Revert of Linux MSan: enable swarming/sharding for browser_tests. (patchset #1 id...
[chromium-blink-merge.git] / chrome / renderer / safe_browsing / scorer_unittest.cc
blobd83085ea893f54f89206bace0971c09bbeffa165
1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "chrome/renderer/safe_browsing/scorer.h"
7 #include "base/containers/hash_tables.h"
8 #include "base/files/file_path.h"
9 #include "base/files/scoped_temp_dir.h"
10 #include "base/format_macros.h"
11 #include "base/memory/scoped_ptr.h"
12 #include "base/message_loop/message_loop.h"
13 #include "base/threading/thread.h"
14 #include "chrome/common/safe_browsing/client_model.pb.h"
15 #include "chrome/renderer/safe_browsing/features.h"
16 #include "testing/gmock/include/gmock/gmock.h"
17 #include "testing/gtest/include/gtest/gtest.h"
19 namespace safe_browsing {
21 class PhishingScorerTest : public ::testing::Test {
22 protected:
23 void SetUp() override {
24 // Setup a simple model. Note that the scorer does not care about
25 // how features are encoded so we use readable strings here to make
26 // the test simpler to follow.
27 model_.Clear();
28 model_.add_hashes("feature1");
29 model_.add_hashes("feature2");
30 model_.add_hashes("feature3");
31 model_.add_hashes("token one");
32 model_.add_hashes("token two");
34 ClientSideModel::Rule* rule;
35 rule = model_.add_rule();
36 rule->set_weight(0.5);
38 rule = model_.add_rule();
39 rule->add_feature(0); // feature1
40 rule->set_weight(2.0);
42 rule = model_.add_rule();
43 rule->add_feature(0); // feature1
44 rule->add_feature(1); // feature2
45 rule->set_weight(3.0);
47 model_.add_page_term(3); // token one
48 model_.add_page_term(4); // token two
50 // These will be murmur3 hashes, but for this test it's not necessary
51 // that the hashes correspond to actual words.
52 model_.add_page_word(1000U);
53 model_.add_page_word(2000U);
54 model_.add_page_word(3000U);
56 model_.set_max_words_per_term(2);
57 model_.set_murmur_hash_seed(12345U);
58 model_.set_max_shingles_per_page(10);
59 model_.set_shingle_size(3);
62 ClientSideModel model_;
65 TEST_F(PhishingScorerTest, HasValidModel) {
66 scoped_ptr<Scorer> scorer;
67 scorer.reset(Scorer::Create(model_.SerializeAsString()));
68 EXPECT_TRUE(scorer.get() != NULL);
70 // Invalid model string.
71 scorer.reset(Scorer::Create("bogus string"));
72 EXPECT_FALSE(scorer.get());
74 // Mode is missing a required field.
75 model_.clear_max_words_per_term();
76 scorer.reset(Scorer::Create(model_.SerializePartialAsString()));
77 EXPECT_FALSE(scorer.get());
80 TEST_F(PhishingScorerTest, PageTerms) {
81 scoped_ptr<Scorer> scorer(Scorer::Create(model_.SerializeAsString()));
82 ASSERT_TRUE(scorer.get());
84 // Use std::vector instead of base::hash_set for comparison.
85 // On Android, EXPECT_THAT(..., ContainerEq(...)) doesn't support
86 // std::hash_set, but std::vector works fine.
87 std::vector<std::string> expected_page_terms;
88 expected_page_terms.push_back("token one");
89 expected_page_terms.push_back("token two");
90 std::sort(expected_page_terms.begin(), expected_page_terms.end());
92 base::hash_set<std::string> page_terms = scorer->page_terms();
93 std::vector<std::string> page_terms_v(page_terms.begin(), page_terms.end());
94 std::sort(page_terms_v.begin(), page_terms_v.end());
96 EXPECT_THAT(page_terms_v, ::testing::ContainerEq(expected_page_terms));
99 TEST_F(PhishingScorerTest, PageWords) {
100 scoped_ptr<Scorer> scorer(Scorer::Create(model_.SerializeAsString()));
101 ASSERT_TRUE(scorer.get());
102 std::vector<uint32> expected_page_words;
103 expected_page_words.push_back(1000U);
104 expected_page_words.push_back(2000U);
105 expected_page_words.push_back(3000U);
106 std::sort(expected_page_words.begin(), expected_page_words.end());
108 base::hash_set<uint32> page_words = scorer->page_words();
109 std::vector<uint32> page_words_v(page_words.begin(), page_words.end());
110 std::sort(page_words_v.begin(), page_words_v.end());
112 EXPECT_THAT(page_words_v, ::testing::ContainerEq(expected_page_words));
114 EXPECT_EQ(2U, scorer->max_words_per_term());
115 EXPECT_EQ(12345U, scorer->murmurhash3_seed());
116 EXPECT_EQ(10U, scorer->max_shingles_per_page());
117 EXPECT_EQ(3U, scorer->shingle_size());
120 TEST_F(PhishingScorerTest, ComputeScore) {
121 scoped_ptr<Scorer> scorer(Scorer::Create(model_.SerializeAsString()));
122 ASSERT_TRUE(scorer.get());
124 // An empty feature map should match the empty rule.
125 FeatureMap features;
126 // The expected logodds is 0.5 (empty rule) => p = exp(0.5) / (exp(0.5) + 1)
127 // => 0.62245933120185459
128 EXPECT_DOUBLE_EQ(0.62245933120185459, scorer->ComputeScore(features));
129 // Same if the feature does not match any rule.
130 EXPECT_TRUE(features.AddBooleanFeature("not existing feature"));
131 EXPECT_DOUBLE_EQ(0.62245933120185459, scorer->ComputeScore(features));
133 // Feature 1 matches which means that the logodds will be:
134 // 0.5 (empty rule) + 2.0 (rule weight) * 0.15 (feature weight) = 0.8
135 // => p = 0.6899744811276125
136 EXPECT_TRUE(features.AddRealFeature("feature1", 0.15));
137 EXPECT_DOUBLE_EQ(0.6899744811276125, scorer->ComputeScore(features));
139 // Now, both feature 1 and feature 2 match. Expected logodds:
140 // 0.5 (empty rule) + 2.0 (rule weight) * 0.15 (feature weight) +
141 // 3.0 (rule weight) * 0.15 (feature1 weight) * 1.0 (feature2) weight = 9.8
142 // => p = 0.99999627336071584
143 EXPECT_TRUE(features.AddBooleanFeature("feature2"));
144 EXPECT_DOUBLE_EQ(0.77729986117469119, scorer->ComputeScore(features));
146 } // namespace safe_browsing