INSERT INTO %Q.'%q_content' VALUES(%s)",
320 /* 19 */ "DELETE FROM %Q.'%q_docsize' WHERE docid = ?",
321 /* 20 */ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)",
322 /* 21 */ "SELECT size FROM %Q.'%q_docsize' WHERE docid=?",
323 /* 22 */ "SELECT value FROM %Q.'%q_stat' WHERE id=?",
324 /* 23 */ "REPLACE INTO %Q.'%q_stat' VALUES(?,?)",
325 /* 24 */ "",
326 /* 25 */ "",
328 /* 26 */ "DELETE FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",
329 /* 27 */ "SELECT DISTINCT level / (1024 * ?) FROM %Q.'%q_segdir'",
331 /* This statement is used to determine which level to read the input from
332 ** when performing an incremental merge. It returns the absolute level number
333 ** of the oldest level in the db that contains at least ? segments. Or,
334 ** if no level in the FTS index contains more than ? segments, the statement
335 ** returns zero rows. */
336 /* 28 */ "SELECT level FROM %Q.'%q_segdir' GROUP BY level HAVING count(*)>=?"
337 " ORDER BY (level %% 1024) ASC LIMIT 1",
339 /* Estimate the upper limit on the number of leaf nodes in a new segment
340 ** created by merging the oldest :2 segments from absolute level :1. See
341 ** function sqlite3Fts3Incrmerge() for details. */
342 /* 29 */ "SELECT 2 * total(1 + leaves_end_block - start_block) "
343 " FROM %Q.'%q_segdir' WHERE level = ? AND idx < ?",
345 /* SQL_DELETE_SEGDIR_ENTRY
346 ** Delete the %_segdir entry on absolute level :1 with index :2. */
347 /* 30 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?",
349 /* SQL_SHIFT_SEGDIR_ENTRY
350 ** Modify the idx value for the segment with idx=:3 on absolute level :2
351 ** to :1. */
352 /* 31 */ "UPDATE %Q.'%q_segdir' SET idx = ? WHERE level=? AND idx=?",
354 /* SQL_SELECT_SEGDIR
355 ** Read a single entry from the %_segdir table. The entry from absolute
356 ** level :1 with index value :2. */
357 /* 32 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
358 "FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?",
360 /* SQL_CHOMP_SEGDIR
361 ** Update the start_block (:1) and root (:2) fields of the %_segdir
362 ** entry located on absolute level :3 with index :4. */
363 /* 33 */ "UPDATE %Q.'%q_segdir' SET start_block = ?, root = ?"
364 "WHERE level = ? AND idx = ?",
366 /* SQL_SEGMENT_IS_APPENDABLE
367 ** Return a single row if the segment with end_block=? is appendable. Or
368 ** no rows otherwise. */
369 /* 34 */ "SELECT 1 FROM %Q.'%q_segments' WHERE blockid=? AND block IS NULL",
371 /* SQL_SELECT_INDEXES
372 ** Return the list of valid segment indexes for absolute level ? */
373 /* 35 */ "SELECT idx FROM %Q.'%q_segdir' WHERE level=? ORDER BY 1 ASC",
375 /* SQL_SELECT_MXLEVEL
376 ** Return the largest relative level in the FTS index or indexes. */
377 /* 36 */ "SELECT max( level %% 1024 ) FROM %Q.'%q_segdir'",
379 /* Return segments in order from oldest to newest.*/
380 /* 37 */ "SELECT level, idx, end_block "
381 "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? "
382 "ORDER BY level DESC, idx ASC",
384 /* Update statements used while promoting segments */
385 /* 38 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=-1,idx=? "
386 "WHERE level=? AND idx=?",
387 /* 39 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=? WHERE level=-1"
390 int rc = SQLITE_OK;
391 sqlite3_stmt *pStmt;
393 assert( SizeofArray(azSql)==SizeofArray(p->aStmt) );
394 assert( eStmt<SizeofArray(azSql) && eStmt>=0 );
396 pStmt = p->aStmt[eStmt];
397 if( !pStmt ){
398 char *zSql;
399 if( eStmt==SQL_CONTENT_INSERT ){
400 zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName, p->zWriteExprlist);
401 }else if( eStmt==SQL_SELECT_CONTENT_BY_ROWID ){
402 zSql = sqlite3_mprintf(azSql[eStmt], p->zReadExprlist);
403 }else{
404 zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName);
406 if( !zSql ){
407 rc = SQLITE_NOMEM;
408 }else{
409 rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, NULL);
410 sqlite3_free(zSql);
411 assert( rc==SQLITE_OK || pStmt==0 );
412 p->aStmt[eStmt] = pStmt;
415 if( apVal ){
416 int i;
417 int nParam = sqlite3_bind_parameter_count(pStmt);
418 for(i=0; rc==SQLITE_OK && i<nParam; i++){
419 rc = sqlite3_bind_value(pStmt, i+1, apVal[i]);
422 *pp = pStmt;
423 return rc;
427 static int fts3SelectDocsize(
428 Fts3Table *pTab, /* FTS3 table handle */
429 sqlite3_int64 iDocid, /* Docid to bind for SQL_SELECT_DOCSIZE */
430 sqlite3_stmt **ppStmt /* OUT: Statement handle */
432 sqlite3_stmt *pStmt = 0; /* Statement requested from fts3SqlStmt() */
433 int rc; /* Return code */
435 rc = fts3SqlStmt(pTab, SQL_SELECT_DOCSIZE, &pStmt, 0);
436 if( rc==SQLITE_OK ){
437 sqlite3_bind_int64(pStmt, 1, iDocid);
438 rc = sqlite3_step(pStmt);
439 if( rc!=SQLITE_ROW || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB ){
440 rc = sqlite3_reset(pStmt);
441 if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB;
442 pStmt = 0;
443 }else{
444 rc = SQLITE_OK;
448 *ppStmt = pStmt;
449 return rc;
452 int sqlite3Fts3SelectDoctotal(
453 Fts3Table *pTab, /* Fts3 table handle */
454 sqlite3_stmt **ppStmt /* OUT: Statement handle */
456 sqlite3_stmt *pStmt = 0;
457 int rc;
458 rc = fts3SqlStmt(pTab, SQL_SELECT_STAT, &pStmt, 0);
459 if( rc==SQLITE_OK ){
460 sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL);
461 if( sqlite3_step(pStmt)!=SQLITE_ROW
462 || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB
464 rc = sqlite3_reset(pStmt);
465 if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB;
466 pStmt = 0;
469 *ppStmt = pStmt;
470 return rc;
473 int sqlite3Fts3SelectDocsize(
474 Fts3Table *pTab, /* Fts3 table handle */
475 sqlite3_int64 iDocid, /* Docid to read size data for */
476 sqlite3_stmt **ppStmt /* OUT: Statement handle */
478 return fts3SelectDocsize(pTab, iDocid, ppStmt);
482 ** Similar to fts3SqlStmt(). Except, after binding the parameters in
483 ** array apVal[] to the SQL statement identified by eStmt, the statement
484 ** is executed.
486 ** Returns SQLITE_OK if the statement is successfully executed, or an
487 ** SQLite error code otherwise.
489 static void fts3SqlExec(
490 int *pRC, /* Result code */
491 Fts3Table *p, /* The FTS3 table */
492 int eStmt, /* Index of statement to evaluate */
493 sqlite3_value **apVal /* Parameters to bind */
495 sqlite3_stmt *pStmt;
496 int rc;
497 if( *pRC ) return;
498 rc = fts3SqlStmt(p, eStmt, &pStmt, apVal);
499 if( rc==SQLITE_OK ){
500 sqlite3_step(pStmt);
501 rc = sqlite3_reset(pStmt);
503 *pRC = rc;
508 ** This function ensures that the caller has obtained an exclusive
509 ** shared-cache table-lock on the %_segdir table. This is required before
510 ** writing data to the fts3 table. If this lock is not acquired first, then
511 ** the caller may end up attempting to take this lock as part of committing
512 ** a transaction, causing SQLite to return SQLITE_LOCKED or
513 ** LOCKED_SHAREDCACHEto a COMMIT command.
515 ** It is best to avoid this because if FTS3 returns any error when
516 ** committing a transaction, the whole transaction will be rolled back.
517 ** And this is not what users expect when they get SQLITE_LOCKED_SHAREDCACHE.
518 ** It can still happen if the user locks the underlying tables directly
519 ** instead of accessing them via FTS.
521 static int fts3Writelock(Fts3Table *p){
522 int rc = SQLITE_OK;
524 if( p->nPendingData==0 ){
525 sqlite3_stmt *pStmt;
526 rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pStmt, 0);
527 if( rc==SQLITE_OK ){
528 sqlite3_bind_null(pStmt, 1);
529 sqlite3_step(pStmt);
530 rc = sqlite3_reset(pStmt);
534 return rc;
538 ** FTS maintains a separate indexes for each language-id (a 32-bit integer).
539 ** Within each language id, a separate index is maintained to store the
540 ** document terms, and each configured prefix size (configured the FTS
541 ** "prefix=" option). And each index consists of multiple levels ("relative
542 ** levels").
544 ** All three of these values (the language id, the specific index and the
545 ** level within the index) are encoded in 64-bit integer values stored
546 ** in the %_segdir table on disk. This function is used to convert three
547 ** separate component values into the single 64-bit integer value that
548 ** can be used to query the %_segdir table.
550 ** Specifically, each language-id/index combination is allocated 1024
551 ** 64-bit integer level values ("absolute levels"). The main terms index
552 ** for language-id 0 is allocate values 0-1023. The first prefix index
553 ** (if any) for language-id 0 is allocated values 1024-2047. And so on.
554 ** Language 1 indexes are allocated immediately following language 0.
556 ** So, for a system with nPrefix prefix indexes configured, the block of
557 ** absolute levels that corresponds to language-id iLangid and index
558 ** iIndex starts at absolute level ((iLangid * (nPrefix+1) + iIndex) * 1024).
560 static sqlite3_int64 getAbsoluteLevel(
561 Fts3Table *p, /* FTS3 table handle */
562 int iLangid, /* Language id */
563 int iIndex, /* Index in p->aIndex[] */
564 int iLevel /* Level of segments */
566 sqlite3_int64 iBase; /* First absolute level for iLangid/iIndex */
567 assert( iLangid>=0 );
568 assert( p->nIndex>0 );
569 assert( iIndex>=0 && iIndex<p->nIndex );
571 iBase = ((sqlite3_int64)iLangid * p->nIndex + iIndex) * FTS3_SEGDIR_MAXLEVEL;
572 return iBase + iLevel;
576 ** Set *ppStmt to a statement handle that may be used to iterate through
577 ** all rows in the %_segdir table, from oldest to newest. If successful,
578 ** return SQLITE_OK. If an error occurs while preparing the statement,
579 ** return an SQLite error code.
581 ** There is only ever one instance of this SQL statement compiled for
582 ** each FTS3 table.
584 ** The statement returns the following columns from the %_segdir table:
586 ** 0: idx
587 ** 1: start_block
588 ** 2: leaves_end_block
589 ** 3: end_block
590 ** 4: root
592 int sqlite3Fts3AllSegdirs(
593 Fts3Table *p, /* FTS3 table */
594 int iLangid, /* Language being queried */
595 int iIndex, /* Index for p->aIndex[] */
596 int iLevel, /* Level to select (relative level) */
597 sqlite3_stmt **ppStmt /* OUT: Compiled statement */
599 int rc;
600 sqlite3_stmt *pStmt = 0;
602 assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel>=0 );
603 assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
604 assert( iIndex>=0 && iIndex<p->nIndex );
606 if( iLevel<0 ){
607 /* "SELECT * FROM %_segdir WHERE level BETWEEN ? AND ? ORDER BY ..." */
608 rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE, &pStmt, 0);
609 if( rc==SQLITE_OK ){
610 sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
611 sqlite3_bind_int64(pStmt, 2,
612 getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
615 }else{
616 /* "SELECT * FROM %_segdir WHERE level = ? ORDER BY ..." */
617 rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0);
618 if( rc==SQLITE_OK ){
619 sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex,iLevel));
622 *ppStmt = pStmt;
623 return rc;
628 ** Append a single varint to a PendingList buffer. SQLITE_OK is returned
629 ** if successful, or an SQLite error code otherwise.
631 ** This function also serves to allocate the PendingList structure itself.
632 ** For example, to create a new PendingList structure containing two
633 ** varints:
635 ** PendingList *p = 0;
636 ** fts3PendingListAppendVarint(&p, 1);
637 ** fts3PendingListAppendVarint(&p, 2);
639 static int fts3PendingListAppendVarint(
640 PendingList **pp, /* IN/OUT: Pointer to PendingList struct */
641 sqlite3_int64 i /* Value to append to data */
643 PendingList *p = *pp;
645 /* Allocate or grow the PendingList as required. */
646 if( !p ){
647 p = sqlite3_malloc(sizeof(*p) + 100);
648 if( !p ){
649 return SQLITE_NOMEM;
651 p->nSpace = 100;
652 p->aData = (char *)&p[1];
653 p->nData = 0;
655 else if( p->nData+FTS3_VARINT_MAX+1>p->nSpace ){
656 int nNew = p->nSpace * 2;
657 p = sqlite3_realloc(p, sizeof(*p) + nNew);
658 if( !p ){
659 sqlite3_free(*pp);
660 *pp = 0;
661 return SQLITE_NOMEM;
663 p->nSpace = nNew;
664 p->aData = (char *)&p[1];
667 /* Append the new serialized varint to the end of the list. */
668 p->nData += sqlite3Fts3PutVarint(&p->aData[p->nData], i);
669 p->aData[p->nData] = '\0';
670 *pp = p;
671 return SQLITE_OK;
675 ** Add a docid/column/position entry to a PendingList structure. Non-zero
676 ** is returned if the structure is sqlite3_realloced as part of adding
677 ** the entry. Otherwise, zero.
679 ** If an OOM error occurs, *pRc is set to SQLITE_NOMEM before returning.
680 ** Zero is always returned in this case. Otherwise, if no OOM error occurs,
681 ** it is set to SQLITE_OK.
683 static int fts3PendingListAppend(
684 PendingList **pp, /* IN/OUT: PendingList structure */
685 sqlite3_int64 iDocid, /* Docid for entry to add */
686 sqlite3_int64 iCol, /* Column for entry to add */
687 sqlite3_int64 iPos, /* Position of term for entry to add */
688 int *pRc /* OUT: Return code */
690 PendingList *p = *pp;
691 int rc = SQLITE_OK;
693 assert( !p || p->iLastDocid<=iDocid );
695 if( !p || p->iLastDocid!=iDocid ){
696 sqlite3_int64 iDelta = iDocid - (p ? p->iLastDocid : 0);
697 if( p ){
698 assert( p->nData<p->nSpace );
699 assert( p->aData[p->nData]==0 );
700 p->nData++;
702 if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iDelta)) ){
703 goto pendinglistappend_out;
705 p->iLastCol = -1;
706 p->iLastPos = 0;
707 p->iLastDocid = iDocid;
709 if( iCol>0 && p->iLastCol!=iCol ){
710 if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, 1))
711 || SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iCol))
713 goto pendinglistappend_out;
715 p->iLastCol = iCol;
716 p->iLastPos = 0;
718 if( iCol>=0 ){
719 assert( iPos>p->iLastPos || (iPos==0 && p->iLastPos==0) );
720 rc = fts3PendingListAppendVarint(&p, 2+iPos-p->iLastPos);
721 if( rc==SQLITE_OK ){
722 p->iLastPos = iPos;
726 pendinglistappend_out:
727 *pRc = rc;
728 if( p!=*pp ){
729 *pp = p;
730 return 1;
732 return 0;
736 ** Free a PendingList object allocated by fts3PendingListAppend().
738 static void fts3PendingListDelete(PendingList *pList){
739 sqlite3_free(pList);
743 ** Add an entry to one of the pending-terms hash tables.
745 static int fts3PendingTermsAddOne(
746 Fts3Table *p,
747 int iCol,
748 int iPos,
749 Fts3Hash *pHash, /* Pending terms hash table to add entry to */
750 const char *zToken,
751 int nToken
753 PendingList *pList;
754 int rc = SQLITE_OK;
756 pList = (PendingList *)fts3HashFind(pHash, zToken, nToken);
757 if( pList ){
758 p->nPendingData -= (pList->nData + nToken + sizeof(Fts3HashElem));
760 if( fts3PendingListAppend(&pList, p->iPrevDocid, iCol, iPos, &rc) ){
761 if( pList==fts3HashInsert(pHash, zToken, nToken, pList) ){
762 /* Malloc failed while inserting the new entry. This can only
763 ** happen if there was no previous entry for this token.
765 assert( 0==fts3HashFind(pHash, zToken, nToken) );
766 sqlite3_free(pList);
767 rc = SQLITE_NOMEM;
770 if( rc==SQLITE_OK ){
771 p->nPendingData += (pList->nData + nToken + sizeof(Fts3HashElem));
773 return rc;
777 ** Tokenize the nul-terminated string zText and add all tokens to the
778 ** pending-terms hash-table. The docid used is that currently stored in
779 ** p->iPrevDocid, and the column is specified by argument iCol.
781 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
783 static int fts3PendingTermsAdd(
784 Fts3Table *p, /* Table into which text will be inserted */
785 int iLangid, /* Language id to use */
786 const char *zText, /* Text of document to be inserted */
787 int iCol, /* Column into which text is being inserted */
788 u32 *pnWord /* IN/OUT: Incr. by number tokens inserted */
790 int rc;
791 int iStart = 0;
792 int iEnd = 0;
793 int iPos = 0;
794 int nWord = 0;
796 char const *zToken;
797 int nToken = 0;
799 sqlite3_tokenizer *pTokenizer = p->pTokenizer;
800 sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
801 sqlite3_tokenizer_cursor *pCsr;
802 int (*xNext)(sqlite3_tokenizer_cursor *pCursor,
803 const char**,int*,int*,int*,int*);
805 assert( pTokenizer && pModule );
807 /* If the user has inserted a NULL value, this function may be called with
808 ** zText==0. In this case, add zero token entries to the hash table and
809 ** return early. */
810 if( zText==0 ){
811 *pnWord = 0;
812 return SQLITE_OK;
815 rc = sqlite3Fts3OpenTokenizer(pTokenizer, iLangid, zText, -1, &pCsr);
816 if( rc!=SQLITE_OK ){
817 return rc;
820 xNext = pModule->xNext;
821 while( SQLITE_OK==rc
822 && SQLITE_OK==(rc = xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos))
824 int i;
825 if( iPos>=nWord ) nWord = iPos+1;
827 /* Positions cannot be negative; we use -1 as a terminator internally.
828 ** Tokens must have a non-zero length.
830 if( iPos<0 || !zToken || nToken<=0 ){
831 rc = SQLITE_ERROR;
832 break;
835 /* Add the term to the terms index */
836 rc = fts3PendingTermsAddOne(
837 p, iCol, iPos, &p->aIndex[0].hPending, zToken, nToken
840 /* Add the term to each of the prefix indexes that it is not too
841 ** short for. */
842 for(i=1; rc==SQLITE_OK && i<p->nIndex; i++){
843 struct Fts3Index *pIndex = &p->aIndex[i];
844 if( nToken<pIndex->nPrefix ) continue;
845 rc = fts3PendingTermsAddOne(
846 p, iCol, iPos, &pIndex->hPending, zToken, pIndex->nPrefix
851 pModule->xClose(pCsr);
852 *pnWord += nWord;
853 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
857 ** Calling this function indicates that subsequent calls to
858 ** fts3PendingTermsAdd() are to add term/position-list pairs for the
859 ** contents of the document with docid iDocid.
861 static int fts3PendingTermsDocid(
862 Fts3Table *p, /* Full-text table handle */
863 int iLangid, /* Language id of row being written */
864 sqlite_int64 iDocid /* Docid of row being written */
866 assert( iLangid>=0 );
868 /* TODO(shess) Explore whether partially flushing the buffer on
869 ** forced-flush would provide better performance. I suspect that if
870 ** we ordered the doclists by size and flushed the largest until the
871 ** buffer was half empty, that would let the less frequent terms
872 ** generate longer doclists.
874 if( iDocid<=p->iPrevDocid
875 || p->iPrevLangid!=iLangid
876 || p->nPendingData>p->nMaxPendingData
878 int rc = sqlite3Fts3PendingTermsFlush(p);
879 if( rc!=SQLITE_OK ) return rc;
881 p->iPrevDocid = iDocid;
882 p->iPrevLangid = iLangid;
883 return SQLITE_OK;
887 ** Discard the contents of the pending-terms hash tables.
889 void sqlite3Fts3PendingTermsClear(Fts3Table *p){
890 int i;
891 for(i=0; i<p->nIndex; i++){
892 Fts3HashElem *pElem;
893 Fts3Hash *pHash = &p->aIndex[i].hPending;
894 for(pElem=fts3HashFirst(pHash); pElem; pElem=fts3HashNext(pElem)){
895 PendingList *pList = (PendingList *)fts3HashData(pElem);
896 fts3PendingListDelete(pList);
898 fts3HashClear(pHash);
900 p->nPendingData = 0;
904 ** This function is called by the xUpdate() method as part of an INSERT
905 ** operation. It adds entries for each term in the new record to the
906 ** pendingTerms hash table.
908 ** Argument apVal is the same as the similarly named argument passed to
909 ** fts3InsertData(). Parameter iDocid is the docid of the new row.
911 static int fts3InsertTerms(
912 Fts3Table *p,
913 int iLangid,
914 sqlite3_value **apVal,
915 u32 *aSz
917 int i; /* Iterator variable */
918 for(i=2; i<p->nColumn+2; i++){
919 int iCol = i-2;
920 if( p->abNotindexed[iCol]==0 ){
921 const char *zText = (const char *)sqlite3_value_text(apVal[i]);
922 int rc = fts3PendingTermsAdd(p, iLangid, zText, iCol, &aSz[iCol]);
923 if( rc!=SQLITE_OK ){
924 return rc;
926 aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]);
929 return SQLITE_OK;
933 ** This function is called by the xUpdate() method for an INSERT operation.
934 ** The apVal parameter is passed a copy of the apVal argument passed by
935 ** SQLite to the xUpdate() method. i.e:
937 ** apVal[0] Not used for INSERT.
938 ** apVal[1] rowid
939 ** apVal[2] Left-most user-defined column
940 ** ...
941 ** apVal[p->nColumn+1] Right-most user-defined column
942 ** apVal[p->nColumn+2] Hidden column with same name as table
943 ** apVal[p->nColumn+3] Hidden "docid" column (alias for rowid)
944 ** apVal[p->nColumn+4] Hidden languageid column
946 static int fts3InsertData(
947 Fts3Table *p, /* Full-text table */
948 sqlite3_value **apVal, /* Array of values to insert */
949 sqlite3_int64 *piDocid /* OUT: Docid for row just inserted */
951 int rc; /* Return code */
952 sqlite3_stmt *pContentInsert; /* INSERT INTO %_content VALUES(...) */
954 if( p->zContentTbl ){
955 sqlite3_value *pRowid = apVal[p->nColumn+3];
956 if( sqlite3_value_type(pRowid)==SQLITE_NULL ){
957 pRowid = apVal[1];
959 if( sqlite3_value_type(pRowid)!=SQLITE_INTEGER ){
960 return SQLITE_CONSTRAINT;
962 *piDocid = sqlite3_value_int64(pRowid);
963 return SQLITE_OK;
966 /* Locate the statement handle used to insert data into the %_content
967 ** table. The SQL for this statement is:
969 ** INSERT INTO %_content VALUES(?, ?, ?, ...)
971 ** The statement features N '?' variables, where N is the number of user
972 ** defined columns in the FTS3 table, plus one for the docid field.
974 rc = fts3SqlStmt(p, SQL_CONTENT_INSERT, &pContentInsert, &apVal[1]);
975 if( rc==SQLITE_OK && p->zLanguageid ){
976 rc = sqlite3_bind_int(
977 pContentInsert, p->nColumn+2,
978 sqlite3_value_int(apVal[p->nColumn+4])
981 if( rc!=SQLITE_OK ) return rc;
983 /* There is a quirk here. The users INSERT statement may have specified
984 ** a value for the "rowid" field, for the "docid" field, or for both.
985 ** Which is a problem, since "rowid" and "docid" are aliases for the
986 ** same value. For example:
988 ** INSERT INTO fts3tbl(rowid, docid) VALUES(1, 2);
990 ** In FTS3, this is an error. It is an error to specify non-NULL values
991 ** for both docid and some other rowid alias.
993 if( SQLITE_NULL!=sqlite3_value_type(apVal[3+p->nColumn]) ){
994 if( SQLITE_NULL==sqlite3_value_type(apVal[0])
995 && SQLITE_NULL!=sqlite3_value_type(apVal[1])
997 /* A rowid/docid conflict. */
998 return SQLITE_ERROR;
1000 rc = sqlite3_bind_value(pContentInsert, 1, apVal[3+p->nColumn]);
1001 if( rc!=SQLITE_OK ) return rc;
1004 /* Execute the statement to insert the record. Set *piDocid to the
1005 ** new docid value.
1007 sqlite3_step(pContentInsert);
1008 rc = sqlite3_reset(pContentInsert);
1010 *piDocid = sqlite3_last_insert_rowid(p->db);
1011 return rc;
1017 ** Remove all data from the FTS3 table. Clear the hash table containing
1018 ** pending terms.
1020 static int fts3DeleteAll(Fts3Table *p, int bContent){
1021 int rc = SQLITE_OK; /* Return code */
1023 /* Discard the contents of the pending-terms hash table. */
1024 sqlite3Fts3PendingTermsClear(p);
1026 /* Delete everything from the shadow tables. Except, leave %_content as
1027 ** is if bContent is false. */
1028 assert( p->zContentTbl==0 || bContent==0 );
1029 if( bContent ) fts3SqlExec(&rc, p, SQL_DELETE_ALL_CONTENT, 0);
1030 fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGMENTS, 0);
1031 fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0);
1032 if( p->bHasDocsize ){
1033 fts3SqlExec(&rc, p, SQL_DELETE_ALL_DOCSIZE, 0);
1035 if( p->bHasStat ){
1036 fts3SqlExec(&rc, p, SQL_DELETE_ALL_STAT, 0);
1038 return rc;
1044 static int langidFromSelect(Fts3Table *p, sqlite3_stmt *pSelect){
1045 int iLangid = 0;
1046 if( p->zLanguageid ) iLangid = sqlite3_column_int(pSelect, p->nColumn+1);
1047 return iLangid;
1051 ** The first element in the apVal[] array is assumed to contain the docid
1052 ** (an integer) of a row about to be deleted. Remove all terms from the
1053 ** full-text index.
