1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // This webpage shows layout of YV12 and other YUV formats
6 // http://www.fourcc.org/yuv.php
7 // The actual conversion is best described here
8 // http://en.wikipedia.org/wiki/YUV
9 // An article on optimizing YUV conversion using tables instead of multiplies
10 // http://lestourtereaux.free.fr/papers/data/yuvrgb.pdf
12 // YV12 is a full plane of Y and a half height, half width chroma planes
13 // YV16 is a full plane of Y and a full height, half width chroma planes
15 // ARGB pixel format is output, which on little endian is stored as BGRA.
16 // The alpha is set to 255, allowing the application to use RGBA or RGB32.
18 #include "media/base/yuv_convert.h"
21 #include "base/logging.h"
22 #include "base/memory/scoped_ptr.h"
23 #include "base/third_party/dynamic_annotations/dynamic_annotations.h"
24 #include "build/build_config.h"
25 #include "media/base/simd/convert_rgb_to_yuv.h"
26 #include "media/base/simd/convert_yuv_to_rgb.h"
27 #include "media/base/simd/filter_yuv.h"
28 #include "media/base/simd/yuv_to_rgb_table.h"
30 #if defined(ARCH_CPU_X86_FAMILY)
31 #if defined(COMPILER_MSVC)
38 // Assembly functions are declared without namespace.
39 extern "C" { void EmptyRegisterState_MMX(); } // extern "C"
43 typedef void (*FilterYUVRowsProc
)(uint8
*, const uint8
*, const uint8
*, int, int);
45 typedef void (*ConvertRGBToYUVProc
)(const uint8
*,
55 typedef void (*ConvertYUVToRGB32Proc
)(const uint8
*,
66 typedef void (*ConvertYUVAToARGBProc
)(const uint8
*,
79 typedef void (*ConvertYUVToRGB32RowProc
)(const uint8
*,
84 const int16
[1024][4]);
86 typedef void (*ConvertYUVAToARGBRowProc
)(const uint8
*,
92 const int16
[1024][4]);
94 typedef void (*ScaleYUVToRGB32RowProc
)(const uint8
*,
100 const int16
[1024][4]);
102 static FilterYUVRowsProc g_filter_yuv_rows_proc_
= NULL
;
103 static ConvertYUVToRGB32RowProc g_convert_yuv_to_rgb32_row_proc_
= NULL
;
104 static ScaleYUVToRGB32RowProc g_scale_yuv_to_rgb32_row_proc_
= NULL
;
105 static ScaleYUVToRGB32RowProc g_linear_scale_yuv_to_rgb32_row_proc_
= NULL
;
106 static ConvertRGBToYUVProc g_convert_rgb32_to_yuv_proc_
= NULL
;
107 static ConvertRGBToYUVProc g_convert_rgb24_to_yuv_proc_
= NULL
;
108 static ConvertYUVToRGB32Proc g_convert_yuv_to_rgb32_proc_
= NULL
;
109 static ConvertYUVAToARGBProc g_convert_yuva_to_argb_proc_
= NULL
;
111 // Empty SIMD registers state after using them.
112 void EmptyRegisterStateStub() {}
113 #if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
114 void EmptyRegisterStateIntrinsic() { _mm_empty(); }
116 typedef void (*EmptyRegisterStateProc
)();
117 static EmptyRegisterStateProc g_empty_register_state_proc_
= NULL
;
119 // Get the appropriate value to bitshift by for vertical indices.
