1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "base/tracked_objects.h"
10 #include "base/atomicops.h"
11 #include "base/base_switches.h"
12 #include "base/command_line.h"
13 #include "base/compiler_specific.h"
14 #include "base/debug/leak_annotations.h"
15 #include "base/logging.h"
16 #include "base/process/process_handle.h"
17 #include "base/profiler/alternate_timer.h"
18 #include "base/strings/stringprintf.h"
19 #include "base/third_party/valgrind/memcheck.h"
20 #include "base/tracking_info.h"
22 using base::TimeDelta
;
28 namespace tracked_objects
{
31 // Flag to compile out almost all of the task tracking code.
32 const bool kTrackAllTaskObjects
= true;
34 // TODO(jar): Evaluate the perf impact of enabling this. If the perf impact is
35 // negligible, enable by default.
36 // Flag to compile out parent-child link recording.
37 const bool kTrackParentChildLinks
= false;
39 // When ThreadData is first initialized, should we start in an ACTIVE state to
40 // record all of the startup-time tasks, or should we start up DEACTIVATED, so
41 // that we only record after parsing the command line flag --enable-tracking.
42 // Note that the flag may force either state, so this really controls only the
43 // period of time up until that flag is parsed. If there is no flag seen, then
44 // this state may prevail for much or all of the process lifetime.
45 const ThreadData::Status kInitialStartupState
=
46 ThreadData::PROFILING_CHILDREN_ACTIVE
;
48 // Control whether an alternate time source (Now() function) is supported by
49 // the ThreadData class. This compile time flag should be set to true if we
50 // want other modules (such as a memory allocator, or a thread-specific CPU time
51 // clock) to be able to provide a thread-specific Now() function. Without this
52 // compile-time flag, the code will only support the wall-clock time. This flag
53 // can be flipped to efficiently disable this path (if there is a performance
54 // problem with its presence).
55 static const bool kAllowAlternateTimeSourceHandling
= true;
57 // Possible states of the profiler timing enabledness.
64 // State of the profiler timing enabledness.
65 base::subtle::Atomic32 g_profiler_timing_enabled
= UNDEFINED_TIMING
;
67 // Returns whether profiler timing is enabled. The default is true, but this may
68 // be overridden by a command-line flag. Some platforms may programmatically set
69 // this command-line flag to the "off" value if it's not specified.
70 // This in turn can be overridden by explicitly calling
71 // ThreadData::EnableProfilerTiming, say, based on a field trial.
72 inline bool IsProfilerTimingEnabled() {
73 // Reading |g_profiler_timing_enabled| is done without barrier because
74 // multiple initialization is not an issue while the barrier can be relatively
75 // costly given that this method is sometimes called in a tight loop.
76 base::subtle::Atomic32 current_timing_enabled
=
77 base::subtle::NoBarrier_Load(&g_profiler_timing_enabled
);
78 if (current_timing_enabled
== UNDEFINED_TIMING
) {
79 if (!base::CommandLine::InitializedForCurrentProcess())
81 current_timing_enabled
=
82 (base::CommandLine::ForCurrentProcess()->GetSwitchValueASCII(
83 switches::kProfilerTiming
) ==
84 switches::kProfilerTimingDisabledValue
)
87 base::subtle::NoBarrier_Store(&g_profiler_timing_enabled
,
88 current_timing_enabled
);
90 return current_timing_enabled
== ENABLED_TIMING
;
95 //------------------------------------------------------------------------------
96 // DeathData tallies durations when a death takes place.
98 DeathData::DeathData() {
102 DeathData::DeathData(int count
) {
107 // TODO(jar): I need to see if this macro to optimize branching is worth using.
109 // This macro has no branching, so it is surely fast, and is equivalent to:
112 // We use a macro rather than a template to force this to inline.
113 // Related code for calculating max is discussed on the web.
114 #define CONDITIONAL_ASSIGN(assign_it, target, source) \
115 ((target) ^= ((target) ^ (source)) & -static_cast<int32>(assign_it))
117 void DeathData::RecordDeath(const int32 queue_duration
,
118 const int32 run_duration
,
119 const uint32 random_number
) {
120 // We'll just clamp at INT_MAX, but we should note this in the UI as such.
