[Easy Unlock] Fix a DCHECK: Load localized string correctly.
[chromium-blink-merge.git] / media / base / yuv_convert.cc
blob06289b058a48a541ec59a092755fe737e11265d1
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // This webpage shows layout of YV12 and other YUV formats
6 // http://www.fourcc.org/yuv.php
7 // The actual conversion is best described here
8 // http://en.wikipedia.org/wiki/YUV
9 // An article on optimizing YUV conversion using tables instead of multiplies
10 // http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf
12 // YV12 is a full plane of Y and a half height, half width chroma planes
13 // YV16 is a full plane of Y and a full height, half width chroma planes
15 // ARGB pixel format is output, which on little endian is stored as BGRA.
16 // The alpha is set to 255, allowing the application to use RGBA or RGB32.
18 #include "media/base/yuv_convert.h"
20 #include "base/cpu.h"
21 #include "base/logging.h"
22 #include "base/memory/scoped_ptr.h"
23 #include "base/third_party/dynamic_annotations/dynamic_annotations.h"
24 #include "build/build_config.h"
25 #include "media/base/simd/convert_rgb_to_yuv.h"
26 #include "media/base/simd/convert_yuv_to_rgb.h"
27 #include "media/base/simd/filter_yuv.h"
28 #include "media/base/simd/yuv_to_rgb_table.h"
30 #if defined(ARCH_CPU_X86_FAMILY)
31 #if defined(COMPILER_MSVC)
32 #include <intrin.h>
33 #else
34 #include <mmintrin.h>
35 #endif
36 #endif
38 // Assembly functions are declared without namespace.
39 extern "C" { void EmptyRegisterState_MMX(); } // extern "C"
41 namespace media {
43 typedef void (*FilterYUVRowsProc)(uint8*, const uint8*, const uint8*, int, int);
45 typedef void (*ConvertRGBToYUVProc)(const uint8*,
46 uint8*,
47 uint8*,
48 uint8*,
49 int,
50 int,
51 int,
52 int,
53 int);
55 typedef void (*ConvertYUVToRGB32Proc)(const uint8*,
56 const uint8*,
57 const uint8*,
58 uint8*,
59 int,
60 int,
61 int,
62 int,
63 int,
64 YUVType);
66 typedef void (*ConvertYUVAToARGBProc)(const uint8*,
67 const uint8*,
68 const uint8*,
69 const uint8*,
70 uint8*,
71 int,
72 int,
73 int,
74 int,
75 int,
76 int,
77 YUVType);
79 typedef void (*ConvertYUVToRGB32RowProc)(const uint8*,
80 const uint8*,
81 const uint8*,
82 uint8*,
83 ptrdiff_t,
84 const int16[1024][4]);
86 typedef void (*ConvertYUVAToARGBRowProc)(const uint8*,
87 const uint8*,
88 const uint8*,
89 const uint8*,
90 uint8*,
91 ptrdiff_t,
92 const int16[1024][4]);
94 typedef void (*ScaleYUVToRGB32RowProc)(const uint8*,
95 const uint8*,
96 const uint8*,
97 uint8*,
98 ptrdiff_t,
99 ptrdiff_t,
100 const int16[1024][4]);
102 static FilterYUVRowsProc g_filter_yuv_rows_proc_ = NULL;
103 static ConvertYUVToRGB32RowProc g_convert_yuv_to_rgb32_row_proc_ = NULL;
104 static ScaleYUVToRGB32RowProc g_scale_yuv_to_rgb32_row_proc_ = NULL;
105 static ScaleYUVToRGB32RowProc g_linear_scale_yuv_to_rgb32_row_proc_ = NULL;
106 static ConvertRGBToYUVProc g_convert_rgb32_to_yuv_proc_ = NULL;
107 static ConvertRGBToYUVProc g_convert_rgb24_to_yuv_proc_ = NULL;
108 static ConvertYUVToRGB32Proc g_convert_yuv_to_rgb32_proc_ = NULL;
109 static ConvertYUVAToARGBProc g_convert_yuva_to_argb_proc_ = NULL;
111 // Empty SIMD registers state after using them.
112 void EmptyRegisterStateStub() {}
113 #if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
114 void EmptyRegisterStateIntrinsic() { _mm_empty(); }
115 #endif
116 typedef void (*EmptyRegisterStateProc)();
117 static EmptyRegisterStateProc g_empty_register_state_proc_ = NULL;
119 // Get the appropriate value to bitshift by for vertical indices.
