1 // Copyright (c) 2011 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
10 #include <sys/resource.h>
12 #include <sys/types.h>
19 #include "base/command_line.h"
20 #include "base/compiler_specific.h"
21 #include "base/debug/debugger.h"
22 #include "base/debug/stack_trace.h"
23 #include "base/dir_reader_posix.h"
24 #include "base/eintr_wrapper.h"
25 #include "base/file_util.h"
26 #include "base/logging.h"
27 #include "base/memory/scoped_ptr.h"
28 #include "base/process_util.h"
29 #include "base/stringprintf.h"
30 #include "base/synchronization/waitable_event.h"
31 #include "base/third_party/dynamic_annotations/dynamic_annotations.h"
32 #include "base/threading/platform_thread.h"
33 #include "base/threading/thread_restrictions.h"
35 #if defined(OS_FREEBSD)
36 #include <sys/event.h>
37 #include <sys/ucontext.h>
40 #if defined(OS_MACOSX)
41 #include <crt_externs.h>
42 #include <sys/event.h>
44 extern char** environ
;
51 // Get the process's "environment" (i.e. the thing that setenv/getenv
53 char** GetEnvironment() {
54 #if defined(OS_MACOSX)
55 return *_NSGetEnviron();
61 // Set the process's "environment" (i.e. the thing that setenv/getenv
63 void SetEnvironment(char** env
) {
64 #if defined(OS_MACOSX)
65 *_NSGetEnviron() = env
;
71 int WaitpidWithTimeout(ProcessHandle handle
, int64 wait_milliseconds
,
73 // This POSIX version of this function only guarantees that we wait no less
74 // than |wait_milliseconds| for the process to exit. The child process may
75 // exit sometime before the timeout has ended but we may still block for up
76 // to 256 milliseconds after the fact.
78 // waitpid() has no direct support on POSIX for specifying a timeout, you can
79 // either ask it to block indefinitely or return immediately (WNOHANG).
80 // When a child process terminates a SIGCHLD signal is sent to the parent.
81 // Catching this signal would involve installing a signal handler which may
82 // affect other parts of the application and would be difficult to debug.
84 // Our strategy is to call waitpid() once up front to check if the process
85 // has already exited, otherwise to loop for wait_milliseconds, sleeping for
86 // at most 256 milliseconds each time using usleep() and then calling
87 // waitpid(). The amount of time we sleep starts out at 1 milliseconds, and
88 // we double it every 4 sleep cycles.
90 // usleep() is speced to exit if a signal is received for which a handler
91 // has been installed. This means that when a SIGCHLD is sent, it will exit
92 // depending on behavior external to this function.
94 // This function is used primarily for unit tests, if we want to use it in
95 // the application itself it would probably be best to examine other routes.
97 pid_t ret_pid
= HANDLE_EINTR(waitpid(handle
, &status
, WNOHANG
));
98 static const int64 kMaxSleepInMicroseconds
= 1 << 18; // ~256 milliseconds.
99 int64 max_sleep_time_usecs
= 1 << 10; // ~1 milliseconds.
100 int64 double_sleep_time
= 0;
102 // If the process hasn't exited yet, then sleep and try again.
103 Time wakeup_time
= Time::Now() +
104 TimeDelta::FromMilliseconds(wait_milliseconds
);
105 while (ret_pid
== 0) {
106 Time now
= Time::Now();
107 if (now
> wakeup_time
)
109 // Guaranteed to be non-negative!
110 int64 sleep_time_usecs
= (wakeup_time
- now
).InMicroseconds();
111 // Sleep for a bit while we wait for the process to finish.
112 if (sleep_time_usecs
> max_sleep_time_usecs
)
113 sleep_time_usecs
= max_sleep_time_usecs
;
115 // usleep() will return 0 and set errno to EINTR on receipt of a signal
117 usleep(sleep_time_usecs
);
118 ret_pid
= HANDLE_EINTR(waitpid(handle
, &status
, WNOHANG
));
120 if ((max_sleep_time_usecs
< kMaxSleepInMicroseconds
) &&
121 (double_sleep_time
++ % 4 == 0)) {
122 max_sleep_time_usecs
*= 2;
127 *success
= (ret_pid
!= -1);
132 // Android has built-in crash handling.
133 #if !defined(OS_ANDROID)
134 void StackDumpSignalHandler(int signal
, siginfo_t
* info
, ucontext_t
* context
) {
135 if (debug::BeingDebugged())
136 debug::BreakDebugger();
138 DLOG(ERROR
) << "Received signal " << signal
;
139 debug::StackTrace().PrintBacktrace();
141 // TODO(shess): Port to Linux.
142 #if defined(OS_MACOSX)
143 // TODO(shess): Port to 64-bit.
148 // NOTE: Even |snprintf()| is not on the approved list for signal
149 // handlers, but buffered I/O is definitely not on the list due to
150 // potential for |malloc()|.