121 if (count_
< INT_MAX
)
123 queue_duration_sum_
+= queue_duration
;
124 run_duration_sum_
+= run_duration
;
126 if (queue_duration_max_
< queue_duration
)
127 queue_duration_max_
= queue_duration
;
128 if (run_duration_max_
< run_duration
)
129 run_duration_max_
= run_duration
;
131 // Take a uniformly distributed sample over all durations ever supplied.
132 // The probability that we (instead) use this new sample is 1/count_. This
133 // results in a completely uniform selection of the sample (at least when we
134 // don't clamp count_... but that should be inconsequentially likely).
135 // We ignore the fact that we correlated our selection of a sample to the run
136 // and queue times (i.e., we used them to generate random_number).
138 if (0 == (random_number
% count_
)) {
139 queue_duration_sample_
= queue_duration
;
140 run_duration_sample_
= run_duration
;
144 int DeathData::count() const { return count_
; }
146 int32
DeathData::run_duration_sum() const { return run_duration_sum_
; }
148 int32
DeathData::run_duration_max() const { return run_duration_max_
; }
150 int32
DeathData::run_duration_sample() const {
151 return run_duration_sample_
;
154 int32
DeathData::queue_duration_sum() const {
155 return queue_duration_sum_
;
158 int32
DeathData::queue_duration_max() const {
159 return queue_duration_max_
;
162 int32
DeathData::queue_duration_sample() const {
163 return queue_duration_sample_
;
166 void DeathData::Clear() {
168 run_duration_sum_
= 0;
169 run_duration_max_
= 0;
170 run_duration_sample_
= 0;
171 queue_duration_sum_
= 0;
172 queue_duration_max_
= 0;
173 queue_duration_sample_
= 0;
176 //------------------------------------------------------------------------------
177 DeathDataSnapshot::DeathDataSnapshot()
179 run_duration_sum(-1),
180 run_duration_max(-1),
181 run_duration_sample(-1),
182 queue_duration_sum(-1),
183 queue_duration_max(-1),
184 queue_duration_sample(-1) {
187 DeathDataSnapshot::DeathDataSnapshot(
188 const tracked_objects::DeathData
& death_data
)
189 : count(death_data
.count()),
190 run_duration_sum(death_data
.run_duration_sum()),
191 run_duration_max(death_data
.run_duration_max()),
192 run_duration_sample(death_data
.run_duration_sample()),
193 queue_duration_sum(death_data
.queue_duration_sum()),
194 queue_duration_max(death_data
.queue_duration_max()),
195 queue_duration_sample(death_data
.queue_duration_sample()) {
198 DeathDataSnapshot::~DeathDataSnapshot() {
201 //------------------------------------------------------------------------------
202 BirthOnThread::BirthOnThread(const Location
& location
,
203 const ThreadData
& current
)
204 : location_(location
),
205 birth_thread_(¤t
) {
208 //------------------------------------------------------------------------------
209 BirthOnThreadSnapshot::BirthOnThreadSnapshot() {
212 BirthOnThreadSnapshot::BirthOnThreadSnapshot(
213 const tracked_objects::BirthOnThread
& birth
)
214 : location(birth
.location()),
215 thread_name(birth
.birth_thread()->thread_name()) {
218 BirthOnThreadSnapshot::~BirthOnThreadSnapshot() {
221 //------------------------------------------------------------------------------
222 Births::Births(const Location
& location
, const ThreadData
& current
)
223 : BirthOnThread(location
, current
),
226 int Births::birth_count() const { return birth_count_
; }
228 void Births::RecordBirth() { ++birth_count_
; }
230 //------------------------------------------------------------------------------
231 // ThreadData maintains the central data for all births and deaths on a single
234 // TODO(jar): We should pull all these static vars together, into a struct, and
235 // optimize layout so that we benefit from locality of reference during accesses
239 NowFunction
* ThreadData::now_function_
= NULL
;
242 bool ThreadData::now_function_is_time_
= false;
244 // A TLS slot which points to the ThreadData instance for the current thread. We
245 // do a fake initialization here (zeroing out data), and then the real in-place
246 // construction happens when we call tls_index_.Initialize().