120 int GetVerticalShift(YUVType type) {
121 switch (type) {
122 case YV16:
123 return 0;
124 case YV12:
125 case YV12J:
126 return 1;
128 NOTREACHED();
129 return 0;
132 const int16 (&GetLookupTable(YUVType type))[1024][4] {
133 switch (type) {
134 case YV12:
135 case YV16:
136 return kCoefficientsRgbY;
137 case YV12J:
138 return kCoefficientsRgbY_JPEG;
140 NOTREACHED();
141 return kCoefficientsRgbY;
144 void InitializeCPUSpecificYUVConversions() {
145 CHECK(!g_filter_yuv_rows_proc_);
146 CHECK(!g_convert_yuv_to_rgb32_row_proc_);
147 CHECK(!g_scale_yuv_to_rgb32_row_proc_);
148 CHECK(!g_linear_scale_yuv_to_rgb32_row_proc_);
149 CHECK(!g_convert_rgb32_to_yuv_proc_);
150 CHECK(!g_convert_rgb24_to_yuv_proc_);
151 CHECK(!g_convert_yuv_to_rgb32_proc_);
152 CHECK(!g_convert_yuva_to_argb_proc_);
153 CHECK(!g_empty_register_state_proc_);
155 g_filter_yuv_rows_proc_ = FilterYUVRows_C;
156 g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_C;
157 g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_C;
158 g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_C;
159 g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_C;
160 g_convert_rgb24_to_yuv_proc_ = ConvertRGB24ToYUV_C;
161 g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_C;
162 g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_C;
163 g_empty_register_state_proc_ = EmptyRegisterStateStub;
165 // Assembly code confuses MemorySanitizer.
166 #if defined(ARCH_CPU_X86_FAMILY) && !defined(MEMORY_SANITIZER)
167 g_convert_yuva_to_argb_proc_ = ConvertYUVAToARGB_MMX;
169 #if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
170 g_empty_register_state_proc_ = EmptyRegisterStateIntrinsic;
171 #else
172 g_empty_register_state_proc_ = EmptyRegisterState_MMX;
173 #endif
175 g_convert_yuv_to_rgb32_row_proc_ = ConvertYUVToRGB32Row_SSE;
176 g_convert_yuv_to_rgb32_proc_ = ConvertYUVToRGB32_SSE;
178 g_filter_yuv_rows_proc_ = FilterYUVRows_SSE2;
179 g_convert_rgb32_to_yuv_proc_ = ConvertRGB32ToYUV_SSE2;
181 #if defined(ARCH_CPU_X86_64)
182 g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE2_X64;
184 // Technically this should be in the MMX section, but MSVC will optimize out
185 // the export of LinearScaleYUVToRGB32Row_MMX, which is required by the unit
186 // tests, if that decision can be made at compile time. Since all X64 CPUs
187 // have SSE2, we can hack around this by making the selection here.
188 g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_MMX_X64;
189 #else
190 g_scale_yuv_to_rgb32_row_proc_ = ScaleYUVToRGB32Row_SSE;
191 g_linear_scale_yuv_to_rgb32_row_proc_ = LinearScaleYUVToRGB32Row_SSE;
192 #endif
194 base::CPU cpu;
195 if (cpu.has_ssse3()) {
196 g_convert_rgb24_to_yuv_proc_ = &ConvertRGB24ToYUV_SSSE3;
198 // TODO(hclam): Add ConvertRGB32ToYUV_SSSE3 when the cyan problem is solved.
199 // See: crbug.com/100462
201 #endif
204 // Empty SIMD registers state after using them.
205 void EmptyRegisterState() { g_empty_register_state_proc_(); }
207 // 16.16 fixed point arithmetic
208 const int kFractionBits = 16;
209 const int kFractionMax = 1 << kFractionBits;
210 const int kFractionMask = ((1 << kFractionBits) - 1);
212 // Scale a frame of YUV to 32 bit ARGB.
213 void ScaleYUVToRGB32(const uint8* y_buf,
214 const uint8* u_buf,
215 const uint8* v_buf,
216 uint8* rgb_buf,
217 int source_width,
218 int source_height,
219 int width,
220 int height,
221 int y_pitch,
222 int uv_pitch,
223 int rgb_pitch,
224 YUVType yuv_type,
225 Rotate view_rotate,
226 ScaleFilter filter) {
227 // Handle zero sized sources and destinations.