151 len
= static_cast<size_t>(
152 snprintf(buf
, sizeof(buf
),
153 "ax: %x, bx: %x, cx: %x, dx: %x\n",
154 context
->uc_mcontext
->__ss
.__eax
,
155 context
->uc_mcontext
->__ss
.__ebx
,
156 context
->uc_mcontext
->__ss
.__ecx
,
157 context
->uc_mcontext
->__ss
.__edx
));
158 write(STDERR_FILENO
, buf
, std::min(len
, sizeof(buf
) - 1));
160 len
= static_cast<size_t>(
161 snprintf(buf
, sizeof(buf
),
162 "di: %x, si: %x, bp: %x, sp: %x, ss: %x, flags: %x\n",
163 context
->uc_mcontext
->__ss
.__edi
,
164 context
->uc_mcontext
->__ss
.__esi
,
165 context
->uc_mcontext
->__ss
.__ebp
,
166 context
->uc_mcontext
->__ss
.__esp
,
167 context
->uc_mcontext
->__ss
.__ss
,
168 context
->uc_mcontext
->__ss
.__eflags
));
169 write(STDERR_FILENO
, buf
, std::min(len
, sizeof(buf
) - 1));
171 len
= static_cast<size_t>(
172 snprintf(buf
, sizeof(buf
),
173 "ip: %x, cs: %x, ds: %x, es: %x, fs: %x, gs: %x\n",
174 context
->uc_mcontext
->__ss
.__eip
,
175 context
->uc_mcontext
->__ss
.__cs
,
176 context
->uc_mcontext
->__ss
.__ds
,
177 context
->uc_mcontext
->__ss
.__es
,
178 context
->uc_mcontext
->__ss
.__fs
,
179 context
->uc_mcontext
->__ss
.__gs
));
180 write(STDERR_FILENO
, buf
, std::min(len
, sizeof(buf
) - 1));
181 #endif // ARCH_CPU_32_BITS
182 #endif // defined(OS_MACOSX)
185 #endif // !defined(OS_ANDROID)
187 void ResetChildSignalHandlersToDefaults() {
188 // The previous signal handlers are likely to be meaningless in the child's
189 // context so we reset them to the defaults for now. http://crbug.com/44953
190 // These signal handlers are set up at least in browser_main_posix.cc:
191 // BrowserMainPartsPosix::PreEarlyInitialization and process_util_posix.cc:
192 // EnableInProcessStackDumping.
193 signal(SIGHUP
, SIG_DFL
);
194 signal(SIGINT
, SIG_DFL
);
195 signal(SIGILL
, SIG_DFL
);
196 signal(SIGABRT
, SIG_DFL
);
197 signal(SIGFPE
, SIG_DFL
);
198 signal(SIGBUS
, SIG_DFL
);
199 signal(SIGSEGV
, SIG_DFL
);
200 signal(SIGSYS
, SIG_DFL
);
201 signal(SIGTERM
, SIG_DFL
);
204 } // anonymous namespace
206 ProcessId
GetCurrentProcId() {
210 ProcessHandle
GetCurrentProcessHandle() {
211 return GetCurrentProcId();
214 bool OpenProcessHandle(ProcessId pid
, ProcessHandle
* handle
) {
215 // On Posix platforms, process handles are the same as PIDs, so we
216 // don't need to do anything.
221 bool OpenPrivilegedProcessHandle(ProcessId pid
, ProcessHandle
* handle
) {
222 // On POSIX permissions are checked for each operation on process,
223 // not when opening a "handle".
224 return OpenProcessHandle(pid
, handle
);
227 bool OpenProcessHandleWithAccess(ProcessId pid
,
229 ProcessHandle
* handle
) {
230 // On POSIX permissions are checked for each operation on process,
231 // not when opening a "handle".
232 return OpenProcessHandle(pid
, handle
);
235 void CloseProcessHandle(ProcessHandle process
) {
236 // See OpenProcessHandle, nothing to do.
240 ProcessId
GetProcId(ProcessHandle process
) {
244 // Attempts to kill the process identified by the given process
245 // entry structure. Ignores specified exit_code; posix can't force that.
246 // Returns true if this is successful, false otherwise.
247 bool KillProcess(ProcessHandle process_id
, int exit_code
, bool wait
) {
248 DCHECK_GT(process_id
, 1) << " tried to kill invalid process_id";
251 static unsigned kMaxSleepMs
= 1000;
252 unsigned sleep_ms
= 4;
254 bool result
= kill(process_id
, SIGTERM
) == 0;
256 if (result
&& wait
) {
259 if (RunningOnValgrind()) {
260 // Wait for some extra time when running under Valgrind since the child
261 // processes may take some time doing leak checking.
265 // The process may not end immediately due to pending I/O
267 while (tries
-- > 0) {
268 pid_t pid
= HANDLE_EINTR(waitpid(process_id
, NULL
, WNOHANG
));
269 if (pid
== process_id
) {
274 if (errno
== ECHILD
) {
275 // The wait may fail with ECHILD if another process also waited for
276 // the same pid, causing the process state to get cleaned up.