120 int GetVerticalShift(YUVType type
) {
132 const int16 (&GetLookupTable(YUVType type
))[1024][4] {
136 return kCoefficientsRgbY
;
138 return kCoefficientsRgbY_JPEG
;
141 return kCoefficientsRgbY
;
144 void InitializeCPUSpecificYUVConversions() {
145 CHECK(!g_filter_yuv_rows_proc_
);
146 CHECK(!g_convert_yuv_to_rgb32_row_proc_
);
147 CHECK(!g_scale_yuv_to_rgb32_row_proc_
);
148 CHECK(!g_linear_scale_yuv_to_rgb32_row_proc_
);
149 CHECK(!g_convert_rgb32_to_yuv_proc_
);
150 CHECK(!g_convert_rgb24_to_yuv_proc_
);
151 CHECK(!g_convert_yuv_to_rgb32_proc_
);
152 CHECK(!g_convert_yuva_to_argb_proc_
);
153 CHECK(!g_empty_register_state_proc_
);
155 g_filter_yuv_rows_proc_
= FilterYUVRows_C
;
156 g_convert_yuv_to_rgb32_row_proc_
= ConvertYUVToRGB32Row_C
;
157 g_scale_yuv_to_rgb32_row_proc_
= ScaleYUVToRGB32Row_C
;
158 g_linear_scale_yuv_to_rgb32_row_proc_
= LinearScaleYUVToRGB32Row_C
;
159 g_convert_rgb32_to_yuv_proc_
= ConvertRGB32ToYUV_C
;
160 g_convert_rgb24_to_yuv_proc_
= ConvertRGB24ToYUV_C
;
161 g_convert_yuv_to_rgb32_proc_
= ConvertYUVToRGB32_C
;
162 g_convert_yuva_to_argb_proc_
= ConvertYUVAToARGB_C
;
163 g_empty_register_state_proc_
= EmptyRegisterStateStub
;
165 // Assembly code confuses MemorySanitizer.
166 #if defined(ARCH_CPU_X86_FAMILY) && !defined(MEMORY_SANITIZER)
167 g_convert_yuva_to_argb_proc_
= ConvertYUVAToARGB_MMX
;
169 #if defined(MEDIA_MMX_INTRINSICS_AVAILABLE)
170 g_empty_register_state_proc_
= EmptyRegisterStateIntrinsic
;
172 g_empty_register_state_proc_
= EmptyRegisterState_MMX
;
175 g_convert_yuv_to_rgb32_row_proc_
= ConvertYUVToRGB32Row_SSE
;
176 g_convert_yuv_to_rgb32_proc_
= ConvertYUVToRGB32_SSE
;
178 g_filter_yuv_rows_proc_
= FilterYUVRows_SSE2
;
179 g_convert_rgb32_to_yuv_proc_
= ConvertRGB32ToYUV_SSE2
;
181 #if defined(ARCH_CPU_X86_64)
182 g_scale_yuv_to_rgb32_row_proc_
= ScaleYUVToRGB32Row_SSE2_X64
;
184 // Technically this should be in the MMX section, but MSVC will optimize out
185 // the export of LinearScaleYUVToRGB32Row_MMX, which is required by the unit
186 // tests, if that decision can be made at compile time. Since all X64 CPUs
187 // have SSE2, we can hack around this by making the selection here.
188 g_linear_scale_yuv_to_rgb32_row_proc_
= LinearScaleYUVToRGB32Row_MMX_X64
;
190 g_scale_yuv_to_rgb32_row_proc_
= ScaleYUVToRGB32Row_SSE
;
191 g_linear_scale_yuv_to_rgb32_row_proc_
= LinearScaleYUVToRGB32Row_SSE
;
195 if (cpu
.has_ssse3()) {
196 g_convert_rgb24_to_yuv_proc_
= &ConvertRGB24ToYUV_SSSE3
;
198 // TODO(hclam): Add ConvertRGB32ToYUV_SSSE3 when the cyan problem is solved.
199 // See: crbug.com/100462
204 // Empty SIMD registers state after using them.
205 void EmptyRegisterState() { g_empty_register_state_proc_(); }
207 // 16.16 fixed point arithmetic
208 const int kFractionBits
= 16;
209 const int kFractionMax
= 1 << kFractionBits
;
210 const int kFractionMask
= ((1 << kFractionBits
) - 1);
212 // Scale a frame of YUV to 32 bit ARGB.