1055 static void fts3DeleteTerms(
1056 int *pRC, /* Result code */
1057 Fts3Table *p, /* The FTS table to delete from */
1058 sqlite3_value *pRowid, /* The docid to be deleted */
1059 u32 *aSz, /* Sizes of deleted document written here */
1060 int *pbFound /* OUT: Set to true if row really does exist */
1062 int rc;
1063 sqlite3_stmt *pSelect;
1065 assert( *pbFound==0 );
1066 if( *pRC ) return;
1067 rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, &pRowid);
1068 if( rc==SQLITE_OK ){
1069 if( SQLITE_ROW==sqlite3_step(pSelect) ){
1070 int i;
1071 int iLangid = langidFromSelect(p, pSelect);
1072 rc = fts3PendingTermsDocid(p, iLangid, sqlite3_column_int64(pSelect, 0));
1073 for(i=1; rc==SQLITE_OK && i<=p->nColumn; i++){
1074 int iCol = i-1;
1075 if( p->abNotindexed[iCol]==0 ){
1076 const char *zText = (const char *)sqlite3_column_text(pSelect, i);
1077 rc = fts3PendingTermsAdd(p, iLangid, zText, -1, &aSz[iCol]);
1078 aSz[p->nColumn] += sqlite3_column_bytes(pSelect, i);
1081 if( rc!=SQLITE_OK ){
1082 sqlite3_reset(pSelect);
1083 *pRC = rc;
1084 return;
1086 *pbFound = 1;
1088 rc = sqlite3_reset(pSelect);
1089 }else{
1090 sqlite3_reset(pSelect);
1092 *pRC = rc;
1096 ** Forward declaration to account for the circular dependency between
1097 ** functions fts3SegmentMerge() and fts3AllocateSegdirIdx().
1099 static int fts3SegmentMerge(Fts3Table *, int, int, int);
1102 ** This function allocates a new level iLevel index in the segdir table.
1103 ** Usually, indexes are allocated within a level sequentially starting
1104 ** with 0, so the allocated index is one greater than the value returned
1105 ** by:
1107 ** SELECT max(idx) FROM %_segdir WHERE level = :iLevel
1109 ** However, if there are already FTS3_MERGE_COUNT indexes at the requested
1110 ** level, they are merged into a single level (iLevel+1) segment and the
1111 ** allocated index is 0.
1113 ** If successful, *piIdx is set to the allocated index slot and SQLITE_OK
1114 ** returned. Otherwise, an SQLite error code is returned.
1116 static int fts3AllocateSegdirIdx(
1117 Fts3Table *p,
1118 int iLangid, /* Language id */
1119 int iIndex, /* Index for p->aIndex */
1120 int iLevel,
1121 int *piIdx
1123 int rc; /* Return Code */
1124 sqlite3_stmt *pNextIdx; /* Query for next idx at level iLevel */
1125 int iNext = 0; /* Result of query pNextIdx */
1127 assert( iLangid>=0 );
1128 assert( p->nIndex>=1 );
1130 /* Set variable iNext to the next available segdir index at level iLevel. */
1131 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pNextIdx, 0);
1132 if( rc==SQLITE_OK ){
1133 sqlite3_bind_int64(
1134 pNextIdx, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel)
1136 if( SQLITE_ROW==sqlite3_step(pNextIdx) ){
1137 iNext = sqlite3_column_int(pNextIdx, 0);
1139 rc = sqlite3_reset(pNextIdx);
1142 if( rc==SQLITE_OK ){
1143 /* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already
1144 ** full, merge all segments in level iLevel into a single iLevel+1
1145 ** segment and allocate (newly freed) index 0 at level iLevel. Otherwise,
1146 ** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext.
1148 if( iNext>=FTS3_MERGE_COUNT ){
1149 fts3LogMerge(16, getAbsoluteLevel(p, iLangid, iIndex, iLevel));
1150 rc = fts3SegmentMerge(p, iLangid, iIndex, iLevel);
1151 *piIdx = 0;
1152 }else{
1153 *piIdx = iNext;
1157 return rc;
1161 ** The %_segments table is declared as follows:
1163 ** CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB)
1165 ** This function reads data from a single row of the %_segments table. The
1166 ** specific row is identified by the iBlockid parameter. If paBlob is not
1167 ** NULL, then a buffer is allocated using sqlite3_malloc() and populated
1168 ** with the contents of the blob stored in the "block" column of the
1169 ** identified table row is. Whether or not paBlob is NULL, *pnBlob is set
1170 ** to the size of the blob in bytes before returning.
1172 ** If an error occurs, or the table does not contain the specified row,
1173 ** an SQLite error code is returned. Otherwise, SQLITE_OK is returned. If
1174 ** paBlob is non-NULL, then it is the responsibility of the caller to
1175 ** eventually free the returned buffer.
1177 ** This function may leave an open sqlite3_blob* handle in the
1178 ** Fts3Table.pSegments variable. This handle is reused by subsequent calls
1179 ** to this function. The handle may be closed by calling the
1180 ** sqlite3Fts3SegmentsClose() function. Reusing a blob handle is a handy
1181 ** performance improvement, but the blob handle should always be closed
1182 ** before control is returned to the user (to prevent a lock being held
1183 ** on the database file for longer than necessary). Thus, any virtual table
1184 ** method (xFilter etc.) that may directly or indirectly call this function
1185 ** must call sqlite3Fts3SegmentsClose() before returning.
1187 int sqlite3Fts3ReadBlock(
1188 Fts3Table *p, /* FTS3 table handle */
1189 sqlite3_int64 iBlockid, /* Access the row with blockid=$iBlockid */
1190 char **paBlob, /* OUT: Blob data in malloc'd buffer */
1191 int *pnBlob, /* OUT: Size of blob data */
1192 int *pnLoad /* OUT: Bytes actually loaded */
1194 int rc; /* Return code */
1196 /* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */
1197 assert( pnBlob );
1199 if( p->pSegments ){
1200 rc = sqlite3_blob_reopen(p->pSegments, iBlockid);
1201 }else{
1202 if( 0==p->zSegmentsTbl ){
1203 p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName);
1204 if( 0==p->zSegmentsTbl ) return SQLITE_NOMEM;
1206 rc = sqlite3_blob_open(
1207 p->db, p->zDb, p->zSegmentsTbl, "block", iBlockid, 0, &p->pSegments
1211 if( rc==SQLITE_OK ){
1212 int nByte = sqlite3_blob_bytes(p->pSegments);
1213 *pnBlob = nByte;
1214 if( paBlob ){
1215 char *aByte = sqlite3_malloc(nByte + FTS3_NODE_PADDING);
1216 if( !aByte ){
1217 rc = SQLITE_NOMEM;
1218 }else{
1219 if( pnLoad && nByte>(FTS3_NODE_CHUNK_THRESHOLD) ){
1220 nByte = FTS3_NODE_CHUNKSIZE;
1221 *pnLoad = nByte;
1223 rc = sqlite3_blob_read(p->pSegments, aByte, nByte, 0);
1224 memset(&aByte[nByte], 0, FTS3_NODE_PADDING);
1225 if( rc!=SQLITE_OK ){
1226 sqlite3_free(aByte);
1227 aByte = 0;
1230 *paBlob = aByte;
1234 return rc;
1238 ** Close the blob handle at p->pSegments, if it is open. See comments above
1239 ** the sqlite3Fts3ReadBlock() function for details.
1241 void sqlite3Fts3SegmentsClose(Fts3Table *p){
1242 sqlite3_blob_close(p->pSegments);
1243 p->pSegments = 0;
1246 static int fts3SegReaderIncrRead(Fts3SegReader *pReader){
1247 int nRead; /* Number of bytes to read */
1248 int rc; /* Return code */
1250 nRead = MIN(pReader->nNode - pReader->nPopulate, FTS3_NODE_CHUNKSIZE);
1251 rc = sqlite3_blob_read(
1252 pReader->pBlob,
1253 &pReader->aNode[pReader->nPopulate],
1254 nRead,
1255 pReader->nPopulate
1258 if( rc==SQLITE_OK ){
1259 pReader->nPopulate += nRead;
1260 memset(&pReader->aNode[pReader->nPopulate], 0, FTS3_NODE_PADDING);
1261 if( pReader->nPopulate==pReader->nNode ){
1262 sqlite3_blob_close(pReader->pBlob);
1263 pReader->pBlob = 0;
1264 pReader->nPopulate = 0;
1267 return rc;
1270 static int fts3SegReaderRequire(Fts3SegReader *pReader, char *pFrom, int nByte){
1271 int rc = SQLITE_OK;
1272 assert( !pReader->pBlob
1273 || (pFrom>=pReader->aNode && pFrom<&pReader->aNode[pReader->nNode])
1275 while( pReader->pBlob && rc==SQLITE_OK
1276 && (pFrom - pReader->aNode + nByte)>pReader->nPopulate
1278 rc = fts3SegReaderIncrRead(pReader);
1280 return rc;
1284 ** Set an Fts3SegReader cursor to point at EOF.
1286 static void fts3SegReaderSetEof(Fts3SegReader *pSeg){
1287 if( !fts3SegReaderIsRootOnly(pSeg) ){
1288 sqlite3_free(pSeg->aNode);
1289 sqlite3_blob_close(pSeg->pBlob);
1290 pSeg->pBlob = 0;
1292 pSeg->aNode = 0;
1296 ** Move the iterator passed as the first argument to the next term in the
1297 ** segment. If successful, SQLITE_OK is returned. If there is no next term,
1298 ** SQLITE_DONE. Otherwise, an SQLite error code.
1300 static int fts3SegReaderNext(
1301 Fts3Table *p,
1302 Fts3SegReader *pReader,
1303 int bIncr
1305 int rc; /* Return code of various sub-routines */
1306 char *pNext; /* Cursor variable */
1307 int nPrefix; /* Number of bytes in term prefix */
1308 int nSuffix; /* Number of bytes in term suffix */
1310 if( !pReader->aDoclist ){
1311 pNext = pReader->aNode;
1312 }else{
1313 pNext = &pReader->aDoclist[pReader->nDoclist];
1316 if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){
1318 if( fts3SegReaderIsPending(pReader) ){
1319 Fts3HashElem *pElem = *(pReader->ppNextElem);
1320 if( pElem==0 ){
1321 pReader->aNode = 0;
1322 }else{
1323 PendingList *pList = (PendingList *)fts3HashData(pElem);
1324 pReader->zTerm = (char *)fts3HashKey(pElem);
1325 pReader->nTerm = fts3HashKeysize(pElem);
1326 pReader->nNode = pReader->nDoclist = pList->nData + 1;
1327 pReader->aNode = pReader->aDoclist = pList->aData;
1328 pReader->ppNextElem++;
1329 assert( pReader->aNode );
1331 return SQLITE_OK;
1334 fts3SegReaderSetEof(pReader);
1336 /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf
1337 ** blocks have already been traversed. */
1338 assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock );
1339 if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){
1340 return SQLITE_OK;
1343 rc = sqlite3Fts3ReadBlock(
1344 p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode,
1345 (bIncr ? &pReader->nPopulate : 0)
1347 if( rc!=SQLITE_OK ) return rc;
1348 assert( pReader->pBlob==0 );
1349 if( bIncr && pReader->nPopulate<pReader->nNode ){
1350 pReader->pBlob = p->pSegments;
1351 p->pSegments = 0;
1353 pNext = pReader->aNode;
1356 assert( !fts3SegReaderIsPending(pReader) );
1358 rc = fts3SegReaderRequire(pReader, pNext, FTS3_VARINT_MAX*2);
1359 if( rc!=SQLITE_OK ) return rc;
1361 /* Because of the FTS3_NODE_PADDING bytes of padding, the following is
1362 ** safe (no risk of overread) even if the node data is corrupted. */
1363 pNext += fts3GetVarint32(pNext, &nPrefix);
1364 pNext += fts3GetVarint32(pNext, &nSuffix);
1365 if( nPrefix<0 || nSuffix<=0
1366 || &pNext[nSuffix]>&pReader->aNode[pReader->nNode]
1368 return FTS_CORRUPT_VTAB;
1371 if( nPrefix+nSuffix>pReader->nTermAlloc ){
1372 int nNew = (nPrefix+nSuffix)*2;
1373 char *zNew = sqlite3_realloc(pReader->zTerm, nNew);
1374 if( !zNew ){
1375 return SQLITE_NOMEM;
1377 pReader->zTerm = zNew;
1378 pReader->nTermAlloc = nNew;
1381 rc = fts3SegReaderRequire(pReader, pNext, nSuffix+FTS3_VARINT_MAX);
1382 if( rc!=SQLITE_OK ) return rc;
1384 memcpy(&pReader->zTerm[nPrefix], pNext, nSuffix);
1385 pReader->nTerm = nPrefix+nSuffix;
1386 pNext += nSuffix;
1387 pNext += fts3GetVarint32(pNext, &pReader->nDoclist);
1388 pReader->aDoclist = pNext;
1389 pReader->pOffsetList = 0;
1391 /* Check that the doclist does not appear to extend past the end of the
1392 ** b-tree node. And that the final byte of the doclist is 0x00. If either
1393 ** of these statements is untrue, then the data structure is corrupt.
1395 if( &pReader->aDoclist[pReader->nDoclist]>&pReader->aNode[pReader->nNode]
1396 || (pReader->nPopulate==0 && pReader->aDoclist[pReader->nDoclist-1])
1398 return FTS_CORRUPT_VTAB;
1400 return SQLITE_OK;
1404 ** Set the SegReader to point to the first docid in the doclist associated
1405 ** with the current term.
1407 static int fts3SegReaderFirstDocid(Fts3Table *pTab, Fts3SegReader *pReader){
1408 int rc = SQLITE_OK;
1409 assert( pReader->aDoclist );
1410 assert( !pReader->pOffsetList );
1411 if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){
1412 u8 bEof = 0;
1413 pReader->iDocid = 0;
1414 pReader->nOffsetList = 0;
1415 sqlite3Fts3DoclistPrev(0,
1416 pReader->aDoclist, pReader->nDoclist, &pReader->pOffsetList,
1417 &pReader->iDocid, &pReader->nOffsetList, &bEof
1419 }else{
1420 rc = fts3SegReaderRequire(pReader, pReader->aDoclist, FTS3_VARINT_MAX);
1421 if( rc==SQLITE_OK ){
1422 int n = sqlite3Fts3GetVarint(pReader->aDoclist, &pReader->iDocid);
1423 pReader->pOffsetList = &pReader->aDoclist[n];
1426 return rc;
1430 ** Advance the SegReader to point to the next docid in the doclist
1431 ** associated with the current term.
1433 ** If arguments ppOffsetList and pnOffsetList are not NULL, then
1434 ** *ppOffsetList is set to point to the first column-offset list
1435 ** in the doclist entry (i.e. immediately past the docid varint).
1436 ** *pnOffsetList is set to the length of the set of column-offset
1437 ** lists, not including the nul-terminator byte. For example:
1439 static int fts3SegReaderNextDocid(
1440 Fts3Table *pTab,
1441 Fts3SegReader *pReader, /* Reader to advance to next docid */
1442 char **ppOffsetList, /* OUT: Pointer to current position-list */
1443 int *pnOffsetList /* OUT: Length of *ppOffsetList in bytes */
1445 int rc = SQLITE_OK;
1446 char *p = pReader->pOffsetList;
1447 char c = 0;
1449 assert( p );
1451 if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){
1452 /* A pending-terms seg-reader for an FTS4 table that uses order=desc.
1453 ** Pending-terms doclists are always built up in ascending order, so
1454 ** we have to iterate through them backwards here. */
1455 u8 bEof = 0;
1456 if( ppOffsetList ){
1457 *ppOffsetList = pReader->pOffsetList;
1458 *pnOffsetList = pReader->nOffsetList - 1;
1460 sqlite3Fts3DoclistPrev(0,
1461 pReader->aDoclist, pReader->nDoclist, &p, &pReader->iDocid,
1462 &pReader->nOffsetList, &bEof
1464 if( bEof ){
1465 pReader->pOffsetList = 0;
1466 }else{
1467 pReader->pOffsetList = p;
1469 }else{
1470 char *pEnd = &pReader->aDoclist[pReader->nDoclist];
1472 /* Pointer p currently points at the first byte of an offset list. The
1473 ** following block advances it to point one byte past the end of
1474 ** the same offset list. */
1475 while( 1 ){
1477 /* The following line of code (and the "p++" below the while() loop) is
1478 ** normally all that is required to move pointer p to the desired
1479 ** position. The exception is if this node is being loaded from disk
1480 ** incrementally and pointer "p" now points to the first byte past
1481 ** the populated part of pReader->aNode[].
1483 while( *p | c ) c = *p++ & 0x80;
1484 assert( *p==0 );
1486 if( pReader->pBlob==0 || p<&pReader->aNode[pReader->nPopulate] ) break;
1487 rc = fts3SegReaderIncrRead(pReader);
1488 if( rc!=SQLITE_OK ) return rc;
1490 p++;
1492 /* If required, populate the output variables with a pointer to and the
1493 ** size of the previous offset-list.
1495 if( ppOffsetList ){
1496 *ppOffsetList = pReader->pOffsetList;
1497 *pnOffsetList = (int)(p - pReader->pOffsetList - 1);
1500 /* List may have been edited in place by fts3EvalNearTrim() */
1501 while( p<pEnd && *p==0 ) p++;
1503 /* If there are no more entries in the doclist, set pOffsetList to
1504 ** NULL. Otherwise, set Fts3SegReader.iDocid to the next docid and
1505 ** Fts3SegReader.pOffsetList to point to the next offset list before
1506 ** returning.
1508 if( p>=pEnd ){
1509 pReader->pOffsetList = 0;
1510 }else{
1511 rc = fts3SegReaderRequire(pReader, p, FTS3_VARINT_MAX);
1512 if( rc==SQLITE_OK ){
1513 sqlite3_int64 iDelta;
1514 pReader->pOffsetList = p + sqlite3Fts3GetVarint(p, &iDelta);
1515 if( pTab->bDescIdx ){
1516 pReader->iDocid -= iDelta;
1517 }else{
1518 pReader->iDocid += iDelta;
1524 return SQLITE_OK;
1528 int sqlite3Fts3MsrOvfl(
1529 Fts3Cursor *pCsr,
1530 Fts3MultiSegReader *pMsr,
1531 int *pnOvfl
1533 Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
1534 int nOvfl = 0;
1535 int ii;
1536 int rc = SQLITE_OK;
1537 int pgsz = p->nPgsz;
1539 assert( p->bFts4 );
1540 assert( pgsz>0 );
1542 for(ii=0; rc==SQLITE_OK && ii<pMsr->nSegment; ii++){
1543 Fts3SegReader *pReader = pMsr->apSegment[ii];
1544 if( !fts3SegReaderIsPending(pReader)
1545 && !fts3SegReaderIsRootOnly(pReader)
1547 sqlite3_int64 jj;
1548 for(jj=pReader->iStartBlock; jj<=pReader->iLeafEndBlock; jj++){
1549 int nBlob;
1550 rc = sqlite3Fts3ReadBlock(p, jj, 0, &nBlob, 0);
1551 if( rc!=SQLITE_OK ) break;
1552 if( (nBlob+35)>pgsz ){
1553 nOvfl += (nBlob + 34)/pgsz;
1558 *pnOvfl = nOvfl;
1559 return rc;
1563 ** Free all allocations associated with the iterator passed as the
1564 ** second argument.
1566 void sqlite3Fts3SegReaderFree(Fts3SegReader *pReader){
1567 if( pReader && !fts3SegReaderIsPending(pReader) ){
1568 sqlite3_free(pReader->zTerm);
1569 if( !fts3SegReaderIsRootOnly(pReader) ){
1570 sqlite3_free(pReader->aNode);
1571 sqlite3_blob_close(pReader->pBlob);
1574 sqlite3_free(pReader);
1578 ** Allocate a new SegReader object.
1580 int sqlite3Fts3SegReaderNew(
1581 int iAge, /* Segment "age". */
1582 int bLookup, /* True for a lookup only */
1583 sqlite3_int64 iStartLeaf, /* First leaf to traverse */
1584 sqlite3_int64 iEndLeaf, /* Final leaf to traverse */
1585 sqlite3_int64 iEndBlock, /* Final block of segment */
1586 const char *zRoot, /* Buffer containing root node */
1587 int nRoot, /* Size of buffer containing root node */
1588 Fts3SegReader **ppReader /* OUT: Allocated Fts3SegReader */
1590 Fts3SegReader *pReader; /* Newly allocated SegReader object */
1591 int nExtra = 0; /* Bytes to allocate segment root node */
1593 assert( iStartLeaf<=iEndLeaf );
1594 if( iStartLeaf==0 ){
1595 nExtra = nRoot + FTS3_NODE_PADDING;
1598 pReader = (Fts3SegReader *)sqlite3_malloc(sizeof(Fts3SegReader) + nExtra);
1599 if( !pReader ){
1600 return SQLITE_NOMEM;
1602 memset(pReader, 0, sizeof(Fts3SegReader));
1603 pReader->iIdx = iAge;
1604 pReader->bLookup = bLookup!=0;
1605 pReader->iStartBlock = iStartLeaf;
1606 pReader->iLeafEndBlock = iEndLeaf;
1607 pReader->iEndBlock = iEndBlock;
1609 if( nExtra ){
1610 /* The entire segment is stored in the root node. */
1611 pReader->aNode = (char *)&pReader[1];
1612 pReader->rootOnly = 1;
1613 pReader->nNode = nRoot;
1614 memcpy(pReader->aNode, zRoot, nRoot);
1615 memset(&pReader->aNode[nRoot], 0, FTS3_NODE_PADDING);
1616 }else{
1617 pReader->iCurrentBlock = iStartLeaf-1;
1619 *ppReader = pReader;
1620 return SQLITE_OK;
1624 ** This is a comparison function used as a qsort() callback when sorting
1625 ** an array of pending terms by term. This occurs as part of flushing
1626 ** the contents of the pending-terms hash table to the database.
1628 static int fts3CompareElemByTerm(const void *lhs, const void *rhs){
1629 char *z1 = fts3HashKey(*(Fts3HashElem **)lhs);
1630 char *z2 = fts3HashKey(*(Fts3HashElem **)rhs);
1631 int n1 = fts3HashKeysize(*(Fts3HashElem **)lhs);
1632 int n2 = fts3HashKeysize(*(Fts3HashElem **)rhs);
1634 int n = (n1<n2 ? n1 : n2);
1635 int c = memcmp(z1, z2, n);
1636 if( c==0 ){
1637 c = n1 - n2;
1639 return c;
1643 ** This function is used to allocate an Fts3SegReader that iterates through
1644 ** a subset of the terms stored in the Fts3Table.pendingTerms array.
1646 ** If the isPrefixIter parameter is zero, then the returned SegReader iterates
1647 ** through each term in the pending-terms table. Or, if isPrefixIter is
1648 ** non-zero, it iterates through each term and its prefixes. For example, if
1649 ** the pending terms hash table contains the terms "sqlite", "mysql" and
1650 ** "firebird", then the iterator visits the following 'terms' (in the order
1651 ** shown):
1653 ** f fi fir fire fireb firebi firebir firebird
1654 ** m my mys mysq mysql
1655 ** s sq sql sqli sqlit sqlite
1657 ** Whereas if isPrefixIter is zero, the terms visited are:
1659 ** firebird mysql sqlite
1661 int sqlite3Fts3SegReaderPending(
1662 Fts3Table *p, /* Virtual table handle */
1663 int iIndex, /* Index for p->aIndex */
1664 const char *zTerm, /* Term to search for */
1665 int nTerm, /* Size of buffer zTerm */
1666 int bPrefix, /* True for a prefix iterator */
1667 Fts3SegReader **ppReader /* OUT: SegReader for pending-terms */
1669 Fts3SegReader *pReader = 0; /* Fts3SegReader object to return */
1670 Fts3HashElem *pE; /* Iterator variable */
1671 Fts3HashElem **aElem = 0; /* Array of term hash entries to scan */
1672 int nElem = 0; /* Size of array at aElem */
1673 int rc = SQLITE_OK; /* Return Code */
1674 Fts3Hash *pHash;
1676 pHash = &p->aIndex[iIndex].hPending;
1677 if( bPrefix ){
1678 int nAlloc = 0; /* Size of allocated array at aElem */
1680 for(pE=fts3HashFirst(pHash); pE; pE=fts3HashNext(pE)){
1681 char *zKey = (char *)fts3HashKey(pE);
1682 int nKey = fts3HashKeysize(pE);
1683 if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){
1684 if( nElem==nAlloc ){
1685 Fts3HashElem **aElem2;
1686 nAlloc += 16;
1687 aElem2 = (Fts3HashElem **)sqlite3_realloc(
1688 aElem, nAlloc*sizeof(Fts3HashElem *)
1690 if( !aElem2 ){
1691 rc = SQLITE_NOMEM;
1692 nElem = 0;
1693 break;
1695 aElem = aElem2;
1698 aElem[nElem++] = pE;
1702 /* If more than one term matches the prefix, sort the Fts3HashElem
1703 ** objects in term order using qsort(). This uses the same comparison
1704 ** callback as is used when flushing terms to disk.
1706 if( nElem>1 ){
1707 qsort(aElem, nElem, sizeof(Fts3HashElem *), fts3CompareElemByTerm);
1710 }else{
1711 /* The query is a simple term lookup that matches at most one term in
1712 ** the index. All that is required is a straight hash-lookup.
