1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // MSVC++ requires this to be set before any other includes to get M_PI.
6 #define _USE_MATH_DEFINES
10 #include "base/bind.h"
11 #include "base/bind_helpers.h"
12 #include "base/strings/string_number_conversions.h"
13 #include "base/time/time.h"
14 #include "build/build_config.h"
15 #include "media/base/sinc_resampler.h"
16 #include "testing/gmock/include/gmock/gmock.h"
17 #include "testing/gtest/include/gtest/gtest.h"
23 static const double kSampleRateRatio
= 192000.0 / 44100.0;
25 // Helper class to ensure ChunkedResample() functions properly.
28 MOCK_METHOD2(ProvideInput
, void(int frames
, float* destination
));
32 memset(arg1
, 0, arg0
* sizeof(float));
36 // Value chosen arbitrarily such that SincResampler resamples it to something
37 // easily representable on all platforms; e.g., using kSampleRateRatio this
39 memset(arg1
, 64, arg0
* sizeof(float));
42 // Test requesting multiples of ChunkSize() frames results in the proper number
44 TEST(SincResamplerTest
, ChunkedResample
) {
45 MockSource mock_source
;
47 // Choose a high ratio of input to output samples which will result in quick
48 // exhaustion of SincResampler's internal buffers.
49 SincResampler
resampler(
50 kSampleRateRatio
, SincResampler::kDefaultRequestSize
,
51 base::Bind(&MockSource::ProvideInput
, base::Unretained(&mock_source
)));
53 static const int kChunks
= 2;
54 int max_chunk_size
= resampler
.ChunkSize() * kChunks
;
55 scoped_ptr
<float[]> resampled_destination(new float[max_chunk_size
]);
57 // Verify requesting ChunkSize() frames causes a single callback.
58 EXPECT_CALL(mock_source
, ProvideInput(_
, _
))
59 .Times(1).WillOnce(ClearBuffer());
60 resampler
.Resample(resampler
.ChunkSize(), resampled_destination
.get());
62 // Verify requesting kChunks * ChunkSize() frames causes kChunks callbacks.
63 testing::Mock::VerifyAndClear(&mock_source
);
64 EXPECT_CALL(mock_source
, ProvideInput(_
, _
))
65 .Times(kChunks
).WillRepeatedly(ClearBuffer());
66 resampler
.Resample(max_chunk_size
, resampled_destination
.get());
69 // Test flush resets the internal state properly.
70 TEST(SincResamplerTest
, Flush
) {
71 MockSource mock_source
;
72 SincResampler
resampler(
73 kSampleRateRatio
, SincResampler::kDefaultRequestSize
,
74 base::Bind(&MockSource::ProvideInput
, base::Unretained(&mock_source
)));
75 scoped_ptr
<float[]> resampled_destination(new float[resampler
.ChunkSize()]);
77 // Fill the resampler with junk data.
78 EXPECT_CALL(mock_source
, ProvideInput(_
, _
))
79 .Times(1).WillOnce(FillBuffer());
80 resampler
.Resample(resampler
.ChunkSize() / 2, resampled_destination
.get());
81 ASSERT_NE(resampled_destination
[0], 0);
83 // Flush and request more data, which should all be zeros now.
85 testing::Mock::VerifyAndClear(&mock_source
);
86 EXPECT_CALL(mock_source
, ProvideInput(_
, _
))
87 .Times(1).WillOnce(ClearBuffer());
88 resampler
.Resample(resampler
.ChunkSize() / 2, resampled_destination
.get());
89 for (int i
= 0; i
< resampler
.ChunkSize() / 2; ++i
)
90 ASSERT_FLOAT_EQ(resampled_destination
[i
], 0);
93 // Test flush resets the internal state properly.
94 TEST(SincResamplerTest
, DISABLED_SetRatioBench
) {
95 MockSource mock_source
;
96 SincResampler
resampler(
97 kSampleRateRatio
, SincResampler::kDefaultRequestSize
,
98 base::Bind(&MockSource::ProvideInput
, base::Unretained(&mock_source
)));
100 base::TimeTicks start
= base::TimeTicks::HighResNow();
101 for (int i
= 1; i
< 10000; ++i
)
102 resampler
.SetRatio(1.0 / i
);
103 double total_time_c_ms
=
104 (base::TimeTicks::HighResNow() - start
).InMillisecondsF();
105 printf("SetRatio() took %.2fms.\n", total_time_c_ms
);
109 // Define platform independent function name for Convolve* tests.