280 DPLOG(ERROR
) << "Error waiting for process " << process_id
;
283 usleep(sleep_ms
* 1000);
284 if (sleep_ms
< kMaxSleepMs
)
288 // If we're waiting and the child hasn't died by now, force it
291 result
= kill(process_id
, SIGKILL
) == 0;
295 DPLOG(ERROR
) << "Unable to terminate process " << process_id
;
300 bool KillProcessGroup(ProcessHandle process_group_id
) {
301 bool result
= kill(-1 * process_group_id
, SIGKILL
) == 0;
303 DPLOG(ERROR
) << "Unable to terminate process group " << process_group_id
;
307 // A class to handle auto-closing of DIR*'s.
308 class ScopedDIRClose
{
310 inline void operator()(DIR* x
) const {
316 typedef scoped_ptr_malloc
<DIR, ScopedDIRClose
> ScopedDIR
;
318 #if defined(OS_LINUX)
319 static const rlim_t kSystemDefaultMaxFds
= 8192;
320 static const char kFDDir
[] = "/proc/self/fd";
321 #elif defined(OS_MACOSX)
322 static const rlim_t kSystemDefaultMaxFds
= 256;
323 static const char kFDDir
[] = "/dev/fd";
324 #elif defined(OS_SOLARIS)
325 static const rlim_t kSystemDefaultMaxFds
= 8192;
326 static const char kFDDir
[] = "/dev/fd";
327 #elif defined(OS_FREEBSD)
328 static const rlim_t kSystemDefaultMaxFds
= 8192;
329 static const char kFDDir
[] = "/dev/fd";
330 #elif defined(OS_OPENBSD)
331 static const rlim_t kSystemDefaultMaxFds
= 256;
332 static const char kFDDir
[] = "/dev/fd";
333 #elif defined(OS_ANDROID)
334 static const rlim_t kSystemDefaultMaxFds
= 1024;
335 static const char kFDDir
[] = "/proc/self/fd";
338 void CloseSuperfluousFds(const base::InjectiveMultimap
& saved_mapping
) {
339 // DANGER: no calls to malloc are allowed from now on:
340 // http://crbug.com/36678
342 // Get the maximum number of FDs possible.
343 struct rlimit nofile
;
345 if (getrlimit(RLIMIT_NOFILE
, &nofile
)) {
346 // getrlimit failed. Take a best guess.
347 max_fds
= kSystemDefaultMaxFds
;
348 RAW_LOG(ERROR
, "getrlimit(RLIMIT_NOFILE) failed");
350 max_fds
= nofile
.rlim_cur
;
353 if (max_fds
> INT_MAX
)
356 DirReaderPosix
fd_dir(kFDDir
);
358 if (!fd_dir
.IsValid()) {
359 // Fallback case: Try every possible fd.
360 for (rlim_t i
= 0; i
< max_fds
; ++i
) {
361 const int fd
= static_cast<int>(i
);
362 if (fd
== STDIN_FILENO
|| fd
== STDOUT_FILENO
|| fd
== STDERR_FILENO
)
364 InjectiveMultimap::const_iterator j
;
365 for (j
= saved_mapping
.begin(); j
!= saved_mapping
.end(); j
++) {
369 if (j
!= saved_mapping
.end())
372 // Since we're just trying to close anything we can find,
373 // ignore any error return values of close().
374 ignore_result(HANDLE_EINTR(close(fd
)));
379 const int dir_fd
= fd_dir
.fd();
381 for ( ; fd_dir
.Next(); ) {
382 // Skip . and .. entries.
383 if (fd_dir
.name()[0] == '.')
388 const long int fd
= strtol(fd_dir
.name(), &endptr
, 10);
389 if (fd_dir
.name()[0] == 0 || *endptr
|| fd
< 0 || errno
)
391 if (fd
== STDIN_FILENO
|| fd
== STDOUT_FILENO
|| fd
== STDERR_FILENO
)
393 InjectiveMultimap::const_iterator i
;
394 for (i
= saved_mapping
.begin(); i
!= saved_mapping
.end(); i
++) {
398 if (i
!= saved_mapping
.end())
403 // When running under Valgrind, Valgrind opens several FDs for its
404 // own use and will complain if we try to close them. All of
405 // these FDs are >= |max_fds|, so we can check against that here
406 // before closing. See https://bugs.kde.org/show_bug.cgi?id=191758
407 if (fd
< static_cast<int>(max_fds
)) {
408 int ret
= HANDLE_EINTR(close(fd
));
414 char** AlterEnvironment(const environment_vector
& changes
,
415 const char* const* const env
) {
419 // First assume that all of the current environment will be included.
420 for (unsigned i
= 0; env
[i
]; i
++) {
421 const char *const pair
= env
[i
];
423 size
+= strlen(pair
) + 1 /* terminating NUL */;
426 for (environment_vector::const_iterator
427 j
= changes
.begin(); j
!= changes
.end(); j
++) {
431 for (unsigned i
= 0; env
[i
]; i
++) {
433 const char *const equals
= strchr(pair
, '=');
436 const unsigned keylen
= equals
- pair
;
437 if (keylen
== j
->first
.size() &&
438 memcmp(pair
, j
->first
.data(), keylen
) == 0) {
444 // if found, we'll either be deleting or replacing this element.
447 size
-= strlen(pair
) + 1;
448 if (j
->second
.size())
452 // if !found, then we have a new element to add.
