Update mojo sdk to rev 1dc8a9a5db73d3718d99917fadf31f5fb2ebad4f
[chromium-blink-merge.git] / third_party / talloc / libreplace / crypt.c
blob22341ce511d53a668aa72484140482c434566e15
1 /*
2 This bit of code was derived from the UFC-crypt package which
3 carries the following copyright
5 Modified for use by Samba by Andrew Tridgell, October 1994
7 Note that this routine is only faster on some machines. Under Linux 1.1.51
8 libc 4.5.26 I actually found this routine to be slightly slower.
10 Under SunOS I found a huge speedup by using these routines
11 (a factor of 20 or so)
13 Warning: I've had a report from Steve Kennedy <steve@gbnet.org>
14 that this crypt routine may sometimes get the wrong answer. Only
15 use UFC_CRYT if you really need it.
19 #include "replace.h"
21 #ifndef HAVE_CRYPT
24 * UFC-crypt: ultra fast crypt(3) implementation
26 * Copyright (C) 1991-1998, Free Software Foundation, Inc.
28 * This library is free software; you can redistribute it and/or
29 * modify it under the terms of the GNU Lesser General Public
30 * License as published by the Free Software Foundation; either
31 * version 3 of the License, or (at your option) any later version.
33 * This library is distributed in the hope that it will be useful,
34 * but WITHOUT ANY WARRANTY; without even the implied warranty of
35 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
36 * Library General Public License for more details.
38 * You should have received a copy of the GNU Lesser General Public
39 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
41 * @(#)crypt_util.c 2.31 02/08/92
43 * Support routines
48 #ifndef long32
49 #define long32 int32
50 #endif
52 #ifndef long64
53 #define long64 int64
54 #endif
56 #ifndef ufc_long
57 #define ufc_long unsigned
58 #endif
60 #ifndef _UFC_64_
61 #define _UFC_32_
62 #endif
64 /*
65 * Permutation done once on the 56 bit
66 * key derived from the original 8 byte ASCII key.
68 static int pc1[56] = {
69 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
70 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
71 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
72 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
76 * How much to rotate each 28 bit half of the pc1 permutated
77 * 56 bit key before using pc2 to give the i' key
79 static int rots[16] = {
80 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
83 /*
84 * Permutation giving the key
85 * of the i' DES round
87 static int pc2[48] = {
88 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
89 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
90 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
91 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
95 * The E expansion table which selects
96 * bits from the 32 bit intermediate result.
98 static int esel[48] = {
99 32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9,
100 8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
101 16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
102 24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1
104 static int e_inverse[64];
107 * Permutation done on the
108 * result of sbox lookups
110 static int perm32[32] = {
111 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
112 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
116 * The sboxes
118 static int sbox[8][4][16]= {
119 { { 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7 },
120 { 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8 },
121 { 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0 },
122 { 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 }
125 { { 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10 },
126 { 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5 },
127 { 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15 },
128 { 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 }
131 { { 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8 },
132 { 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1 },
133 { 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7 },
134 { 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 }
137 { { 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15 },
138 { 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9 },
139 { 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4 },
140 { 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 }
143 { { 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9 },
144 { 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6 },
145 { 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14 },
146 { 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 }
149 { { 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11 },
150 { 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8 },
151 { 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6 },
152 { 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 }
155 { { 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1 },
156 { 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6 },
157 { 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2 },
158 { 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 }
161 { { 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7 },
162 { 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2 },
163 { 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8 },
164 { 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }
169 * This is the final
170 * permutation matrix
172 static int final_perm[64] = {
173 40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31,
174 38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29,
175 36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27,
176 34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25
180 * The 16 DES keys in BITMASK format
182 #ifdef _UFC_32_
183 long32 _ufc_keytab[16][2];
184 #endif
186 #ifdef _UFC_64_
187 long64 _ufc_keytab[16];
188 #endif
191 #define ascii_to_bin(c) ((c)>='a'?(c-59):(c)>='A'?((c)-53):(c)-'.')
192 #define bin_to_ascii(c) ((c)>=38?((c)-38+'a'):(c)>=12?((c)-12+'A'):(c)+'.')
194 /* Macro to set a bit (0..23) */
195 #define BITMASK(i) ( (1<<(11-(i)%12+3)) << ((i)<12?16:0) )
198 * sb arrays:
200 * Workhorses of the inner loop of the DES implementation.