110 #if defined(ARCH_CPU_X86_FAMILY)
111 #define CONVOLVE_FUNC Convolve_SSE
112 #elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
113 #define CONVOLVE_FUNC Convolve_NEON
116 // Ensure various optimized Convolve() methods return the same value. Only run
117 // this test if other optimized methods exist, otherwise the default Convolve()
118 // will be tested by the parameterized SincResampler tests below.
119 #if defined(CONVOLVE_FUNC)
120 static const double kKernelInterpolationFactor
= 0.5;
122 TEST(SincResamplerTest
, Convolve
) {
123 // Initialize a dummy resampler.
124 MockSource mock_source
;
125 SincResampler
resampler(
126 kSampleRateRatio
, SincResampler::kDefaultRequestSize
,
127 base::Bind(&MockSource::ProvideInput
, base::Unretained(&mock_source
)));
129 // The optimized Convolve methods are slightly more precise than Convolve_C(),
130 // so comparison must be done using an epsilon.
131 static const double kEpsilon
= 0.00000005;
133 // Use a kernel from SincResampler as input and kernel data, this has the
134 // benefit of already being properly sized and aligned for Convolve_SSE().
135 double result
= resampler
.Convolve_C(
136 resampler
.kernel_storage_
.get(), resampler
.kernel_storage_
.get(),
137 resampler
.kernel_storage_
.get(), kKernelInterpolationFactor
);
138 double result2
= resampler
.CONVOLVE_FUNC(
139 resampler
.kernel_storage_
.get(), resampler
.kernel_storage_
.get(),
140 resampler
.kernel_storage_
.get(), kKernelInterpolationFactor
);
141 EXPECT_NEAR(result2
, result
, kEpsilon
);
143 // Test Convolve() w/ unaligned input pointer.
144 result
= resampler
.Convolve_C(
145 resampler
.kernel_storage_
.get() + 1, resampler
.kernel_storage_
.get(),
146 resampler
.kernel_storage_
.get(), kKernelInterpolationFactor
);
147 result2
= resampler
.CONVOLVE_FUNC(
148 resampler
.kernel_storage_
.get() + 1, resampler
.kernel_storage_
.get(),
149 resampler
.kernel_storage_
.get(), kKernelInterpolationFactor
);
150 EXPECT_NEAR(result2
, result
, kEpsilon
);
154 // Fake audio source for testing the resampler. Generates a sinusoidal linear
155 // chirp (http://en.wikipedia.org/wiki/Chirp) which can be tuned to stress the
156 // resampler for the specific sample rate conversion being used.
157 class SinusoidalLinearChirpSource
{
159 SinusoidalLinearChirpSource(int sample_rate
,
161 double max_frequency
)
162 : sample_rate_(sample_rate
),
163 total_samples_(samples
),
164 max_frequency_(max_frequency
),
167 double duration
= static_cast<double>(total_samples_
) / sample_rate_
;
168 k_
= (max_frequency_
- kMinFrequency
) / duration
;
171 virtual ~SinusoidalLinearChirpSource() {}
173 void ProvideInput(int frames
, float* destination
) {
174 for (int i
= 0; i
< frames
; ++i
, ++current_index_
) {
175 // Filter out frequencies higher than Nyquist.
176 if (Frequency(current_index_
) > 0.5 * sample_rate_
) {
179 // Calculate time in seconds.
180 double t
= static_cast<double>(current_index_
) / sample_rate_
;
182 // Sinusoidal linear chirp.
183 destination
[i
] = sin(2 * M_PI
* (kMinFrequency
* t
+ (k_
/ 2) * t
* t
));
188 double Frequency(int position
) {
189 return kMinFrequency
+ position
* (max_frequency_
- kMinFrequency
)
200 double max_frequency_
;
204 DISALLOW_COPY_AND_ASSIGN(SinusoidalLinearChirpSource
);
207 typedef std::tr1::tuple
<int, int, double, double> SincResamplerTestData
;
208 class SincResamplerTest
209 : public testing::TestWithParam
<SincResamplerTestData
> {
212 : input_rate_(std::tr1::get
<0>(GetParam())),
213 output_rate_(std::tr1::get
<1>(GetParam())),
214 rms_error_(std::tr1::get
<2>(GetParam())),
215 low_freq_error_(std::tr1::get
<3>(GetParam())) {
218 virtual ~SincResamplerTest() {}
224 double low_freq_error_
;
227 // Tests resampling using a given input and output sample rate.