1714 ** Because the stack address of pE may be accessed via the aElem pointer
1715 ** below, the "Fts3HashElem *pE" must be declared so that it is valid
1716 ** within this entire function, not just this "else{...}" block.
1718 pE = fts3HashFindElem(pHash, zTerm, nTerm);
1719 if( pE ){
1720 aElem = &pE;
1721 nElem = 1;
1725 if( nElem>0 ){
1726 int nByte = sizeof(Fts3SegReader) + (nElem+1)*sizeof(Fts3HashElem *);
1727 pReader = (Fts3SegReader *)sqlite3_malloc(nByte);
1728 if( !pReader ){
1729 rc = SQLITE_NOMEM;
1730 }else{
1731 memset(pReader, 0, nByte);
1732 pReader->iIdx = 0x7FFFFFFF;
1733 pReader->ppNextElem = (Fts3HashElem **)&pReader[1];
1734 memcpy(pReader->ppNextElem, aElem, nElem*sizeof(Fts3HashElem *));
1738 if( bPrefix ){
1739 sqlite3_free(aElem);
1741 *ppReader = pReader;
1742 return rc;
1746 ** Compare the entries pointed to by two Fts3SegReader structures.
1747 ** Comparison is as follows:
1749 ** 1) EOF is greater than not EOF.
1751 ** 2) The current terms (if any) are compared using memcmp(). If one
1752 ** term is a prefix of another, the longer term is considered the
1753 ** larger.
1755 ** 3) By segment age. An older segment is considered larger.
1757 static int fts3SegReaderCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
1758 int rc;
1759 if( pLhs->aNode && pRhs->aNode ){
1760 int rc2 = pLhs->nTerm - pRhs->nTerm;
1761 if( rc2<0 ){
1762 rc = memcmp(pLhs->zTerm, pRhs->zTerm, pLhs->nTerm);
1763 }else{
1764 rc = memcmp(pLhs->zTerm, pRhs->zTerm, pRhs->nTerm);
1766 if( rc==0 ){
1767 rc = rc2;
1769 }else{
1770 rc = (pLhs->aNode==0) - (pRhs->aNode==0);
1772 if( rc==0 ){
1773 rc = pRhs->iIdx - pLhs->iIdx;
1775 assert( rc!=0 );
1776 return rc;
1780 ** A different comparison function for SegReader structures. In this
1781 ** version, it is assumed that each SegReader points to an entry in
1782 ** a doclist for identical terms. Comparison is made as follows:
1784 ** 1) EOF (end of doclist in this case) is greater than not EOF.
1786 ** 2) By current docid.
1788 ** 3) By segment age. An older segment is considered larger.
1790 static int fts3SegReaderDoclistCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
1791 int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0);
1792 if( rc==0 ){
1793 if( pLhs->iDocid==pRhs->iDocid ){
1794 rc = pRhs->iIdx - pLhs->iIdx;
1795 }else{
1796 rc = (pLhs->iDocid > pRhs->iDocid) ? 1 : -1;
1799 assert( pLhs->aNode && pRhs->aNode );
1800 return rc;
1802 static int fts3SegReaderDoclistCmpRev(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
1803 int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0);
1804 if( rc==0 ){
1805 if( pLhs->iDocid==pRhs->iDocid ){
1806 rc = pRhs->iIdx - pLhs->iIdx;
1807 }else{
1808 rc = (pLhs->iDocid < pRhs->iDocid) ? 1 : -1;
1811 assert( pLhs->aNode && pRhs->aNode );
1812 return rc;
1816 ** Compare the term that the Fts3SegReader object passed as the first argument
1817 ** points to with the term specified by arguments zTerm and nTerm.
1819 ** If the pSeg iterator is already at EOF, return 0. Otherwise, return
1820 ** -ve if the pSeg term is less than zTerm/nTerm, 0 if the two terms are
1821 ** equal, or +ve if the pSeg term is greater than zTerm/nTerm.
1823 static int fts3SegReaderTermCmp(
1824 Fts3SegReader *pSeg, /* Segment reader object */
1825 const char *zTerm, /* Term to compare to */
1826 int nTerm /* Size of term zTerm in bytes */
1828 int res = 0;
1829 if( pSeg->aNode ){
1830 if( pSeg->nTerm>nTerm ){
1831 res = memcmp(pSeg->zTerm, zTerm, nTerm);
1832 }else{
1833 res = memcmp(pSeg->zTerm, zTerm, pSeg->nTerm);
1835 if( res==0 ){
1836 res = pSeg->nTerm-nTerm;
1839 return res;
1843 ** Argument apSegment is an array of nSegment elements. It is known that
1844 ** the final (nSegment-nSuspect) members are already in sorted order
1845 ** (according to the comparison function provided). This function shuffles
1846 ** the array around until all entries are in sorted order.
1848 static void fts3SegReaderSort(
1849 Fts3SegReader **apSegment, /* Array to sort entries of */
1850 int nSegment, /* Size of apSegment array */
1851 int nSuspect, /* Unsorted entry count */
1852 int (*xCmp)(Fts3SegReader *, Fts3SegReader *) /* Comparison function */
1854 int i; /* Iterator variable */
1856 assert( nSuspect<=nSegment );
1858 if( nSuspect==nSegment ) nSuspect--;
1859 for(i=nSuspect-1; i>=0; i--){
1860 int j;
1861 for(j=i; j<(nSegment-1); j++){
1862 Fts3SegReader *pTmp;
1863 if( xCmp(apSegment[j], apSegment[j+1])<0 ) break;
1864 pTmp = apSegment[j+1];
1865 apSegment[j+1] = apSegment[j];
1866 apSegment[j] = pTmp;
1870 #ifndef NDEBUG
1871 /* Check that the list really is sorted now. */
1872 for(i=0; i<(nSuspect-1); i++){
1873 assert( xCmp(apSegment[i], apSegment[i+1])<0 );
1875 #endif
1879 ** Insert a record into the %_segments table.
1881 static int fts3WriteSegment(
1882 Fts3Table *p, /* Virtual table handle */
1883 sqlite3_int64 iBlock, /* Block id for new block */
1884 char *z, /* Pointer to buffer containing block data */
1885 int n /* Size of buffer z in bytes */
1887 sqlite3_stmt *pStmt;
1888 int rc = fts3SqlStmt(p, SQL_INSERT_SEGMENTS, &pStmt, 0);
1889 if( rc==SQLITE_OK ){
1890 sqlite3_bind_int64(pStmt, 1, iBlock);
1891 sqlite3_bind_blob(pStmt, 2, z, n, SQLITE_STATIC);
1892 sqlite3_step(pStmt);
1893 rc = sqlite3_reset(pStmt);
1895 return rc;
1899 ** Find the largest relative level number in the table. If successful, set
1900 ** *pnMax to this value and return SQLITE_OK. Otherwise, if an error occurs,
1901 ** set *pnMax to zero and return an SQLite error code.
1903 int sqlite3Fts3MaxLevel(Fts3Table *p, int *pnMax){
1904 int rc;
1905 int mxLevel = 0;
1906 sqlite3_stmt *pStmt = 0;
1908 rc = fts3SqlStmt(p, SQL_SELECT_MXLEVEL, &pStmt, 0);
1909 if( rc==SQLITE_OK ){
1910 if( SQLITE_ROW==sqlite3_step(pStmt) ){
1911 mxLevel = sqlite3_column_int(pStmt, 0);
1913 rc = sqlite3_reset(pStmt);
1915 *pnMax = mxLevel;
1916 return rc;
1920 ** Insert a record into the %_segdir table.
1922 static int fts3WriteSegdir(
1923 Fts3Table *p, /* Virtual table handle */
1924 sqlite3_int64 iLevel, /* Value for "level" field (absolute level) */
1925 int iIdx, /* Value for "idx" field */
1926 sqlite3_int64 iStartBlock, /* Value for "start_block" field */
1927 sqlite3_int64 iLeafEndBlock, /* Value for "leaves_end_block" field */
1928 sqlite3_int64 iEndBlock, /* Value for "end_block" field */
1929 sqlite3_int64 nLeafData, /* Bytes of leaf data in segment */
1930 char *zRoot, /* Blob value for "root" field */
1931 int nRoot /* Number of bytes in buffer zRoot */
1933 sqlite3_stmt *pStmt;
1934 int rc = fts3SqlStmt(p, SQL_INSERT_SEGDIR, &pStmt, 0);
1935 if( rc==SQLITE_OK ){
1936 sqlite3_bind_int64(pStmt, 1, iLevel);
1937 sqlite3_bind_int(pStmt, 2, iIdx);
1938 sqlite3_bind_int64(pStmt, 3, iStartBlock);
1939 sqlite3_bind_int64(pStmt, 4, iLeafEndBlock);
1940 if( nLeafData==0 ){
1941 sqlite3_bind_int64(pStmt, 5, iEndBlock);
1942 }else{
1943 char *zEnd = sqlite3_mprintf("%lld %lld", iEndBlock, nLeafData);
1944 if( !zEnd ) return SQLITE_NOMEM;
1945 sqlite3_bind_text(pStmt, 5, zEnd, -1, sqlite3_free);
1947 sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC);
1948 sqlite3_step(pStmt);
1949 rc = sqlite3_reset(pStmt);
1951 return rc;
1955 ** Return the size of the common prefix (if any) shared by zPrev and
1956 ** zNext, in bytes. For example,
1958 ** fts3PrefixCompress("abc", 3, "abcdef", 6) // returns 3
1959 ** fts3PrefixCompress("abX", 3, "abcdef", 6) // returns 2
1960 ** fts3PrefixCompress("abX", 3, "Xbcdef", 6) // returns 0
1962 static int fts3PrefixCompress(
1963 const char *zPrev, /* Buffer containing previous term */
1964 int nPrev, /* Size of buffer zPrev in bytes */
1965 const char *zNext, /* Buffer containing next term */
1966 int nNext /* Size of buffer zNext in bytes */
1968 int n;
1969 UNUSED_PARAMETER(nNext);
1970 for(n=0; n<nPrev && zPrev[n]==zNext[n]; n++);
1971 return n;
1975 ** Add term zTerm to the SegmentNode. It is guaranteed that zTerm is larger
1976 ** (according to memcmp) than the previous term.
1978 static int fts3NodeAddTerm(
1979 Fts3Table *p, /* Virtual table handle */
1980 SegmentNode **ppTree, /* IN/OUT: SegmentNode handle */
1981 int isCopyTerm, /* True if zTerm/nTerm is transient */
1982 const char *zTerm, /* Pointer to buffer containing term */
1983 int nTerm /* Size of term in bytes */
1985 SegmentNode *pTree = *ppTree;
1986 int rc;
1987 SegmentNode *pNew;
1989 /* First try to append the term to the current node. Return early if
1990 ** this is possible.
1992 if( pTree ){
1993 int nData = pTree->nData; /* Current size of node in bytes */
1994 int nReq = nData; /* Required space after adding zTerm */
1995 int nPrefix; /* Number of bytes of prefix compression */
1996 int nSuffix; /* Suffix length */
1998 nPrefix = fts3PrefixCompress(pTree->zTerm, pTree->nTerm, zTerm, nTerm);
1999 nSuffix = nTerm-nPrefix;
2001 nReq += sqlite3Fts3VarintLen(nPrefix)+sqlite3Fts3VarintLen(nSuffix)+nSuffix;
2002 if( nReq<=p->nNodeSize || !pTree->zTerm ){
2004 if( nReq>p->nNodeSize ){
2005 /* An unusual case: this is the first term to be added to the node
2006 ** and the static node buffer (p->nNodeSize bytes) is not large
2007 ** enough. Use a separately malloced buffer instead This wastes
2008 ** p->nNodeSize bytes, but since this scenario only comes about when
2009 ** the database contain two terms that share a prefix of almost 2KB,
2010 ** this is not expected to be a serious problem.
2012 assert( pTree->aData==(char *)&pTree[1] );
2013 pTree->aData = (char *)sqlite3_malloc(nReq);
2014 if( !pTree->aData ){
2015 return SQLITE_NOMEM;
2019 if( pTree->zTerm ){
2020 /* There is no prefix-length field for first term in a node */
2021 nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nPrefix);
2024 nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nSuffix);
2025 memcpy(&pTree->aData[nData], &zTerm[nPrefix], nSuffix);
2026 pTree->nData = nData + nSuffix;
2027 pTree->nEntry++;
2029 if( isCopyTerm ){
2030 if( pTree->nMalloc<nTerm ){
2031 char *zNew = sqlite3_realloc(pTree->zMalloc, nTerm*2);
2032 if( !zNew ){
2033 return SQLITE_NOMEM;
2035 pTree->nMalloc = nTerm*2;
2036 pTree->zMalloc = zNew;
2038 pTree->zTerm = pTree->zMalloc;
2039 memcpy(pTree->zTerm, zTerm, nTerm);
2040 pTree->nTerm = nTerm;
2041 }else{
2042 pTree->zTerm = (char *)zTerm;
2043 pTree->nTerm = nTerm;
2045 return SQLITE_OK;
2049 /* If control flows to here, it was not possible to append zTerm to the
2050 ** current node. Create a new node (a right-sibling of the current node).
2051 ** If this is the first node in the tree, the term is added to it.
2053 ** Otherwise, the term is not added to the new node, it is left empty for
2054 ** now. Instead, the term is inserted into the parent of pTree. If pTree
2055 ** has no parent, one is created here.
2057 pNew = (SegmentNode *)sqlite3_malloc(sizeof(SegmentNode) + p->nNodeSize);
2058 if( !pNew ){
2059 return SQLITE_NOMEM;
2061 memset(pNew, 0, sizeof(SegmentNode));
2062 pNew->nData = 1 + FTS3_VARINT_MAX;
2063 pNew->aData = (char *)&pNew[1];
2065 if( pTree ){
2066 SegmentNode *pParent = pTree->pParent;
2067 rc = fts3NodeAddTerm(p, &pParent, isCopyTerm, zTerm, nTerm);
2068 if( pTree->pParent==0 ){
2069 pTree->pParent = pParent;
2071 pTree->pRight = pNew;
2072 pNew->pLeftmost = pTree->pLeftmost;
2073 pNew->pParent = pParent;
2074 pNew->zMalloc = pTree->zMalloc;
2075 pNew->nMalloc = pTree->nMalloc;
2076 pTree->zMalloc = 0;
2077 }else{
2078 pNew->pLeftmost = pNew;
2079 rc = fts3NodeAddTerm(p, &pNew, isCopyTerm, zTerm, nTerm);
2082 *ppTree = pNew;
2083 return rc;
2087 ** Helper function for fts3NodeWrite().
2089 static int fts3TreeFinishNode(
2090 SegmentNode *pTree,
2091 int iHeight,
2092 sqlite3_int64 iLeftChild
2094 int nStart;
2095 assert( iHeight>=1 && iHeight<128 );
2096 nStart = FTS3_VARINT_MAX - sqlite3Fts3VarintLen(iLeftChild);
2097 pTree->aData[nStart] = (char)iHeight;
2098 sqlite3Fts3PutVarint(&pTree->aData[nStart+1], iLeftChild);
2099 return nStart;
2103 ** Write the buffer for the segment node pTree and all of its peers to the
2104 ** database. Then call this function recursively to write the parent of
2105 ** pTree and its peers to the database.
2107 ** Except, if pTree is a root node, do not write it to the database. Instead,
2108 ** set output variables *paRoot and *pnRoot to contain the root node.
2110 ** If successful, SQLITE_OK is returned and output variable *piLast is
2111 ** set to the largest blockid written to the database (or zero if no
2112 ** blocks were written to the db). Otherwise, an SQLite error code is
2113 ** returned.
2115 static int fts3NodeWrite(
2116 Fts3Table *p, /* Virtual table handle */
2117 SegmentNode *pTree, /* SegmentNode handle */
2118 int iHeight, /* Height of this node in tree */
2119 sqlite3_int64 iLeaf, /* Block id of first leaf node */
2120 sqlite3_int64 iFree, /* Block id of next free slot in %_segments */
2121 sqlite3_int64 *piLast, /* OUT: Block id of last entry written */
2122 char **paRoot, /* OUT: Data for root node */
2123 int *pnRoot /* OUT: Size of root node in bytes */
2125 int rc = SQLITE_OK;
2127 if( !pTree->pParent ){
2128 /* Root node of the tree. */
2129 int nStart = fts3TreeFinishNode(pTree, iHeight, iLeaf);
2130 *piLast = iFree-1;
2131 *pnRoot = pTree->nData - nStart;
2132 *paRoot = &pTree->aData[nStart];
2133 }else{
2134 SegmentNode *pIter;
2135 sqlite3_int64 iNextFree = iFree;
2136 sqlite3_int64 iNextLeaf = iLeaf;
2137 for(pIter=pTree->pLeftmost; pIter && rc==SQLITE_OK; pIter=pIter->pRight){
2138 int nStart = fts3TreeFinishNode(pIter, iHeight, iNextLeaf);
2139 int nWrite = pIter->nData - nStart;
2141 rc = fts3WriteSegment(p, iNextFree, &pIter->aData[nStart], nWrite);
2142 iNextFree++;
2143 iNextLeaf += (pIter->nEntry+1);
2145 if( rc==SQLITE_OK ){
2146 assert( iNextLeaf==iFree );
2147 rc = fts3NodeWrite(
2148 p, pTree->pParent, iHeight+1, iFree, iNextFree, piLast, paRoot, pnRoot
2153 return rc;
2157 ** Free all memory allocations associated with the tree pTree.
2159 static void fts3NodeFree(SegmentNode *pTree){
2160 if( pTree ){
2161 SegmentNode *p = pTree->pLeftmost;
2162 fts3NodeFree(p->pParent);
2163 while( p ){
2164 SegmentNode *pRight = p->pRight;
2165 if( p->aData!=(char *)&p[1] ){
2166 sqlite3_free(p->aData);
2168 assert( pRight==0 || p->zMalloc==0 );
2169 sqlite3_free(p->zMalloc);
2170 sqlite3_free(p);
2171 p = pRight;
2177 ** Add a term to the segment being constructed by the SegmentWriter object
2178 ** *ppWriter. When adding the first term to a segment, *ppWriter should
2179 ** be passed NULL. This function will allocate a new SegmentWriter object
2180 ** and return it via the input/output variable *ppWriter in this case.
2182 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
2184 static int fts3SegWriterAdd(
2185 Fts3Table *p, /* Virtual table handle */
2186 SegmentWriter **ppWriter, /* IN/OUT: SegmentWriter handle */
2187 int isCopyTerm, /* True if buffer zTerm must be copied */
2188 const char *zTerm, /* Pointer to buffer containing term */
2189 int nTerm, /* Size of term in bytes */
2190 const char *aDoclist, /* Pointer to buffer containing doclist */
2191 int nDoclist /* Size of doclist in bytes */
2193 int nPrefix; /* Size of term prefix in bytes */
2194 int nSuffix; /* Size of term suffix in bytes */
2195 int nReq; /* Number of bytes required on leaf page */
2196 int nData;
2197 SegmentWriter *pWriter = *ppWriter;
2199 if( !pWriter ){
2200 int rc;
2201 sqlite3_stmt *pStmt;
2203 /* Allocate the SegmentWriter structure */
2204 pWriter = (SegmentWriter *)sqlite3_malloc(sizeof(SegmentWriter));
2205 if( !pWriter ) return SQLITE_NOMEM;
2206 memset(pWriter, 0, sizeof(SegmentWriter));
2207 *ppWriter = pWriter;
2209 /* Allocate a buffer in which to accumulate data */
2210 pWriter->aData = (char *)sqlite3_malloc(p->nNodeSize);
2211 if( !pWriter->aData ) return SQLITE_NOMEM;
2212 pWriter->nSize = p->nNodeSize;
2214 /* Find the next free blockid in the %_segments table */
2215 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pStmt, 0);
2216 if( rc!=SQLITE_OK ) return rc;
2217 if( SQLITE_ROW==sqlite3_step(pStmt) ){
2218 pWriter->iFree = sqlite3_column_int64(pStmt, 0);
2219 pWriter->iFirst = pWriter->iFree;
2221 rc = sqlite3_reset(pStmt);
2222 if( rc!=SQLITE_OK ) return rc;
2224 nData = pWriter->nData;
2226 nPrefix = fts3PrefixCompress(pWriter->zTerm, pWriter->nTerm, zTerm, nTerm);
2227 nSuffix = nTerm-nPrefix;
2229 /* Figure out how many bytes are required by this new entry */
2230 nReq = sqlite3Fts3VarintLen(nPrefix) + /* varint containing prefix size */
2231 sqlite3Fts3VarintLen(nSuffix) + /* varint containing suffix size */
2232 nSuffix + /* Term suffix */
2233 sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */
2234 nDoclist; /* Doclist data */
2236 if( nData>0 && nData+nReq>p->nNodeSize ){
2237 int rc;
2239 /* The current leaf node is full. Write it out to the database. */
2240 rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, nData);
2241 if( rc!=SQLITE_OK ) return rc;
2242 p->nLeafAdd++;
2244 /* Add the current term to the interior node tree. The term added to
2245 ** the interior tree must:
2247 ** a) be greater than the largest term on the leaf node just written
2248 ** to the database (still available in pWriter->zTerm), and
2250 ** b) be less than or equal to the term about to be added to the new
2251 ** leaf node (zTerm/nTerm).
2253 ** In other words, it must be the prefix of zTerm 1 byte longer than
2254 ** the common prefix (if any) of zTerm and pWriter->zTerm.
2256 assert( nPrefix<nTerm );
2257 rc = fts3NodeAddTerm(p, &pWriter->pTree, isCopyTerm, zTerm, nPrefix+1);
2258 if( rc!=SQLITE_OK ) return rc;
2260 nData = 0;
2261 pWriter->nTerm = 0;
2263 nPrefix = 0;
2264 nSuffix = nTerm;
2265 nReq = 1 + /* varint containing prefix size */
2266 sqlite3Fts3VarintLen(nTerm) + /* varint containing suffix size */
2267 nTerm + /* Term suffix */
2268 sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */
2269 nDoclist; /* Doclist data */
2272 /* Increase the total number of bytes written to account for the new entry. */
2273 pWriter->nLeafData += nReq;
2275 /* If the buffer currently allocated is too small for this entry, realloc
2276 ** the buffer to make it large enough.
2278 if( nReq>pWriter->nSize ){
2279 char *aNew = sqlite3_realloc(pWriter->aData, nReq);
2280 if( !aNew ) return SQLITE_NOMEM;
2281 pWriter->aData = aNew;
2282 pWriter->nSize = nReq;
2284 assert( nData+nReq<=pWriter->nSize );
2286 /* Append the prefix-compressed term and doclist to the buffer. */
2287 nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nPrefix);
2288 nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nSuffix);
2289 memcpy(&pWriter->aData[nData], &zTerm[nPrefix], nSuffix);
2290 nData += nSuffix;
2291 nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nDoclist);
2292 memcpy(&pWriter->aData[nData], aDoclist, nDoclist);
2293 pWriter->nData = nData + nDoclist;
2295 /* Save the current term so that it can be used to prefix-compress the next.
2296 ** If the isCopyTerm parameter is true, then the buffer pointed to by
2297 ** zTerm is transient, so take a copy of the term data. Otherwise, just
2298 ** store a copy of the pointer.
2300 if( isCopyTerm ){
2301 if( nTerm>pWriter->nMalloc ){
2302 char *zNew = sqlite3_realloc(pWriter->zMalloc, nTerm*2);
2303 if( !zNew ){
2304 return SQLITE_NOMEM;
2306 pWriter->nMalloc = nTerm*2;
2307 pWriter->zMalloc = zNew;
2308 pWriter->zTerm = zNew;
2310 assert( pWriter->zTerm==pWriter->zMalloc );
2311 memcpy(pWriter->zTerm, zTerm, nTerm);
2312 }else{
2313 pWriter->zTerm = (char *)zTerm;
2315 pWriter->nTerm = nTerm;
2317 return SQLITE_OK;
2321 ** Flush all data associated with the SegmentWriter object pWriter to the
2322 ** database. This function must be called after all terms have been added
2323 ** to the segment using fts3SegWriterAdd(). If successful, SQLITE_OK is
2324 ** returned. Otherwise, an SQLite error code.
2326 static int fts3SegWriterFlush(
2327 Fts3Table *p, /* Virtual table handle */
2328 SegmentWriter *pWriter, /* SegmentWriter to flush to the db */
2329 sqlite3_int64 iLevel, /* Value for 'level' column of %_segdir */
2330 int iIdx /* Value for 'idx' column of %_segdir */
2332 int rc; /* Return code */
2333 if( pWriter->pTree ){
2334 sqlite3_int64 iLast = 0; /* Largest block id written to database */
2335 sqlite3_int64 iLastLeaf; /* Largest leaf block id written to db */
2336 char *zRoot = NULL; /* Pointer to buffer containing root node */
2337 int nRoot = 0; /* Size of buffer zRoot */
2339 iLastLeaf = pWriter->iFree;
2340 rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, pWriter->nData);
2341 if( rc==SQLITE_OK ){
2342 rc = fts3NodeWrite(p, pWriter->pTree, 1,
2343 pWriter->iFirst, pWriter->iFree, &iLast, &zRoot, &nRoot);
2345 if( rc==SQLITE_OK ){
2346 rc = fts3WriteSegdir(p, iLevel, iIdx,
2347 pWriter->iFirst, iLastLeaf, iLast, pWriter->nLeafData, zRoot, nRoot);
2349 }else{
2350 /* The entire tree fits on the root node. Write it to the segdir table. */
2351 rc = fts3WriteSegdir(p, iLevel, iIdx,
2352 0, 0, 0, pWriter->nLeafData, pWriter->aData, pWriter->nData);
2354 p->nLeafAdd++;
2355 return rc;
2359 ** Release all memory held by the SegmentWriter object passed as the
2360 ** first argument.
2362 static void fts3SegWriterFree(SegmentWriter *pWriter){
2363 if( pWriter ){
2364 sqlite3_free(pWriter->aData);
2365 sqlite3_free(pWriter->zMalloc);
2366 fts3NodeFree(pWriter->pTree);
2367 sqlite3_free(pWriter);
2372 ** The first value in the apVal[] array is assumed to contain an integer.