248 base::ThreadLocalStorage::StaticSlot
ThreadData::tls_index_
= TLS_INITIALIZER
;
251 int ThreadData::worker_thread_data_creation_count_
= 0;
254 int ThreadData::cleanup_count_
= 0;
257 int ThreadData::incarnation_counter_
= 0;
260 ThreadData
* ThreadData::all_thread_data_list_head_
= NULL
;
263 ThreadData
* ThreadData::first_retired_worker_
= NULL
;
266 base::LazyInstance
<base::Lock
>::Leaky
267 ThreadData::list_lock_
= LAZY_INSTANCE_INITIALIZER
;
270 ThreadData::Status
ThreadData::status_
= ThreadData::UNINITIALIZED
;
272 ThreadData::ThreadData(const std::string
& suggested_name
)
274 next_retired_worker_(NULL
),
275 worker_thread_number_(0),
276 incarnation_count_for_pool_(-1),
277 current_stopwatch_(NULL
) {
278 DCHECK_GE(suggested_name
.size(), 0u);
279 thread_name_
= suggested_name
;
280 PushToHeadOfList(); // Which sets real incarnation_count_for_pool_.
283 ThreadData::ThreadData(int thread_number
)
285 next_retired_worker_(NULL
),
286 worker_thread_number_(thread_number
),
287 incarnation_count_for_pool_(-1),
288 current_stopwatch_(NULL
) {
289 CHECK_GT(thread_number
, 0);
290 base::StringAppendF(&thread_name_
, "WorkerThread-%d", thread_number
);
291 PushToHeadOfList(); // Which sets real incarnation_count_for_pool_.
294 ThreadData::~ThreadData() {}
296 void ThreadData::PushToHeadOfList() {
297 // Toss in a hint of randomness (atop the uniniitalized value).
298 (void)VALGRIND_MAKE_MEM_DEFINED_IF_ADDRESSABLE(&random_number_
,
299 sizeof(random_number_
));
300 MSAN_UNPOISON(&random_number_
, sizeof(random_number_
));
301 random_number_
+= static_cast<uint32
>(this - static_cast<ThreadData
*>(0));
302 random_number_
^= (Now() - TrackedTime()).InMilliseconds();
305 base::AutoLock
lock(*list_lock_
.Pointer());
306 incarnation_count_for_pool_
= incarnation_counter_
;
307 next_
= all_thread_data_list_head_
;
308 all_thread_data_list_head_
= this;
312 ThreadData
* ThreadData::first() {
313 base::AutoLock
lock(*list_lock_
.Pointer());
314 return all_thread_data_list_head_
;
317 ThreadData
* ThreadData::next() const { return next_
; }
320 void ThreadData::InitializeThreadContext(const std::string
& suggested_name
) {
321 if (!Initialize()) // Always initialize if needed.
323 ThreadData
* current_thread_data
=
324 reinterpret_cast<ThreadData
*>(tls_index_
.Get());
325 if (current_thread_data
)
326 return; // Browser tests instigate this.
327 current_thread_data
= new ThreadData(suggested_name
);
328 tls_index_
.Set(current_thread_data
);
332 ThreadData
* ThreadData::Get() {
333 if (!tls_index_
.initialized())
334 return NULL
; // For unittests only.
335 ThreadData
* registered
= reinterpret_cast<ThreadData
*>(tls_index_
.Get());
339 // We must be a worker thread, since we didn't pre-register.
340 ThreadData
* worker_thread_data
= NULL
;
341 int worker_thread_number
= 0;
343 base::AutoLock
lock(*list_lock_
.Pointer());
344 if (first_retired_worker_
) {
345 worker_thread_data
= first_retired_worker_
;
346 first_retired_worker_
= first_retired_worker_
->next_retired_worker_
;
347 worker_thread_data
->next_retired_worker_
= NULL
;
349 worker_thread_number
= ++worker_thread_data_creation_count_
;
353 // If we can't find a previously used instance, then we have to create one.
354 if (!worker_thread_data
) {
355 DCHECK_GT(worker_thread_number
, 0);
356 worker_thread_data
= new ThreadData(worker_thread_number
);
358 DCHECK_GT(worker_thread_data
->worker_thread_number_
, 0);
360 tls_index_
.Set(worker_thread_data
);
361 return worker_thread_data
;
365 void ThreadData::OnThreadTermination(void* thread_data
) {
366 DCHECK(thread_data
); // TLS should *never* call us with a NULL.