201 * They do sbox lookup, shifting of this value, 32 bit
202 * permutation and E permutation for the next round.
204 * Kept in 'BITMASK' format.
207 #ifdef _UFC_32_
208 long32 _ufc_sb0[8192], _ufc_sb1[8192], _ufc_sb2[8192], _ufc_sb3[8192];
209 static long32 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3};
210 #endif
212 #ifdef _UFC_64_
213 long64 _ufc_sb0[4096], _ufc_sb1[4096], _ufc_sb2[4096], _ufc_sb3[4096];
214 static long64 *sb[4] = {_ufc_sb0, _ufc_sb1, _ufc_sb2, _ufc_sb3};
215 #endif
218 * eperm32tab: do 32 bit permutation and E selection
220 * The first index is the byte number in the 32 bit value to be permuted
221 * - second - is the value of this byte
222 * - third - selects the two 32 bit values
224 * The table is used and generated internally in init_des to speed it up
226 static ufc_long eperm32tab[4][256][2];
229 * do_pc1: permform pc1 permutation in the key schedule generation.
231 * The first index is the byte number in the 8 byte ASCII key
232 * - second - - the two 28 bits halfs of the result
233 * - third - selects the 7 bits actually used of each byte
235 * The result is kept with 28 bit per 32 bit with the 4 most significant
236 * bits zero.
238 static ufc_long do_pc1[8][2][128];
241 * do_pc2: permform pc2 permutation in the key schedule generation.
243 * The first index is the septet number in the two 28 bit intermediate values
244 * - second - - - septet values
246 * Knowledge of the structure of the pc2 permutation is used.
248 * The result is kept with 28 bit per 32 bit with the 4 most significant
249 * bits zero.
251 static ufc_long do_pc2[8][128];
254 * efp: undo an extra e selection and do final
255 * permutation giving the DES result.
257 * Invoked 6 bit a time on two 48 bit values
258 * giving two 32 bit longs.
260 static ufc_long efp[16][64][2];
262 static unsigned char bytemask[8] = {
263 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01
266 static ufc_long longmask[32] = {
267 0x80000000, 0x40000000, 0x20000000, 0x10000000,
268 0x08000000, 0x04000000, 0x02000000, 0x01000000,
269 0x00800000, 0x00400000, 0x00200000, 0x00100000,
270 0x00080000, 0x00040000, 0x00020000, 0x00010000,
271 0x00008000, 0x00004000, 0x00002000, 0x00001000,
272 0x00000800, 0x00000400, 0x00000200, 0x00000100,
273 0x00000080, 0x00000040, 0x00000020, 0x00000010,
274 0x00000008, 0x00000004, 0x00000002, 0x00000001
279 * Silly rewrite of 'bzero'. I do so
280 * because some machines don't have
281 * bzero and some don't have memset.
284 static void clearmem(char *start, int cnt)
285 { while(cnt--)
286 *start++ = '\0';
289 static int initialized = 0;
291 /* lookup a 6 bit value in sbox */
293 #define s_lookup(i,s) sbox[(i)][(((s)>>4) & 0x2)|((s) & 0x1)][((s)>>1) & 0xf];
296 * Initialize unit - may be invoked directly
297 * by fcrypt users.
300 static void ufc_init_des(void)
301 { int comes_from_bit;
302 int bit, sg;
303 ufc_long j;
304 ufc_long mask1, mask2;
307 * Create the do_pc1 table used
308 * to affect pc1 permutation
309 * when generating keys
311 for(bit = 0; bit < 56; bit++) {
312 comes_from_bit = pc1[bit] - 1;
313 mask1 = bytemask[comes_from_bit % 8 + 1];
314 mask2 = longmask[bit % 28 + 4];
315 for(j = 0; j < 128; j++) {
316 if(j & mask1)
317 do_pc1[comes_from_bit / 8][bit / 28][j] |= mask2;
322 * Create the do_pc2 table used
323 * to affect pc2 permutation when
324 * generating keys
326 for(bit = 0; bit < 48; bit++) {
327 comes_from_bit = pc2[bit] - 1;
328 mask1 = bytemask[comes_from_bit % 7 + 1];
329 mask2 = BITMASK(bit % 24);
330 for(j = 0; j < 128; j++) {
331 if(j & mask1)
332 do_pc2[comes_from_bit / 7][j] |= mask2;
337 * Now generate the table used to do combined
338 * 32 bit permutation and e expansion
340 * We use it because we have to permute 16384 32 bit
341 * longs into 48 bit in order to initialize sb.