453 if (!found
&& !j
->second
.empty()) {
455 size
+= j
->first
.size() + 1 /* '=' */ + j
->second
.size() + 1 /* NUL */;
459 count
++; // for the final NULL
460 uint8_t *buffer
= new uint8_t[sizeof(char*) * count
+ size
];
461 char **const ret
= reinterpret_cast<char**>(buffer
);
463 char *scratch
= reinterpret_cast<char*>(buffer
+ sizeof(char*) * count
);
465 for (unsigned i
= 0; env
[i
]; i
++) {
466 const char *const pair
= env
[i
];
467 const char *const equals
= strchr(pair
, '=');
469 const unsigned len
= strlen(pair
);
471 memcpy(scratch
, pair
, len
+ 1);
475 const unsigned keylen
= equals
- pair
;
476 bool handled
= false;
477 for (environment_vector::const_iterator
478 j
= changes
.begin(); j
!= changes
.end(); j
++) {
479 if (j
->first
.size() == keylen
&&
480 memcmp(j
->first
.data(), pair
, keylen
) == 0) {
481 if (!j
->second
.empty()) {
483 memcpy(scratch
, pair
, keylen
+ 1);
484 scratch
+= keylen
+ 1;
485 memcpy(scratch
, j
->second
.c_str(), j
->second
.size() + 1);
486 scratch
+= j
->second
.size() + 1;
494 const unsigned len
= strlen(pair
);
496 memcpy(scratch
, pair
, len
+ 1);
501 // Now handle new elements
502 for (environment_vector::const_iterator
503 j
= changes
.begin(); j
!= changes
.end(); j
++) {
504 if (j
->second
.empty())
508 for (unsigned i
= 0; env
[i
]; i
++) {
509 const char *const pair
= env
[i
];
510 const char *const equals
= strchr(pair
, '=');
513 const unsigned keylen
= equals
- pair
;
514 if (keylen
== j
->first
.size() &&
515 memcmp(pair
, j
->first
.data(), keylen
) == 0) {
523 memcpy(scratch
, j
->first
.data(), j
->first
.size());
524 scratch
+= j
->first
.size();
526 memcpy(scratch
, j
->second
.c_str(), j
->second
.size() + 1);
527 scratch
+= j
->second
.size() + 1;
535 bool LaunchProcess(const std::vector
<std::string
>& argv
,
536 const LaunchOptions
& options
,
537 ProcessHandle
* process_handle
) {
538 size_t fd_shuffle_size
= 0;
539 if (options
.fds_to_remap
) {
540 fd_shuffle_size
= options
.fds_to_remap
->size();
543 #if defined(OS_MACOSX)
544 if (options
.synchronize
) {
545 // When synchronizing, the "read" end of the synchronization pipe needs
546 // to make it to the child process. This is handled by mapping it back to
550 #endif // defined(OS_MACOSX)
552 InjectiveMultimap fd_shuffle1
;
553 InjectiveMultimap fd_shuffle2
;
554 fd_shuffle1
.reserve(fd_shuffle_size
);
555 fd_shuffle2
.reserve(fd_shuffle_size
);
557 scoped_array
<char*> argv_cstr(new char*[argv
.size() + 1]);
558 scoped_array
<char*> new_environ
;
560 new_environ
.reset(AlterEnvironment(*options
.environ
, GetEnvironment()));
562 #if defined(OS_MACOSX)
563 int synchronization_pipe_fds
[2];
564 file_util::ScopedFD synchronization_read_fd
;
565 file_util::ScopedFD synchronization_write_fd
;
567 if (options
.synchronize
) {
568 // wait means "don't return from LaunchProcess until the child exits", and
569 // synchronize means "return from LaunchProcess but don't let the child
570 // run until LaunchSynchronize is called". These two options are highly
572 DCHECK(!options
.wait
);
574 // Create the pipe used for synchronization.
575 if (HANDLE_EINTR(pipe(synchronization_pipe_fds
)) != 0) {
576 DPLOG(ERROR
) << "pipe";
580 // The parent process will only use synchronization_write_fd as the write
581 // side of the pipe. It can close the read side as soon as the child
582 // process has forked off. The child process will only use
583 // synchronization_read_fd as the read side of the pipe. In that process,
584 // the write side can be closed as soon as it has forked.
585 synchronization_read_fd
.reset(&synchronization_pipe_fds
[0]);
586 synchronization_write_fd
.reset(&synchronization_pipe_fds
[1]);
591 #if defined(OS_LINUX)
592 if (options
.clone_flags
) {
593 pid
= syscall(__NR_clone
, options
.clone_flags
, 0, 0, 0);
601 DPLOG(ERROR
) << "fork";
603 } else if (pid
== 0) {
606 // DANGER: fork() rule: in the child, if you don't end up doing exec*(),
607 // you call _exit() instead of exit(). This is because _exit() does not
608 // call any previously-registered (in the parent) exit handlers, which
609 // might do things like block waiting for threads that don't even exist
612 // If a child process uses the readline library, the process block forever.
613 // In BSD like OSes including OS X it is safe to assign /dev/null as stdin.