367 // We must NOT do any allocations during this callback. There is a chance
368 // that the allocator is no longer active on this thread.
369 if (!kTrackAllTaskObjects
)
370 return; // Not compiled in.
371 reinterpret_cast<ThreadData
*>(thread_data
)->OnThreadTerminationCleanup();
374 void ThreadData::OnThreadTerminationCleanup() {
375 // The list_lock_ was created when we registered the callback, so it won't be
376 // allocated here despite the lazy reference.
377 base::AutoLock
lock(*list_lock_
.Pointer());
378 if (incarnation_counter_
!= incarnation_count_for_pool_
)
379 return; // ThreadData was constructed in an earlier unit test.
381 // Only worker threads need to be retired and reused.
382 if (!worker_thread_number_
) {
385 // We must NOT do any allocations during this callback.
386 // Using the simple linked lists avoids all allocations.
387 DCHECK_EQ(this->next_retired_worker_
, reinterpret_cast<ThreadData
*>(NULL
));
388 this->next_retired_worker_
= first_retired_worker_
;
389 first_retired_worker_
= this;
393 void ThreadData::Snapshot(ProcessDataSnapshot
* process_data_snapshot
) {
394 ThreadData::SnapshotCurrentPhase(
395 &process_data_snapshot
->phased_process_data_snapshots
[0]);
398 Births
* ThreadData::TallyABirth(const Location
& location
) {
399 BirthMap::iterator it
= birth_map_
.find(location
);
401 if (it
!= birth_map_
.end()) {
403 child
->RecordBirth();
405 child
= new Births(location
, *this); // Leak this.
406 // Lock since the map may get relocated now, and other threads sometimes
407 // snapshot it (but they lock before copying it).
408 base::AutoLock
lock(map_lock_
);
409 birth_map_
[location
] = child
;
412 if (kTrackParentChildLinks
&& status_
> PROFILING_ACTIVE
&&
413 !parent_stack_
.empty()) {
414 const Births
* parent
= parent_stack_
.top();
415 ParentChildPair
pair(parent
, child
);
416 if (parent_child_set_
.find(pair
) == parent_child_set_
.end()) {
417 // Lock since the map may get relocated now, and other threads sometimes
418 // snapshot it (but they lock before copying it).
419 base::AutoLock
lock(map_lock_
);
420 parent_child_set_
.insert(pair
);
427 void ThreadData::TallyADeath(const Births
& birth
,
428 int32 queue_duration
,
429 const TaskStopwatch
& stopwatch
) {
430 int32 run_duration
= stopwatch
.RunDurationMs();
432 // Stir in some randomness, plus add constant in case durations are zero.
433 const uint32 kSomePrimeNumber
= 2147483647;
434 random_number_
+= queue_duration
+ run_duration
+ kSomePrimeNumber
;
435 // An address is going to have some randomness to it as well ;-).
436 random_number_
^= static_cast<uint32
>(&birth
- reinterpret_cast<Births
*>(0));
438 // We don't have queue durations without OS timer. OS timer is automatically
439 // used for task-post-timing, so the use of an alternate timer implies all
440 // queue times are invalid, unless it was explicitly said that we can trust
441 // the alternate timer.
442 if (kAllowAlternateTimeSourceHandling
&&
444 !now_function_is_time_
) {
448 DeathMap::iterator it
= death_map_
.find(&birth
);
449 DeathData
* death_data
;
450 if (it
!= death_map_
.end()) {
451 death_data
= &it
->second
;
453 base::AutoLock
lock(map_lock_
); // Lock as the map may get relocated now.
454 death_data
= &death_map_
[&birth
];
455 } // Release lock ASAP.
456 death_data
->RecordDeath(queue_duration
, run_duration
, random_number_
);
458 if (!kTrackParentChildLinks
)
460 if (!parent_stack_
.empty()) { // We might get turned off.
461 DCHECK_EQ(parent_stack_
.top(), &birth
);
467 Births
* ThreadData::TallyABirthIfActive(const Location
& location
) {
468 if (!kTrackAllTaskObjects
)
469 return NULL
; // Not compiled in.