343 * Looping 48 rounds per permutation becomes
344 * just too slow...
348 clearmem((char*)eperm32tab, sizeof(eperm32tab));
350 for(bit = 0; bit < 48; bit++) {
351 ufc_long inner_mask1,comes_from;
353 comes_from = perm32[esel[bit]-1]-1;
354 inner_mask1 = bytemask[comes_from % 8];
356 for(j = 256; j--;) {
357 if(j & inner_mask1)
358 eperm32tab[comes_from / 8][j][bit / 24] |= BITMASK(bit % 24);
363 * Create the sb tables:
365 * For each 12 bit segment of an 48 bit intermediate
366 * result, the sb table precomputes the two 4 bit
367 * values of the sbox lookups done with the two 6
368 * bit halves, shifts them to their proper place,
369 * sends them through perm32 and finally E expands
370 * them so that they are ready for the next
371 * DES round.
374 for(sg = 0; sg < 4; sg++) {
375 int j1, j2;
376 int s1, s2;
378 for(j1 = 0; j1 < 64; j1++) {
379 s1 = s_lookup(2 * sg, j1);
380 for(j2 = 0; j2 < 64; j2++) {
381 ufc_long to_permute, inx;
383 s2 = s_lookup(2 * sg + 1, j2);
384 to_permute = ((s1 << 4) | s2) << (24 - 8 * sg);
386 #ifdef _UFC_32_
387 inx = ((j1 << 6) | j2) << 1;
388 sb[sg][inx ] = eperm32tab[0][(to_permute >> 24) & 0xff][0];
389 sb[sg][inx+1] = eperm32tab[0][(to_permute >> 24) & 0xff][1];
390 sb[sg][inx ] |= eperm32tab[1][(to_permute >> 16) & 0xff][0];
391 sb[sg][inx+1] |= eperm32tab[1][(to_permute >> 16) & 0xff][1];
392 sb[sg][inx ] |= eperm32tab[2][(to_permute >> 8) & 0xff][0];
393 sb[sg][inx+1] |= eperm32tab[2][(to_permute >> 8) & 0xff][1];
394 sb[sg][inx ] |= eperm32tab[3][(to_permute) & 0xff][0];
395 sb[sg][inx+1] |= eperm32tab[3][(to_permute) & 0xff][1];
396 #endif
397 #ifdef _UFC_64_
398 inx = ((j1 << 6) | j2);
399 sb[sg][inx] =
400 ((long64)eperm32tab[0][(to_permute >> 24) & 0xff][0] << 32) |
401 (long64)eperm32tab[0][(to_permute >> 24) & 0xff][1];
402 sb[sg][inx] |=
403 ((long64)eperm32tab[1][(to_permute >> 16) & 0xff][0] << 32) |
404 (long64)eperm32tab[1][(to_permute >> 16) & 0xff][1];
405 sb[sg][inx] |=
406 ((long64)eperm32tab[2][(to_permute >> 8) & 0xff][0] << 32) |
407 (long64)eperm32tab[2][(to_permute >> 8) & 0xff][1];
408 sb[sg][inx] |=
409 ((long64)eperm32tab[3][(to_permute) & 0xff][0] << 32) |
410 (long64)eperm32tab[3][(to_permute) & 0xff][1];
411 #endif
417 * Create an inverse matrix for esel telling
418 * where to plug out bits if undoing it
420 for(bit=48; bit--;) {
421 e_inverse[esel[bit] - 1 ] = bit;
422 e_inverse[esel[bit] - 1 + 32] = bit + 48;
426 * create efp: the matrix used to
427 * undo the E expansion and effect final permutation
429 clearmem((char*)efp, sizeof efp);
430 for(bit = 0; bit < 64; bit++) {
431 int o_bit, o_long;
432 ufc_long word_value, inner_mask1, inner_mask2;
433 int comes_from_f_bit, comes_from_e_bit;
434 int comes_from_word, bit_within_word;
436 /* See where bit i belongs in the two 32 bit long's */
437 o_long = bit / 32; /* 0..1 */
438 o_bit = bit % 32; /* 0..31 */
441 * And find a bit in the e permutated value setting this bit.