2373 ** This function tests if there exist any documents with docid values that
2374 ** are different from that integer. i.e. if deleting the document with docid
2375 ** pRowid would mean the FTS3 table were empty.
2377 ** If successful, *pisEmpty is set to true if the table is empty except for
2378 ** document pRowid, or false otherwise, and SQLITE_OK is returned. If an
2379 ** error occurs, an SQLite error code is returned.
2381 static int fts3IsEmpty(Fts3Table *p, sqlite3_value *pRowid, int *pisEmpty){
2382 sqlite3_stmt *pStmt;
2383 int rc;
2384 if( p->zContentTbl ){
2385 /* If using the content=xxx option, assume the table is never empty */
2386 *pisEmpty = 0;
2387 rc = SQLITE_OK;
2388 }else{
2389 rc = fts3SqlStmt(p, SQL_IS_EMPTY, &pStmt, &pRowid);
2390 if( rc==SQLITE_OK ){
2391 if( SQLITE_ROW==sqlite3_step(pStmt) ){
2392 *pisEmpty = sqlite3_column_int(pStmt, 0);
2394 rc = sqlite3_reset(pStmt);
2397 return rc;
2401 ** Set *pnMax to the largest segment level in the database for the index
2402 ** iIndex.
2404 ** Segment levels are stored in the 'level' column of the %_segdir table.
2406 ** Return SQLITE_OK if successful, or an SQLite error code if not.
2408 static int fts3SegmentMaxLevel(
2409 Fts3Table *p,
2410 int iLangid,
2411 int iIndex,
2412 sqlite3_int64 *pnMax
2414 sqlite3_stmt *pStmt;
2415 int rc;
2416 assert( iIndex>=0 && iIndex<p->nIndex );
2418 /* Set pStmt to the compiled version of:
2420 ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?
2422 ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR).
2424 rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0);
2425 if( rc!=SQLITE_OK ) return rc;
2426 sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
2427 sqlite3_bind_int64(pStmt, 2,
2428 getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
2430 if( SQLITE_ROW==sqlite3_step(pStmt) ){
2431 *pnMax = sqlite3_column_int64(pStmt, 0);
2433 return sqlite3_reset(pStmt);
2437 ** iAbsLevel is an absolute level that may be assumed to exist within
2438 ** the database. This function checks if it is the largest level number
2439 ** within its index. Assuming no error occurs, *pbMax is set to 1 if
2440 ** iAbsLevel is indeed the largest level, or 0 otherwise, and SQLITE_OK
2441 ** is returned. If an error occurs, an error code is returned and the
2442 ** final value of *pbMax is undefined.
2444 static int fts3SegmentIsMaxLevel(Fts3Table *p, i64 iAbsLevel, int *pbMax){
2446 /* Set pStmt to the compiled version of:
2448 ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?
2450 ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR).
2452 sqlite3_stmt *pStmt;
2453 int rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0);
2454 if( rc!=SQLITE_OK ) return rc;
2455 sqlite3_bind_int64(pStmt, 1, iAbsLevel+1);
2456 sqlite3_bind_int64(pStmt, 2,
2457 ((iAbsLevel/FTS3_SEGDIR_MAXLEVEL)+1) * FTS3_SEGDIR_MAXLEVEL
2460 *pbMax = 0;
2461 if( SQLITE_ROW==sqlite3_step(pStmt) ){
2462 *pbMax = sqlite3_column_type(pStmt, 0)==SQLITE_NULL;
2464 return sqlite3_reset(pStmt);
2468 ** Delete all entries in the %_segments table associated with the segment
2469 ** opened with seg-reader pSeg. This function does not affect the contents
2470 ** of the %_segdir table.
2472 static int fts3DeleteSegment(
2473 Fts3Table *p, /* FTS table handle */
2474 Fts3SegReader *pSeg /* Segment to delete */
2476 int rc = SQLITE_OK; /* Return code */
2477 if( pSeg->iStartBlock ){
2478 sqlite3_stmt *pDelete; /* SQL statement to delete rows */
2479 rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDelete, 0);
2480 if( rc==SQLITE_OK ){
2481 sqlite3_bind_int64(pDelete, 1, pSeg->iStartBlock);
2482 sqlite3_bind_int64(pDelete, 2, pSeg->iEndBlock);
2483 sqlite3_step(pDelete);
2484 rc = sqlite3_reset(pDelete);
2487 return rc;
2491 ** This function is used after merging multiple segments into a single large
2492 ** segment to delete the old, now redundant, segment b-trees. Specifically,
2493 ** it:
2495 ** 1) Deletes all %_segments entries for the segments associated with
2496 ** each of the SegReader objects in the array passed as the third
2497 ** argument, and
2499 ** 2) deletes all %_segdir entries with level iLevel, or all %_segdir
2500 ** entries regardless of level if (iLevel<0).
2502 ** SQLITE_OK is returned if successful, otherwise an SQLite error code.
2504 static int fts3DeleteSegdir(
2505 Fts3Table *p, /* Virtual table handle */
2506 int iLangid, /* Language id */
2507 int iIndex, /* Index for p->aIndex */
2508 int iLevel, /* Level of %_segdir entries to delete */
2509 Fts3SegReader **apSegment, /* Array of SegReader objects */
2510 int nReader /* Size of array apSegment */
2512 int rc = SQLITE_OK; /* Return Code */
2513 int i; /* Iterator variable */
2514 sqlite3_stmt *pDelete = 0; /* SQL statement to delete rows */
2516 for(i=0; rc==SQLITE_OK && i<nReader; i++){
2517 rc = fts3DeleteSegment(p, apSegment[i]);
2519 if( rc!=SQLITE_OK ){
2520 return rc;
2523 assert( iLevel>=0 || iLevel==FTS3_SEGCURSOR_ALL );
2524 if( iLevel==FTS3_SEGCURSOR_ALL ){
2525 rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_RANGE, &pDelete, 0);
2526 if( rc==SQLITE_OK ){
2527 sqlite3_bind_int64(pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
2528 sqlite3_bind_int64(pDelete, 2,
2529 getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
2532 }else{
2533 rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pDelete, 0);
2534 if( rc==SQLITE_OK ){
2535 sqlite3_bind_int64(
2536 pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel)
2541 if( rc==SQLITE_OK ){
2542 sqlite3_step(pDelete);
2543 rc = sqlite3_reset(pDelete);
2546 return rc;
2550 ** When this function is called, buffer *ppList (size *pnList bytes) contains
2551 ** a position list that may (or may not) feature multiple columns. This
2552 ** function adjusts the pointer *ppList and the length *pnList so that they
2553 ** identify the subset of the position list that corresponds to column iCol.
2555 ** If there are no entries in the input position list for column iCol, then
2556 ** *pnList is set to zero before returning.
2558 ** If parameter bZero is non-zero, then any part of the input list following
2559 ** the end of the output list is zeroed before returning.
2561 static void fts3ColumnFilter(
2562 int iCol, /* Column to filter on */
2563 int bZero, /* Zero out anything following *ppList */
2564 char **ppList, /* IN/OUT: Pointer to position list */
2565 int *pnList /* IN/OUT: Size of buffer *ppList in bytes */
2567 char *pList = *ppList;
2568 int nList = *pnList;
2569 char *pEnd = &pList[nList];
2570 int iCurrent = 0;
2571 char *p = pList;
2573 assert( iCol>=0 );
2574 while( 1 ){
2575 char c = 0;
2576 while( p<pEnd && (c | *p)&0xFE ) c = *p++ & 0x80;
2578 if( iCol==iCurrent ){
2579 nList = (int)(p - pList);
2580 break;
2583 nList -= (int)(p - pList);
2584 pList = p;
2585 if( nList==0 ){
2586 break;
2588 p = &pList[1];
2589 p += fts3GetVarint32(p, &iCurrent);
2592 if( bZero && &pList[nList]!=pEnd ){
2593 memset(&pList[nList], 0, pEnd - &pList[nList]);
2595 *ppList = pList;
2596 *pnList = nList;
2600 ** Cache data in the Fts3MultiSegReader.aBuffer[] buffer (overwriting any
2601 ** existing data). Grow the buffer if required.
2603 ** If successful, return SQLITE_OK. Otherwise, if an OOM error is encountered
2604 ** trying to resize the buffer, return SQLITE_NOMEM.
2606 static int fts3MsrBufferData(
2607 Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */
2608 char *pList,
2609 int nList
2611 if( nList>pMsr->nBuffer ){
2612 char *pNew;
2613 pMsr->nBuffer = nList*2;
2614 pNew = (char *)sqlite3_realloc(pMsr->aBuffer, pMsr->nBuffer);
2615 if( !pNew ) return SQLITE_NOMEM;
2616 pMsr->aBuffer = pNew;
2619 memcpy(pMsr->aBuffer, pList, nList);
2620 return SQLITE_OK;
2623 int sqlite3Fts3MsrIncrNext(
2624 Fts3Table *p, /* Virtual table handle */
2625 Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */
2626 sqlite3_int64 *piDocid, /* OUT: Docid value */
2627 char **paPoslist, /* OUT: Pointer to position list */
2628 int *pnPoslist /* OUT: Size of position list in bytes */
2630 int nMerge = pMsr->nAdvance;
2631 Fts3SegReader **apSegment = pMsr->apSegment;
2632 int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
2633 p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
2636 if( nMerge==0 ){
2637 *paPoslist = 0;
2638 return SQLITE_OK;
2641 while( 1 ){
2642 Fts3SegReader *pSeg;
2643 pSeg = pMsr->apSegment[0];
2645 if( pSeg->pOffsetList==0 ){
2646 *paPoslist = 0;
2647 break;
2648 }else{
2649 int rc;
2650 char *pList;
2651 int nList;
2652 int j;
2653 sqlite3_int64 iDocid = apSegment[0]->iDocid;
2655 rc = fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList);
2656 j = 1;
2657 while( rc==SQLITE_OK
2658 && j<nMerge
2659 && apSegment[j]->pOffsetList
2660 && apSegment[j]->iDocid==iDocid
2662 rc = fts3SegReaderNextDocid(p, apSegment[j], 0, 0);
2663 j++;
2665 if( rc!=SQLITE_OK ) return rc;
2666 fts3SegReaderSort(pMsr->apSegment, nMerge, j, xCmp);
2668 if( nList>0 && fts3SegReaderIsPending(apSegment[0]) ){
2669 rc = fts3MsrBufferData(pMsr, pList, nList+1);
2670 if( rc!=SQLITE_OK ) return rc;
2671 assert( (pMsr->aBuffer[nList] & 0xFE)==0x00 );
2672 pList = pMsr->aBuffer;
2675 if( pMsr->iColFilter>=0 ){
2676 fts3ColumnFilter(pMsr->iColFilter, 1, &pList, &nList);
2679 if( nList>0 ){
2680 *paPoslist = pList;
2681 *piDocid = iDocid;
2682 *pnPoslist = nList;
2683 break;
2688 return SQLITE_OK;
2691 static int fts3SegReaderStart(
2692 Fts3Table *p, /* Virtual table handle */
2693 Fts3MultiSegReader *pCsr, /* Cursor object */
2694 const char *zTerm, /* Term searched for (or NULL) */
2695 int nTerm /* Length of zTerm in bytes */
2697 int i;
2698 int nSeg = pCsr->nSegment;
2700 /* If the Fts3SegFilter defines a specific term (or term prefix) to search
2701 ** for, then advance each segment iterator until it points to a term of
2702 ** equal or greater value than the specified term. This prevents many
2703 ** unnecessary merge/sort operations for the case where single segment
2704 ** b-tree leaf nodes contain more than one term.
2706 for(i=0; pCsr->bRestart==0 && i<pCsr->nSegment; i++){
2707 int res = 0;
2708 Fts3SegReader *pSeg = pCsr->apSegment[i];
2709 do {
2710 int rc = fts3SegReaderNext(p, pSeg, 0);
2711 if( rc!=SQLITE_OK ) return rc;
2712 }while( zTerm && (res = fts3SegReaderTermCmp(pSeg, zTerm, nTerm))<0 );
2714 if( pSeg->bLookup && res!=0 ){
2715 fts3SegReaderSetEof(pSeg);
2718 fts3SegReaderSort(pCsr->apSegment, nSeg, nSeg, fts3SegReaderCmp);
2720 return SQLITE_OK;
2723 int sqlite3Fts3SegReaderStart(
2724 Fts3Table *p, /* Virtual table handle */
2725 Fts3MultiSegReader *pCsr, /* Cursor object */
2726 Fts3SegFilter *pFilter /* Restrictions on range of iteration */
2728 pCsr->pFilter = pFilter;
2729 return fts3SegReaderStart(p, pCsr, pFilter->zTerm, pFilter->nTerm);
2732 int sqlite3Fts3MsrIncrStart(
2733 Fts3Table *p, /* Virtual table handle */
2734 Fts3MultiSegReader *pCsr, /* Cursor object */
2735 int iCol, /* Column to match on. */
2736 const char *zTerm, /* Term to iterate through a doclist for */
2737 int nTerm /* Number of bytes in zTerm */
2739 int i;
2740 int rc;
2741 int nSegment = pCsr->nSegment;
2742 int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
2743 p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
2746 assert( pCsr->pFilter==0 );
2747 assert( zTerm && nTerm>0 );
2749 /* Advance each segment iterator until it points to the term zTerm/nTerm. */
2750 rc = fts3SegReaderStart(p, pCsr, zTerm, nTerm);
2751 if( rc!=SQLITE_OK ) return rc;
2753 /* Determine how many of the segments actually point to zTerm/nTerm. */
2754 for(i=0; i<nSegment; i++){
2755 Fts3SegReader *pSeg = pCsr->apSegment[i];
2756 if( !pSeg->aNode || fts3SegReaderTermCmp(pSeg, zTerm, nTerm) ){
2757 break;
2760 pCsr->nAdvance = i;
2762 /* Advance each of the segments to point to the first docid. */
2763 for(i=0; i<pCsr->nAdvance; i++){
2764 rc = fts3SegReaderFirstDocid(p, pCsr->apSegment[i]);
2765 if( rc!=SQLITE_OK ) return rc;
2767 fts3SegReaderSort(pCsr->apSegment, i, i, xCmp);
2769 assert( iCol<0 || iCol<p->nColumn );
2770 pCsr->iColFilter = iCol;
2772 return SQLITE_OK;
2776 ** This function is called on a MultiSegReader that has been started using
2777 ** sqlite3Fts3MsrIncrStart(). One or more calls to MsrIncrNext() may also
2778 ** have been made. Calling this function puts the MultiSegReader in such
2779 ** a state that if the next two calls are:
2781 ** sqlite3Fts3SegReaderStart()
2782 ** sqlite3Fts3SegReaderStep()
2784 ** then the entire doclist for the term is available in
2785 ** MultiSegReader.aDoclist/nDoclist.
2787 int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr){
2788 int i; /* Used to iterate through segment-readers */
2790 assert( pCsr->zTerm==0 );
2791 assert( pCsr->nTerm==0 );
2792 assert( pCsr->aDoclist==0 );
2793 assert( pCsr->nDoclist==0 );
2795 pCsr->nAdvance = 0;
2796 pCsr->bRestart = 1;
2797 for(i=0; i<pCsr->nSegment; i++){
2798 pCsr->apSegment[i]->pOffsetList = 0;
2799 pCsr->apSegment[i]->nOffsetList = 0;
2800 pCsr->apSegment[i]->iDocid = 0;
2803 return SQLITE_OK;
2807 int sqlite3Fts3SegReaderStep(
2808 Fts3Table *p, /* Virtual table handle */
2809 Fts3MultiSegReader *pCsr /* Cursor object */
2811 int rc = SQLITE_OK;
2813 int isIgnoreEmpty = (pCsr->pFilter->flags & FTS3_SEGMENT_IGNORE_EMPTY);
2814 int isRequirePos = (pCsr->pFilter->flags & FTS3_SEGMENT_REQUIRE_POS);
2815 int isColFilter = (pCsr->pFilter->flags & FTS3_SEGMENT_COLUMN_FILTER);
2816 int isPrefix = (pCsr->pFilter->flags & FTS3_SEGMENT_PREFIX);
2817 int isScan = (pCsr->pFilter->flags & FTS3_SEGMENT_SCAN);
2818 int isFirst = (pCsr->pFilter->flags & FTS3_SEGMENT_FIRST);
2820 Fts3SegReader **apSegment = pCsr->apSegment;
2821 int nSegment = pCsr->nSegment;
2822 Fts3SegFilter *pFilter = pCsr->pFilter;
2823 int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
2824 p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
2827 if( pCsr->nSegment==0 ) return SQLITE_OK;
2829 do {
2830 int nMerge;
2831 int i;
2833 /* Advance the first pCsr->nAdvance entries in the apSegment[] array
2834 ** forward. Then sort the list in order of current term again.
2836 for(i=0; i<pCsr->nAdvance; i++){
2837 Fts3SegReader *pSeg = apSegment[i];
2838 if( pSeg->bLookup ){
2839 fts3SegReaderSetEof(pSeg);
2840 }else{
2841 rc = fts3SegReaderNext(p, pSeg, 0);
2843 if( rc!=SQLITE_OK ) return rc;
2845 fts3SegReaderSort(apSegment, nSegment, pCsr->nAdvance, fts3SegReaderCmp);
2846 pCsr->nAdvance = 0;
2848 /* If all the seg-readers are at EOF, we're finished. return SQLITE_OK. */
2849 assert( rc==SQLITE_OK );
2850 if( apSegment[0]->aNode==0 ) break;
2852 pCsr->nTerm = apSegment[0]->nTerm;
2853 pCsr->zTerm = apSegment[0]->zTerm;
2855 /* If this is a prefix-search, and if the term that apSegment[0] points
2856 ** to does not share a suffix with pFilter->zTerm/nTerm, then all
2857 ** required callbacks have been made. In this case exit early.
2859 ** Similarly, if this is a search for an exact match, and the first term
2860 ** of segment apSegment[0] is not a match, exit early.
2862 if( pFilter->zTerm && !isScan ){
2863 if( pCsr->nTerm<pFilter->nTerm
2864 || (!isPrefix && pCsr->nTerm>pFilter->nTerm)
2865 || memcmp(pCsr->zTerm, pFilter->zTerm, pFilter->nTerm)
2867 break;
2871 nMerge = 1;
2872 while( nMerge<nSegment
2873 && apSegment[nMerge]->aNode
2874 && apSegment[nMerge]->nTerm==pCsr->nTerm
2875 && 0==memcmp(pCsr->zTerm, apSegment[nMerge]->zTerm, pCsr->nTerm)
2877 nMerge++;
2880 assert( isIgnoreEmpty || (isRequirePos && !isColFilter) );
2881 if( nMerge==1
2882 && !isIgnoreEmpty
2883 && !isFirst
2884 && (p->bDescIdx==0 || fts3SegReaderIsPending(apSegment[0])==0)
2886 pCsr->nDoclist = apSegment[0]->nDoclist;
2887 if( fts3SegReaderIsPending(apSegment[0]) ){
2888 rc = fts3MsrBufferData(pCsr, apSegment[0]->aDoclist, pCsr->nDoclist);
2889 pCsr->aDoclist = pCsr->aBuffer;
2890 }else{
2891 pCsr->aDoclist = apSegment[0]->aDoclist;
2893 if( rc==SQLITE_OK ) rc = SQLITE_ROW;
2894 }else{
2895 int nDoclist = 0; /* Size of doclist */
2896 sqlite3_int64 iPrev = 0; /* Previous docid stored in doclist */
2898 /* The current term of the first nMerge entries in the array
2899 ** of Fts3SegReader objects is the same. The doclists must be merged
2900 ** and a single term returned with the merged doclist.
2902 for(i=0; i<nMerge; i++){
2903 fts3SegReaderFirstDocid(p, apSegment[i]);
2905 fts3SegReaderSort(apSegment, nMerge, nMerge, xCmp);
2906 while( apSegment[0]->pOffsetList ){
2907 int j; /* Number of segments that share a docid */
2908 char *pList = 0;
2909 int nList = 0;
2910 int nByte;
2911 sqlite3_int64 iDocid = apSegment[0]->iDocid;
2912 fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList);
2913 j = 1;
2914 while( j<nMerge
2915 && apSegment[j]->pOffsetList
2916 && apSegment[j]->iDocid==iDocid
2918 fts3SegReaderNextDocid(p, apSegment[j], 0, 0);
2919 j++;
2922 if( isColFilter ){
2923 fts3ColumnFilter(pFilter->iCol, 0, &pList, &nList);
2926 if( !isIgnoreEmpty || nList>0 ){
2928 /* Calculate the 'docid' delta value to write into the merged
2929 ** doclist. */
2930 sqlite3_int64 iDelta;
2931 if( p->bDescIdx && nDoclist>0 ){
2932 iDelta = iPrev - iDocid;
2933 }else{
2934 iDelta = iDocid - iPrev;
2936 assert( iDelta>0 || (nDoclist==0 && iDelta==iDocid) );
2937 assert( nDoclist>0 || iDelta==iDocid );
2939 nByte = sqlite3Fts3VarintLen(iDelta) + (isRequirePos?nList+1:0);
2940 if( nDoclist+nByte>pCsr->nBuffer ){
2941 char *aNew;
2942 pCsr->nBuffer = (nDoclist+nByte)*2;
2943 aNew = sqlite3_realloc(pCsr->aBuffer, pCsr->nBuffer);
2944 if( !aNew ){
2945 return SQLITE_NOMEM;
2947 pCsr->aBuffer = aNew;
2950 if( isFirst ){
2951 char *a = &pCsr->aBuffer[nDoclist];
2952 int nWrite;
2954 nWrite = sqlite3Fts3FirstFilter(iDelta, pList, nList, a);
2955 if( nWrite ){
2956 iPrev = iDocid;
2957 nDoclist += nWrite;
2959 }else{
2960 nDoclist += sqlite3Fts3PutVarint(&pCsr->aBuffer[nDoclist], iDelta);
2961 iPrev = iDocid;
2962 if( isRequirePos ){
2963 memcpy(&pCsr->aBuffer[nDoclist], pList, nList);
2964 nDoclist += nList;
2965 pCsr->aBuffer[nDoclist++] = '\0';
2970 fts3SegReaderSort(apSegment, nMerge, j, xCmp);
2972 if( nDoclist>0 ){
2973 pCsr->aDoclist = pCsr->aBuffer;
2974 pCsr->nDoclist = nDoclist;
2975 rc = SQLITE_ROW;
2978 pCsr->nAdvance = nMerge;
2979 }while( rc==SQLITE_OK );
2981 return rc;
2985 void sqlite3Fts3SegReaderFinish(
2986 Fts3MultiSegReader *pCsr /* Cursor object */
2988 if( pCsr ){
2989 int i;
2990 for(i=0; i<pCsr->nSegment; i++){
2991 sqlite3Fts3SegReaderFree(pCsr->apSegment[i]);
2993 sqlite3_free(pCsr->apSegment);
2994 sqlite3_free(pCsr->aBuffer);
2996 pCsr->nSegment = 0;
2997 pCsr->apSegment = 0;
2998 pCsr->aBuffer = 0;
3003 ** Decode the "end_block" field, selected by column iCol of the SELECT
3004 ** statement passed as the first argument.
3006 ** The "end_block" field may contain either an integer, or a text field
3007 ** containing the text representation of two non-negative integers separated
3008 ** by one or more space (0x20) characters. In the first case, set *piEndBlock
3009 ** to the integer value and *pnByte to zero before returning. In the second,
3010 ** set *piEndBlock to the first value and *pnByte to the second.
3012 static void fts3ReadEndBlockField(
3013 sqlite3_stmt *pStmt,
3014 int iCol,
3015 i64 *piEndBlock,
3016 i64 *pnByte
3018 const unsigned char *zText = sqlite3_column_text(pStmt, iCol);
3019 if( zText ){
3020 int i;
3021 int iMul = 1;
3022 i64 iVal = 0;
3023 for(i=0; zText[i]>='0' && zText[i]<='9'; i++){
3024 iVal = iVal*10 + (zText[i] - '0');
3026 *piEndBlock = iVal;
3027 while( zText[i]==' ' ) i++;
3028 iVal = 0;
3029 if( zText[i]=='-' ){
3030 i++;
3031 iMul = -1;
3033 for(/* no-op */; zText[i]>='0' && zText[i]<='9'; i++){
3034 iVal = iVal*10 + (zText[i] - '0');
3036 *pnByte = (iVal * (i64)iMul);
3042 ** A segment of size nByte bytes has just been written to absolute level
3043 ** iAbsLevel. Promote any segments that should be promoted as a result.
3045 static int fts3PromoteSegments(
3046 Fts3Table *p, /* FTS table handle */
3047 sqlite3_int64 iAbsLevel, /* Absolute level just updated */
3048 sqlite3_int64 nByte /* Size of new segment at iAbsLevel */
3050 int rc = SQLITE_OK;
3051 sqlite3_stmt *pRange;
3053 rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE2, &pRange, 0);
3055 if( rc==SQLITE_OK ){
3056 int bOk = 0;
3057 i64 iLast = (iAbsLevel/FTS3_SEGDIR_MAXLEVEL + 1) * FTS3_SEGDIR_MAXLEVEL - 1;
3058 i64 nLimit = (nByte*3)/2;
3060 /* Loop through all entries in the %_segdir table corresponding to
3061 ** segments in this index on levels greater than iAbsLevel. If there is
3062 ** at least one such segment, and it is possible to determine that all
3063 ** such segments are smaller than nLimit bytes in size, they will be
3064 ** promoted to level iAbsLevel. */
3065 sqlite3_bind_int64(pRange, 1, iAbsLevel+1);
3066 sqlite3_bind_int64(pRange, 2, iLast);
3067 while( SQLITE_ROW==sqlite3_step(pRange) ){
3068 i64 nSize = 0, dummy;
3069 fts3ReadEndBlockField(pRange, 2, &dummy, &nSize);
3070 if( nSize<=0 || nSize>nLimit ){
3071 /* If nSize==0, then the %_segdir.end_block field does not not
3072 ** contain a size value. This happens if it was written by an
3073 ** old version of FTS. In this case it is not possible to determine
3074 ** the size of the segment, and so segment promotion does not
3075 ** take place. */
3076 bOk = 0;
3077 break;
3079 bOk = 1;
3081 rc = sqlite3_reset(pRange);
3083 if( bOk ){
3084 int iIdx = 0;
3085 sqlite3_stmt *pUpdate1;
3086 sqlite3_stmt *pUpdate2;
3088 if( rc==SQLITE_OK ){
3089 rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL_IDX, &pUpdate1, 0);
3091 if( rc==SQLITE_OK ){
3092 rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL, &pUpdate2, 0);
3095 if( rc==SQLITE_OK ){
3097 /* Loop through all %_segdir entries for segments in this index with
3098 ** levels equal to or greater than iAbsLevel. As each entry is visited,
3099 ** updated it to set (level = -1) and (idx = N), where N is 0 for the
3100 ** oldest segment in the range, 1 for the next oldest, and so on.