614 // See http://crbug.com/56596.
615 int null_fd
= HANDLE_EINTR(open("/dev/null", O_RDONLY
));
617 RAW_LOG(ERROR
, "Failed to open /dev/null");
621 file_util::ScopedFD
null_fd_closer(&null_fd
);
622 int new_fd
= HANDLE_EINTR(dup2(null_fd
, STDIN_FILENO
));
623 if (new_fd
!= STDIN_FILENO
) {
624 RAW_LOG(ERROR
, "Failed to dup /dev/null for stdin");
628 if (options
.new_process_group
) {
629 // Instead of inheriting the process group ID of the parent, the child
630 // starts off a new process group with pgid equal to its process ID.
631 if (setpgid(0, 0) < 0) {
632 RAW_LOG(ERROR
, "setpgid failed");
637 if (options
.maximize_rlimits
) {
638 // Some resource limits need to be maximal in this child.
639 std::set
<int>::const_iterator resource
;
640 for (resource
= options
.maximize_rlimits
->begin();
641 resource
!= options
.maximize_rlimits
->end();
644 if (getrlimit(*resource
, &limit
) < 0) {
645 RAW_LOG(WARNING
, "getrlimit failed");
646 } else if (limit
.rlim_cur
< limit
.rlim_max
) {
647 limit
.rlim_cur
= limit
.rlim_max
;
648 if (setrlimit(*resource
, &limit
) < 0) {
649 RAW_LOG(WARNING
, "setrlimit failed");
655 #if defined(OS_MACOSX)
656 RestoreDefaultExceptionHandler();
657 #endif // defined(OS_MACOSX)
659 ResetChildSignalHandlersToDefaults();
661 #if defined(OS_MACOSX)
662 if (options
.synchronize
) {
663 // The "write" side of the synchronization pipe belongs to the parent.
664 synchronization_write_fd
.reset(); // closes synchronization_pipe_fds[1]
666 #endif // defined(OS_MACOSX)
669 // When debugging it can be helpful to check that we really aren't making
670 // any hidden calls to malloc.
672 reinterpret_cast<void*>(reinterpret_cast<intptr_t>(malloc
) & ~4095);
673 mprotect(malloc_thunk
, 4096, PROT_READ
| PROT_WRITE
| PROT_EXEC
);
674 memset(reinterpret_cast<void*>(malloc
), 0xff, 8);
677 // DANGER: no calls to malloc are allowed from now on:
678 // http://crbug.com/36678
680 if (options
.fds_to_remap
) {
681 for (file_handle_mapping_vector::const_iterator
682 it
= options
.fds_to_remap
->begin();
683 it
!= options
.fds_to_remap
->end(); ++it
) {
684 fd_shuffle1
.push_back(InjectionArc(it
->first
, it
->second
, false));
685 fd_shuffle2
.push_back(InjectionArc(it
->first
, it
->second
, false));
689 #if defined(OS_MACOSX)
690 if (options
.synchronize
) {
691 // Remap the read side of the synchronization pipe back onto itself,
692 // ensuring that it won't be closed by CloseSuperfluousFds.
693 int keep_fd
= *synchronization_read_fd
.get();
694 fd_shuffle1
.push_back(InjectionArc(keep_fd
, keep_fd
, false));
695 fd_shuffle2
.push_back(InjectionArc(keep_fd
, keep_fd
, false));
697 #endif // defined(OS_MACOSX)
700 SetEnvironment(new_environ
.get());
702 // fd_shuffle1 is mutated by this call because it cannot malloc.
703 if (!ShuffleFileDescriptors(&fd_shuffle1
))
706 CloseSuperfluousFds(fd_shuffle2
);
708 #if defined(OS_MACOSX)
709 if (options
.synchronize
) {
710 // Do a blocking read to wait until the parent says it's OK to proceed.
711 // The byte that's read here is written by LaunchSynchronize.
714 HANDLE_EINTR(read(*synchronization_read_fd
.get(), &read_char
, 1));
715 if (read_result
!= 1) {
716 RAW_LOG(ERROR
, "LaunchProcess: synchronization read: error");
720 // The pipe is no longer useful. Don't let it live on in the new process
722 synchronization_read_fd
.reset(); // closes synchronization_pipe_fds[0]
724 #endif // defined(OS_MACOSX)
726 for (size_t i
= 0; i
< argv
.size(); i
++)
727 argv_cstr
[i
] = const_cast<char*>(argv
[i
].c_str());
728 argv_cstr
[argv
.size()] = NULL
;
729 execvp(argv_cstr
[0], argv_cstr
.get());
731 RAW_LOG(ERROR
, "LaunchProcess: failed to execvp:");
732 RAW_LOG(ERROR
, argv_cstr
[0]);
737 // While this isn't strictly disk IO, waiting for another process to
738 // finish is the sort of thing ThreadRestrictions is trying to prevent.
739 base::ThreadRestrictions::AssertIOAllowed();
740 pid_t ret
= HANDLE_EINTR(waitpid(pid
, 0, 0));
745 *process_handle
= pid
;
747 #if defined(OS_MACOSX)
748 if (options
.synchronize
) {
749 // The "read" side of the synchronization pipe belongs to the child.