213 void ScaleYUVToRGB32(const uint8
* y_buf
,
226 ScaleFilter filter
) {
227 // Handle zero sized sources and destinations.
228 if ((yuv_type
== YV12
&& (source_width
< 2 || source_height
< 2)) ||
229 (yuv_type
== YV16
&& (source_width
< 2 || source_height
< 1)) ||
230 width
== 0 || height
== 0)
233 // 4096 allows 3 buffers to fit in 12k.
234 // Helps performance on CPU with 16K L1 cache.
235 // Large enough for 3830x2160 and 30" displays which are 2560x1600.
236 const int kFilterBufferSize
= 4096;
237 // Disable filtering if the screen is too big (to avoid buffer overflows).
238 // This should never happen to regular users: they don't have monitors
239 // wider than 4096 pixels.
240 // TODO(fbarchard): Allow rotated videos to filter.
241 if (source_width
> kFilterBufferSize
|| view_rotate
)
242 filter
= FILTER_NONE
;
244 unsigned int y_shift
= GetVerticalShift(yuv_type
);
245 // Diagram showing origin and direction of source sampling.
251 // Rotations that start at right side of image.
252 if ((view_rotate
== ROTATE_180
) || (view_rotate
== ROTATE_270
) ||
253 (view_rotate
== MIRROR_ROTATE_0
) || (view_rotate
== MIRROR_ROTATE_90
)) {
254 y_buf
+= source_width
- 1;
255 u_buf
+= source_width
/ 2 - 1;
256 v_buf
+= source_width
/ 2 - 1;
257 source_width
= -source_width
;
259 // Rotations that start at bottom of image.
260 if ((view_rotate
== ROTATE_90
) || (view_rotate
== ROTATE_180
) ||
261 (view_rotate
== MIRROR_ROTATE_90
) || (view_rotate
== MIRROR_ROTATE_180
)) {
262 y_buf
+= (source_height
- 1) * y_pitch
;
263 u_buf
+= ((source_height
>> y_shift
) - 1) * uv_pitch
;
264 v_buf
+= ((source_height
>> y_shift
) - 1) * uv_pitch
;
265 source_height
= -source_height
;
268 int source_dx
= source_width
* kFractionMax
/ width
;
270 if ((view_rotate
== ROTATE_90
) || (view_rotate
== ROTATE_270
)) {
275 source_height
= source_width
;
277 int source_dy
= source_height
* kFractionMax
/ height
;
278 source_dx
= ((source_dy
>> kFractionBits
) * y_pitch
) << kFractionBits
;
279 if (view_rotate
== ROTATE_90
) {
282 source_height
= -source_height
;
289 // Need padding because FilterRows() will write 1 to 16 extra pixels
290 // after the end for SSE2 version.
291 uint8 yuvbuf
[16 + kFilterBufferSize
* 3 + 16];
293 reinterpret_cast<uint8
*>(reinterpret_cast<uintptr_t>(yuvbuf
+ 15) & ~15);
294 uint8
* ubuf
= ybuf
+ kFilterBufferSize
;
295 uint8
* vbuf
= ubuf
+ kFilterBufferSize
;
297 // TODO(fbarchard): Fixed point math is off by 1 on negatives.
299 // We take a y-coordinate in [0,1] space in the source image space, and
300 // transform to a y-coordinate in [0,1] space in the destination image space.
301 // Note that the coordinate endpoints lie on pixel boundaries, not on pixel
302 // centers: e.g. a two-pixel-high image will have pixel centers at 0.25 and
303 // 0.75. The formula is as follows (in fixed-point arithmetic):
304 // y_dst = dst_height * ((y_src + 0.5) / src_height)
305 // dst_pixel = clamp([0, dst_height - 1], floor(y_dst - 0.5))
306 // Implement this here as an accumulator + delta, to avoid expensive math
308 int source_y_subpixel_accum
=
309 ((kFractionMax
/ 2) * source_height
) / height
- (kFractionMax
/ 2);
310 int source_y_subpixel_delta
= ((1 << kFractionBits
) * source_height
) / height
;
312 // TODO(fbarchard): Split this into separate function for better efficiency.