228 if ((yuv_type == YV12 && (source_width < 2 || source_height < 2)) ||
229 (yuv_type == YV16 && (source_width < 2 || source_height < 1)) ||
230 width == 0 || height == 0)
231 return;
233 // 4096 allows 3 buffers to fit in 12k.
234 // Helps performance on CPU with 16K L1 cache.
235 // Large enough for 3830x2160 and 30" displays which are 2560x1600.
236 const int kFilterBufferSize = 4096;
237 // Disable filtering if the screen is too big (to avoid buffer overflows).
238 // This should never happen to regular users: they don't have monitors
239 // wider than 4096 pixels.
240 // TODO(fbarchard): Allow rotated videos to filter.
241 if (source_width > kFilterBufferSize || view_rotate)
242 filter = FILTER_NONE;
244 unsigned int y_shift = GetVerticalShift(yuv_type);
245 // Diagram showing origin and direction of source sampling.
246 // ->0 4<-
247 // 7 3
249 // 6 5
250 // ->1 2<-
251 // Rotations that start at right side of image.
252 if ((view_rotate == ROTATE_180) || (view_rotate == ROTATE_270) ||
253 (view_rotate == MIRROR_ROTATE_0) || (view_rotate == MIRROR_ROTATE_90)) {
254 y_buf += source_width - 1;
255 u_buf += source_width / 2 - 1;
256 v_buf += source_width / 2 - 1;
257 source_width = -source_width;
259 // Rotations that start at bottom of image.
260 if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_180) ||
261 (view_rotate == MIRROR_ROTATE_90) || (view_rotate == MIRROR_ROTATE_180)) {
262 y_buf += (source_height - 1) * y_pitch;
263 u_buf += ((source_height >> y_shift) - 1) * uv_pitch;
264 v_buf += ((source_height >> y_shift) - 1) * uv_pitch;
265 source_height = -source_height;
268 int source_dx = source_width * kFractionMax / width;
270 if ((view_rotate == ROTATE_90) || (view_rotate == ROTATE_270)) {
271 int tmp = height;
272 height = width;
273 width = tmp;
274 tmp = source_height;
275 source_height = source_width;
276 source_width = tmp;
277 int source_dy = source_height * kFractionMax / height;
278 source_dx = ((source_dy >> kFractionBits) * y_pitch) << kFractionBits;
279 if (view_rotate == ROTATE_90) {
280 y_pitch = -1;
281 uv_pitch = -1;
282 source_height = -source_height;
283 } else {
284 y_pitch = 1;
285 uv_pitch = 1;
289 // Need padding because FilterRows() will write 1 to 16 extra pixels
290 // after the end for SSE2 version.
291 uint8 yuvbuf[16 + kFilterBufferSize * 3 + 16];
292 uint8* ybuf =
293 reinterpret_cast<uint8*>(reinterpret_cast<uintptr_t>(yuvbuf + 15) & ~15);
294 uint8* ubuf = ybuf + kFilterBufferSize;
295 uint8* vbuf = ubuf + kFilterBufferSize;
297 // TODO(fbarchard): Fixed point math is off by 1 on negatives.
299 // We take a y-coordinate in [0,1] space in the source image space, and
300 // transform to a y-coordinate in [0,1] space in the destination image space.
301 // Note that the coordinate endpoints lie on pixel boundaries, not on pixel
302 // centers: e.g. a two-pixel-high image will have pixel centers at 0.25 and
303 // 0.75. The formula is as follows (in fixed-point arithmetic):
304 // y_dst = dst_height * ((y_src + 0.5) / src_height)
305 // dst_pixel = clamp([0, dst_height - 1], floor(y_dst - 0.5))
306 // Implement this here as an accumulator + delta, to avoid expensive math
307 // in the loop.
308 int source_y_subpixel_accum =
309 ((kFractionMax / 2) * source_height) / height - (kFractionMax / 2);
310 int source_y_subpixel_delta = ((1 << kFractionBits) * source_height) / height;
312 // TODO(fbarchard): Split this into separate function for better efficiency.
313 for (int y = 0; y < height; ++y) {
314 uint8* dest_pixel = rgb_buf + y * rgb_pitch;
315 int source_y_subpixel = source_y_subpixel_accum;
316 source_y_subpixel_accum += source_y_subpixel_delta;
317 if (source_y_subpixel < 0)
318 source_y_subpixel = 0;
319 else if (source_y_subpixel > ((source_height - 1) << kFractionBits))
320 source_y_subpixel = (source_height - 1) << kFractionBits;
322 const uint8* y_ptr = NULL;
323 const uint8* u_ptr = NULL;
324 const uint8* v_ptr = NULL;
325 // Apply vertical filtering if necessary.