750 synchronization_read_fd
.reset(); // closes synchronization_pipe_fds[0]
751 *options
.synchronize
= new int(*synchronization_write_fd
.release());
753 #endif // defined(OS_MACOSX)
760 bool LaunchProcess(const CommandLine
& cmdline
,
761 const LaunchOptions
& options
,
762 ProcessHandle
* process_handle
) {
763 return LaunchProcess(cmdline
.argv(), options
, process_handle
);
766 #if defined(OS_MACOSX)
767 void LaunchSynchronize(LaunchSynchronizationHandle handle
) {
768 int synchronization_fd
= *handle
;
769 file_util::ScopedFD
synchronization_fd_closer(&synchronization_fd
);
772 // Write a '\0' character to the pipe.
773 if (HANDLE_EINTR(write(synchronization_fd
, "", 1)) != 1) {
774 DPLOG(ERROR
) << "write";
777 #endif // defined(OS_MACOSX)
779 ProcessMetrics::~ProcessMetrics() { }
781 bool EnableInProcessStackDumping() {
782 // When running in an application, our code typically expects SIGPIPE
783 // to be ignored. Therefore, when testing that same code, it should run
784 // with SIGPIPE ignored as well.
785 struct sigaction action
;
786 action
.sa_handler
= SIG_IGN
;
788 sigemptyset(&action
.sa_mask
);
789 bool success
= (sigaction(SIGPIPE
, &action
, NULL
) == 0);
791 // Android has built-in crash handling, so no need to hook the signals.
792 #if !defined(OS_ANDROID)
793 sig_t handler
= reinterpret_cast<sig_t
>(&StackDumpSignalHandler
);
794 success
&= (signal(SIGILL
, handler
) != SIG_ERR
);
795 success
&= (signal(SIGABRT
, handler
) != SIG_ERR
);
796 success
&= (signal(SIGFPE
, handler
) != SIG_ERR
);
797 success
&= (signal(SIGBUS
, handler
) != SIG_ERR
);
798 success
&= (signal(SIGSEGV
, handler
) != SIG_ERR
);
799 success
&= (signal(SIGSYS
, handler
) != SIG_ERR
);
805 void RaiseProcessToHighPriority() {
806 // On POSIX, we don't actually do anything here. We could try to nice() or
807 // setpriority() or sched_getscheduler, but these all require extra rights.
810 TerminationStatus
GetTerminationStatus(ProcessHandle handle
, int* exit_code
) {
812 const pid_t result
= HANDLE_EINTR(waitpid(handle
, &status
, WNOHANG
));
814 DPLOG(ERROR
) << "waitpid(" << handle
<< ")";
817 return TERMINATION_STATUS_NORMAL_TERMINATION
;
818 } else if (result
== 0) {
819 // the child hasn't exited yet.
822 return TERMINATION_STATUS_STILL_RUNNING
;
828 if (WIFSIGNALED(status
)) {
829 switch (WTERMSIG(status
)) {
835 return TERMINATION_STATUS_PROCESS_CRASHED
;
839 return TERMINATION_STATUS_PROCESS_WAS_KILLED
;
845 if (WIFEXITED(status
) && WEXITSTATUS(status
) != 0)
846 return TERMINATION_STATUS_ABNORMAL_TERMINATION
;
848 return TERMINATION_STATUS_NORMAL_TERMINATION
;
851 bool WaitForExitCode(ProcessHandle handle
, int* exit_code
) {
853 if (HANDLE_EINTR(waitpid(handle
, &status
, 0)) == -1) {
858 if (WIFEXITED(status
)) {
859 *exit_code
= WEXITSTATUS(status
);
863 // If it didn't exit cleanly, it must have been signaled.
864 DCHECK(WIFSIGNALED(status
));
868 bool WaitForExitCodeWithTimeout(ProcessHandle handle
, int* exit_code
,
869 int64 timeout_milliseconds
) {
870 bool waitpid_success
= false;
871 int status
= WaitpidWithTimeout(handle
, timeout_milliseconds
,
875 if (!waitpid_success
)
877 if (WIFSIGNALED(status
)) {
881 if (WIFEXITED(status
)) {
882 *exit_code
= WEXITSTATUS(status
);
888 #if defined(OS_MACOSX)
889 // Using kqueue on Mac so that we can wait on non-child processes.
890 // We can't use kqueues on child processes because we need to reap
891 // our own children using wait.
892 static bool WaitForSingleNonChildProcess(ProcessHandle handle
,
893 int64 wait_milliseconds
) {
894 DCHECK_GT(handle
, 0);
895 DCHECK(wait_milliseconds
== base::kNoTimeout
|| wait_milliseconds
> 0);
899 DPLOG(ERROR
) << "kqueue";
902 file_util::ScopedFD
kq_closer(&kq
);
904 struct kevent change
= {0};
905 EV_SET(&change
, handle
, EVFILT_PROC
, EV_ADD
, NOTE_EXIT
, 0, NULL
);
906 int result
= HANDLE_EINTR(kevent(kq
, &change
, 1, NULL
, 0, NULL
));
908 if (errno
== ESRCH
) {
909 // If the process wasn't found, it must be dead.