471 if (!TrackingStatus())
473 ThreadData
* current_thread_data
= Get();
474 if (!current_thread_data
)
476 return current_thread_data
->TallyABirth(location
);
480 void ThreadData::TallyRunOnNamedThreadIfTracking(
481 const base::TrackingInfo
& completed_task
,
482 const TaskStopwatch
& stopwatch
) {
483 if (!kTrackAllTaskObjects
)
484 return; // Not compiled in.
486 // Even if we have been DEACTIVATED, we will process any pending births so
487 // that our data structures (which counted the outstanding births) remain
489 const Births
* birth
= completed_task
.birth_tally
;
492 ThreadData
* current_thread_data
= stopwatch
.GetThreadData();
493 if (!current_thread_data
)
496 // Watch out for a race where status_ is changing, and hence one or both
497 // of start_of_run or end_of_run is zero. In that case, we didn't bother to
498 // get a time value since we "weren't tracking" and we were trying to be
499 // efficient by not calling for a genuine time value. For simplicity, we'll
500 // use a default zero duration when we can't calculate a true value.
501 TrackedTime start_of_run
= stopwatch
.StartTime();
502 int32 queue_duration
= 0;
503 if (!start_of_run
.is_null()) {
504 queue_duration
= (start_of_run
- completed_task
.EffectiveTimePosted())
507 current_thread_data
->TallyADeath(*birth
, queue_duration
, stopwatch
);
511 void ThreadData::TallyRunOnWorkerThreadIfTracking(
513 const TrackedTime
& time_posted
,
514 const TaskStopwatch
& stopwatch
) {
515 if (!kTrackAllTaskObjects
)
516 return; // Not compiled in.
518 // Even if we have been DEACTIVATED, we will process any pending births so
519 // that our data structures (which counted the outstanding births) remain
524 // TODO(jar): Support the option to coalesce all worker-thread activity under
525 // one ThreadData instance that uses locks to protect *all* access. This will
526 // reduce memory (making it provably bounded), but run incrementally slower
527 // (since we'll use locks on TallyABirth and TallyADeath). The good news is
528 // that the locks on TallyADeath will be *after* the worker thread has run,
529 // and hence nothing will be waiting for the completion (... besides some
530 // other thread that might like to run). Also, the worker threads tasks are
531 // generally longer, and hence the cost of the lock may perchance be amortized
532 // over the long task's lifetime.
533 ThreadData
* current_thread_data
= stopwatch
.GetThreadData();
534 if (!current_thread_data
)
537 TrackedTime start_of_run
= stopwatch
.StartTime();
538 int32 queue_duration
= 0;
539 if (!start_of_run
.is_null()) {
540 queue_duration
= (start_of_run
- time_posted
).InMilliseconds();
542 current_thread_data
->TallyADeath(*birth
, queue_duration
, stopwatch
);
546 void ThreadData::TallyRunInAScopedRegionIfTracking(
548 const TaskStopwatch
& stopwatch
) {
549 if (!kTrackAllTaskObjects
)
550 return; // Not compiled in.
552 // Even if we have been DEACTIVATED, we will process any pending births so
553 // that our data structures (which counted the outstanding births) remain
558 ThreadData
* current_thread_data
= stopwatch
.GetThreadData();
559 if (!current_thread_data
)
562 int32 queue_duration
= 0;
563 current_thread_data
->TallyADeath(*birth
, queue_duration
, stopwatch
);
567 void ThreadData::SnapshotAllExecutedTasks(
568 ProcessDataPhaseSnapshot
* process_data_phase
,
569 BirthCountMap
* birth_counts
) {
570 if (!kTrackAllTaskObjects
)
571 return; // Not compiled in.
573 // Get an unchanging copy of a ThreadData list.
574 ThreadData
* my_list
= ThreadData::first();
576 // Gather data serially.
577 // This hackish approach *can* get some slighly corrupt tallies, as we are
578 // grabbing values without the protection of a lock, but it has the advantage
579 // of working even with threads that don't have message loops. If a user
580 // sees any strangeness, they can always just run their stats gathering a
582 for (ThreadData
* thread_data
= my_list
;
584 thread_data
= thread_data
->next()) {
585 thread_data
->SnapshotExecutedTasks(process_data_phase
, birth_counts
);
590 void ThreadData::SnapshotCurrentPhase(
591 ProcessDataPhaseSnapshot
* process_data_phase
) {
592 // Add births that have run to completion to |collected_data|.
593 // |birth_counts| tracks the total number of births recorded at each location
594 // for which we have not seen a death count.