313 for (int y
= 0; y
< height
; ++y
) {
314 uint8
* dest_pixel
= rgb_buf
+ y
* rgb_pitch
;
315 int source_y_subpixel
= source_y_subpixel_accum
;
316 source_y_subpixel_accum
+= source_y_subpixel_delta
;
317 if (source_y_subpixel
< 0)
318 source_y_subpixel
= 0;
319 else if (source_y_subpixel
> ((source_height
- 1) << kFractionBits
))
320 source_y_subpixel
= (source_height
- 1) << kFractionBits
;
322 const uint8
* y_ptr
= NULL
;
323 const uint8
* u_ptr
= NULL
;
324 const uint8
* v_ptr
= NULL
;
325 // Apply vertical filtering if necessary.
326 // TODO(fbarchard): Remove memcpy when not necessary.
327 if (filter
& media::FILTER_BILINEAR_V
) {
328 int source_y
= source_y_subpixel
>> kFractionBits
;
329 y_ptr
= y_buf
+ source_y
* y_pitch
;
330 u_ptr
= u_buf
+ (source_y
>> y_shift
) * uv_pitch
;
331 v_ptr
= v_buf
+ (source_y
>> y_shift
) * uv_pitch
;
333 // Vertical scaler uses 16.8 fixed point.
334 int source_y_fraction
= (source_y_subpixel
& kFractionMask
) >> 8;
335 if (source_y_fraction
!= 0) {
336 g_filter_yuv_rows_proc_(
337 ybuf
, y_ptr
, y_ptr
+ y_pitch
, source_width
, source_y_fraction
);
339 memcpy(ybuf
, y_ptr
, source_width
);
342 ybuf
[source_width
] = ybuf
[source_width
- 1];
344 int uv_source_width
= (source_width
+ 1) / 2;
345 int source_uv_fraction
;
347 // For formats with half-height UV planes, each even-numbered pixel row
348 // should not interpolate, since the next row to interpolate from should
349 // be a duplicate of the current row.
350 if (y_shift
&& (source_y
& 0x1) == 0)
351 source_uv_fraction
= 0;
353 source_uv_fraction
= source_y_fraction
;
355 if (source_uv_fraction
!= 0) {
356 g_filter_yuv_rows_proc_(
357 ubuf
, u_ptr
, u_ptr
+ uv_pitch
, uv_source_width
, source_uv_fraction
);
358 g_filter_yuv_rows_proc_(
359 vbuf
, v_ptr
, v_ptr
+ uv_pitch
, uv_source_width
, source_uv_fraction
);
361 memcpy(ubuf
, u_ptr
, uv_source_width
);
362 memcpy(vbuf
, v_ptr
, uv_source_width
);
366 ubuf
[uv_source_width
] = ubuf
[uv_source_width
- 1];
367 vbuf
[uv_source_width
] = vbuf
[uv_source_width
- 1];
369 // Offset by 1/2 pixel for center sampling.
370 int source_y
= (source_y_subpixel
+ (kFractionMax
/ 2)) >> kFractionBits
;
371 y_ptr
= y_buf
+ source_y
* y_pitch
;
372 u_ptr
= u_buf
+ (source_y
>> y_shift
) * uv_pitch
;
373 v_ptr
= v_buf
+ (source_y
>> y_shift
) * uv_pitch
;
375 if (source_dx
== kFractionMax
) { // Not scaled
376 g_convert_yuv_to_rgb32_row_proc_(
377 y_ptr
, u_ptr
, v_ptr
, dest_pixel
, width
, kCoefficientsRgbY
);
379 if (filter
& FILTER_BILINEAR_H
) {
380 g_linear_scale_yuv_to_rgb32_row_proc_(y_ptr
,
388 g_scale_yuv_to_rgb32_row_proc_(y_ptr
,
399 g_empty_register_state_proc_();
402 // Scale a frame of YV12 to 32 bit ARGB for a specific rectangle.