913 DPLOG(ERROR
) << "kevent (setup " << handle
<< ")";
917 // Keep track of the elapsed time to be able to restart kevent if it's
919 bool wait_forever
= wait_milliseconds
== base::kNoTimeout
;
920 base::TimeDelta remaining_delta
;
923 remaining_delta
= base::TimeDelta::FromMilliseconds(wait_milliseconds
);
924 deadline
= base::Time::Now() + remaining_delta
;
928 struct kevent event
= {0};
930 while (wait_forever
|| remaining_delta
.InMilliseconds() > 0) {
931 struct timespec remaining_timespec
;
932 struct timespec
* remaining_timespec_ptr
;
934 remaining_timespec_ptr
= NULL
;
936 remaining_timespec
= remaining_delta
.ToTimeSpec();
937 remaining_timespec_ptr
= &remaining_timespec
;
940 result
= kevent(kq
, NULL
, 0, &event
, 1, remaining_timespec_ptr
);
942 if (result
== -1 && errno
== EINTR
) {
944 remaining_delta
= deadline
- base::Time::Now();
953 DPLOG(ERROR
) << "kevent (wait " << handle
<< ")";
955 } else if (result
> 1) {
956 DLOG(ERROR
) << "kevent (wait " << handle
<< "): unexpected result "
959 } else if (result
== 0) {
964 DCHECK_EQ(result
, 1);
966 if (event
.filter
!= EVFILT_PROC
||
967 (event
.fflags
& NOTE_EXIT
) == 0 ||
968 event
.ident
!= static_cast<uintptr_t>(handle
)) {
969 DLOG(ERROR
) << "kevent (wait " << handle
970 << "): unexpected event: filter=" << event
.filter
971 << ", fflags=" << event
.fflags
972 << ", ident=" << event
.ident
;
980 bool WaitForSingleProcess(ProcessHandle handle
, int64 wait_milliseconds
) {
981 ProcessHandle parent_pid
= GetParentProcessId(handle
);
982 ProcessHandle our_pid
= Process::Current().handle();
983 if (parent_pid
!= our_pid
) {
984 #if defined(OS_MACOSX)
985 // On Mac we can wait on non child processes.
986 return WaitForSingleNonChildProcess(handle
, wait_milliseconds
);
988 // Currently on Linux we can't handle non child processes.
993 bool waitpid_success
;
995 if (wait_milliseconds
== base::kNoTimeout
)
996 waitpid_success
= (HANDLE_EINTR(waitpid(handle
, &status
, 0)) != -1);
998 status
= WaitpidWithTimeout(handle
, wait_milliseconds
, &waitpid_success
);
1001 DCHECK(waitpid_success
);
1002 return WIFEXITED(status
);
1008 int64
TimeValToMicroseconds(const struct timeval
& tv
) {
1009 static const int kMicrosecondsPerSecond
= 1000000;
1010 int64 ret
= tv
.tv_sec
; // Avoid (int * int) integer overflow.
1011 ret
*= kMicrosecondsPerSecond
;
1016 // Return value used by GetAppOutputInternal to encapsulate the various exit
1017 // scenarios from the function.
1018 enum GetAppOutputInternalResult
{
1024 // Executes the application specified by |cl| and wait for it to exit. Stores
1025 // the output (stdout) in |output|. If |do_search_path| is set, it searches the
1026 // path for the application; in that case, |envp| must be null, and it will use
1027 // the current environment. If |do_search_path| is false, |cl| should fully
1028 // specify the path of the application, and |envp| will be used as the
1029 // environment. Redirects stderr to /dev/null.
1030 // If we successfully start the application and get all requested output, we
1031 // return GOT_MAX_OUTPUT, or if there is a problem starting or exiting
1032 // the application we return RUN_FAILURE. Otherwise we return EXECUTE_SUCCESS.
1033 // The GOT_MAX_OUTPUT return value exists so a caller that asks for limited
1034 // output can treat this as a success, despite having an exit code of SIG_PIPE
1035 // due to us closing the output pipe.
1036 // In the case of EXECUTE_SUCCESS, the application exit code will be returned
1037 // in |*exit_code|, which should be checked to determine if the application
1038 // ran successfully.
1039 static GetAppOutputInternalResult
GetAppOutputInternal(const CommandLine
& cl
,
1041 std::string
* output
,
1043 bool do_search_path
,
1045 // Doing a blocking wait for another command to finish counts as IO.
1046 base::ThreadRestrictions::AssertIOAllowed();
1047 // exit_code must be supplied so calling function can determine success.