595 BirthCountMap birth_counts
;
596 ThreadData::SnapshotAllExecutedTasks(process_data_phase
, &birth_counts
);
598 // Add births that are still active -- i.e. objects that have tallied a birth,
599 // but have not yet tallied a matching death, and hence must be either
600 // running, queued up, or being held in limbo for future posting.
601 for (const auto& birth_count
: birth_counts
) {
602 if (birth_count
.second
> 0) {
603 process_data_phase
->tasks
.push_back(TaskSnapshot(
604 *birth_count
.first
, DeathData(birth_count
.second
), "Still_Alive"));
609 void ThreadData::SnapshotExecutedTasks(
610 ProcessDataPhaseSnapshot
* process_data_phase
,
611 BirthCountMap
* birth_counts
) {
612 // Get copy of data, so that the data will not change during the iterations
614 ThreadData::BirthMap birth_map
;
615 ThreadData::DeathMap death_map
;
616 ThreadData::ParentChildSet parent_child_set
;
617 SnapshotMaps(&birth_map
, &death_map
, &parent_child_set
);
619 for (const auto& death
: death_map
) {
620 process_data_phase
->tasks
.push_back(
621 TaskSnapshot(*death
.first
, death
.second
, thread_name()));
622 (*birth_counts
)[death
.first
] -= death
.first
->birth_count();
625 for (const auto& birth
: birth_map
) {
626 (*birth_counts
)[birth
.second
] += birth
.second
->birth_count();
629 if (!kTrackParentChildLinks
)
632 for (const auto& parent_child
: parent_child_set
) {
633 process_data_phase
->descendants
.push_back(
634 ParentChildPairSnapshot(parent_child
));
638 // This may be called from another thread.
639 void ThreadData::SnapshotMaps(BirthMap
* birth_map
,
641 ParentChildSet
* parent_child_set
) {
642 base::AutoLock
lock(map_lock_
);
643 for (const auto& birth
: birth_map_
)
644 (*birth_map
)[birth
.first
] = birth
.second
;
645 for (const auto& death
: death_map_
)
646 (*death_map
)[death
.first
] = death
.second
;
648 if (!kTrackParentChildLinks
)
651 for (const auto& parent_child
: parent_child_set_
)
652 parent_child_set
->insert(parent_child
);
655 static void OptionallyInitializeAlternateTimer() {
656 NowFunction
* alternate_time_source
= GetAlternateTimeSource();
657 if (alternate_time_source
)
658 ThreadData::SetAlternateTimeSource(alternate_time_source
);
661 bool ThreadData::Initialize() {
662 if (!kTrackAllTaskObjects
)
663 return false; // Not compiled in.
664 if (status_
>= DEACTIVATED
)
665 return true; // Someone else did the initialization.
666 // Due to racy lazy initialization in tests, we'll need to recheck status_
667 // after we acquire the lock.
669 // Ensure that we don't double initialize tls. We are called when single
670 // threaded in the product, but some tests may be racy and lazy about our
672 base::AutoLock
lock(*list_lock_
.Pointer());
673 if (status_
>= DEACTIVATED
)
674 return true; // Someone raced in here and beat us.
676 // Put an alternate timer in place if the environment calls for it, such as
677 // for tracking TCMalloc allocations. This insertion is idempotent, so we
678 // don't mind if there is a race, and we'd prefer not to be in a lock while
680 if (kAllowAlternateTimeSourceHandling
)
681 OptionallyInitializeAlternateTimer();
683 // Perform the "real" TLS initialization now, and leave it intact through
684 // process termination.
685 if (!tls_index_
.initialized()) { // Testing may have initialized this.
686 DCHECK_EQ(status_
, UNINITIALIZED
);
687 tls_index_
.Initialize(&ThreadData::OnThreadTermination
);
688 if (!tls_index_
.initialized())
691 // TLS was initialzed for us earlier.
692 DCHECK_EQ(status_
, DORMANT_DURING_TESTS
);
695 // Incarnation counter is only significant to testing, as it otherwise will
696 // never again change in this process.
697 ++incarnation_counter_
;
699 // The lock is not critical for setting status_, but it doesn't hurt. It also
700 // ensures that if we have a racy initialization, that we'll bail as soon as
701 // we get the lock earlier in this method.