3102 ** In other words, move all segments being promoted to level -1,
3103 ** setting the "idx" fields as appropriate to keep them in the same
3104 ** order. The contents of level -1 (which is never used, except
3105 ** transiently here), will be moved back to level iAbsLevel below. */
3106 sqlite3_bind_int64(pRange, 1, iAbsLevel);
3107 while( SQLITE_ROW==sqlite3_step(pRange) ){
3108 sqlite3_bind_int(pUpdate1, 1, iIdx++);
3109 sqlite3_bind_int(pUpdate1, 2, sqlite3_column_int(pRange, 0));
3110 sqlite3_bind_int(pUpdate1, 3, sqlite3_column_int(pRange, 1));
3111 sqlite3_step(pUpdate1);
3112 rc = sqlite3_reset(pUpdate1);
3113 if( rc!=SQLITE_OK ){
3114 sqlite3_reset(pRange);
3115 break;
3119 if( rc==SQLITE_OK ){
3120 rc = sqlite3_reset(pRange);
3123 /* Move level -1 to level iAbsLevel */
3124 if( rc==SQLITE_OK ){
3125 sqlite3_bind_int64(pUpdate2, 1, iAbsLevel);
3126 sqlite3_step(pUpdate2);
3127 rc = sqlite3_reset(pUpdate2);
3133 return rc;
3137 ** Merge all level iLevel segments in the database into a single
3138 ** iLevel+1 segment. Or, if iLevel<0, merge all segments into a
3139 ** single segment with a level equal to the numerically largest level
3140 ** currently present in the database.
3142 ** If this function is called with iLevel<0, but there is only one
3143 ** segment in the database, SQLITE_DONE is returned immediately.
3144 ** Otherwise, if successful, SQLITE_OK is returned. If an error occurs,
3145 ** an SQLite error code is returned.
3147 static int fts3SegmentMerge(
3148 Fts3Table *p,
3149 int iLangid, /* Language id to merge */
3150 int iIndex, /* Index in p->aIndex[] to merge */
3151 int iLevel /* Level to merge */
3153 int rc; /* Return code */
3154 int iIdx = 0; /* Index of new segment */
3155 sqlite3_int64 iNewLevel = 0; /* Level/index to create new segment at */
3156 SegmentWriter *pWriter = 0; /* Used to write the new, merged, segment */
3157 Fts3SegFilter filter; /* Segment term filter condition */
3158 Fts3MultiSegReader csr; /* Cursor to iterate through level(s) */
3159 int bIgnoreEmpty = 0; /* True to ignore empty segments */
3160 i64 iMaxLevel = 0; /* Max level number for this index/langid */
3162 assert( iLevel==FTS3_SEGCURSOR_ALL
3163 || iLevel==FTS3_SEGCURSOR_PENDING
3164 || iLevel>=0
3166 assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
3167 assert( iIndex>=0 && iIndex<p->nIndex );
3169 rc = sqlite3Fts3SegReaderCursor(p, iLangid, iIndex, iLevel, 0, 0, 1, 0, &csr);
3170 if( rc!=SQLITE_OK || csr.nSegment==0 ) goto finished;
3172 if( iLevel!=FTS3_SEGCURSOR_PENDING ){
3173 rc = fts3SegmentMaxLevel(p, iLangid, iIndex, &iMaxLevel);
3174 if( rc!=SQLITE_OK ) goto finished;
3177 if( iLevel==FTS3_SEGCURSOR_ALL ){
3178 /* This call is to merge all segments in the database to a single
3179 ** segment. The level of the new segment is equal to the numerically
3180 ** greatest segment level currently present in the database for this
3181 ** index. The idx of the new segment is always 0. */
3182 if( csr.nSegment==1 ){
3183 rc = SQLITE_DONE;
3184 goto finished;
3186 iNewLevel = iMaxLevel;
3187 bIgnoreEmpty = 1;
3189 }else{
3190 /* This call is to merge all segments at level iLevel. find the next
3191 ** available segment index at level iLevel+1. The call to
3192 ** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to
3193 ** a single iLevel+2 segment if necessary. */
3194 assert( FTS3_SEGCURSOR_PENDING==-1 );
3195 iNewLevel = getAbsoluteLevel(p, iLangid, iIndex, iLevel+1);
3196 rc = fts3AllocateSegdirIdx(p, iLangid, iIndex, iLevel+1, &iIdx);
3197 bIgnoreEmpty = (iLevel!=FTS3_SEGCURSOR_PENDING) && (iNewLevel>iMaxLevel);
3199 if( rc!=SQLITE_OK ) goto finished;
3201 assert( csr.nSegment>0 );
3202 assert( iNewLevel>=getAbsoluteLevel(p, iLangid, iIndex, 0) );
3203 assert( iNewLevel<getAbsoluteLevel(p, iLangid, iIndex,FTS3_SEGDIR_MAXLEVEL) );
3205 memset(&filter, 0, sizeof(Fts3SegFilter));
3206 filter.flags = FTS3_SEGMENT_REQUIRE_POS;
3207 filter.flags |= (bIgnoreEmpty ? FTS3_SEGMENT_IGNORE_EMPTY : 0);
3209 rc = sqlite3Fts3SegReaderStart(p, &csr, &filter);
3210 while( SQLITE_OK==rc ){
3211 rc = sqlite3Fts3SegReaderStep(p, &csr);
3212 if( rc!=SQLITE_ROW ) break;
3213 rc = fts3SegWriterAdd(p, &pWriter, 1,
3214 csr.zTerm, csr.nTerm, csr.aDoclist, csr.nDoclist);
3216 if( rc!=SQLITE_OK ) goto finished;
3217 assert( pWriter || bIgnoreEmpty );
3219 if( iLevel!=FTS3_SEGCURSOR_PENDING ){
3220 rc = fts3DeleteSegdir(
3221 p, iLangid, iIndex, iLevel, csr.apSegment, csr.nSegment
3223 if( rc!=SQLITE_OK ) goto finished;
3225 if( pWriter ){
3226 rc = fts3SegWriterFlush(p, pWriter, iNewLevel, iIdx);
3227 if( rc==SQLITE_OK ){
3228 if( iLevel==FTS3_SEGCURSOR_PENDING || iNewLevel<iMaxLevel ){
3229 rc = fts3PromoteSegments(p, iNewLevel, pWriter->nLeafData);
3234 finished:
3235 fts3SegWriterFree(pWriter);
3236 sqlite3Fts3SegReaderFinish(&csr);
3237 return rc;
3242 ** Flush the contents of pendingTerms to level 0 segments.
3244 int sqlite3Fts3PendingTermsFlush(Fts3Table *p){
3245 int rc = SQLITE_OK;
3246 int i;
3248 for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){
3249 rc = fts3SegmentMerge(p, p->iPrevLangid, i, FTS3_SEGCURSOR_PENDING);
3250 if( rc==SQLITE_DONE ) rc = SQLITE_OK;
3252 sqlite3Fts3PendingTermsClear(p);
3254 /* Determine the auto-incr-merge setting if unknown. If enabled,
3255 ** estimate the number of leaf blocks of content to be written
3257 if( rc==SQLITE_OK && p->bHasStat
3258 && p->nAutoincrmerge==0xff && p->nLeafAdd>0
3260 sqlite3_stmt *pStmt = 0;
3261 rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0);
3262 if( rc==SQLITE_OK ){
3263 sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE);
3264 rc = sqlite3_step(pStmt);
3265 if( rc==SQLITE_ROW ){
3266 p->nAutoincrmerge = sqlite3_column_int(pStmt, 0);
3267 if( p->nAutoincrmerge==1 ) p->nAutoincrmerge = 8;
3268 }else if( rc==SQLITE_DONE ){
3269 p->nAutoincrmerge = 0;
3271 rc = sqlite3_reset(pStmt);
3274 return rc;
3278 ** Encode N integers as varints into a blob.
3280 static void fts3EncodeIntArray(
3281 int N, /* The number of integers to encode */
3282 u32 *a, /* The integer values */
3283 char *zBuf, /* Write the BLOB here */
3284 int *pNBuf /* Write number of bytes if zBuf[] used here */
3286 int i, j;
3287 for(i=j=0; i<N; i++){
3288 j += sqlite3Fts3PutVarint(&zBuf[j], (sqlite3_int64)a[i]);
3290 *pNBuf = j;
3294 ** Decode a blob of varints into N integers
3296 static void fts3DecodeIntArray(
3297 int N, /* The number of integers to decode */
3298 u32 *a, /* Write the integer values */
3299 const char *zBuf, /* The BLOB containing the varints */
3300 int nBuf /* size of the BLOB */
3302 int i, j;
3303 UNUSED_PARAMETER(nBuf);
3304 for(i=j=0; i<N; i++){
3305 sqlite3_int64 x;
3306 j += sqlite3Fts3GetVarint(&zBuf[j], &x);
3307 assert(j<=nBuf);
3308 a[i] = (u32)(x & 0xffffffff);
3313 ** Insert the sizes (in tokens) for each column of the document
3314 ** with docid equal to p->iPrevDocid. The sizes are encoded as
3315 ** a blob of varints.
3317 static void fts3InsertDocsize(
3318 int *pRC, /* Result code */
3319 Fts3Table *p, /* Table into which to insert */
3320 u32 *aSz /* Sizes of each column, in tokens */
3322 char *pBlob; /* The BLOB encoding of the document size */
3323 int nBlob; /* Number of bytes in the BLOB */
3324 sqlite3_stmt *pStmt; /* Statement used to insert the encoding */
3325 int rc; /* Result code from subfunctions */
3327 if( *pRC ) return;
3328 pBlob = sqlite3_malloc( 10*p->nColumn );
3329 if( pBlob==0 ){
3330 *pRC = SQLITE_NOMEM;
3331 return;
3333 fts3EncodeIntArray(p->nColumn, aSz, pBlob, &nBlob);
3334 rc = fts3SqlStmt(p, SQL_REPLACE_DOCSIZE, &pStmt, 0);
3335 if( rc ){
3336 sqlite3_free(pBlob);
3337 *pRC = rc;
3338 return;
3340 sqlite3_bind_int64(pStmt, 1, p->iPrevDocid);
3341 sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, sqlite3_free);
3342 sqlite3_step(pStmt);
3343 *pRC = sqlite3_reset(pStmt);
3347 ** Record 0 of the %_stat table contains a blob consisting of N varints,
3348 ** where N is the number of user defined columns in the fts3 table plus
3349 ** two. If nCol is the number of user defined columns, then values of the
3350 ** varints are set as follows:
3352 ** Varint 0: Total number of rows in the table.
3354 ** Varint 1..nCol: For each column, the total number of tokens stored in
3355 ** the column for all rows of the table.
3357 ** Varint 1+nCol: The total size, in bytes, of all text values in all
3358 ** columns of all rows of the table.
3361 static void fts3UpdateDocTotals(
3362 int *pRC, /* The result code */
3363 Fts3Table *p, /* Table being updated */
3364 u32 *aSzIns, /* Size increases */
3365 u32 *aSzDel, /* Size decreases */
3366 int nChng /* Change in the number of documents */
3368 char *pBlob; /* Storage for BLOB written into %_stat */
3369 int nBlob; /* Size of BLOB written into %_stat */
3370 u32 *a; /* Array of integers that becomes the BLOB */
3371 sqlite3_stmt *pStmt; /* Statement for reading and writing */
3372 int i; /* Loop counter */
3373 int rc; /* Result code from subfunctions */
3375 const int nStat = p->nColumn+2;
3377 if( *pRC ) return;
3378 a = sqlite3_malloc( (sizeof(u32)+10)*nStat );
3379 if( a==0 ){
3380 *pRC = SQLITE_NOMEM;
3381 return;
3383 pBlob = (char*)&a[nStat];
3384 rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0);
3385 if( rc ){
3386 sqlite3_free(a);
3387 *pRC = rc;
3388 return;
3390 sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL);
3391 if( sqlite3_step(pStmt)==SQLITE_ROW ){
3392 fts3DecodeIntArray(nStat, a,
3393 sqlite3_column_blob(pStmt, 0),
3394 sqlite3_column_bytes(pStmt, 0));
3395 }else{
3396 memset(a, 0, sizeof(u32)*(nStat) );
3398 rc = sqlite3_reset(pStmt);
3399 if( rc!=SQLITE_OK ){
3400 sqlite3_free(a);
3401 *pRC = rc;
3402 return;
3404 if( nChng<0 && a[0]<(u32)(-nChng) ){
3405 a[0] = 0;
3406 }else{
3407 a[0] += nChng;
3409 for(i=0; i<p->nColumn+1; i++){
3410 u32 x = a[i+1];
3411 if( x+aSzIns[i] < aSzDel[i] ){
3412 x = 0;
3413 }else{
3414 x = x + aSzIns[i] - aSzDel[i];
3416 a[i+1] = x;
3418 fts3EncodeIntArray(nStat, a, pBlob, &nBlob);
3419 rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0);
3420 if( rc ){
3421 sqlite3_free(a);
3422 *pRC = rc;
3423 return;
3425 sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL);
3426 sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, SQLITE_STATIC);
3427 sqlite3_step(pStmt);
3428 *pRC = sqlite3_reset(pStmt);
3429 sqlite3_free(a);
3433 ** Merge the entire database so that there is one segment for each
3434 ** iIndex/iLangid combination.
3436 static int fts3DoOptimize(Fts3Table *p, int bReturnDone){
3437 int bSeenDone = 0;
3438 int rc;
3439 sqlite3_stmt *pAllLangid = 0;
3441 rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0);
3442 if( rc==SQLITE_OK ){
3443 int rc2;
3444 sqlite3_bind_int(pAllLangid, 1, p->nIndex);
3445 while( sqlite3_step(pAllLangid)==SQLITE_ROW ){
3446 int i;
3447 int iLangid = sqlite3_column_int(pAllLangid, 0);
3448 for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){
3449 rc = fts3SegmentMerge(p, iLangid, i, FTS3_SEGCURSOR_ALL);
3450 if( rc==SQLITE_DONE ){
3451 bSeenDone = 1;
3452 rc = SQLITE_OK;
3456 rc2 = sqlite3_reset(pAllLangid);
3457 if( rc==SQLITE_OK ) rc = rc2;
3460 sqlite3Fts3SegmentsClose(p);
3461 sqlite3Fts3PendingTermsClear(p);
3463 return (rc==SQLITE_OK && bReturnDone && bSeenDone) ? SQLITE_DONE : rc;
3467 ** This function is called when the user executes the following statement:
3469 ** INSERT INTO <tbl>(<tbl>) VALUES('rebuild');
3471 ** The entire FTS index is discarded and rebuilt. If the table is one
3472 ** created using the content=xxx option, then the new index is based on
3473 ** the current contents of the xxx table. Otherwise, it is rebuilt based
3474 ** on the contents of the %_content table.
3476 static int fts3DoRebuild(Fts3Table *p){
3477 int rc; /* Return Code */
3479 rc = fts3DeleteAll(p, 0);
3480 if( rc==SQLITE_OK ){
3481 u32 *aSz = 0;
3482 u32 *aSzIns = 0;
3483 u32 *aSzDel = 0;
3484 sqlite3_stmt *pStmt = 0;
3485 int nEntry = 0;
3487 /* Compose and prepare an SQL statement to loop through the content table */
3488 char *zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist);
3489 if( !zSql ){
3490 rc = SQLITE_NOMEM;
3491 }else{
3492 rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
3493 sqlite3_free(zSql);
3496 if( rc==SQLITE_OK ){
3497 int nByte = sizeof(u32) * (p->nColumn+1)*3;
3498 aSz = (u32 *)sqlite3_malloc(nByte);
3499 if( aSz==0 ){
3500 rc = SQLITE_NOMEM;
3501 }else{
3502 memset(aSz, 0, nByte);
3503 aSzIns = &aSz[p->nColumn+1];
3504 aSzDel = &aSzIns[p->nColumn+1];
3508 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
3509 int iCol;
3510 int iLangid = langidFromSelect(p, pStmt);
3511 rc = fts3PendingTermsDocid(p, iLangid, sqlite3_column_int64(pStmt, 0));
3512 memset(aSz, 0, sizeof(aSz[0]) * (p->nColumn+1));
3513 for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){
3514 if( p->abNotindexed[iCol]==0 ){
3515 const char *z = (const char *) sqlite3_column_text(pStmt, iCol+1);
3516 rc = fts3PendingTermsAdd(p, iLangid, z, iCol, &aSz[iCol]);
3517 aSz[p->nColumn] += sqlite3_column_bytes(pStmt, iCol+1);
3520 if( p->bHasDocsize ){
3521 fts3InsertDocsize(&rc, p, aSz);
3523 if( rc!=SQLITE_OK ){
3524 sqlite3_finalize(pStmt);
3525 pStmt = 0;
3526 }else{
3527 nEntry++;
3528 for(iCol=0; iCol<=p->nColumn; iCol++){
3529 aSzIns[iCol] += aSz[iCol];
3533 if( p->bFts4 ){
3534 fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nEntry);
3536 sqlite3_free(aSz);
3538 if( pStmt ){
3539 int rc2 = sqlite3_finalize(pStmt);
3540 if( rc==SQLITE_OK ){
3541 rc = rc2;
3546 return rc;
3551 ** This function opens a cursor used to read the input data for an
3552 ** incremental merge operation. Specifically, it opens a cursor to scan
3553 ** the oldest nSeg segments (idx=0 through idx=(nSeg-1)) in absolute
3554 ** level iAbsLevel.
3556 static int fts3IncrmergeCsr(
3557 Fts3Table *p, /* FTS3 table handle */
3558 sqlite3_int64 iAbsLevel, /* Absolute level to open */
3559 int nSeg, /* Number of segments to merge */
3560 Fts3MultiSegReader *pCsr /* Cursor object to populate */
3562 int rc; /* Return Code */
3563 sqlite3_stmt *pStmt = 0; /* Statement used to read %_segdir entry */
3564 int nByte; /* Bytes allocated at pCsr->apSegment[] */
3566 /* Allocate space for the Fts3MultiSegReader.aCsr[] array */
3567 memset(pCsr, 0, sizeof(*pCsr));
3568 nByte = sizeof(Fts3SegReader *) * nSeg;
3569 pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc(nByte);
3571 if( pCsr->apSegment==0 ){
3572 rc = SQLITE_NOMEM;
3573 }else{
3574 memset(pCsr->apSegment, 0, nByte);
3575 rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0);
3577 if( rc==SQLITE_OK ){
3578 int i;
3579 int rc2;
3580 sqlite3_bind_int64(pStmt, 1, iAbsLevel);
3581 assert( pCsr->nSegment==0 );
3582 for(i=0; rc==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW && i<nSeg; i++){
3583 rc = sqlite3Fts3SegReaderNew(i, 0,
3584 sqlite3_column_int64(pStmt, 1), /* segdir.start_block */
3585 sqlite3_column_int64(pStmt, 2), /* segdir.leaves_end_block */
3586 sqlite3_column_int64(pStmt, 3), /* segdir.end_block */
3587 sqlite3_column_blob(pStmt, 4), /* segdir.root */
3588 sqlite3_column_bytes(pStmt, 4), /* segdir.root */
3589 &pCsr->apSegment[i]
3591 pCsr->nSegment++;
3593 rc2 = sqlite3_reset(pStmt);
3594 if( rc==SQLITE_OK ) rc = rc2;
3597 return rc;
3600 typedef struct IncrmergeWriter IncrmergeWriter;
3601 typedef struct NodeWriter NodeWriter;
3602 typedef struct Blob Blob;
3603 typedef struct NodeReader NodeReader;
3606 ** An instance of the following structure is used as a dynamic buffer
3607 ** to build up nodes or other blobs of data in.
3609 ** The function blobGrowBuffer() is used to extend the allocation.
3611 struct Blob {
3612 char *a; /* Pointer to allocation */
3613 int n; /* Number of valid bytes of data in a[] */
3614 int nAlloc; /* Allocated size of a[] (nAlloc>=n) */
3618 ** This structure is used to build up buffers containing segment b-tree
3619 ** nodes (blocks).
3621 struct NodeWriter {
3622 sqlite3_int64 iBlock; /* Current block id */
3623 Blob key; /* Last key written to the current block */
3624 Blob block; /* Current block image */
3628 ** An object of this type contains the state required to create or append
3629 ** to an appendable b-tree segment.
3631 struct IncrmergeWriter {
3632 int nLeafEst; /* Space allocated for leaf blocks */
3633 int nWork; /* Number of leaf pages flushed */
3634 sqlite3_int64 iAbsLevel; /* Absolute level of input segments */
3635 int iIdx; /* Index of *output* segment in iAbsLevel+1 */
3636 sqlite3_int64 iStart; /* Block number of first allocated block */
3637 sqlite3_int64 iEnd; /* Block number of last allocated block */
3638 sqlite3_int64 nLeafData; /* Bytes of leaf page data so far */
3639 u8 bNoLeafData; /* If true, store 0 for segment size */
3640 NodeWriter aNodeWriter[FTS_MAX_APPENDABLE_HEIGHT];
3644 ** An object of the following type is used to read data from a single
3645 ** FTS segment node. See the following functions:
3647 ** nodeReaderInit()
3648 ** nodeReaderNext()
3649 ** nodeReaderRelease()
3651 struct NodeReader {
3652 const char *aNode;
3653 int nNode;
3654 int iOff; /* Current offset within aNode[] */
3656 /* Output variables. Containing the current node entry. */
3657 sqlite3_int64 iChild; /* Pointer to child node */
3658 Blob term; /* Current term */
3659 const char *aDoclist; /* Pointer to doclist */
3660 int nDoclist; /* Size of doclist in bytes */
3664 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
3665 ** Otherwise, if the allocation at pBlob->a is not already at least nMin
3666 ** bytes in size, extend (realloc) it to be so.
3668 ** If an OOM error occurs, set *pRc to SQLITE_NOMEM and leave pBlob->a
3669 ** unmodified. Otherwise, if the allocation succeeds, update pBlob->nAlloc
3670 ** to reflect the new size of the pBlob->a[] buffer.
3672 static void blobGrowBuffer(Blob *pBlob, int nMin, int *pRc){
3673 if( *pRc==SQLITE_OK && nMin>pBlob->nAlloc ){
3674 int nAlloc = nMin;
3675 char *a = (char *)sqlite3_realloc(pBlob->a, nAlloc);
3676 if( a ){
3677 pBlob->nAlloc = nAlloc;
3678 pBlob->a = a;
3679 }else{
3680 *pRc = SQLITE_NOMEM;
3686 ** Attempt to advance the node-reader object passed as the first argument to
3687 ** the next entry on the node.
3689 ** Return an error code if an error occurs (SQLITE_NOMEM is possible).
3690 ** Otherwise return SQLITE_OK. If there is no next entry on the node
3691 ** (e.g. because the current entry is the last) set NodeReader->aNode to
3692 ** NULL to indicate EOF. Otherwise, populate the NodeReader structure output
3693 ** variables for the new entry.
3695 static int nodeReaderNext(NodeReader *p){
3696 int bFirst = (p->term.n==0); /* True for first term on the node */
3697 int nPrefix = 0; /* Bytes to copy from previous term */
3698 int nSuffix = 0; /* Bytes to append to the prefix */
3699 int rc = SQLITE_OK; /* Return code */
3701 assert( p->aNode );
3702 if( p->iChild && bFirst==0 ) p->iChild++;
3703 if( p->iOff>=p->nNode ){
3704 /* EOF */
3705 p->aNode = 0;
3706 }else{
3707 if( bFirst==0 ){
3708 p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nPrefix);
3710 p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nSuffix);
3712 blobGrowBuffer(&p->term, nPrefix+nSuffix, &rc);
3713 if( rc==SQLITE_OK ){
3714 memcpy(&p->term.a[nPrefix], &p->aNode[p->iOff], nSuffix);
3715 p->term.n = nPrefix+nSuffix;
3716 p->iOff += nSuffix;
3717 if( p->iChild==0 ){
3718 p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &p->nDoclist);
3719 p->aDoclist = &p->aNode[p->iOff];
3720 p->iOff += p->nDoclist;
3725 assert( p->iOff<=p->nNode );
3727 return rc;
3731 ** Release all dynamic resources held by node-reader object *p.
3733 static void nodeReaderRelease(NodeReader *p){
3734 sqlite3_free(p->term.a);
3738 ** Initialize a node-reader object to read the node in buffer aNode/nNode.
3740 ** If successful, SQLITE_OK is returned and the NodeReader object set to
3741 ** point to the first entry on the node (if any). Otherwise, an SQLite
3742 ** error code is returned.
3744 static int nodeReaderInit(NodeReader *p, const char *aNode, int nNode){
3745 memset(p, 0, sizeof(NodeReader));
3746 p->aNode = aNode;
3747 p->nNode = nNode;
3749 /* Figure out if this is a leaf or an internal node. */
3750 if( p->aNode[0] ){
3751 /* An internal node. */
3752 p->iOff = 1 + sqlite3Fts3GetVarint(&p->aNode[1], &p->iChild);
3753 }else{
3754 p->iOff = 1;
3757 return nodeReaderNext(p);
3761 ** This function is called while writing an FTS segment each time a leaf o
3762 ** node is finished and written to disk. The key (zTerm/nTerm) is guaranteed
3763 ** to be greater than the largest key on the node just written, but smaller
3764 ** than or equal to the first key that will be written to the next leaf
3765 ** node.