326 // TODO(fbarchard): Remove memcpy when not necessary.
327 if (filter & media::FILTER_BILINEAR_V) {
328 int source_y = source_y_subpixel >> kFractionBits;
329 y_ptr = y_buf + source_y * y_pitch;
330 u_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
331 v_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
333 // Vertical scaler uses 16.8 fixed point.
334 int source_y_fraction = (source_y_subpixel & kFractionMask) >> 8;
335 if (source_y_fraction != 0) {
336 g_filter_yuv_rows_proc_(
337 ybuf, y_ptr, y_ptr + y_pitch, source_width, source_y_fraction);
338 } else {
339 memcpy(ybuf, y_ptr, source_width);
341 y_ptr = ybuf;
342 ybuf[source_width] = ybuf[source_width - 1];
344 int uv_source_width = (source_width + 1) / 2;
345 int source_uv_fraction;
347 // For formats with half-height UV planes, each even-numbered pixel row
348 // should not interpolate, since the next row to interpolate from should
349 // be a duplicate of the current row.
350 if (y_shift && (source_y & 0x1) == 0)
351 source_uv_fraction = 0;
352 else
353 source_uv_fraction = source_y_fraction;
355 if (source_uv_fraction != 0) {
356 g_filter_yuv_rows_proc_(
357 ubuf, u_ptr, u_ptr + uv_pitch, uv_source_width, source_uv_fraction);
358 g_filter_yuv_rows_proc_(
359 vbuf, v_ptr, v_ptr + uv_pitch, uv_source_width, source_uv_fraction);
360 } else {
361 memcpy(ubuf, u_ptr, uv_source_width);
362 memcpy(vbuf, v_ptr, uv_source_width);
364 u_ptr = ubuf;
365 v_ptr = vbuf;
366 ubuf[uv_source_width] = ubuf[uv_source_width - 1];
367 vbuf[uv_source_width] = vbuf[uv_source_width - 1];
368 } else {
369 // Offset by 1/2 pixel for center sampling.
370 int source_y = (source_y_subpixel + (kFractionMax / 2)) >> kFractionBits;
371 y_ptr = y_buf + source_y * y_pitch;
372 u_ptr = u_buf + (source_y >> y_shift) * uv_pitch;
373 v_ptr = v_buf + (source_y >> y_shift) * uv_pitch;
375 if (source_dx == kFractionMax) { // Not scaled
376 g_convert_yuv_to_rgb32_row_proc_(
377 y_ptr, u_ptr, v_ptr, dest_pixel, width, kCoefficientsRgbY);
378 } else {
379 if (filter & FILTER_BILINEAR_H) {
380 g_linear_scale_yuv_to_rgb32_row_proc_(y_ptr,
381 u_ptr,
382 v_ptr,
383 dest_pixel,
384 width,
385 source_dx,
386 kCoefficientsRgbY);
387 } else {
388 g_scale_yuv_to_rgb32_row_proc_(y_ptr,
389 u_ptr,
390 v_ptr,
391 dest_pixel,
392 width,
393 source_dx,
394 kCoefficientsRgbY);
399 g_empty_register_state_proc_();
402 // Scale a frame of YV12 to 32 bit ARGB for a specific rectangle.
403 void ScaleYUVToRGB32WithRect(const uint8* y_buf,
404 const uint8* u_buf,
405 const uint8* v_buf,
406 uint8* rgb_buf,
407 int source_width,
408 int source_height,
409 int dest_width,
410 int dest_height,
411 int dest_rect_left,
412 int dest_rect_top,
413 int dest_rect_right,
414 int dest_rect_bottom,
415 int y_pitch,
416 int uv_pitch,
417 int rgb_pitch) {
418 // This routine doesn't currently support up-scaling.
419 CHECK_LE(dest_width, source_width);
420 CHECK_LE(dest_height, source_height);
422 // Sanity-check the destination rectangle.
423 DCHECK(dest_rect_left >= 0 && dest_rect_right <= dest_width);
424 DCHECK(dest_rect_top >= 0 && dest_rect_bottom <= dest_height);
425 DCHECK(dest_rect_right > dest_rect_left);
426 DCHECK(dest_rect_bottom > dest_rect_top);
428 // Fixed-point value of vertical and horizontal scale down factor.
429 // Values are in the format 16.16.
430 int y_step = kFractionMax * source_height / dest_height;
431 int x_step = kFractionMax * source_width / dest_width;
433 // Determine the coordinates of the rectangle in 16.16 coords.