443 * Note: the e selection may have selected the same bit several
444 * times. By the initialization of e_inverse, we only look
445 * for one specific instance.
447 comes_from_f_bit = final_perm[bit] - 1; /* 0..63 */
448 comes_from_e_bit = e_inverse[comes_from_f_bit]; /* 0..95 */
449 comes_from_word = comes_from_e_bit / 6; /* 0..15 */
450 bit_within_word = comes_from_e_bit % 6; /* 0..5 */
452 inner_mask1 = longmask[bit_within_word + 26];
453 inner_mask2 = longmask[o_bit];
455 for(word_value = 64; word_value--;) {
456 if(word_value & inner_mask1)
457 efp[comes_from_word][word_value][o_long] |= inner_mask2;
460 initialized++;
464 * Process the elements of the sb table permuting the
465 * bits swapped in the expansion by the current salt.
468 #ifdef _UFC_32_
469 static void shuffle_sb(long32 *k, ufc_long saltbits)
470 { ufc_long j;
471 long32 x;
472 for(j=4096; j--;) {
473 x = (k[0] ^ k[1]) & (long32)saltbits;
474 *k++ ^= x;
475 *k++ ^= x;
478 #endif
480 #ifdef _UFC_64_
481 static void shuffle_sb(long64 *k, ufc_long saltbits)
482 { ufc_long j;
483 long64 x;
484 for(j=4096; j--;) {
485 x = ((*k >> 32) ^ *k) & (long64)saltbits;
486 *k++ ^= (x << 32) | x;
489 #endif
492 * Setup the unit for a new salt
493 * Hopefully we'll not see a new salt in each crypt call.
496 static unsigned char current_salt[3] = "&&"; /* invalid value */
497 static ufc_long current_saltbits = 0;
498 static int direction = 0;
500 static void setup_salt(const char *s1)
501 { ufc_long i, j, saltbits;
502 const unsigned char *s2 = (const unsigned char *)s1;
504 if(!initialized)
505 ufc_init_des();
507 if(s2[0] == current_salt[0] && s2[1] == current_salt[1])
508 return;
509 current_salt[0] = s2[0]; current_salt[1] = s2[1];
512 * This is the only crypt change to DES:
513 * entries are swapped in the expansion table
514 * according to the bits set in the salt.
516 saltbits = 0;
517 for(i = 0; i < 2; i++) {
518 long c=ascii_to_bin(s2[i]);
519 if(c < 0 || c > 63)
520 c = 0;
521 for(j = 0; j < 6; j++) {
522 if((c >> j) & 0x1)
523 saltbits |= BITMASK(6 * i + j);
528 * Permute the sb table values
529 * to reflect the changed e
530 * selection table
532 shuffle_sb(_ufc_sb0, current_saltbits ^ saltbits);
533 shuffle_sb(_ufc_sb1, current_saltbits ^ saltbits);
534 shuffle_sb(_ufc_sb2, current_saltbits ^ saltbits);
535 shuffle_sb(_ufc_sb3, current_saltbits ^ saltbits);
537 current_saltbits = saltbits;
540 static void ufc_mk_keytab(char *key)
541 { ufc_long v1, v2, *k1;
542 int i;
543 #ifdef _UFC_32_
544 long32 v, *k2 = &_ufc_keytab[0][0];
545 #endif
546 #ifdef _UFC_64_
547 long64 v, *k2 = &_ufc_keytab[0];
548 #endif
550 v1 = v2 = 0; k1 = &do_pc1[0][0][0];
551 for(i = 8; i--;) {
552 v1 |= k1[*key & 0x7f]; k1 += 128;
553 v2 |= k1[*key++ & 0x7f]; k1 += 128;
556 for(i = 0; i < 16; i++) {