3767 ** The block id of the leaf node just written to disk may be found in
3768 ** (pWriter->aNodeWriter[0].iBlock) when this function is called.
3770 static int fts3IncrmergePush(
3771 Fts3Table *p, /* Fts3 table handle */
3772 IncrmergeWriter *pWriter, /* Writer object */
3773 const char *zTerm, /* Term to write to internal node */
3774 int nTerm /* Bytes at zTerm */
3776 sqlite3_int64 iPtr = pWriter->aNodeWriter[0].iBlock;
3777 int iLayer;
3779 assert( nTerm>0 );
3780 for(iLayer=1; ALWAYS(iLayer<FTS_MAX_APPENDABLE_HEIGHT); iLayer++){
3781 sqlite3_int64 iNextPtr = 0;
3782 NodeWriter *pNode = &pWriter->aNodeWriter[iLayer];
3783 int rc = SQLITE_OK;
3784 int nPrefix;
3785 int nSuffix;
3786 int nSpace;
3788 /* Figure out how much space the key will consume if it is written to
3789 ** the current node of layer iLayer. Due to the prefix compression,
3790 ** the space required changes depending on which node the key is to
3791 ** be added to. */
3792 nPrefix = fts3PrefixCompress(pNode->key.a, pNode->key.n, zTerm, nTerm);
3793 nSuffix = nTerm - nPrefix;
3794 nSpace = sqlite3Fts3VarintLen(nPrefix);
3795 nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
3797 if( pNode->key.n==0 || (pNode->block.n + nSpace)<=p->nNodeSize ){
3798 /* If the current node of layer iLayer contains zero keys, or if adding
3799 ** the key to it will not cause it to grow to larger than nNodeSize
3800 ** bytes in size, write the key here. */
3802 Blob *pBlk = &pNode->block;
3803 if( pBlk->n==0 ){
3804 blobGrowBuffer(pBlk, p->nNodeSize, &rc);
3805 if( rc==SQLITE_OK ){
3806 pBlk->a[0] = (char)iLayer;
3807 pBlk->n = 1 + sqlite3Fts3PutVarint(&pBlk->a[1], iPtr);
3810 blobGrowBuffer(pBlk, pBlk->n + nSpace, &rc);
3811 blobGrowBuffer(&pNode->key, nTerm, &rc);
3813 if( rc==SQLITE_OK ){
3814 if( pNode->key.n ){
3815 pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nPrefix);
3817 pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nSuffix);
3818 memcpy(&pBlk->a[pBlk->n], &zTerm[nPrefix], nSuffix);
3819 pBlk->n += nSuffix;
3821 memcpy(pNode->key.a, zTerm, nTerm);
3822 pNode->key.n = nTerm;
3824 }else{
3825 /* Otherwise, flush the current node of layer iLayer to disk.
3826 ** Then allocate a new, empty sibling node. The key will be written
3827 ** into the parent of this node. */
3828 rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n);
3830 assert( pNode->block.nAlloc>=p->nNodeSize );
3831 pNode->block.a[0] = (char)iLayer;
3832 pNode->block.n = 1 + sqlite3Fts3PutVarint(&pNode->block.a[1], iPtr+1);
3834 iNextPtr = pNode->iBlock;
3835 pNode->iBlock++;
3836 pNode->key.n = 0;
3839 if( rc!=SQLITE_OK || iNextPtr==0 ) return rc;
3840 iPtr = iNextPtr;
3843 assert( 0 );
3844 return 0;
3848 ** Append a term and (optionally) doclist to the FTS segment node currently
3849 ** stored in blob *pNode. The node need not contain any terms, but the
3850 ** header must be written before this function is called.
3852 ** A node header is a single 0x00 byte for a leaf node, or a height varint
3853 ** followed by the left-hand-child varint for an internal node.
3855 ** The term to be appended is passed via arguments zTerm/nTerm. For a
3856 ** leaf node, the doclist is passed as aDoclist/nDoclist. For an internal
3857 ** node, both aDoclist and nDoclist must be passed 0.
3859 ** If the size of the value in blob pPrev is zero, then this is the first
3860 ** term written to the node. Otherwise, pPrev contains a copy of the
3861 ** previous term. Before this function returns, it is updated to contain a
3862 ** copy of zTerm/nTerm.
3864 ** It is assumed that the buffer associated with pNode is already large
3865 ** enough to accommodate the new entry. The buffer associated with pPrev
3866 ** is extended by this function if requrired.
3868 ** If an error (i.e. OOM condition) occurs, an SQLite error code is
3869 ** returned. Otherwise, SQLITE_OK.
3871 static int fts3AppendToNode(
3872 Blob *pNode, /* Current node image to append to */
3873 Blob *pPrev, /* Buffer containing previous term written */
3874 const char *zTerm, /* New term to write */
3875 int nTerm, /* Size of zTerm in bytes */
3876 const char *aDoclist, /* Doclist (or NULL) to write */
3877 int nDoclist /* Size of aDoclist in bytes */
3879 int rc = SQLITE_OK; /* Return code */
3880 int bFirst = (pPrev->n==0); /* True if this is the first term written */
3881 int nPrefix; /* Size of term prefix in bytes */
3882 int nSuffix; /* Size of term suffix in bytes */
3884 /* Node must have already been started. There must be a doclist for a
3885 ** leaf node, and there must not be a doclist for an internal node. */
3886 assert( pNode->n>0 );
3887 assert( (pNode->a[0]=='\0')==(aDoclist!=0) );
3889 blobGrowBuffer(pPrev, nTerm, &rc);
3890 if( rc!=SQLITE_OK ) return rc;
3892 nPrefix = fts3PrefixCompress(pPrev->a, pPrev->n, zTerm, nTerm);
3893 nSuffix = nTerm - nPrefix;
3894 memcpy(pPrev->a, zTerm, nTerm);
3895 pPrev->n = nTerm;
3897 if( bFirst==0 ){
3898 pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nPrefix);
3900 pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nSuffix);
3901 memcpy(&pNode->a[pNode->n], &zTerm[nPrefix], nSuffix);
3902 pNode->n += nSuffix;
3904 if( aDoclist ){
3905 pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nDoclist);
3906 memcpy(&pNode->a[pNode->n], aDoclist, nDoclist);
3907 pNode->n += nDoclist;
3910 assert( pNode->n<=pNode->nAlloc );
3912 return SQLITE_OK;
3916 ** Append the current term and doclist pointed to by cursor pCsr to the
3917 ** appendable b-tree segment opened for writing by pWriter.
3919 ** Return SQLITE_OK if successful, or an SQLite error code otherwise.
3921 static int fts3IncrmergeAppend(
3922 Fts3Table *p, /* Fts3 table handle */
3923 IncrmergeWriter *pWriter, /* Writer object */
3924 Fts3MultiSegReader *pCsr /* Cursor containing term and doclist */
3926 const char *zTerm = pCsr->zTerm;
3927 int nTerm = pCsr->nTerm;
3928 const char *aDoclist = pCsr->aDoclist;
3929 int nDoclist = pCsr->nDoclist;
3930 int rc = SQLITE_OK; /* Return code */
3931 int nSpace; /* Total space in bytes required on leaf */
3932 int nPrefix; /* Size of prefix shared with previous term */
3933 int nSuffix; /* Size of suffix (nTerm - nPrefix) */
3934 NodeWriter *pLeaf; /* Object used to write leaf nodes */
3936 pLeaf = &pWriter->aNodeWriter[0];
3937 nPrefix = fts3PrefixCompress(pLeaf->key.a, pLeaf->key.n, zTerm, nTerm);
3938 nSuffix = nTerm - nPrefix;
3940 nSpace = sqlite3Fts3VarintLen(nPrefix);
3941 nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
3942 nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist;
3944 /* If the current block is not empty, and if adding this term/doclist
3945 ** to the current block would make it larger than Fts3Table.nNodeSize
3946 ** bytes, write this block out to the database. */
3947 if( pLeaf->block.n>0 && (pLeaf->block.n + nSpace)>p->nNodeSize ){
3948 rc = fts3WriteSegment(p, pLeaf->iBlock, pLeaf->block.a, pLeaf->block.n);
3949 pWriter->nWork++;
3951 /* Add the current term to the parent node. The term added to the
3952 ** parent must:
3954 ** a) be greater than the largest term on the leaf node just written
3955 ** to the database (still available in pLeaf->key), and
3957 ** b) be less than or equal to the term about to be added to the new
3958 ** leaf node (zTerm/nTerm).
3960 ** In other words, it must be the prefix of zTerm 1 byte longer than
3961 ** the common prefix (if any) of zTerm and pWriter->zTerm.
3963 if( rc==SQLITE_OK ){
3964 rc = fts3IncrmergePush(p, pWriter, zTerm, nPrefix+1);
3967 /* Advance to the next output block */
3968 pLeaf->iBlock++;
3969 pLeaf->key.n = 0;
3970 pLeaf->block.n = 0;
3972 nSuffix = nTerm;
3973 nSpace = 1;
3974 nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
3975 nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist;
3978 pWriter->nLeafData += nSpace;
3979 blobGrowBuffer(&pLeaf->block, pLeaf->block.n + nSpace, &rc);
3980 if( rc==SQLITE_OK ){
3981 if( pLeaf->block.n==0 ){
3982 pLeaf->block.n = 1;
3983 pLeaf->block.a[0] = '\0';
3985 rc = fts3AppendToNode(
3986 &pLeaf->block, &pLeaf->key, zTerm, nTerm, aDoclist, nDoclist
3990 return rc;
3994 ** This function is called to release all dynamic resources held by the
3995 ** merge-writer object pWriter, and if no error has occurred, to flush
3996 ** all outstanding node buffers held by pWriter to disk.
3998 ** If *pRc is not SQLITE_OK when this function is called, then no attempt
3999 ** is made to write any data to disk. Instead, this function serves only
4000 ** to release outstanding resources.
4002 ** Otherwise, if *pRc is initially SQLITE_OK and an error occurs while
4003 ** flushing buffers to disk, *pRc is set to an SQLite error code before
4004 ** returning.
4006 static void fts3IncrmergeRelease(
4007 Fts3Table *p, /* FTS3 table handle */
4008 IncrmergeWriter *pWriter, /* Merge-writer object */
4009 int *pRc /* IN/OUT: Error code */
4011 int i; /* Used to iterate through non-root layers */
4012 int iRoot; /* Index of root in pWriter->aNodeWriter */
4013 NodeWriter *pRoot; /* NodeWriter for root node */
4014 int rc = *pRc; /* Error code */
4016 /* Set iRoot to the index in pWriter->aNodeWriter[] of the output segment
4017 ** root node. If the segment fits entirely on a single leaf node, iRoot
4018 ** will be set to 0. If the root node is the parent of the leaves, iRoot
4019 ** will be 1. And so on. */
4020 for(iRoot=FTS_MAX_APPENDABLE_HEIGHT-1; iRoot>=0; iRoot--){
4021 NodeWriter *pNode = &pWriter->aNodeWriter[iRoot];
4022 if( pNode->block.n>0 ) break;
4023 assert( *pRc || pNode->block.nAlloc==0 );
4024 assert( *pRc || pNode->key.nAlloc==0 );
4025 sqlite3_free(pNode->block.a);
4026 sqlite3_free(pNode->key.a);
4029 /* Empty output segment. This is a no-op. */
4030 if( iRoot<0 ) return;
4032 /* The entire output segment fits on a single node. Normally, this means
4033 ** the node would be stored as a blob in the "root" column of the %_segdir
4034 ** table. However, this is not permitted in this case. The problem is that
4035 ** space has already been reserved in the %_segments table, and so the
4036 ** start_block and end_block fields of the %_segdir table must be populated.
4037 ** And, by design or by accident, released versions of FTS cannot handle
4038 ** segments that fit entirely on the root node with start_block!=0.
4040 ** Instead, create a synthetic root node that contains nothing but a
4041 ** pointer to the single content node. So that the segment consists of a
4042 ** single leaf and a single interior (root) node.
4044 ** Todo: Better might be to defer allocating space in the %_segments
4045 ** table until we are sure it is needed.
4047 if( iRoot==0 ){
4048 Blob *pBlock = &pWriter->aNodeWriter[1].block;
4049 blobGrowBuffer(pBlock, 1 + FTS3_VARINT_MAX, &rc);
4050 if( rc==SQLITE_OK ){
4051 pBlock->a[0] = 0x01;
4052 pBlock->n = 1 + sqlite3Fts3PutVarint(
4053 &pBlock->a[1], pWriter->aNodeWriter[0].iBlock
4056 iRoot = 1;
4058 pRoot = &pWriter->aNodeWriter[iRoot];
4060 /* Flush all currently outstanding nodes to disk. */
4061 for(i=0; i<iRoot; i++){
4062 NodeWriter *pNode = &pWriter->aNodeWriter[i];
4063 if( pNode->block.n>0 && rc==SQLITE_OK ){
4064 rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n);
4066 sqlite3_free(pNode->block.a);
4067 sqlite3_free(pNode->key.a);
4070 /* Write the %_segdir record. */
4071 if( rc==SQLITE_OK ){
4072 rc = fts3WriteSegdir(p,
4073 pWriter->iAbsLevel+1, /* level */
4074 pWriter->iIdx, /* idx */
4075 pWriter->iStart, /* start_block */
4076 pWriter->aNodeWriter[0].iBlock, /* leaves_end_block */
4077 pWriter->iEnd, /* end_block */
4078 (pWriter->bNoLeafData==0 ? pWriter->nLeafData : 0), /* end_block */
4079 pRoot->block.a, pRoot->block.n /* root */
4082 sqlite3_free(pRoot->block.a);
4083 sqlite3_free(pRoot->key.a);
4085 *pRc = rc;
4089 ** Compare the term in buffer zLhs (size in bytes nLhs) with that in
4090 ** zRhs (size in bytes nRhs) using memcmp. If one term is a prefix of
4091 ** the other, it is considered to be smaller than the other.
4093 ** Return -ve if zLhs is smaller than zRhs, 0 if it is equal, or +ve
4094 ** if it is greater.
4096 static int fts3TermCmp(
4097 const char *zLhs, int nLhs, /* LHS of comparison */
4098 const char *zRhs, int nRhs /* RHS of comparison */
4100 int nCmp = MIN(nLhs, nRhs);
4101 int res;
4103 res = memcmp(zLhs, zRhs, nCmp);
4104 if( res==0 ) res = nLhs - nRhs;
4106 return res;
4111 ** Query to see if the entry in the %_segments table with blockid iEnd is
4112 ** NULL. If no error occurs and the entry is NULL, set *pbRes 1 before
4113 ** returning. Otherwise, set *pbRes to 0.
4115 ** Or, if an error occurs while querying the database, return an SQLite
4116 ** error code. The final value of *pbRes is undefined in this case.
4118 ** This is used to test if a segment is an "appendable" segment. If it
4119 ** is, then a NULL entry has been inserted into the %_segments table
4120 ** with blockid %_segdir.end_block.
4122 static int fts3IsAppendable(Fts3Table *p, sqlite3_int64 iEnd, int *pbRes){
4123 int bRes = 0; /* Result to set *pbRes to */
4124 sqlite3_stmt *pCheck = 0; /* Statement to query database with */
4125 int rc; /* Return code */
4127 rc = fts3SqlStmt(p, SQL_SEGMENT_IS_APPENDABLE, &pCheck, 0);
4128 if( rc==SQLITE_OK ){
4129 sqlite3_bind_int64(pCheck, 1, iEnd);
4130 if( SQLITE_ROW==sqlite3_step(pCheck) ) bRes = 1;
4131 rc = sqlite3_reset(pCheck);
4134 *pbRes = bRes;
4135 return rc;
4139 ** This function is called when initializing an incremental-merge operation.
4140 ** It checks if the existing segment with index value iIdx at absolute level
4141 ** (iAbsLevel+1) can be appended to by the incremental merge. If it can, the
4142 ** merge-writer object *pWriter is initialized to write to it.
4144 ** An existing segment can be appended to by an incremental merge if:
4146 ** * It was initially created as an appendable segment (with all required
4147 ** space pre-allocated), and
4149 ** * The first key read from the input (arguments zKey and nKey) is
4150 ** greater than the largest key currently stored in the potential
4151 ** output segment.
4153 static int fts3IncrmergeLoad(
4154 Fts3Table *p, /* Fts3 table handle */
4155 sqlite3_int64 iAbsLevel, /* Absolute level of input segments */
4156 int iIdx, /* Index of candidate output segment */
4157 const char *zKey, /* First key to write */
4158 int nKey, /* Number of bytes in nKey */
4159 IncrmergeWriter *pWriter /* Populate this object */
4161 int rc; /* Return code */
4162 sqlite3_stmt *pSelect = 0; /* SELECT to read %_segdir entry */
4164 rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pSelect, 0);
4165 if( rc==SQLITE_OK ){
4166 sqlite3_int64 iStart = 0; /* Value of %_segdir.start_block */
4167 sqlite3_int64 iLeafEnd = 0; /* Value of %_segdir.leaves_end_block */
4168 sqlite3_int64 iEnd = 0; /* Value of %_segdir.end_block */
4169 const char *aRoot = 0; /* Pointer to %_segdir.root buffer */
4170 int nRoot = 0; /* Size of aRoot[] in bytes */
4171 int rc2; /* Return code from sqlite3_reset() */
4172 int bAppendable = 0; /* Set to true if segment is appendable */
4174 /* Read the %_segdir entry for index iIdx absolute level (iAbsLevel+1) */
4175 sqlite3_bind_int64(pSelect, 1, iAbsLevel+1);
4176 sqlite3_bind_int(pSelect, 2, iIdx);
4177 if( sqlite3_step(pSelect)==SQLITE_ROW ){
4178 iStart = sqlite3_column_int64(pSelect, 1);
4179 iLeafEnd = sqlite3_column_int64(pSelect, 2);
4180 fts3ReadEndBlockField(pSelect, 3, &iEnd, &pWriter->nLeafData);
4181 if( pWriter->nLeafData<0 ){
4182 pWriter->nLeafData = pWriter->nLeafData * -1;
4184 pWriter->bNoLeafData = (pWriter->nLeafData==0);
4185 nRoot = sqlite3_column_bytes(pSelect, 4);
4186 aRoot = sqlite3_column_blob(pSelect, 4);
4187 }else{
4188 return sqlite3_reset(pSelect);
4191 /* Check for the zero-length marker in the %_segments table */
4192 rc = fts3IsAppendable(p, iEnd, &bAppendable);
4194 /* Check that zKey/nKey is larger than the largest key the candidate */
4195 if( rc==SQLITE_OK && bAppendable ){
4196 char *aLeaf = 0;
4197 int nLeaf = 0;
4199 rc = sqlite3Fts3ReadBlock(p, iLeafEnd, &aLeaf, &nLeaf, 0);
4200 if( rc==SQLITE_OK ){
4201 NodeReader reader;
4202 for(rc = nodeReaderInit(&reader, aLeaf, nLeaf);
4203 rc==SQLITE_OK && reader.aNode;
4204 rc = nodeReaderNext(&reader)
4206 assert( reader.aNode );
4208 if( fts3TermCmp(zKey, nKey, reader.term.a, reader.term.n)<=0 ){
4209 bAppendable = 0;
4211 nodeReaderRelease(&reader);
4213 sqlite3_free(aLeaf);
4216 if( rc==SQLITE_OK && bAppendable ){
4217 /* It is possible to append to this segment. Set up the IncrmergeWriter
4218 ** object to do so. */
4219 int i;
4220 int nHeight = (int)aRoot[0];
4221 NodeWriter *pNode;
4223 pWriter->nLeafEst = (int)((iEnd - iStart) + 1)/FTS_MAX_APPENDABLE_HEIGHT;
4224 pWriter->iStart = iStart;
4225 pWriter->iEnd = iEnd;
4226 pWriter->iAbsLevel = iAbsLevel;
4227 pWriter->iIdx = iIdx;
4229 for(i=nHeight+1; i<FTS_MAX_APPENDABLE_HEIGHT; i++){
4230 pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst;
4233 pNode = &pWriter->aNodeWriter[nHeight];
4234 pNode->iBlock = pWriter->iStart + pWriter->nLeafEst*nHeight;
4235 blobGrowBuffer(&pNode->block, MAX(nRoot, p->nNodeSize), &rc);
4236 if( rc==SQLITE_OK ){
4237 memcpy(pNode->block.a, aRoot, nRoot);
4238 pNode->block.n = nRoot;
4241 for(i=nHeight; i>=0 && rc==SQLITE_OK; i--){
4242 NodeReader reader;
4243 pNode = &pWriter->aNodeWriter[i];
4245 rc = nodeReaderInit(&reader, pNode->block.a, pNode->block.n);
4246 while( reader.aNode && rc==SQLITE_OK ) rc = nodeReaderNext(&reader);
4247 blobGrowBuffer(&pNode->key, reader.term.n, &rc);
4248 if( rc==SQLITE_OK ){
4249 memcpy(pNode->key.a, reader.term.a, reader.term.n);
4250 pNode->key.n = reader.term.n;
4251 if( i>0 ){
4252 char *aBlock = 0;
4253 int nBlock = 0;
4254 pNode = &pWriter->aNodeWriter[i-1];
4255 pNode->iBlock = reader.iChild;
4256 rc = sqlite3Fts3ReadBlock(p, reader.iChild, &aBlock, &nBlock, 0);
4257 blobGrowBuffer(&pNode->block, MAX(nBlock, p->nNodeSize), &rc);
4258 if( rc==SQLITE_OK ){
4259 memcpy(pNode->block.a, aBlock, nBlock);
4260 pNode->block.n = nBlock;
4262 sqlite3_free(aBlock);
4265 nodeReaderRelease(&reader);
4269 rc2 = sqlite3_reset(pSelect);
4270 if( rc==SQLITE_OK ) rc = rc2;
4273 return rc;
4277 ** Determine the largest segment index value that exists within absolute
4278 ** level iAbsLevel+1. If no error occurs, set *piIdx to this value plus
4279 ** one before returning SQLITE_OK. Or, if there are no segments at all
4280 ** within level iAbsLevel, set *piIdx to zero.
4282 ** If an error occurs, return an SQLite error code. The final value of
4283 ** *piIdx is undefined in this case.
4285 static int fts3IncrmergeOutputIdx(
4286 Fts3Table *p, /* FTS Table handle */
4287 sqlite3_int64 iAbsLevel, /* Absolute index of input segments */
4288 int *piIdx /* OUT: Next free index at iAbsLevel+1 */
4290 int rc;
4291 sqlite3_stmt *pOutputIdx = 0; /* SQL used to find output index */
4293 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pOutputIdx, 0);
4294 if( rc==SQLITE_OK ){
4295 sqlite3_bind_int64(pOutputIdx, 1, iAbsLevel+1);
4296 sqlite3_step(pOutputIdx);
4297 *piIdx = sqlite3_column_int(pOutputIdx, 0);
4298 rc = sqlite3_reset(pOutputIdx);
4301 return rc;
4305 ** Allocate an appendable output segment on absolute level iAbsLevel+1
4306 ** with idx value iIdx.
4308 ** In the %_segdir table, a segment is defined by the values in three
4309 ** columns:
4311 ** start_block
4312 ** leaves_end_block
4313 ** end_block
4315 ** When an appendable segment is allocated, it is estimated that the
4316 ** maximum number of leaf blocks that may be required is the sum of the
4317 ** number of leaf blocks consumed by the input segments, plus the number
4318 ** of input segments, multiplied by two. This value is stored in stack
4319 ** variable nLeafEst.
4321 ** A total of 16*nLeafEst blocks are allocated when an appendable segment
4322 ** is created ((1 + end_block - start_block)==16*nLeafEst). The contiguous
4323 ** array of leaf nodes starts at the first block allocated. The array
4324 ** of interior nodes that are parents of the leaf nodes start at block
4325 ** (start_block + (1 + end_block - start_block) / 16). And so on.
4327 ** In the actual code below, the value "16" is replaced with the
4328 ** pre-processor macro FTS_MAX_APPENDABLE_HEIGHT.
4330 static int fts3IncrmergeWriter(
4331 Fts3Table *p, /* Fts3 table handle */
4332 sqlite3_int64 iAbsLevel, /* Absolute level of input segments */
4333 int iIdx, /* Index of new output segment */
4334 Fts3MultiSegReader *pCsr, /* Cursor that data will be read from */
4335 IncrmergeWriter *pWriter /* Populate this object */
4337 int rc; /* Return Code */
4338 int i; /* Iterator variable */
4339 int nLeafEst = 0; /* Blocks allocated for leaf nodes */
4340 sqlite3_stmt *pLeafEst = 0; /* SQL used to determine nLeafEst */
4341 sqlite3_stmt *pFirstBlock = 0; /* SQL used to determine first block */
4343 /* Calculate nLeafEst. */
4344 rc = fts3SqlStmt(p, SQL_MAX_LEAF_NODE_ESTIMATE, &pLeafEst, 0);
4345 if( rc==SQLITE_OK ){
4346 sqlite3_bind_int64(pLeafEst, 1, iAbsLevel);
4347 sqlite3_bind_int64(pLeafEst, 2, pCsr->nSegment);
4348 if( SQLITE_ROW==sqlite3_step(pLeafEst) ){
4349 nLeafEst = sqlite3_column_int(pLeafEst, 0);
4351 rc = sqlite3_reset(pLeafEst);
4353 if( rc!=SQLITE_OK ) return rc;
4355 /* Calculate the first block to use in the output segment */
4356 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pFirstBlock, 0);
4357 if( rc==SQLITE_OK ){
4358 if( SQLITE_ROW==sqlite3_step(pFirstBlock) ){
4359 pWriter->iStart = sqlite3_column_int64(pFirstBlock, 0);
4360 pWriter->iEnd = pWriter->iStart - 1;
4361 pWriter->iEnd += nLeafEst * FTS_MAX_APPENDABLE_HEIGHT;
4363 rc = sqlite3_reset(pFirstBlock);
4365 if( rc!=SQLITE_OK ) return rc;
4367 /* Insert the marker in the %_segments table to make sure nobody tries
4368 ** to steal the space just allocated. This is also used to identify
4369 ** appendable segments. */
4370 rc = fts3WriteSegment(p, pWriter->iEnd, 0, 0);
4371 if( rc!=SQLITE_OK ) return rc;
4373 pWriter->iAbsLevel = iAbsLevel;
4374 pWriter->nLeafEst = nLeafEst;
4375 pWriter->iIdx = iIdx;
4377 /* Set up the array of NodeWriter objects */
4378 for(i=0; i<FTS_MAX_APPENDABLE_HEIGHT; i++){
4379 pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst;
4381 return SQLITE_OK;
4385 ** Remove an entry from the %_segdir table. This involves running the
4386 ** following two statements:
4388 ** DELETE FROM %_segdir WHERE level = :iAbsLevel AND idx = :iIdx
4389 ** UPDATE %_segdir SET idx = idx - 1 WHERE level = :iAbsLevel AND idx > :iIdx
4391 ** The DELETE statement removes the specific %_segdir level. The UPDATE
4392 ** statement ensures that the remaining segments have contiguously allocated
4393 ** idx values.