434 // NB: Our origin is the *center* of the top/left pixel, NOT its top/left.
435 // If we're down-scaling by more than a factor of two, we start with a 50%
436 // fraction to avoid degenerating to point-sampling - we should really just
437 // fix the fraction at 50% for all pixels in that case.
438 int source_left = dest_rect_left * x_step;
439 int source_right = (dest_rect_right - 1) * x_step;
440 if (x_step < kFractionMax * 2) {
441 source_left += ((x_step - kFractionMax) / 2);
442 source_right += ((x_step - kFractionMax) / 2);
443 } else {
444 source_left += kFractionMax / 2;
445 source_right += kFractionMax / 2;
447 int source_top = dest_rect_top * y_step;
448 if (y_step < kFractionMax * 2) {
449 source_top += ((y_step - kFractionMax) / 2);
450 } else {
451 source_top += kFractionMax / 2;
454 // Determine the parts of the Y, U and V buffers to interpolate.
455 int source_y_left = source_left >> kFractionBits;
456 int source_y_right =
457 std::min((source_right >> kFractionBits) + 2, source_width + 1);
459 int source_uv_left = source_y_left / 2;
460 int source_uv_right = std::min((source_right >> (kFractionBits + 1)) + 2,
461 (source_width + 1) / 2);
463 int source_y_width = source_y_right - source_y_left;
464 int source_uv_width = source_uv_right - source_uv_left;
466 // Determine number of pixels in each output row.
467 int dest_rect_width = dest_rect_right - dest_rect_left;
469 // Intermediate buffer for vertical interpolation.
470 // 4096 bytes allows 3 buffers to fit in 12k, which fits in a 16K L1 cache,
471 // and is bigger than most users will generally need.
472 // The buffer is 16-byte aligned and padded with 16 extra bytes; some of the
473 // FilterYUVRowProcs have alignment requirements, and the SSE version can
474 // write up to 16 bytes past the end of the buffer.
475 const int kFilterBufferSize = 4096;
476 const bool kAvoidUsingOptimizedFilter = source_width > kFilterBufferSize;
477 uint8 yuv_temp[16 + kFilterBufferSize * 3 + 16];
478 // memset() yuv_temp to 0 to avoid bogus warnings when running on Valgrind.
479 if (RunningOnValgrind())
480 memset(yuv_temp, 0, sizeof(yuv_temp));
481 uint8* y_temp = reinterpret_cast<uint8*>(
482 reinterpret_cast<uintptr_t>(yuv_temp + 15) & ~15);
483 uint8* u_temp = y_temp + kFilterBufferSize;
484 uint8* v_temp = u_temp + kFilterBufferSize;
486 // Move to the top-left pixel of output.
487 rgb_buf += dest_rect_top * rgb_pitch;
488 rgb_buf += dest_rect_left * 4;
490 // For each destination row perform interpolation and color space
491 // conversion to produce the output.
492 for (int row = dest_rect_top; row < dest_rect_bottom; ++row) {
493 // Round the fixed-point y position to get the current row.
494 int source_row = source_top >> kFractionBits;
495 int source_uv_row = source_row / 2;
496 DCHECK(source_row < source_height);
498 // Locate the first row for each plane for interpolation.
499 const uint8* y0_ptr = y_buf + y_pitch * source_row + source_y_left;
500 const uint8* u0_ptr = u_buf + uv_pitch * source_uv_row + source_uv_left;
501 const uint8* v0_ptr = v_buf + uv_pitch * source_uv_row + source_uv_left;
502 const uint8* y1_ptr = NULL;
503 const uint8* u1_ptr = NULL;
504 const uint8* v1_ptr = NULL;
506 // Locate the second row for interpolation, being careful not to overrun.
507 if (source_row + 1 >= source_height) {
508 y1_ptr = y0_ptr;
509 } else {
510 y1_ptr = y0_ptr + y_pitch;
512 if (source_uv_row + 1 >= (source_height + 1) / 2) {
513 u1_ptr = u0_ptr;
514 v1_ptr = v0_ptr;
515 } else {
516 u1_ptr = u0_ptr + uv_pitch;
517 v1_ptr = v0_ptr + uv_pitch;
520 if (!kAvoidUsingOptimizedFilter) {
521 // Vertical scaler uses 16.8 fixed point.