228 TEST_P(SincResamplerTest
, Resample
) {
229 // Make comparisons using one second of data.
230 static const double kTestDurationSecs
= 1;
231 int input_samples
= kTestDurationSecs
* input_rate_
;
232 int output_samples
= kTestDurationSecs
* output_rate_
;
234 // Nyquist frequency for the input sampling rate.
235 double input_nyquist_freq
= 0.5 * input_rate_
;
237 // Source for data to be resampled.
238 SinusoidalLinearChirpSource
resampler_source(
239 input_rate_
, input_samples
, input_nyquist_freq
);
241 const double io_ratio
= input_rate_
/ static_cast<double>(output_rate_
);
242 SincResampler
resampler(
243 io_ratio
, SincResampler::kDefaultRequestSize
,
244 base::Bind(&SinusoidalLinearChirpSource::ProvideInput
,
245 base::Unretained(&resampler_source
)));
247 // Force an update to the sample rate ratio to ensure dyanmic sample rate
248 // changes are working correctly.
249 scoped_ptr
<float[]> kernel(new float[SincResampler::kKernelStorageSize
]);
250 memcpy(kernel
.get(), resampler
.get_kernel_for_testing(),
251 SincResampler::kKernelStorageSize
);
252 resampler
.SetRatio(M_PI
);
253 ASSERT_NE(0, memcmp(kernel
.get(), resampler
.get_kernel_for_testing(),
254 SincResampler::kKernelStorageSize
));
255 resampler
.SetRatio(io_ratio
);
256 ASSERT_EQ(0, memcmp(kernel
.get(), resampler
.get_kernel_for_testing(),
257 SincResampler::kKernelStorageSize
));
259 // TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to
260 // allocate these on 32-byte boundaries and ensure they're sized % 32 bytes.
261 scoped_ptr
<float[]> resampled_destination(new float[output_samples
]);
262 scoped_ptr
<float[]> pure_destination(new float[output_samples
]);
264 // Generate resampled signal.
265 resampler
.Resample(output_samples
, resampled_destination
.get());
267 // Generate pure signal.
268 SinusoidalLinearChirpSource
pure_source(
269 output_rate_
, output_samples
, input_nyquist_freq
);
270 pure_source
.ProvideInput(output_samples
, pure_destination
.get());
272 // Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which
273 // we refer to as low and high.
274 static const double kLowFrequencyNyquistRange
= 0.7;
275 static const double kHighFrequencyNyquistRange
= 0.9;
277 // Calculate Root-Mean-Square-Error and maximum error for the resampling.
278 double sum_of_squares
= 0;
279 double low_freq_max_error
= 0;
280 double high_freq_max_error
= 0;
281 int minimum_rate
= std::min(input_rate_
, output_rate_
);
282 double low_frequency_range
= kLowFrequencyNyquistRange
* 0.5 * minimum_rate
;
283 double high_frequency_range
= kHighFrequencyNyquistRange
* 0.5 * minimum_rate
;
284 for (int i
= 0; i
< output_samples
; ++i
) {
285 double error
= fabs(resampled_destination
[i
] - pure_destination
[i
]);
287 if (pure_source
.Frequency(i
) < low_frequency_range
) {
288 if (error
> low_freq_max_error
)
289 low_freq_max_error
= error
;
290 } else if (pure_source
.Frequency(i
) < high_frequency_range
) {
291 if (error
> high_freq_max_error
)
292 high_freq_max_error
= error
;
294 // TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange.
296 sum_of_squares
+= error
* error
;
299 double rms_error
= sqrt(sum_of_squares
/ output_samples
);
301 // Convert each error to dbFS.