702 status_
= kInitialStartupState
;
703 if (!kTrackParentChildLinks
&&
704 kInitialStartupState
== PROFILING_CHILDREN_ACTIVE
)
705 status_
= PROFILING_ACTIVE
;
706 DCHECK(status_
!= UNINITIALIZED
);
711 bool ThreadData::InitializeAndSetTrackingStatus(Status status
) {
712 DCHECK_GE(status
, DEACTIVATED
);
713 DCHECK_LE(status
, PROFILING_CHILDREN_ACTIVE
);
715 if (!Initialize()) // No-op if already initialized.
716 return false; // Not compiled in.
718 if (!kTrackParentChildLinks
&& status
> DEACTIVATED
)
719 status
= PROFILING_ACTIVE
;
725 ThreadData::Status
ThreadData::status() {
730 bool ThreadData::TrackingStatus() {
731 return status_
> DEACTIVATED
;
735 bool ThreadData::TrackingParentChildStatus() {
736 return status_
>= PROFILING_CHILDREN_ACTIVE
;
740 void ThreadData::PrepareForStartOfRun(const Births
* parent
) {
741 if (kTrackParentChildLinks
&& parent
&& status_
> PROFILING_ACTIVE
) {
742 ThreadData
* current_thread_data
= Get();
743 if (current_thread_data
)
744 current_thread_data
->parent_stack_
.push(parent
);
749 void ThreadData::SetAlternateTimeSource(NowFunction
* now_function
) {
750 DCHECK(now_function
);
751 if (kAllowAlternateTimeSourceHandling
)
752 now_function_
= now_function
;
756 void ThreadData::EnableProfilerTiming() {
757 base::subtle::NoBarrier_Store(&g_profiler_timing_enabled
, ENABLED_TIMING
);
761 TrackedTime
ThreadData::Now() {
762 if (kAllowAlternateTimeSourceHandling
&& now_function_
)
763 return TrackedTime::FromMilliseconds((*now_function_
)());
764 if (kTrackAllTaskObjects
&& IsProfilerTimingEnabled() && TrackingStatus())
765 return TrackedTime::Now();
766 return TrackedTime(); // Super fast when disabled, or not compiled.
770 void ThreadData::EnsureCleanupWasCalled(int major_threads_shutdown_count
) {
771 base::AutoLock
lock(*list_lock_
.Pointer());
772 if (worker_thread_data_creation_count_
== 0)
773 return; // We haven't really run much, and couldn't have leaked.
775 // TODO(jar): until this is working on XP, don't run the real test.
777 // Verify that we've at least shutdown/cleanup the major namesd threads. The
778 // caller should tell us how many thread shutdowns should have taken place by
780 CHECK_GT(cleanup_count_
, major_threads_shutdown_count
);
785 void ThreadData::ShutdownSingleThreadedCleanup(bool leak
) {
786 // This is only called from test code, where we need to cleanup so that
787 // additional tests can be run.
788 // We must be single threaded... but be careful anyway.
789 if (!InitializeAndSetTrackingStatus(DEACTIVATED
))
791 ThreadData
* thread_data_list
;
793 base::AutoLock
lock(*list_lock_
.Pointer());
794 thread_data_list
= all_thread_data_list_head_
;
795 all_thread_data_list_head_
= NULL
;
796 ++incarnation_counter_
;
797 // To be clean, break apart the retired worker list (though we leak them).
798 while (first_retired_worker_
) {
799 ThreadData
* worker
= first_retired_worker_
;
800 CHECK_GT(worker
->worker_thread_number_
, 0);
801 first_retired_worker_
= worker
->next_retired_worker_
;
802 worker
->next_retired_worker_
= NULL
;
806 // Put most global static back in pristine shape.
807 worker_thread_data_creation_count_
= 0;
809 tls_index_
.Set(NULL
);
810 status_
= DORMANT_DURING_TESTS
; // Almost UNINITIALIZED.
812 // To avoid any chance of racing in unit tests, which is the only place we
813 // call this function, we may sometimes leak all the data structures we
814 // recovered, as they may still be in use on threads from prior tests!
816 ThreadData
* thread_data
= thread_data_list
;
817 while (thread_data
) {
818 ANNOTATE_LEAKING_OBJECT_PTR(thread_data
);
819 thread_data
= thread_data
->next();
824 // When we want to cleanup (on a single thread), here is what we do.