557 k1 = &do_pc2[0][0];
559 v1 = (v1 << rots[i]) | (v1 >> (28 - rots[i]));
560 v = k1[(v1 >> 21) & 0x7f]; k1 += 128;
561 v |= k1[(v1 >> 14) & 0x7f]; k1 += 128;
562 v |= k1[(v1 >> 7) & 0x7f]; k1 += 128;
563 v |= k1[(v1 ) & 0x7f]; k1 += 128;
565 #ifdef _UFC_32_
566 *k2++ = v;
567 v = 0;
568 #endif
569 #ifdef _UFC_64_
570 v <<= 32;
571 #endif
573 v2 = (v2 << rots[i]) | (v2 >> (28 - rots[i]));
574 v |= k1[(v2 >> 21) & 0x7f]; k1 += 128;
575 v |= k1[(v2 >> 14) & 0x7f]; k1 += 128;
576 v |= k1[(v2 >> 7) & 0x7f]; k1 += 128;
577 v |= k1[(v2 ) & 0x7f];
579 *k2++ = v;
582 direction = 0;
586 * Undo an extra E selection and do final permutations
589 ufc_long *_ufc_dofinalperm(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2)
590 { ufc_long v1, v2, x;
591 static ufc_long ary[2];
593 x = (l1 ^ l2) & current_saltbits; l1 ^= x; l2 ^= x;
594 x = (r1 ^ r2) & current_saltbits; r1 ^= x; r2 ^= x;
596 v1=v2=0; l1 >>= 3; l2 >>= 3; r1 >>= 3; r2 >>= 3;
598 v1 |= efp[15][ r2 & 0x3f][0]; v2 |= efp[15][ r2 & 0x3f][1];
599 v1 |= efp[14][(r2 >>= 6) & 0x3f][0]; v2 |= efp[14][ r2 & 0x3f][1];
600 v1 |= efp[13][(r2 >>= 10) & 0x3f][0]; v2 |= efp[13][ r2 & 0x3f][1];
601 v1 |= efp[12][(r2 >>= 6) & 0x3f][0]; v2 |= efp[12][ r2 & 0x3f][1];
603 v1 |= efp[11][ r1 & 0x3f][0]; v2 |= efp[11][ r1 & 0x3f][1];
604 v1 |= efp[10][(r1 >>= 6) & 0x3f][0]; v2 |= efp[10][ r1 & 0x3f][1];
605 v1 |= efp[ 9][(r1 >>= 10) & 0x3f][0]; v2 |= efp[ 9][ r1 & 0x3f][1];
606 v1 |= efp[ 8][(r1 >>= 6) & 0x3f][0]; v2 |= efp[ 8][ r1 & 0x3f][1];
608 v1 |= efp[ 7][ l2 & 0x3f][0]; v2 |= efp[ 7][ l2 & 0x3f][1];
609 v1 |= efp[ 6][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 6][ l2 & 0x3f][1];
610 v1 |= efp[ 5][(l2 >>= 10) & 0x3f][0]; v2 |= efp[ 5][ l2 & 0x3f][1];
611 v1 |= efp[ 4][(l2 >>= 6) & 0x3f][0]; v2 |= efp[ 4][ l2 & 0x3f][1];
613 v1 |= efp[ 3][ l1 & 0x3f][0]; v2 |= efp[ 3][ l1 & 0x3f][1];
614 v1 |= efp[ 2][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 2][ l1 & 0x3f][1];
615 v1 |= efp[ 1][(l1 >>= 10) & 0x3f][0]; v2 |= efp[ 1][ l1 & 0x3f][1];
616 v1 |= efp[ 0][(l1 >>= 6) & 0x3f][0]; v2 |= efp[ 0][ l1 & 0x3f][1];
618 ary[0] = v1; ary[1] = v2;
619 return ary;
623 * crypt only: convert from 64 bit to 11 bit ASCII
624 * prefixing with the salt
627 static char *output_conversion(ufc_long v1, ufc_long v2, const char *salt)
628 { static char outbuf[14];
629 int i, s;
631 outbuf[0] = salt[0];
632 outbuf[1] = salt[1] ? salt[1] : salt[0];
634 for(i = 0; i < 5; i++)
635 outbuf[i + 2] = bin_to_ascii((v1 >> (26 - 6 * i)) & 0x3f);
637 s = (v2 & 0xf) << 2;
638 v2 = (v2 >> 2) | ((v1 & 0x3) << 30);
640 for(i = 5; i < 10; i++)
641 outbuf[i + 2] = bin_to_ascii((v2 >> (56 - 6 * i)) & 0x3f);
643 outbuf[12] = bin_to_ascii(s);
644 outbuf[13] = 0;
646 return outbuf;
650 * UNIX crypt function