403 void ScaleYUVToRGB32WithRect(const uint8
* y_buf
,
414 int dest_rect_bottom
,
418 // This routine doesn't currently support up-scaling.
419 CHECK_LE(dest_width
, source_width
);
420 CHECK_LE(dest_height
, source_height
);
422 // Sanity-check the destination rectangle.
423 DCHECK(dest_rect_left
>= 0 && dest_rect_right
<= dest_width
);
424 DCHECK(dest_rect_top
>= 0 && dest_rect_bottom
<= dest_height
);
425 DCHECK(dest_rect_right
> dest_rect_left
);
426 DCHECK(dest_rect_bottom
> dest_rect_top
);
428 // Fixed-point value of vertical and horizontal scale down factor.
429 // Values are in the format 16.16.
430 int y_step
= kFractionMax
* source_height
/ dest_height
;
431 int x_step
= kFractionMax
* source_width
/ dest_width
;
433 // Determine the coordinates of the rectangle in 16.16 coords.
434 // NB: Our origin is the *center* of the top/left pixel, NOT its top/left.
435 // If we're down-scaling by more than a factor of two, we start with a 50%
436 // fraction to avoid degenerating to point-sampling - we should really just
437 // fix the fraction at 50% for all pixels in that case.
438 int source_left
= dest_rect_left
* x_step
;
439 int source_right
= (dest_rect_right
- 1) * x_step
;
440 if (x_step
< kFractionMax
* 2) {
441 source_left
+= ((x_step
- kFractionMax
) / 2);
442 source_right
+= ((x_step
- kFractionMax
) / 2);
444 source_left
+= kFractionMax
/ 2;
445 source_right
+= kFractionMax
/ 2;
447 int source_top
= dest_rect_top
* y_step
;
448 if (y_step
< kFractionMax
* 2) {
449 source_top
+= ((y_step
- kFractionMax
) / 2);
451 source_top
+= kFractionMax
/ 2;
454 // Determine the parts of the Y, U and V buffers to interpolate.
455 int source_y_left
= source_left
>> kFractionBits
;
457 std::min((source_right
>> kFractionBits
) + 2, source_width
+ 1);
459 int source_uv_left
= source_y_left
/ 2;
460 int source_uv_right
= std::min((source_right
>> (kFractionBits
+ 1)) + 2,
461 (source_width
+ 1) / 2);
463 int source_y_width
= source_y_right
- source_y_left
;
464 int source_uv_width
= source_uv_right
- source_uv_left
;
466 // Determine number of pixels in each output row.
467 int dest_rect_width
= dest_rect_right
- dest_rect_left
;
469 // Intermediate buffer for vertical interpolation.
470 // 4096 bytes allows 3 buffers to fit in 12k, which fits in a 16K L1 cache,
471 // and is bigger than most users will generally need.
472 // The buffer is 16-byte aligned and padded with 16 extra bytes; some of the
473 // FilterYUVRowProcs have alignment requirements, and the SSE version can
474 // write up to 16 bytes past the end of the buffer.
475 const int kFilterBufferSize
= 4096;
476 const bool kAvoidUsingOptimizedFilter
= source_width
> kFilterBufferSize
;
477 uint8 yuv_temp
[16 + kFilterBufferSize
* 3 + 16];
478 // memset() yuv_temp to 0 to avoid bogus warnings when running on Valgrind.
479 if (RunningOnValgrind())
480 memset(yuv_temp
, 0, sizeof(yuv_temp
));
481 uint8
* y_temp
= reinterpret_cast<uint8
*>(
482 reinterpret_cast<uintptr_t>(yuv_temp
+ 15) & ~15);
483 uint8
* u_temp
= y_temp
+ kFilterBufferSize
;
484 uint8
* v_temp
= u_temp
+ kFilterBufferSize
;
486 // Move to the top-left pixel of output.