4395 static int fts3RemoveSegdirEntry(
4396 Fts3Table *p, /* FTS3 table handle */
4397 sqlite3_int64 iAbsLevel, /* Absolute level to delete from */
4398 int iIdx /* Index of %_segdir entry to delete */
4400 int rc; /* Return code */
4401 sqlite3_stmt *pDelete = 0; /* DELETE statement */
4403 rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_ENTRY, &pDelete, 0);
4404 if( rc==SQLITE_OK ){
4405 sqlite3_bind_int64(pDelete, 1, iAbsLevel);
4406 sqlite3_bind_int(pDelete, 2, iIdx);
4407 sqlite3_step(pDelete);
4408 rc = sqlite3_reset(pDelete);
4411 return rc;
4415 ** One or more segments have just been removed from absolute level iAbsLevel.
4416 ** Update the 'idx' values of the remaining segments in the level so that
4417 ** the idx values are a contiguous sequence starting from 0.
4419 static int fts3RepackSegdirLevel(
4420 Fts3Table *p, /* FTS3 table handle */
4421 sqlite3_int64 iAbsLevel /* Absolute level to repack */
4423 int rc; /* Return code */
4424 int *aIdx = 0; /* Array of remaining idx values */
4425 int nIdx = 0; /* Valid entries in aIdx[] */
4426 int nAlloc = 0; /* Allocated size of aIdx[] */
4427 int i; /* Iterator variable */
4428 sqlite3_stmt *pSelect = 0; /* Select statement to read idx values */
4429 sqlite3_stmt *pUpdate = 0; /* Update statement to modify idx values */
4431 rc = fts3SqlStmt(p, SQL_SELECT_INDEXES, &pSelect, 0);
4432 if( rc==SQLITE_OK ){
4433 int rc2;
4434 sqlite3_bind_int64(pSelect, 1, iAbsLevel);
4435 while( SQLITE_ROW==sqlite3_step(pSelect) ){
4436 if( nIdx>=nAlloc ){
4437 int *aNew;
4438 nAlloc += 16;
4439 aNew = sqlite3_realloc(aIdx, nAlloc*sizeof(int));
4440 if( !aNew ){
4441 rc = SQLITE_NOMEM;
4442 break;
4444 aIdx = aNew;
4446 aIdx[nIdx++] = sqlite3_column_int(pSelect, 0);
4448 rc2 = sqlite3_reset(pSelect);
4449 if( rc==SQLITE_OK ) rc = rc2;
4452 if( rc==SQLITE_OK ){
4453 rc = fts3SqlStmt(p, SQL_SHIFT_SEGDIR_ENTRY, &pUpdate, 0);
4455 if( rc==SQLITE_OK ){
4456 sqlite3_bind_int64(pUpdate, 2, iAbsLevel);
4459 assert( p->bIgnoreSavepoint==0 );
4460 p->bIgnoreSavepoint = 1;
4461 for(i=0; rc==SQLITE_OK && i<nIdx; i++){
4462 if( aIdx[i]!=i ){
4463 sqlite3_bind_int(pUpdate, 3, aIdx[i]);
4464 sqlite3_bind_int(pUpdate, 1, i);
4465 sqlite3_step(pUpdate);
4466 rc = sqlite3_reset(pUpdate);
4469 p->bIgnoreSavepoint = 0;
4471 sqlite3_free(aIdx);
4472 return rc;
4475 static void fts3StartNode(Blob *pNode, int iHeight, sqlite3_int64 iChild){
4476 pNode->a[0] = (char)iHeight;
4477 if( iChild ){
4478 assert( pNode->nAlloc>=1+sqlite3Fts3VarintLen(iChild) );
4479 pNode->n = 1 + sqlite3Fts3PutVarint(&pNode->a[1], iChild);
4480 }else{
4481 assert( pNode->nAlloc>=1 );
4482 pNode->n = 1;
4487 ** The first two arguments are a pointer to and the size of a segment b-tree
4488 ** node. The node may be a leaf or an internal node.
4490 ** This function creates a new node image in blob object *pNew by copying
4491 ** all terms that are greater than or equal to zTerm/nTerm (for leaf nodes)
4492 ** or greater than zTerm/nTerm (for internal nodes) from aNode/nNode.
4494 static int fts3TruncateNode(
4495 const char *aNode, /* Current node image */
4496 int nNode, /* Size of aNode in bytes */
4497 Blob *pNew, /* OUT: Write new node image here */
4498 const char *zTerm, /* Omit all terms smaller than this */
4499 int nTerm, /* Size of zTerm in bytes */
4500 sqlite3_int64 *piBlock /* OUT: Block number in next layer down */
4502 NodeReader reader; /* Reader object */
4503 Blob prev = {0, 0, 0}; /* Previous term written to new node */
4504 int rc = SQLITE_OK; /* Return code */
4505 int bLeaf = aNode[0]=='\0'; /* True for a leaf node */
4507 /* Allocate required output space */
4508 blobGrowBuffer(pNew, nNode, &rc);
4509 if( rc!=SQLITE_OK ) return rc;
4510 pNew->n = 0;
4512 /* Populate new node buffer */
4513 for(rc = nodeReaderInit(&reader, aNode, nNode);
4514 rc==SQLITE_OK && reader.aNode;
4515 rc = nodeReaderNext(&reader)
4517 if( pNew->n==0 ){
4518 int res = fts3TermCmp(reader.term.a, reader.term.n, zTerm, nTerm);
4519 if( res<0 || (bLeaf==0 && res==0) ) continue;
4520 fts3StartNode(pNew, (int)aNode[0], reader.iChild);
4521 *piBlock = reader.iChild;
4523 rc = fts3AppendToNode(
4524 pNew, &prev, reader.term.a, reader.term.n,
4525 reader.aDoclist, reader.nDoclist
4527 if( rc!=SQLITE_OK ) break;
4529 if( pNew->n==0 ){
4530 fts3StartNode(pNew, (int)aNode[0], reader.iChild);
4531 *piBlock = reader.iChild;
4533 assert( pNew->n<=pNew->nAlloc );
4535 nodeReaderRelease(&reader);
4536 sqlite3_free(prev.a);
4537 return rc;
4541 ** Remove all terms smaller than zTerm/nTerm from segment iIdx in absolute
4542 ** level iAbsLevel. This may involve deleting entries from the %_segments
4543 ** table, and modifying existing entries in both the %_segments and %_segdir
4544 ** tables.
4546 ** SQLITE_OK is returned if the segment is updated successfully. Or an
4547 ** SQLite error code otherwise.
4549 static int fts3TruncateSegment(
4550 Fts3Table *p, /* FTS3 table handle */
4551 sqlite3_int64 iAbsLevel, /* Absolute level of segment to modify */
4552 int iIdx, /* Index within level of segment to modify */
4553 const char *zTerm, /* Remove terms smaller than this */
4554 int nTerm /* Number of bytes in buffer zTerm */
4556 int rc = SQLITE_OK; /* Return code */
4557 Blob root = {0,0,0}; /* New root page image */
4558 Blob block = {0,0,0}; /* Buffer used for any other block */
4559 sqlite3_int64 iBlock = 0; /* Block id */
4560 sqlite3_int64 iNewStart = 0; /* New value for iStartBlock */
4561 sqlite3_int64 iOldStart = 0; /* Old value for iStartBlock */
4562 sqlite3_stmt *pFetch = 0; /* Statement used to fetch segdir */
4564 rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pFetch, 0);
4565 if( rc==SQLITE_OK ){
4566 int rc2; /* sqlite3_reset() return code */
4567 sqlite3_bind_int64(pFetch, 1, iAbsLevel);
4568 sqlite3_bind_int(pFetch, 2, iIdx);
4569 if( SQLITE_ROW==sqlite3_step(pFetch) ){
4570 const char *aRoot = sqlite3_column_blob(pFetch, 4);
4571 int nRoot = sqlite3_column_bytes(pFetch, 4);
4572 iOldStart = sqlite3_column_int64(pFetch, 1);
4573 rc = fts3TruncateNode(aRoot, nRoot, &root, zTerm, nTerm, &iBlock);
4575 rc2 = sqlite3_reset(pFetch);
4576 if( rc==SQLITE_OK ) rc = rc2;
4579 while( rc==SQLITE_OK && iBlock ){
4580 char *aBlock = 0;
4581 int nBlock = 0;
4582 iNewStart = iBlock;
4584 rc = sqlite3Fts3ReadBlock(p, iBlock, &aBlock, &nBlock, 0);
4585 if( rc==SQLITE_OK ){
4586 rc = fts3TruncateNode(aBlock, nBlock, &block, zTerm, nTerm, &iBlock);
4588 if( rc==SQLITE_OK ){
4589 rc = fts3WriteSegment(p, iNewStart, block.a, block.n);
4591 sqlite3_free(aBlock);
4594 /* Variable iNewStart now contains the first valid leaf node. */
4595 if( rc==SQLITE_OK && iNewStart ){
4596 sqlite3_stmt *pDel = 0;
4597 rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDel, 0);
4598 if( rc==SQLITE_OK ){
4599 sqlite3_bind_int64(pDel, 1, iOldStart);
4600 sqlite3_bind_int64(pDel, 2, iNewStart-1);
4601 sqlite3_step(pDel);
4602 rc = sqlite3_reset(pDel);
4606 if( rc==SQLITE_OK ){
4607 sqlite3_stmt *pChomp = 0;
4608 rc = fts3SqlStmt(p, SQL_CHOMP_SEGDIR, &pChomp, 0);
4609 if( rc==SQLITE_OK ){
4610 sqlite3_bind_int64(pChomp, 1, iNewStart);
4611 sqlite3_bind_blob(pChomp, 2, root.a, root.n, SQLITE_STATIC);
4612 sqlite3_bind_int64(pChomp, 3, iAbsLevel);
4613 sqlite3_bind_int(pChomp, 4, iIdx);
4614 sqlite3_step(pChomp);
4615 rc = sqlite3_reset(pChomp);
4619 sqlite3_free(root.a);
4620 sqlite3_free(block.a);
4621 return rc;
4625 ** This function is called after an incrmental-merge operation has run to
4626 ** merge (or partially merge) two or more segments from absolute level
4627 ** iAbsLevel.
4629 ** Each input segment is either removed from the db completely (if all of
4630 ** its data was copied to the output segment by the incrmerge operation)
4631 ** or modified in place so that it no longer contains those entries that
4632 ** have been duplicated in the output segment.
4634 static int fts3IncrmergeChomp(
4635 Fts3Table *p, /* FTS table handle */
4636 sqlite3_int64 iAbsLevel, /* Absolute level containing segments */
4637 Fts3MultiSegReader *pCsr, /* Chomp all segments opened by this cursor */
4638 int *pnRem /* Number of segments not deleted */
4640 int i;
4641 int nRem = 0;
4642 int rc = SQLITE_OK;
4644 for(i=pCsr->nSegment-1; i>=0 && rc==SQLITE_OK; i--){
4645 Fts3SegReader *pSeg = 0;
4646 int j;
4648 /* Find the Fts3SegReader object with Fts3SegReader.iIdx==i. It is hiding
4649 ** somewhere in the pCsr->apSegment[] array. */
4650 for(j=0; ALWAYS(j<pCsr->nSegment); j++){
4651 pSeg = pCsr->apSegment[j];
4652 if( pSeg->iIdx==i ) break;
4654 assert( j<pCsr->nSegment && pSeg->iIdx==i );
4656 if( pSeg->aNode==0 ){
4657 /* Seg-reader is at EOF. Remove the entire input segment. */
4658 rc = fts3DeleteSegment(p, pSeg);
4659 if( rc==SQLITE_OK ){
4660 rc = fts3RemoveSegdirEntry(p, iAbsLevel, pSeg->iIdx);
4662 *pnRem = 0;
4663 }else{
4664 /* The incremental merge did not copy all the data from this
4665 ** segment to the upper level. The segment is modified in place
4666 ** so that it contains no keys smaller than zTerm/nTerm. */
4667 const char *zTerm = pSeg->zTerm;
4668 int nTerm = pSeg->nTerm;
4669 rc = fts3TruncateSegment(p, iAbsLevel, pSeg->iIdx, zTerm, nTerm);
4670 nRem++;
4674 if( rc==SQLITE_OK && nRem!=pCsr->nSegment ){
4675 rc = fts3RepackSegdirLevel(p, iAbsLevel);
4678 *pnRem = nRem;
4679 return rc;
4683 ** Store an incr-merge hint in the database.
4685 static int fts3IncrmergeHintStore(Fts3Table *p, Blob *pHint){
4686 sqlite3_stmt *pReplace = 0;
4687 int rc; /* Return code */
4689 rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pReplace, 0);
4690 if( rc==SQLITE_OK ){
4691 sqlite3_bind_int(pReplace, 1, FTS_STAT_INCRMERGEHINT);
4692 sqlite3_bind_blob(pReplace, 2, pHint->a, pHint->n, SQLITE_STATIC);
4693 sqlite3_step(pReplace);
4694 rc = sqlite3_reset(pReplace);
4697 return rc;
4701 ** Load an incr-merge hint from the database. The incr-merge hint, if one
4702 ** exists, is stored in the rowid==1 row of the %_stat table.
4704 ** If successful, populate blob *pHint with the value read from the %_stat
4705 ** table and return SQLITE_OK. Otherwise, if an error occurs, return an
4706 ** SQLite error code.
4708 static int fts3IncrmergeHintLoad(Fts3Table *p, Blob *pHint){
4709 sqlite3_stmt *pSelect = 0;
4710 int rc;
4712 pHint->n = 0;
4713 rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pSelect, 0);
4714 if( rc==SQLITE_OK ){
4715 int rc2;
4716 sqlite3_bind_int(pSelect, 1, FTS_STAT_INCRMERGEHINT);
4717 if( SQLITE_ROW==sqlite3_step(pSelect) ){
4718 const char *aHint = sqlite3_column_blob(pSelect, 0);
4719 int nHint = sqlite3_column_bytes(pSelect, 0);
4720 if( aHint ){
4721 blobGrowBuffer(pHint, nHint, &rc);
4722 if( rc==SQLITE_OK ){
4723 memcpy(pHint->a, aHint, nHint);
4724 pHint->n = nHint;
4728 rc2 = sqlite3_reset(pSelect);
4729 if( rc==SQLITE_OK ) rc = rc2;
4732 return rc;
4736 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
4737 ** Otherwise, append an entry to the hint stored in blob *pHint. Each entry
4738 ** consists of two varints, the absolute level number of the input segments
4739 ** and the number of input segments.
4741 ** If successful, leave *pRc set to SQLITE_OK and return. If an error occurs,
4742 ** set *pRc to an SQLite error code before returning.
4744 static void fts3IncrmergeHintPush(
4745 Blob *pHint, /* Hint blob to append to */
4746 i64 iAbsLevel, /* First varint to store in hint */
4747 int nInput, /* Second varint to store in hint */
4748 int *pRc /* IN/OUT: Error code */
4750 blobGrowBuffer(pHint, pHint->n + 2*FTS3_VARINT_MAX, pRc);
4751 if( *pRc==SQLITE_OK ){
4752 pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], iAbsLevel);
4753 pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], (i64)nInput);
4758 ** Read the last entry (most recently pushed) from the hint blob *pHint
4759 ** and then remove the entry. Write the two values read to *piAbsLevel and
4760 ** *pnInput before returning.
4762 ** If no error occurs, return SQLITE_OK. If the hint blob in *pHint does
4763 ** not contain at least two valid varints, return SQLITE_CORRUPT_VTAB.
4765 static int fts3IncrmergeHintPop(Blob *pHint, i64 *piAbsLevel, int *pnInput){
4766 const int nHint = pHint->n;
4767 int i;
4769 i = pHint->n-2;
4770 while( i>0 && (pHint->a[i-1] & 0x80) ) i--;
4771 while( i>0 && (pHint->a[i-1] & 0x80) ) i--;
4773 pHint->n = i;
4774 i += sqlite3Fts3GetVarint(&pHint->a[i], piAbsLevel);
4775 i += fts3GetVarint32(&pHint->a[i], pnInput);
4776 if( i!=nHint ) return SQLITE_CORRUPT_VTAB;
4778 return SQLITE_OK;
4783 ** Attempt an incremental merge that writes nMerge leaf blocks.
4785 ** Incremental merges happen nMin segments at a time. The segments
4786 ** to be merged are the nMin oldest segments (the ones with the smallest
4787 ** values for the _segdir.idx field) in the highest level that contains
4788 ** at least nMin segments. Multiple merges might occur in an attempt to
4789 ** write the quota of nMerge leaf blocks.
4791 int sqlite3Fts3Incrmerge(Fts3Table *p, int nMerge, int nMin){
4792 int rc; /* Return code */
4793 int nRem = nMerge; /* Number of leaf pages yet to be written */
4794 Fts3MultiSegReader *pCsr; /* Cursor used to read input data */
4795 Fts3SegFilter *pFilter; /* Filter used with cursor pCsr */
4796 IncrmergeWriter *pWriter; /* Writer object */
4797 int nSeg = 0; /* Number of input segments */
4798 sqlite3_int64 iAbsLevel = 0; /* Absolute level number to work on */
4799 Blob hint = {0, 0, 0}; /* Hint read from %_stat table */
4800 int bDirtyHint = 0; /* True if blob 'hint' has been modified */
4802 /* Allocate space for the cursor, filter and writer objects */
4803 const int nAlloc = sizeof(*pCsr) + sizeof(*pFilter) + sizeof(*pWriter);
4804 pWriter = (IncrmergeWriter *)sqlite3_malloc(nAlloc);
4805 if( !pWriter ) return SQLITE_NOMEM;
4806 pFilter = (Fts3SegFilter *)&pWriter[1];
4807 pCsr = (Fts3MultiSegReader *)&pFilter[1];
4809 rc = fts3IncrmergeHintLoad(p, &hint);
4810 while( rc==SQLITE_OK && nRem>0 ){
4811 const i64 nMod = FTS3_SEGDIR_MAXLEVEL * p->nIndex;
4812 sqlite3_stmt *pFindLevel = 0; /* SQL used to determine iAbsLevel */
4813 int bUseHint = 0; /* True if attempting to append */
4814 int iIdx = 0; /* Largest idx in level (iAbsLevel+1) */
4816 /* Search the %_segdir table for the absolute level with the smallest
4817 ** relative level number that contains at least nMin segments, if any.
4818 ** If one is found, set iAbsLevel to the absolute level number and
4819 ** nSeg to nMin. If no level with at least nMin segments can be found,
4820 ** set nSeg to -1.
4822 rc = fts3SqlStmt(p, SQL_FIND_MERGE_LEVEL, &pFindLevel, 0);
4823 sqlite3_bind_int(pFindLevel, 1, nMin);
4824 if( sqlite3_step(pFindLevel)==SQLITE_ROW ){
4825 iAbsLevel = sqlite3_column_int64(pFindLevel, 0);
4826 nSeg = nMin;
4827 }else{
4828 nSeg = -1;
4830 rc = sqlite3_reset(pFindLevel);
4832 /* If the hint read from the %_stat table is not empty, check if the
4833 ** last entry in it specifies a relative level smaller than or equal
4834 ** to the level identified by the block above (if any). If so, this
4835 ** iteration of the loop will work on merging at the hinted level.
4837 if( rc==SQLITE_OK && hint.n ){
4838 int nHint = hint.n;
4839 sqlite3_int64 iHintAbsLevel = 0; /* Hint level */
4840 int nHintSeg = 0; /* Hint number of segments */
4842 rc = fts3IncrmergeHintPop(&hint, &iHintAbsLevel, &nHintSeg);
4843 if( nSeg<0 || (iAbsLevel % nMod) >= (iHintAbsLevel % nMod) ){
4844 iAbsLevel = iHintAbsLevel;
4845 nSeg = nHintSeg;
4846 bUseHint = 1;
4847 bDirtyHint = 1;
4848 }else{
4849 /* This undoes the effect of the HintPop() above - so that no entry
4850 ** is removed from the hint blob. */
4851 hint.n = nHint;
4855 /* If nSeg is less that zero, then there is no level with at least
4856 ** nMin segments and no hint in the %_stat table. No work to do.
4857 ** Exit early in this case. */
4858 if( nSeg<0 ) break;
4860 /* Open a cursor to iterate through the contents of the oldest nSeg
4861 ** indexes of absolute level iAbsLevel. If this cursor is opened using
4862 ** the 'hint' parameters, it is possible that there are less than nSeg
4863 ** segments available in level iAbsLevel. In this case, no work is
4864 ** done on iAbsLevel - fall through to the next iteration of the loop
4865 ** to start work on some other level. */
4866 memset(pWriter, 0, nAlloc);
4867 pFilter->flags = FTS3_SEGMENT_REQUIRE_POS;
4869 if( rc==SQLITE_OK ){
4870 rc = fts3IncrmergeOutputIdx(p, iAbsLevel, &iIdx);
4871 assert( bUseHint==1 || bUseHint==0 );
4872 if( iIdx==0 || (bUseHint && iIdx==1) ){
4873 int bIgnore = 0;
4874 rc = fts3SegmentIsMaxLevel(p, iAbsLevel+1, &bIgnore);
4875 if( bIgnore ){
4876 pFilter->flags |= FTS3_SEGMENT_IGNORE_EMPTY;
4881 if( rc==SQLITE_OK ){
4882 rc = fts3IncrmergeCsr(p, iAbsLevel, nSeg, pCsr);
4884 if( SQLITE_OK==rc && pCsr->nSegment==nSeg
4885 && SQLITE_OK==(rc = sqlite3Fts3SegReaderStart(p, pCsr, pFilter))
4886 && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pCsr))
4888 if( bUseHint && iIdx>0 ){
4889 const char *zKey = pCsr->zTerm;
4890 int nKey = pCsr->nTerm;
4891 rc = fts3IncrmergeLoad(p, iAbsLevel, iIdx-1, zKey, nKey, pWriter);
4892 }else{
4893 rc = fts3IncrmergeWriter(p, iAbsLevel, iIdx, pCsr, pWriter);
4896 if( rc==SQLITE_OK && pWriter->nLeafEst ){
4897 fts3LogMerge(nSeg, iAbsLevel);
4898 do {
4899 rc = fts3IncrmergeAppend(p, pWriter, pCsr);
4900 if( rc==SQLITE_OK ) rc = sqlite3Fts3SegReaderStep(p, pCsr);
4901 if( pWriter->nWork>=nRem && rc==SQLITE_ROW ) rc = SQLITE_OK;
4902 }while( rc==SQLITE_ROW );
4904 /* Update or delete the input segments */
4905 if( rc==SQLITE_OK ){
4906 nRem -= (1 + pWriter->nWork);
4907 rc = fts3IncrmergeChomp(p, iAbsLevel, pCsr, &nSeg);
4908 if( nSeg!=0 ){
4909 bDirtyHint = 1;
4910 fts3IncrmergeHintPush(&hint, iAbsLevel, nSeg, &rc);
4915 if( nSeg!=0 ){
4916 pWriter->nLeafData = pWriter->nLeafData * -1;
4918 fts3IncrmergeRelease(p, pWriter, &rc);
4919 if( nSeg==0 && pWriter->bNoLeafData==0 ){
4920 fts3PromoteSegments(p, iAbsLevel+1, pWriter->nLeafData);
4924 sqlite3Fts3SegReaderFinish(pCsr);
4927 /* Write the hint values into the %_stat table for the next incr-merger */
4928 if( bDirtyHint && rc==SQLITE_OK ){
4929 rc = fts3IncrmergeHintStore(p, &hint);
4932 sqlite3_free(pWriter);
4933 sqlite3_free(hint.a);
4934 return rc;
4938 ** Convert the text beginning at *pz into an integer and return
4939 ** its value. Advance *pz to point to the first character past
4940 ** the integer.
4942 static int fts3Getint(const char **pz){
4943 const char *z = *pz;
4944 int i = 0;
4945 while( (*z)>='0' && (*z)<='9' ) i = 10*i + *(z++) - '0';
4946 *pz = z;
4947 return i;
4951 ** Process statements of the form:
4953 ** INSERT INTO table(table) VALUES('merge=A,B');
4955 ** A and B are integers that decode to be the number of leaf pages
4956 ** written for the merge, and the minimum number of segments on a level
4957 ** before it will be selected for a merge, respectively.