653 static ufc_long *_ufc_doit(ufc_long , ufc_long, ufc_long, ufc_long, ufc_long);
655 char *ufc_crypt(const char *key,const char *salt)
656 { ufc_long *s;
657 char ktab[9];
660 * Hack DES tables according to salt
662 setup_salt(salt);
665 * Setup key schedule
667 clearmem(ktab, sizeof ktab);
668 StrnCpy(ktab, key, 8);
669 ufc_mk_keytab(ktab);
672 * Go for the 25 DES encryptions
674 s = _ufc_doit((ufc_long)0, (ufc_long)0,
675 (ufc_long)0, (ufc_long)0, (ufc_long)25);
678 * And convert back to 6 bit ASCII
680 return output_conversion(s[0], s[1], salt);
684 #ifdef _UFC_32_
687 * 32 bit version
690 extern long32 _ufc_keytab[16][2];
691 extern long32 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[];
693 #define SBA(sb, v) (*(long32*)((char*)(sb)+(v)))
695 static ufc_long *_ufc_doit(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2, ufc_long itr)
696 { int i;
697 long32 s, *k;
699 while(itr--) {
700 k = &_ufc_keytab[0][0];
701 for(i=8; i--; ) {
702 s = *k++ ^ r1;
703 l1 ^= SBA(_ufc_sb1, s & 0xffff); l2 ^= SBA(_ufc_sb1, (s & 0xffff)+4);
704 l1 ^= SBA(_ufc_sb0, s >>= 16); l2 ^= SBA(_ufc_sb0, (s) +4);
705 s = *k++ ^ r2;
706 l1 ^= SBA(_ufc_sb3, s & 0xffff); l2 ^= SBA(_ufc_sb3, (s & 0xffff)+4);
707 l1 ^= SBA(_ufc_sb2, s >>= 16); l2 ^= SBA(_ufc_sb2, (s) +4);
709 s = *k++ ^ l1;
710 r1 ^= SBA(_ufc_sb1, s & 0xffff); r2 ^= SBA(_ufc_sb1, (s & 0xffff)+4);
711 r1 ^= SBA(_ufc_sb0, s >>= 16); r2 ^= SBA(_ufc_sb0, (s) +4);
712 s = *k++ ^ l2;
713 r1 ^= SBA(_ufc_sb3, s & 0xffff); r2 ^= SBA(_ufc_sb3, (s & 0xffff)+4);
714 r1 ^= SBA(_ufc_sb2, s >>= 16); r2 ^= SBA(_ufc_sb2, (s) +4);
716 s=l1; l1=r1; r1=s; s=l2; l2=r2; r2=s;
718 return _ufc_dofinalperm(l1, l2, r1, r2);
721 #endif
723 #ifdef _UFC_64_
726 * 64 bit version
729 extern long64 _ufc_keytab[16];
730 extern long64 _ufc_sb0[], _ufc_sb1[], _ufc_sb2[], _ufc_sb3[];
732 #define SBA(sb, v) (*(long64*)((char*)(sb)+(v)))
734 static ufc_long *_ufc_doit(ufc_long l1, ufc_long l2, ufc_long r1, ufc_long r2, ufc_long itr)
735 { int i;
736 long64 l, r, s, *k;
738 l = (((long64)l1) << 32) | ((long64)l2);
739 r = (((long64)r1) << 32) | ((long64)r2);
741 while(itr--) {
742 k = &_ufc_keytab[0];
743 for(i=8; i--; ) {
744 s = *k++ ^ r;
745 l ^= SBA(_ufc_sb3, (s >> 0) & 0xffff);
746 l ^= SBA(_ufc_sb2, (s >> 16) & 0xffff);
747 l ^= SBA(_ufc_sb1, (s >> 32) & 0xffff);
748 l ^= SBA(_ufc_sb0, (s >> 48) & 0xffff);
750 s = *k++ ^ l;
751 r ^= SBA(_ufc_sb3, (s >> 0) & 0xffff);
752 r ^= SBA(_ufc_sb2, (s >> 16) & 0xffff);
753 r ^= SBA(_ufc_sb1, (s >> 32) & 0xffff);
754 r ^= SBA(_ufc_sb0, (s >> 48) & 0xffff);
756 s=l; l=r; r=s;
759 l1 = l >> 32; l2 = l & 0xffffffff;
760 r1 = r >> 32; r2 = r & 0xffffffff;
761 return _ufc_dofinalperm(l1, l2, r1, r2);
764 #endif
767 #else
768 int ufc_dummy_procedure(void);
769 int ufc_dummy_procedure(void) {return 0;}
770 #endif