487 rgb_buf
+= dest_rect_top
* rgb_pitch
;
488 rgb_buf
+= dest_rect_left
* 4;
490 // For each destination row perform interpolation and color space
491 // conversion to produce the output.
492 for (int row
= dest_rect_top
; row
< dest_rect_bottom
; ++row
) {
493 // Round the fixed-point y position to get the current row.
494 int source_row
= source_top
>> kFractionBits
;
495 int source_uv_row
= source_row
/ 2;
496 DCHECK(source_row
< source_height
);
498 // Locate the first row for each plane for interpolation.
499 const uint8
* y0_ptr
= y_buf
+ y_pitch
* source_row
+ source_y_left
;
500 const uint8
* u0_ptr
= u_buf
+ uv_pitch
* source_uv_row
+ source_uv_left
;
501 const uint8
* v0_ptr
= v_buf
+ uv_pitch
* source_uv_row
+ source_uv_left
;
502 const uint8
* y1_ptr
= NULL
;
503 const uint8
* u1_ptr
= NULL
;
504 const uint8
* v1_ptr
= NULL
;
506 // Locate the second row for interpolation, being careful not to overrun.
507 if (source_row
+ 1 >= source_height
) {
510 y1_ptr
= y0_ptr
+ y_pitch
;
512 if (source_uv_row
+ 1 >= (source_height
+ 1) / 2) {
516 u1_ptr
= u0_ptr
+ uv_pitch
;
517 v1_ptr
= v0_ptr
+ uv_pitch
;
520 if (!kAvoidUsingOptimizedFilter
) {
521 // Vertical scaler uses 16.8 fixed point.
522 int fraction
= (source_top
& kFractionMask
) >> 8;
523 g_filter_yuv_rows_proc_(
524 y_temp
+ source_y_left
, y0_ptr
, y1_ptr
, source_y_width
, fraction
);
525 g_filter_yuv_rows_proc_(
526 u_temp
+ source_uv_left
, u0_ptr
, u1_ptr
, source_uv_width
, fraction
);
527 g_filter_yuv_rows_proc_(
528 v_temp
+ source_uv_left
, v0_ptr
, v1_ptr
, source_uv_width
, fraction
);
530 // Perform horizontal interpolation and color space conversion.
531 // TODO(hclam): Use the MMX version after more testing.
532 LinearScaleYUVToRGB32RowWithRange_C(y_temp
,
541 // If the frame is too large then we linear scale a single row.
542 LinearScaleYUVToRGB32RowWithRange_C(y0_ptr
,
552 // Advance vertically in the source and destination image.
553 source_top
+= y_step
;
554 rgb_buf
+= rgb_pitch
;
557 g_empty_register_state_proc_();
560 void ConvertRGB32ToYUV(const uint8
* rgbframe
,
569 g_convert_rgb32_to_yuv_proc_(rgbframe
,
580 void ConvertRGB24ToYUV(const uint8
* rgbframe
,
589 g_convert_rgb24_to_yuv_proc_(rgbframe
,
600 void ConvertYUY2ToYUV(const uint8
* src
,
606 for (int i
= 0; i
< height
/ 2; ++i
) {
607 for (int j
= 0; j
< (width
/ 2); ++j
) {
617 for (int j
= 0; j
< (width
/ 2); ++j
) {
626 void ConvertNV21ToYUV(const uint8
* src
,
632 int y_plane_size
= width
* height
;
633 memcpy(yplane
, src
, y_plane_size
);
636 int u_plane_size
= y_plane_size
>> 2;
637 for (int i
= 0; i
< u_plane_size
; ++i
) {
643 void ConvertYUVToRGB32(const uint8
* yplane
,
653 g_convert_yuv_to_rgb32_proc_(yplane
,
665 void ConvertYUVAToARGB(const uint8
* yplane
,
677 g_convert_yuva_to_argb_proc_(yplane
,