Use multiline attribute to check for IA2_STATE_MULTILINE.
[chromium-blink-merge.git] / base / time / time_win_unittest.cc
blob82be8c5254dd7e2722829e6997cf9d99202092c9
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include <windows.h>
6 #include <mmsystem.h>
7 #include <process.h>
9 #include <cmath>
10 #include <limits>
11 #include <vector>
13 #include "base/threading/platform_thread.h"
14 #include "base/time/time.h"
15 #include "testing/gtest/include/gtest/gtest.h"
17 using base::Time;
18 using base::TimeDelta;
19 using base::TimeTicks;
21 namespace {
23 class MockTimeTicks : public TimeTicks {
24 public:
25 static DWORD Ticker() {
26 return static_cast<int>(InterlockedIncrement(&ticker_));
29 static void InstallTicker() {
30 old_tick_function_ = SetMockTickFunction(&Ticker);
31 ticker_ = -5;
34 static void UninstallTicker() {
35 SetMockTickFunction(old_tick_function_);
38 private:
39 static volatile LONG ticker_;
40 static TickFunctionType old_tick_function_;
43 volatile LONG MockTimeTicks::ticker_;
44 MockTimeTicks::TickFunctionType MockTimeTicks::old_tick_function_;
46 HANDLE g_rollover_test_start;
48 unsigned __stdcall RolloverTestThreadMain(void* param) {
49 int64 counter = reinterpret_cast<int64>(param);
50 DWORD rv = WaitForSingleObject(g_rollover_test_start, INFINITE);
51 EXPECT_EQ(rv, WAIT_OBJECT_0);
53 TimeTicks last = TimeTicks::Now();
54 for (int index = 0; index < counter; index++) {
55 TimeTicks now = TimeTicks::Now();
56 int64 milliseconds = (now - last).InMilliseconds();
57 // This is a tight loop; we could have looped faster than our
58 // measurements, so the time might be 0 millis.
59 EXPECT_GE(milliseconds, 0);
60 EXPECT_LT(milliseconds, 250);
61 last = now;
63 return 0;
66 } // namespace
68 TEST(TimeTicks, WinRollover) {
69 // The internal counter rolls over at ~49days. We'll use a mock
70 // timer to test this case.
71 // Basic test algorithm:
72 // 1) Set clock to rollover - N
73 // 2) Create N threads
74 // 3) Start the threads
75 // 4) Each thread loops through TimeTicks() N times
76 // 5) Each thread verifies integrity of result.
78 const int kThreads = 8;
79 // Use int64 so we can cast into a void* without a compiler warning.
80 const int64 kChecks = 10;
82 // It takes a lot of iterations to reproduce the bug!
83 // (See bug 1081395)
84 for (int loop = 0; loop < 4096; loop++) {
85 // Setup
86 MockTimeTicks::InstallTicker();
87 g_rollover_test_start = CreateEvent(0, TRUE, FALSE, 0);
88 HANDLE threads[kThreads];
90 for (int index = 0; index < kThreads; index++) {
91 void* argument = reinterpret_cast<void*>(kChecks);
92 unsigned thread_id;
93 threads[index] = reinterpret_cast<HANDLE>(
94 _beginthreadex(NULL, 0, RolloverTestThreadMain, argument, 0,
95 &thread_id));
96 EXPECT_NE((HANDLE)NULL, threads[index]);
99 // Start!
100 SetEvent(g_rollover_test_start);
102 // Wait for threads to finish
103 for (int index = 0; index < kThreads; index++) {
104 DWORD rv = WaitForSingleObject(threads[index], INFINITE);
105 EXPECT_EQ(rv, WAIT_OBJECT_0);
106 // Since using _beginthreadex() (as opposed to _beginthread),
107 // an explicit CloseHandle() is supposed to be called.
108 CloseHandle(threads[index]);
111 CloseHandle(g_rollover_test_start);
113 // Teardown
114 MockTimeTicks::UninstallTicker();
118 TEST(TimeTicks, SubMillisecondTimers) {
119 // IsHighResolution() is false on some systems. Since the product still works
120 // even if it's false, it makes this entire test questionable.
121 if (!TimeTicks::IsHighResolution())
122 return;
124 const int kRetries = 1000;
125 bool saw_submillisecond_timer = false;
127 // Run kRetries attempts to see a sub-millisecond timer.
128 for (int index = 0; index < kRetries; index++) {
129 TimeTicks last_time = TimeTicks::Now();
130 TimeDelta delta;
131 // Spin until the clock has detected a change.
132 do {
133 delta = TimeTicks::Now() - last_time;
134 } while (delta.InMicroseconds() == 0);
135 if (delta.InMicroseconds() < 1000) {
136 saw_submillisecond_timer = true;
137 break;
140 EXPECT_TRUE(saw_submillisecond_timer);
143 TEST(TimeTicks, TimeGetTimeCaps) {
144 // Test some basic assumptions that we expect about how timeGetDevCaps works.