826 // Do actual recursive delete in all ThreadData instances.
827 while (thread_data_list
) {
828 ThreadData
* next_thread_data
= thread_data_list
;
829 thread_data_list
= thread_data_list
->next();
831 for (BirthMap::iterator it
= next_thread_data
->birth_map_
.begin();
832 next_thread_data
->birth_map_
.end() != it
; ++it
)
833 delete it
->second
; // Delete the Birth Records.
834 delete next_thread_data
; // Includes all Death Records.
838 //------------------------------------------------------------------------------
839 TaskStopwatch::TaskStopwatch()
840 : wallclock_duration_ms_(0),
841 current_thread_data_(NULL
),
842 excluded_duration_ms_(0),
850 TaskStopwatch::~TaskStopwatch() {
852 DCHECK(state_
!= RUNNING
);
853 DCHECK(child_
== NULL
);
857 void TaskStopwatch::Start() {
859 DCHECK(state_
== CREATED
);
863 start_time_
= ThreadData::Now();
865 current_thread_data_
= ThreadData::Get();
866 if (!current_thread_data_
)
869 parent_
= current_thread_data_
->current_stopwatch_
;
872 DCHECK(parent_
->state_
== RUNNING
);
873 DCHECK(parent_
->child_
== NULL
);
874 parent_
->child_
= this;
877 current_thread_data_
->current_stopwatch_
= this;
880 void TaskStopwatch::Stop() {
881 const TrackedTime end_time
= ThreadData::Now();
883 DCHECK(state_
== RUNNING
);
885 DCHECK(child_
== NULL
);
888 if (!start_time_
.is_null() && !end_time
.is_null()) {
889 wallclock_duration_ms_
= (end_time
- start_time_
).InMilliseconds();
892 if (!current_thread_data_
)
895 DCHECK(current_thread_data_
->current_stopwatch_
== this);
896 current_thread_data_
->current_stopwatch_
= parent_
;
901 DCHECK(parent_
->state_
== RUNNING
);
902 DCHECK(parent_
->child_
== this);
903 parent_
->child_
= NULL
;
905 parent_
->excluded_duration_ms_
+= wallclock_duration_ms_
;
909 TrackedTime
TaskStopwatch::StartTime() const {
911 DCHECK(state_
!= CREATED
);
917 int32
TaskStopwatch::RunDurationMs() const {
919 DCHECK(state_
== STOPPED
);
922 return wallclock_duration_ms_
- excluded_duration_ms_
;
925 ThreadData
* TaskStopwatch::GetThreadData() const {
927 DCHECK(state_
!= CREATED
);
930 return current_thread_data_
;
933 //------------------------------------------------------------------------------
934 TaskSnapshot::TaskSnapshot() {
937 TaskSnapshot::TaskSnapshot(const BirthOnThread
& birth
,
938 const DeathData
& death_data
,
939 const std::string
& death_thread_name
)
941 death_data(death_data
),
942 death_thread_name(death_thread_name
) {
945 TaskSnapshot::~TaskSnapshot() {
948 //------------------------------------------------------------------------------
949 // ParentChildPairSnapshot
951 ParentChildPairSnapshot::ParentChildPairSnapshot() {
954 ParentChildPairSnapshot::ParentChildPairSnapshot(
955 const ThreadData::ParentChildPair
& parent_child
)
956 : parent(*parent_child
.first
),
957 child(*parent_child
.second
) {
960 ParentChildPairSnapshot::~ParentChildPairSnapshot() {
963 //------------------------------------------------------------------------------
964 // ProcessDataPhaseSnapshot
966 ProcessDataPhaseSnapshot::ProcessDataPhaseSnapshot() {
969 ProcessDataPhaseSnapshot::~ProcessDataPhaseSnapshot() {
972 //------------------------------------------------------------------------------
973 // ProcessDataPhaseSnapshot
975 ProcessDataSnapshot::ProcessDataSnapshot()
976 #if !defined(OS_NACL)
977 : process_id(base::GetCurrentProcId()) {
979 : process_id(base::kNullProcessId
) {
983 ProcessDataSnapshot::~ProcessDataSnapshot() {
986 } // namespace tracked_objects