4959 static int fts3DoIncrmerge(
4960 Fts3Table *p, /* FTS3 table handle */
4961 const char *zParam /* Nul-terminated string containing "A,B" */
4963 int rc;
4964 int nMin = (FTS3_MERGE_COUNT / 2);
4965 int nMerge = 0;
4966 const char *z = zParam;
4968 /* Read the first integer value */
4969 nMerge = fts3Getint(&z);
4971 /* If the first integer value is followed by a ',', read the second
4972 ** integer value. */
4973 if( z[0]==',' && z[1]!='\0' ){
4974 z++;
4975 nMin = fts3Getint(&z);
4978 if( z[0]!='\0' || nMin<2 ){
4979 rc = SQLITE_ERROR;
4980 }else{
4981 rc = SQLITE_OK;
4982 if( !p->bHasStat ){
4983 assert( p->bFts4==0 );
4984 sqlite3Fts3CreateStatTable(&rc, p);
4986 if( rc==SQLITE_OK ){
4987 rc = sqlite3Fts3Incrmerge(p, nMerge, nMin);
4989 sqlite3Fts3SegmentsClose(p);
4991 return rc;
4995 ** Process statements of the form:
4997 ** INSERT INTO table(table) VALUES('automerge=X');
4999 ** where X is an integer. X==0 means to turn automerge off. X!=0 means
5000 ** turn it on. The setting is persistent.
5002 static int fts3DoAutoincrmerge(
5003 Fts3Table *p, /* FTS3 table handle */
5004 const char *zParam /* Nul-terminated string containing boolean */
5006 int rc = SQLITE_OK;
5007 sqlite3_stmt *pStmt = 0;
5008 p->nAutoincrmerge = fts3Getint(&zParam);
5009 if( p->nAutoincrmerge==1 || p->nAutoincrmerge>FTS3_MERGE_COUNT ){
5010 p->nAutoincrmerge = 8;
5012 if( !p->bHasStat ){
5013 assert( p->bFts4==0 );
5014 sqlite3Fts3CreateStatTable(&rc, p);
5015 if( rc ) return rc;
5017 rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0);
5018 if( rc ) return rc;
5019 sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE);
5020 sqlite3_bind_int(pStmt, 2, p->nAutoincrmerge);
5021 sqlite3_step(pStmt);
5022 rc = sqlite3_reset(pStmt);
5023 return rc;
5027 ** Return a 64-bit checksum for the FTS index entry specified by the
5028 ** arguments to this function.
5030 static u64 fts3ChecksumEntry(
5031 const char *zTerm, /* Pointer to buffer containing term */
5032 int nTerm, /* Size of zTerm in bytes */
5033 int iLangid, /* Language id for current row */
5034 int iIndex, /* Index (0..Fts3Table.nIndex-1) */
5035 i64 iDocid, /* Docid for current row. */
5036 int iCol, /* Column number */
5037 int iPos /* Position */
5039 int i;
5040 u64 ret = (u64)iDocid;
5042 ret += (ret<<3) + iLangid;
5043 ret += (ret<<3) + iIndex;
5044 ret += (ret<<3) + iCol;
5045 ret += (ret<<3) + iPos;
5046 for(i=0; i<nTerm; i++) ret += (ret<<3) + zTerm[i];
5048 return ret;
5052 ** Return a checksum of all entries in the FTS index that correspond to
5053 ** language id iLangid. The checksum is calculated by XORing the checksums
5054 ** of each individual entry (see fts3ChecksumEntry()) together.
5056 ** If successful, the checksum value is returned and *pRc set to SQLITE_OK.
5057 ** Otherwise, if an error occurs, *pRc is set to an SQLite error code. The
5058 ** return value is undefined in this case.
5060 static u64 fts3ChecksumIndex(
5061 Fts3Table *p, /* FTS3 table handle */
5062 int iLangid, /* Language id to return cksum for */
5063 int iIndex, /* Index to cksum (0..p->nIndex-1) */
5064 int *pRc /* OUT: Return code */
5066 Fts3SegFilter filter;
5067 Fts3MultiSegReader csr;
5068 int rc;
5069 u64 cksum = 0;
5071 assert( *pRc==SQLITE_OK );
5073 memset(&filter, 0, sizeof(filter));
5074 memset(&csr, 0, sizeof(csr));
5075 filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY;
5076 filter.flags |= FTS3_SEGMENT_SCAN;
5078 rc = sqlite3Fts3SegReaderCursor(
5079 p, iLangid, iIndex, FTS3_SEGCURSOR_ALL, 0, 0, 0, 1,&csr
5081 if( rc==SQLITE_OK ){
5082 rc = sqlite3Fts3SegReaderStart(p, &csr, &filter);
5085 if( rc==SQLITE_OK ){
5086 while( SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, &csr)) ){
5087 char *pCsr = csr.aDoclist;
5088 char *pEnd = &pCsr[csr.nDoclist];
5090 i64 iDocid = 0;
5091 i64 iCol = 0;
5092 i64 iPos = 0;
5094 pCsr += sqlite3Fts3GetVarint(pCsr, &iDocid);
5095 while( pCsr<pEnd ){
5096 i64 iVal = 0;
5097 pCsr += sqlite3Fts3GetVarint(pCsr, &iVal);
5098 if( pCsr<pEnd ){
5099 if( iVal==0 || iVal==1 ){
5100 iCol = 0;
5101 iPos = 0;
5102 if( iVal ){
5103 pCsr += sqlite3Fts3GetVarint(pCsr, &iCol);
5104 }else{
5105 pCsr += sqlite3Fts3GetVarint(pCsr, &iVal);
5106 iDocid += iVal;
5108 }else{
5109 iPos += (iVal - 2);
5110 cksum = cksum ^ fts3ChecksumEntry(
5111 csr.zTerm, csr.nTerm, iLangid, iIndex, iDocid,
5112 (int)iCol, (int)iPos
5119 sqlite3Fts3SegReaderFinish(&csr);
5121 *pRc = rc;
5122 return cksum;
5126 ** Check if the contents of the FTS index match the current contents of the
5127 ** content table. If no error occurs and the contents do match, set *pbOk
5128 ** to true and return SQLITE_OK. Or if the contents do not match, set *pbOk
5129 ** to false before returning.
5131 ** If an error occurs (e.g. an OOM or IO error), return an SQLite error
5132 ** code. The final value of *pbOk is undefined in this case.
5134 static int fts3IntegrityCheck(Fts3Table *p, int *pbOk){
5135 int rc = SQLITE_OK; /* Return code */
5136 u64 cksum1 = 0; /* Checksum based on FTS index contents */
5137 u64 cksum2 = 0; /* Checksum based on %_content contents */
5138 sqlite3_stmt *pAllLangid = 0; /* Statement to return all language-ids */
5140 /* This block calculates the checksum according to the FTS index. */
5141 rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0);
5142 if( rc==SQLITE_OK ){
5143 int rc2;
5144 sqlite3_bind_int(pAllLangid, 1, p->nIndex);
5145 while( rc==SQLITE_OK && sqlite3_step(pAllLangid)==SQLITE_ROW ){
5146 int iLangid = sqlite3_column_int(pAllLangid, 0);
5147 int i;
5148 for(i=0; i<p->nIndex; i++){
5149 cksum1 = cksum1 ^ fts3ChecksumIndex(p, iLangid, i, &rc);
5152 rc2 = sqlite3_reset(pAllLangid);
5153 if( rc==SQLITE_OK ) rc = rc2;
5156 /* This block calculates the checksum according to the %_content table */
5157 rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0);
5158 if( rc==SQLITE_OK ){
5159 sqlite3_tokenizer_module const *pModule = p->pTokenizer->pModule;
5160 sqlite3_stmt *pStmt = 0;
5161 char *zSql;
5163 zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist);
5164 if( !zSql ){
5165 rc = SQLITE_NOMEM;
5166 }else{
5167 rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
5168 sqlite3_free(zSql);
5171 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
5172 i64 iDocid = sqlite3_column_int64(pStmt, 0);
5173 int iLang = langidFromSelect(p, pStmt);
5174 int iCol;
5176 for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){
5177 if( p->abNotindexed[iCol]==0 ){
5178 const char *zText = (const char *)sqlite3_column_text(pStmt, iCol+1);
5179 int nText = sqlite3_column_bytes(pStmt, iCol+1);
5180 sqlite3_tokenizer_cursor *pT = 0;
5182 rc = sqlite3Fts3OpenTokenizer(p->pTokenizer, iLang, zText, nText,&pT);
5183 while( rc==SQLITE_OK ){
5184 char const *zToken; /* Buffer containing token */
5185 int nToken = 0; /* Number of bytes in token */
5186 int iDum1 = 0, iDum2 = 0; /* Dummy variables */
5187 int iPos = 0; /* Position of token in zText */
5189 rc = pModule->xNext(pT, &zToken, &nToken, &iDum1, &iDum2, &iPos);
5190 if( rc==SQLITE_OK ){
5191 int i;
5192 cksum2 = cksum2 ^ fts3ChecksumEntry(
5193 zToken, nToken, iLang, 0, iDocid, iCol, iPos
5195 for(i=1; i<p->nIndex; i++){
5196 if( p->aIndex[i].nPrefix<=nToken ){
5197 cksum2 = cksum2 ^ fts3ChecksumEntry(
5198 zToken, p->aIndex[i].nPrefix, iLang, i, iDocid, iCol, iPos
5204 if( pT ) pModule->xClose(pT);
5205 if( rc==SQLITE_DONE ) rc = SQLITE_OK;
5210 sqlite3_finalize(pStmt);
5213 *pbOk = (cksum1==cksum2);
5214 return rc;
5218 ** Run the integrity-check. If no error occurs and the current contents of
5219 ** the FTS index are correct, return SQLITE_OK. Or, if the contents of the
5220 ** FTS index are incorrect, return SQLITE_CORRUPT_VTAB.
5222 ** Or, if an error (e.g. an OOM or IO error) occurs, return an SQLite
5223 ** error code.
5225 ** The integrity-check works as follows. For each token and indexed token
5226 ** prefix in the document set, a 64-bit checksum is calculated (by code
5227 ** in fts3ChecksumEntry()) based on the following:
5229 ** + The index number (0 for the main index, 1 for the first prefix
5230 ** index etc.),
5231 ** + The token (or token prefix) text itself,
5232 ** + The language-id of the row it appears in,
5233 ** + The docid of the row it appears in,
5234 ** + The column it appears in, and
5235 ** + The tokens position within that column.
5237 ** The checksums for all entries in the index are XORed together to create
5238 ** a single checksum for the entire index.
5240 ** The integrity-check code calculates the same checksum in two ways:
5242 ** 1. By scanning the contents of the FTS index, and
5243 ** 2. By scanning and tokenizing the content table.
5245 ** If the two checksums are identical, the integrity-check is deemed to have
5246 ** passed.
5248 static int fts3DoIntegrityCheck(
5249 Fts3Table *p /* FTS3 table handle */
5251 int rc;
5252 int bOk = 0;
5253 rc = fts3IntegrityCheck(p, &bOk);
5254 if( rc==SQLITE_OK && bOk==0 ) rc = SQLITE_CORRUPT_VTAB;
5255 return rc;
5259 ** Handle a 'special' INSERT of the form:
5261 ** "INSERT INTO tbl(tbl) VALUES(<expr>)"
5263 ** Argument pVal contains the result of <expr>. Currently the only
5264 ** meaningful value to insert is the text 'optimize'.
5266 static int fts3SpecialInsert(Fts3Table *p, sqlite3_value *pVal){
5267 int rc; /* Return Code */
5268 const char *zVal = (const char *)sqlite3_value_text(pVal);
5269 int nVal = sqlite3_value_bytes(pVal);
5271 if( !zVal ){
5272 return SQLITE_NOMEM;
5273 }else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){
5274 rc = fts3DoOptimize(p, 0);
5275 }else if( nVal==7 && 0==sqlite3_strnicmp(zVal, "rebuild", 7) ){
5276 rc = fts3DoRebuild(p);
5277 }else if( nVal==15 && 0==sqlite3_strnicmp(zVal, "integrity-check", 15) ){
5278 rc = fts3DoIntegrityCheck(p);
5279 }else if( nVal>6 && 0==sqlite3_strnicmp(zVal, "merge=", 6) ){
5280 rc = fts3DoIncrmerge(p, &zVal[6]);
5281 }else if( nVal>10 && 0==sqlite3_strnicmp(zVal, "automerge=", 10) ){
5282 rc = fts3DoAutoincrmerge(p, &zVal[10]);
5283 #ifdef SQLITE_TEST
5284 }else if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){
5285 p->nNodeSize = atoi(&zVal[9]);
5286 rc = SQLITE_OK;
5287 }else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){
5288 p->nMaxPendingData = atoi(&zVal[11]);
5289 rc = SQLITE_OK;
5290 }else if( nVal>21 && 0==sqlite3_strnicmp(zVal, "test-no-incr-doclist=", 21) ){
5291 p->bNoIncrDoclist = atoi(&zVal[21]);
5292 rc = SQLITE_OK;
5293 #endif
5294 }else{
5295 rc = SQLITE_ERROR;
5298 return rc;
5301 #ifndef SQLITE_DISABLE_FTS4_DEFERRED
5303 ** Delete all cached deferred doclists. Deferred doclists are cached
5304 ** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function.
5306 void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *pCsr){
5307 Fts3DeferredToken *pDef;
5308 for(pDef=pCsr->pDeferred; pDef; pDef=pDef->pNext){
5309 fts3PendingListDelete(pDef->pList);
5310 pDef->pList = 0;
5315 ** Free all entries in the pCsr->pDeffered list. Entries are added to
5316 ** this list using sqlite3Fts3DeferToken().
5318 void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *pCsr){
5319 Fts3DeferredToken *pDef;
5320 Fts3DeferredToken *pNext;
5321 for(pDef=pCsr->pDeferred; pDef; pDef=pNext){
5322 pNext = pDef->pNext;
5323 fts3PendingListDelete(pDef->pList);
5324 sqlite3_free(pDef);
5326 pCsr->pDeferred = 0;
5330 ** Generate deferred-doclists for all tokens in the pCsr->pDeferred list
5331 ** based on the row that pCsr currently points to.
5333 ** A deferred-doclist is like any other doclist with position information
5334 ** included, except that it only contains entries for a single row of the
5335 ** table, not for all rows.
5337 int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *pCsr){
5338 int rc = SQLITE_OK; /* Return code */
5339 if( pCsr->pDeferred ){
5340 int i; /* Used to iterate through table columns */
5341 sqlite3_int64 iDocid; /* Docid of the row pCsr points to */
5342 Fts3DeferredToken *pDef; /* Used to iterate through deferred tokens */
5344 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
5345 sqlite3_tokenizer *pT = p->pTokenizer;
5346 sqlite3_tokenizer_module const *pModule = pT->pModule;
5348 assert( pCsr->isRequireSeek==0 );
5349 iDocid = sqlite3_column_int64(pCsr->pStmt, 0);
5351 for(i=0; i<p->nColumn && rc==SQLITE_OK; i++){
5352 if( p->abNotindexed[i]==0 ){
5353 const char *zText = (const char *)sqlite3_column_text(pCsr->pStmt, i+1);
5354 sqlite3_tokenizer_cursor *pTC = 0;
5356 rc = sqlite3Fts3OpenTokenizer(pT, pCsr->iLangid, zText, -1, &pTC);
5357 while( rc==SQLITE_OK ){
5358 char const *zToken; /* Buffer containing token */
5359 int nToken = 0; /* Number of bytes in token */
5360 int iDum1 = 0, iDum2 = 0; /* Dummy variables */
5361 int iPos = 0; /* Position of token in zText */
5363 rc = pModule->xNext(pTC, &zToken, &nToken, &iDum1, &iDum2, &iPos);
5364 for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
5365 Fts3PhraseToken *pPT = pDef->pToken;
5366 if( (pDef->iCol>=p->nColumn || pDef->iCol==i)
5367 && (pPT->bFirst==0 || iPos==0)
5368 && (pPT->n==nToken || (pPT->isPrefix && pPT->n<nToken))
5369 && (0==memcmp(zToken, pPT->z, pPT->n))
5371 fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc);
5375 if( pTC ) pModule->xClose(pTC);
5376 if( rc==SQLITE_DONE ) rc = SQLITE_OK;
5380 for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
5381 if( pDef->pList ){
5382 rc = fts3PendingListAppendVarint(&pDef->pList, 0);
5387 return rc;
5390 int sqlite3Fts3DeferredTokenList(
5391 Fts3DeferredToken *p,
5392 char **ppData,
5393 int *pnData
5395 char *pRet;
5396 int nSkip;
5397 sqlite3_int64 dummy;
5399 *ppData = 0;
5400 *pnData = 0;
5402 if( p->pList==0 ){
5403 return SQLITE_OK;
5406 pRet = (char *)sqlite3_malloc(p->pList->nData);
5407 if( !pRet ) return SQLITE_NOMEM;
5409 nSkip = sqlite3Fts3GetVarint(p->pList->aData, &dummy);
5410 *pnData = p->pList->nData - nSkip;
5411 *ppData = pRet;
5413 memcpy(pRet, &p->pList->aData[nSkip], *pnData);
5414 return SQLITE_OK;
5418 ** Add an entry for token pToken to the pCsr->pDeferred list.
5420 int sqlite3Fts3DeferToken(
5421 Fts3Cursor *pCsr, /* Fts3 table cursor */
5422 Fts3PhraseToken *pToken, /* Token to defer */
5423 int iCol /* Column that token must appear in (or -1) */
5425 Fts3DeferredToken *pDeferred;
5426 pDeferred = sqlite3_malloc(sizeof(*pDeferred));
5427 if( !pDeferred ){
5428 return SQLITE_NOMEM;
5430 memset(pDeferred, 0, sizeof(*pDeferred));
5431 pDeferred->pToken = pToken;
5432 pDeferred->pNext = pCsr->pDeferred;
5433 pDeferred->iCol = iCol;
5434 pCsr->pDeferred = pDeferred;
5436 assert( pToken->pDeferred==0 );
5437 pToken->pDeferred = pDeferred;
5439 return SQLITE_OK;
5441 #endif
5444 ** SQLite value pRowid contains the rowid of a row that may or may not be
5445 ** present in the FTS3 table. If it is, delete it and adjust the contents
5446 ** of subsiduary data structures accordingly.
5448 static int fts3DeleteByRowid(
5449 Fts3Table *p,
5450 sqlite3_value *pRowid,
5451 int *pnChng, /* IN/OUT: Decrement if row is deleted */
5452 u32 *aSzDel
5454 int rc = SQLITE_OK; /* Return code */
5455 int bFound = 0; /* True if *pRowid really is in the table */
5457 fts3DeleteTerms(&rc, p, pRowid, aSzDel, &bFound);
5458 if( bFound && rc==SQLITE_OK ){
5459 int isEmpty = 0; /* Deleting *pRowid leaves the table empty */
5460 rc = fts3IsEmpty(p, pRowid, &isEmpty);
5461 if( rc==SQLITE_OK ){
5462 if( isEmpty ){
5463 /* Deleting this row means the whole table is empty. In this case
5464 ** delete the contents of all three tables and throw away any
5465 ** data in the pendingTerms hash table. */
5466 rc = fts3DeleteAll(p, 1);
5467 *pnChng = 0;
5468 memset(aSzDel, 0, sizeof(u32) * (p->nColumn+1) * 2);
5469 }else{
5470 *pnChng = *pnChng - 1;
5471 if( p->zContentTbl==0 ){
5472 fts3SqlExec(&rc, p, SQL_DELETE_CONTENT, &pRowid);
5474 if( p->bHasDocsize ){
5475 fts3SqlExec(&rc, p, SQL_DELETE_DOCSIZE, &pRowid);
5481 return rc;
5485 ** This function does the work for the xUpdate method of FTS3 virtual
5486 ** tables. The schema of the virtual table being:
5488 ** CREATE TABLE <table name>(
5489 ** <user columns>,
5490 ** <table name> HIDDEN,
5491 ** docid HIDDEN,
5492 ** <langid> HIDDEN
5493 ** );
5497 int sqlite3Fts3UpdateMethod(
5498 sqlite3_vtab *pVtab, /* FTS3 vtab object */
5499 int nArg, /* Size of argument array */
5500 sqlite3_value **apVal, /* Array of arguments */
5501 sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */
5503 Fts3Table *p = (Fts3Table *)pVtab;
5504 int rc = SQLITE_OK; /* Return Code */
5505 int isRemove = 0; /* True for an UPDATE or DELETE */
5506 u32 *aSzIns = 0; /* Sizes of inserted documents */
5507 u32 *aSzDel = 0; /* Sizes of deleted documents */
5508 int nChng = 0; /* Net change in number of documents */
5509 int bInsertDone = 0;
5511 /* At this point it must be known if the %_stat table exists or not.
5512 ** So bHasStat may not be 2. */
5513 assert( p->bHasStat==0 || p->bHasStat==1 );
5515 assert( p->pSegments==0 );
5516 assert(
5517 nArg==1 /* DELETE operations */
5518 || nArg==(2 + p->nColumn + 3) /* INSERT or UPDATE operations */
5521 /* Check for a "special" INSERT operation. One of the form:
5523 ** INSERT INTO xyz(xyz) VALUES('command');
5525 if( nArg>1
5526 && sqlite3_value_type(apVal[0])==SQLITE_NULL
5527 && sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL
5529 rc = fts3SpecialInsert(p, apVal[p->nColumn+2]);
5530 goto update_out;
5533 if( nArg>1 && sqlite3_value_int(apVal[2 + p->nColumn + 2])<0 ){
5534 rc = SQLITE_CONSTRAINT;
5535 goto update_out;
5538 /* Allocate space to hold the change in document sizes */
5539 aSzDel = sqlite3_malloc( sizeof(aSzDel[0])*(p->nColumn+1)*2 );
5540 if( aSzDel==0 ){
5541 rc = SQLITE_NOMEM;
5542 goto update_out;
5544 aSzIns = &aSzDel[p->nColumn+1];
5545 memset(aSzDel, 0, sizeof(aSzDel[0])*(p->nColumn+1)*2);
5547 rc = fts3Writelock(p);
5548 if( rc!=SQLITE_OK ) goto update_out;
5550 /* If this is an INSERT operation, or an UPDATE that modifies the rowid
5551 ** value, then this operation requires constraint handling.
5553 ** If the on-conflict mode is REPLACE, this means that the existing row
5554 ** should be deleted from the database before inserting the new row. Or,
5555 ** if the on-conflict mode is other than REPLACE, then this method must
5556 ** detect the conflict and return SQLITE_CONSTRAINT before beginning to
5557 ** modify the database file.
5559 if( nArg>1 && p->zContentTbl==0 ){
5560 /* Find the value object that holds the new rowid value. */
5561 sqlite3_value *pNewRowid = apVal[3+p->nColumn];
5562 if( sqlite3_value_type(pNewRowid)==SQLITE_NULL ){
5563 pNewRowid = apVal[1];
5566 if( sqlite3_value_type(pNewRowid)!=SQLITE_NULL && (
5567 sqlite3_value_type(apVal[0])==SQLITE_NULL
5568 || sqlite3_value_int64(apVal[0])!=sqlite3_value_int64(pNewRowid)
5570 /* The new rowid is not NULL (in this case the rowid will be
5571 ** automatically assigned and there is no chance of a conflict), and
5572 ** the statement is either an INSERT or an UPDATE that modifies the
5573 ** rowid column. So if the conflict mode is REPLACE, then delete any
5574 ** existing row with rowid=pNewRowid.
5576 ** Or, if the conflict mode is not REPLACE, insert the new record into
5577 ** the %_content table. If we hit the duplicate rowid constraint (or any
5578 ** other error) while doing so, return immediately.
5580 ** This branch may also run if pNewRowid contains a value that cannot
5581 ** be losslessly converted to an integer. In this case, the eventual
5582 ** call to fts3InsertData() (either just below or further on in this
5583 ** function) will return SQLITE_MISMATCH. If fts3DeleteByRowid is
5584 ** invoked, it will delete zero rows (since no row will have
5585 ** docid=$pNewRowid if $pNewRowid is not an integer value).
5587 if( sqlite3_vtab_on_conflict(p->db)==SQLITE_REPLACE ){
5588 rc = fts3DeleteByRowid(p, pNewRowid, &nChng, aSzDel);
5589 }else{
5590 rc = fts3InsertData(p, apVal, pRowid);
5591 bInsertDone = 1;
5595 if( rc!=SQLITE_OK ){
5596 goto update_out;
5599 /* If this is a DELETE or UPDATE operation, remove the old record. */
5600 if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
5601 assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER );
5602 rc = fts3DeleteByRowid(p, apVal[0], &nChng, aSzDel);
5603 isRemove = 1;
5606 /* If this is an INSERT or UPDATE operation, insert the new record. */
5607 if( nArg>1 && rc==SQLITE_OK ){
5608 int iLangid = sqlite3_value_int(apVal[2 + p->nColumn + 2]);
5609 if( bInsertDone==0 ){
5610 rc = fts3InsertData(p, apVal, pRowid);
5611 if( rc==SQLITE_CONSTRAINT && p->zContentTbl==0 ){
5612 rc = FTS_CORRUPT_VTAB;
5615 if( rc==SQLITE_OK && (!isRemove || *pRowid!=p->iPrevDocid ) ){
5616 rc = fts3PendingTermsDocid(p, iLangid, *pRowid);
5618 if( rc==SQLITE_OK ){
5619 assert( p->iPrevDocid==*pRowid );
5620 rc = fts3InsertTerms(p, iLangid, apVal, aSzIns);
5622 if( p->bHasDocsize ){
5623 fts3InsertDocsize(&rc, p, aSzIns);
5625 nChng++;
5628 if( p->bFts4 ){
5629 fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng);
5632 update_out:
5633 sqlite3_free(aSzDel);
5634 sqlite3Fts3SegmentsClose(p);
5635 return rc;
5639 ** Flush any data in the pending-terms hash table to disk. If successful,
5640 ** merge all segments in the database (including the new segment, if
5641 ** there was any data to flush) into a single segment.
5643 int sqlite3Fts3Optimize(Fts3Table *p){
5644 int rc;
5645 rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0);
5646 if( rc==SQLITE_OK ){
5647 rc = fts3DoOptimize(p, 1);
5648 if( rc==SQLITE_OK || rc==SQLITE_DONE ){
5649 int rc2 = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
5650 if( rc2!=SQLITE_OK ) rc = rc2;
5651 }else{
5652 sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0);
5653 sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
5656 sqlite3Fts3SegmentsClose(p);
5657 return rc;
5660 #endif