146 TIMECAPS caps;
147 MMRESULT status = timeGetDevCaps(&caps, sizeof(caps));
148 EXPECT_EQ(TIMERR_NOERROR, status);
149 if (status != TIMERR_NOERROR) {
150 printf("Could not get timeGetDevCaps\n");
151 return;
154 EXPECT_GE(static_cast<int>(caps.wPeriodMin), 1);
155 EXPECT_GT(static_cast<int>(caps.wPeriodMax), 1);
156 EXPECT_GE(static_cast<int>(caps.wPeriodMin), 1);
157 EXPECT_GT(static_cast<int>(caps.wPeriodMax), 1);
158 printf("timeGetTime range is %d to %dms\n", caps.wPeriodMin,
159 caps.wPeriodMax);
162 TEST(TimeTicks, QueryPerformanceFrequency) {
163 // Test some basic assumptions that we expect about QPC.
165 LARGE_INTEGER frequency;
166 BOOL rv = QueryPerformanceFrequency(&frequency);
167 EXPECT_EQ(TRUE, rv);
168 EXPECT_GT(frequency.QuadPart, 1000000); // Expect at least 1MHz
169 printf("QueryPerformanceFrequency is %5.2fMHz\n",
170 frequency.QuadPart / 1000000.0);
173 TEST(TimeTicks, TimerPerformance) {
174 // Verify that various timer mechanisms can always complete quickly.
175 // Note: This is a somewhat arbitrary test.
176 const int kLoops = 10000;
178 typedef TimeTicks (*TestFunc)();
179 struct TestCase {
180 TestFunc func;
181 const char *description;
183 // Cheating a bit here: assumes sizeof(TimeTicks) == sizeof(Time)
184 // in order to create a single test case list.
185 COMPILE_ASSERT(sizeof(TimeTicks) == sizeof(Time),
186 test_only_works_with_same_sizes);
187 TestCase cases[] = {
188 { reinterpret_cast<TestFunc>(Time::Now), "Time::Now" },
189 { TimeTicks::Now, "TimeTicks::Now" },
190 { TimeTicks::NowFromSystemTraceTime, "TimeTicks::NowFromSystemTraceTime" },
191 { NULL, "" }
194 int test_case = 0;
195 while (cases[test_case].func) {
196 TimeTicks start = TimeTicks::Now();
197 for (int index = 0; index < kLoops; index++)
198 cases[test_case].func();
199 TimeTicks stop = TimeTicks::Now();
200 // Turning off the check for acceptible delays. Without this check,
201 // the test really doesn't do much other than measure. But the
202 // measurements are still useful for testing timers on various platforms.
203 // The reason to remove the check is because the tests run on many
204 // buildbots, some of which are VMs. These machines can run horribly
205 // slow, and there is really no value for checking against a max timer.
206 //const int kMaxTime = 35; // Maximum acceptible milliseconds for test.
207 //EXPECT_LT((stop - start).InMilliseconds(), kMaxTime);
208 printf("%s: %1.2fus per call\n", cases[test_case].description,
209 (stop - start).InMillisecondsF() * 1000 / kLoops);
210 test_case++;
214 TEST(TimeTicks, FromQPCValue) {
215 if (!TimeTicks::IsHighResolution())
216 return;
218 LARGE_INTEGER frequency;
219 ASSERT_TRUE(QueryPerformanceFrequency(&frequency));
220 const int64 ticks_per_second = frequency.QuadPart;
221 ASSERT_GT(ticks_per_second, 0);
223 // Generate the tick values to convert, advancing the tick count by varying
224 // amounts. These values will ensure that both the fast and overflow-safe
225 // conversion logic in FromQPCValue() is tested, and across the entire range
226 // of possible QPC tick values.
227 std::vector<int64> test_cases;
228 test_cases.push_back(0);
229 const int kNumAdvancements = 100;
230 int64 ticks = 0;
231 int64 ticks_increment = 10;
232 for (int i = 0; i < kNumAdvancements; ++i) {
233 test_cases.push_back(ticks);
234 ticks += ticks_increment;
235 ticks_increment = ticks_increment * 6 / 5;
237 test_cases.push_back(Time::kQPCOverflowThreshold - 1);
238 test_cases.push_back(Time::kQPCOverflowThreshold);
239 test_cases.push_back(Time::kQPCOverflowThreshold + 1);
240 ticks = Time::kQPCOverflowThreshold + 10;
241 ticks_increment = 10;
242 for (int i = 0; i < kNumAdvancements; ++i) {
243 test_cases.push_back(ticks);
244 ticks += ticks_increment;
245 ticks_increment = ticks_increment * 6 / 5;
247 test_cases.push_back(std::numeric_limits<int64>::max());
249 // Test that the conversions using FromQPCValue() match those computed here
250 // using simple floating-point arithmetic. The floating-point math provides
251 // enough precision to confirm the implementation is correct to the
252 // microsecond for all |test_cases| (though it would be insufficient to
253 // confirm many "very large" tick values which are not being tested here).
254 for (int64 ticks : test_cases) {
255 const double expected_microseconds_since_origin =
256 (static_cast<double>(ticks) * Time::kMicrosecondsPerSecond) /
257 ticks_per_second;
258 const TimeTicks converted_value = TimeTicks::FromQPCValue(ticks);
259 const double converted_microseconds_since_origin =
260 static_cast<double>((converted_value - TimeTicks()).InMicroseconds());
261 EXPECT_NEAR(expected_microseconds_since_origin,
262 converted_microseconds_since_origin,
263 1.0)
264 << "ticks=" << ticks << ", to be converted via logic path: "
265 << (ticks < Time::kQPCOverflowThreshold ? "FAST" : "SAFE");