522 int fraction = (source_top & kFractionMask) >> 8;
523 g_filter_yuv_rows_proc_(
524 y_temp + source_y_left, y0_ptr, y1_ptr, source_y_width, fraction);
525 g_filter_yuv_rows_proc_(
526 u_temp + source_uv_left, u0_ptr, u1_ptr, source_uv_width, fraction);
527 g_filter_yuv_rows_proc_(
528 v_temp + source_uv_left, v0_ptr, v1_ptr, source_uv_width, fraction);
530 // Perform horizontal interpolation and color space conversion.
531 // TODO(hclam): Use the MMX version after more testing.
532 LinearScaleYUVToRGB32RowWithRange_C(y_temp,
533 u_temp,
534 v_temp,
535 rgb_buf,
536 dest_rect_width,
537 source_left,
538 x_step,
539 kCoefficientsRgbY);
540 } else {
541 // If the frame is too large then we linear scale a single row.
542 LinearScaleYUVToRGB32RowWithRange_C(y0_ptr,
543 u0_ptr,
544 v0_ptr,
545 rgb_buf,
546 dest_rect_width,
547 source_left,
548 x_step,
549 kCoefficientsRgbY);
552 // Advance vertically in the source and destination image.
553 source_top += y_step;
554 rgb_buf += rgb_pitch;
557 g_empty_register_state_proc_();
560 void ConvertRGB32ToYUV(const uint8* rgbframe,
561 uint8* yplane,
562 uint8* uplane,
563 uint8* vplane,
564 int width,
565 int height,
566 int rgbstride,
567 int ystride,
568 int uvstride) {
569 g_convert_rgb32_to_yuv_proc_(rgbframe,
570 yplane,
571 uplane,
572 vplane,
573 width,
574 height,
575 rgbstride,
576 ystride,
577 uvstride);
580 void ConvertRGB24ToYUV(const uint8* rgbframe,
581 uint8* yplane,
582 uint8* uplane,
583 uint8* vplane,
584 int width,
585 int height,
586 int rgbstride,
587 int ystride,
588 int uvstride) {
589 g_convert_rgb24_to_yuv_proc_(rgbframe,
590 yplane,
591 uplane,
592 vplane,
593 width,
594 height,
595 rgbstride,
596 ystride,
597 uvstride);
600 void ConvertYUY2ToYUV(const uint8* src,
601 uint8* yplane,
602 uint8* uplane,
603 uint8* vplane,
604 int width,
605 int height) {
606 for (int i = 0; i < height / 2; ++i) {
607 for (int j = 0; j < (width / 2); ++j) {
608 yplane[0] = src[0];
609 *uplane = src[1];
610 yplane[1] = src[2];
611 *vplane = src[3];
612 src += 4;
613 yplane += 2;
614 uplane++;
615 vplane++;
617 for (int j = 0; j < (width / 2); ++j) {
618 yplane[0] = src[0];
619 yplane[1] = src[2];
620 src += 4;
621 yplane += 2;
626 void ConvertNV21ToYUV(const uint8* src,
627 uint8* yplane,
628 uint8* uplane,
629 uint8* vplane,
630 int width,
631 int height) {
632 int y_plane_size = width * height;
633 memcpy(yplane, src, y_plane_size);
635 src += y_plane_size;
636 int u_plane_size = y_plane_size >> 2;
637 for (int i = 0; i < u_plane_size; ++i) {
638 *vplane++ = *src++;
639 *uplane++ = *src++;
643 void ConvertYUVToRGB32(const uint8* yplane,
644 const uint8* uplane,
645 const uint8* vplane,
646 uint8* rgbframe,
647 int width,
648 int height,
649 int ystride,
650 int uvstride,
651 int rgbstride,
652 YUVType yuv_type) {
653 g_convert_yuv_to_rgb32_proc_(yplane,
654 uplane,
655 vplane,
656 rgbframe,
657 width,
658 height,
659 ystride,
660 uvstride,
661 rgbstride,
662 yuv_type);
665 void ConvertYUVAToARGB(const uint8* yplane,
666 const uint8* uplane,
667 const uint8* vplane,
668 const uint8* aplane,
669 uint8* rgbframe,
670 int width,
671 int height,
672 int ystride,
673 int uvstride,
674 int astride,
675 int rgbstride,
676 YUVType yuv_type) {
677 g_convert_yuva_to_argb_proc_(yplane,
678 uplane,
679 vplane,
680 aplane,
681 rgbframe,
682 width,
683 height,
684 ystride,
685 uvstride,
686 astride,
687 rgbstride,
688 yuv_type);
691 } // namespace media