302 #define DBFS(x) 20 * log10(x)
303 rms_error
= DBFS(rms_error
);
304 low_freq_max_error
= DBFS(low_freq_max_error
);
305 high_freq_max_error
= DBFS(high_freq_max_error
);
307 EXPECT_LE(rms_error
, rms_error_
);
308 EXPECT_LE(low_freq_max_error
, low_freq_error_
);
310 // All conversions currently have a high frequency error around -6 dbFS.
311 static const double kHighFrequencyMaxError
= -6.02;
312 EXPECT_LE(high_freq_max_error
, kHighFrequencyMaxError
);
315 // Almost all conversions have an RMS error of around -14 dbFS.
316 static const double kResamplingRMSError
= -14.58;
318 // Thresholds chosen arbitrarily based on what each resampling reported during
319 // testing. All thresholds are in dbFS, http://en.wikipedia.org/wiki/DBFS.
320 INSTANTIATE_TEST_CASE_P(
321 SincResamplerTest
, SincResamplerTest
, testing::Values(
323 std::tr1::make_tuple(8000, 44100, kResamplingRMSError
, -62.73),
324 std::tr1::make_tuple(11025, 44100, kResamplingRMSError
, -72.19),
325 std::tr1::make_tuple(16000, 44100, kResamplingRMSError
, -62.54),
326 std::tr1::make_tuple(22050, 44100, kResamplingRMSError
, -73.53),
327 std::tr1::make_tuple(32000, 44100, kResamplingRMSError
, -63.32),
328 std::tr1::make_tuple(44100, 44100, kResamplingRMSError
, -73.53),
329 std::tr1::make_tuple(48000, 44100, -15.01, -64.04),
330 std::tr1::make_tuple(96000, 44100, -18.49, -25.51),
331 std::tr1::make_tuple(192000, 44100, -20.50, -13.31),
334 std::tr1::make_tuple(8000, 48000, kResamplingRMSError
, -63.43),
335 std::tr1::make_tuple(11025, 48000, kResamplingRMSError
, -62.61),
336 std::tr1::make_tuple(16000, 48000, kResamplingRMSError
, -63.96),
337 std::tr1::make_tuple(22050, 48000, kResamplingRMSError
, -62.42),
338 std::tr1::make_tuple(32000, 48000, kResamplingRMSError
, -64.04),
339 std::tr1::make_tuple(44100, 48000, kResamplingRMSError
, -62.63),
340 std::tr1::make_tuple(48000, 48000, kResamplingRMSError
, -73.52),
341 std::tr1::make_tuple(96000, 48000, -18.40, -28.44),
342 std::tr1::make_tuple(192000, 48000, -20.43, -14.11),
345 std::tr1::make_tuple(8000, 96000, kResamplingRMSError
, -63.19),
346 std::tr1::make_tuple(11025, 96000, kResamplingRMSError
, -62.61),
347 std::tr1::make_tuple(16000, 96000, kResamplingRMSError
, -63.39),
348 std::tr1::make_tuple(22050, 96000, kResamplingRMSError
, -62.42),
349 std::tr1::make_tuple(32000, 96000, kResamplingRMSError
, -63.95),
350 std::tr1::make_tuple(44100, 96000, kResamplingRMSError
, -62.63),
351 std::tr1::make_tuple(48000, 96000, kResamplingRMSError
, -73.52),
352 std::tr1::make_tuple(96000, 96000, kResamplingRMSError
, -73.52),
353 std::tr1::make_tuple(192000, 96000, kResamplingRMSError
, -28.41),
356 std::tr1::make_tuple(8000, 192000, kResamplingRMSError
, -63.10),
357 std::tr1::make_tuple(11025, 192000, kResamplingRMSError
, -62.61),
358 std::tr1::make_tuple(16000, 192000, kResamplingRMSError
, -63.14),
359 std::tr1::make_tuple(22050, 192000, kResamplingRMSError
, -62.42),
360 std::tr1::make_tuple(32000, 192000, kResamplingRMSError
, -63.38),
361 std::tr1::make_tuple(44100, 192000, kResamplingRMSError
, -62.63),
362 std::tr1::make_tuple(48000, 192000, kResamplingRMSError
, -73.44),
363 std::tr1::make_tuple(96000, 192000, kResamplingRMSError
, -73.52),
364 std::tr1::make_tuple(192000, 192000, kResamplingRMSError
, -73.52)));