1049 *exit_code
= EXIT_FAILURE
;
1053 InjectiveMultimap fd_shuffle1
, fd_shuffle2
;
1054 const std::vector
<std::string
>& argv
= cl
.argv();
1055 scoped_array
<char*> argv_cstr(new char*[argv
.size() + 1]);
1057 fd_shuffle1
.reserve(3);
1058 fd_shuffle2
.reserve(3);
1060 // Either |do_search_path| should be false or |envp| should be null, but not
1062 DCHECK(!do_search_path
^ !envp
);
1064 if (pipe(pipe_fd
) < 0)
1065 return EXECUTE_FAILURE
;
1067 switch (pid
= fork()) {
1071 return EXECUTE_FAILURE
;
1074 #if defined(OS_MACOSX)
1075 RestoreDefaultExceptionHandler();
1077 // DANGER: no calls to malloc are allowed from now on:
1078 // http://crbug.com/36678
1080 // Obscure fork() rule: in the child, if you don't end up doing exec*(),
1081 // you call _exit() instead of exit(). This is because _exit() does not
1082 // call any previously-registered (in the parent) exit handlers, which
1083 // might do things like block waiting for threads that don't even exist
1085 int dev_null
= open("/dev/null", O_WRONLY
);
1089 fd_shuffle1
.push_back(InjectionArc(pipe_fd
[1], STDOUT_FILENO
, true));
1090 fd_shuffle1
.push_back(InjectionArc(dev_null
, STDERR_FILENO
, true));
1091 fd_shuffle1
.push_back(InjectionArc(dev_null
, STDIN_FILENO
, true));
1092 // Adding another element here? Remeber to increase the argument to
1093 // reserve(), above.
1095 std::copy(fd_shuffle1
.begin(), fd_shuffle1
.end(),
1096 std::back_inserter(fd_shuffle2
));
1098 if (!ShuffleFileDescriptors(&fd_shuffle1
))
1101 CloseSuperfluousFds(fd_shuffle2
);
1103 for (size_t i
= 0; i
< argv
.size(); i
++)
1104 argv_cstr
[i
] = const_cast<char*>(argv
[i
].c_str());
1105 argv_cstr
[argv
.size()] = NULL
;
1107 execvp(argv_cstr
[0], argv_cstr
.get());
1109 execve(argv_cstr
[0], argv_cstr
.get(), envp
);
1114 // Close our writing end of pipe now. Otherwise later read would not
1115 // be able to detect end of child's output (in theory we could still
1116 // write to the pipe).
1121 size_t output_buf_left
= max_output
;
1122 ssize_t bytes_read
= 1; // A lie to properly handle |max_output == 0|
1123 // case in the logic below.
1125 while (output_buf_left
> 0) {
1126 bytes_read
= HANDLE_EINTR(read(pipe_fd
[0], buffer
,
1127 std::min(output_buf_left
, sizeof(buffer
))));
1128 if (bytes_read
<= 0)
1130 output
->append(buffer
, bytes_read
);
1131 output_buf_left
-= static_cast<size_t>(bytes_read
);
1135 // Always wait for exit code (even if we know we'll declare
1137 bool success
= WaitForExitCode(pid
, exit_code
);
1139 // If we stopped because we read as much as we wanted, we return
1140 // GOT_MAX_OUTPUT (because the child may exit due to |SIGPIPE|).
1141 if (!output_buf_left
&& bytes_read
> 0)
1142 return GOT_MAX_OUTPUT
;
1144 return EXECUTE_SUCCESS
;
1145 return EXECUTE_FAILURE
;
1150 bool GetAppOutput(const CommandLine
& cl
, std::string
* output
) {
1151 // Run |execve()| with the current environment and store "unlimited" data.
1153 GetAppOutputInternalResult result
= GetAppOutputInternal(
1154 cl
, NULL
, output
, std::numeric_limits
<std::size_t>::max(), true,
1156 return result
== EXECUTE_SUCCESS
&& exit_code
== EXIT_SUCCESS
;
1159 // TODO(viettrungluu): Conceivably, we should have a timeout as well, so we
1160 // don't hang if what we're calling hangs.
1161 bool GetAppOutputRestricted(const CommandLine
& cl
,
1162 std::string
* output
, size_t max_output
) {
1163 // Run |execve()| with the empty environment.
1164 char* const empty_environ
= NULL
;
1166 GetAppOutputInternalResult result
= GetAppOutputInternal(cl
, &empty_environ
,
1169 return result
== GOT_MAX_OUTPUT
|| (result
== EXECUTE_SUCCESS
&&
1170 exit_code
== EXIT_SUCCESS
);
1173 bool GetAppOutputWithExitCode(const CommandLine
& cl
,
1174 std::string
* output
,
1176 // Run |execve()| with the current environment and store "unlimited" data.
1177 GetAppOutputInternalResult result
= GetAppOutputInternal(
1178 cl
, NULL
, output
, std::numeric_limits
<std::size_t>::max(), true,
1180 return result
== EXECUTE_SUCCESS
;
1183 bool WaitForProcessesToExit(const FilePath::StringType
& executable_name
,
1184 int64 wait_milliseconds
,
1185 const ProcessFilter
* filter
) {
1186 bool result
= false;
1188 // TODO(port): This is inefficient, but works if there are multiple procs.
1189 // TODO(port): use waitpid to avoid leaving zombies around
1191 base::Time end_time
= base::Time::Now() +
1192 base::TimeDelta::FromMilliseconds(wait_milliseconds
);
1194 NamedProcessIterator
iter(executable_name
, filter
);
1195 if (!iter
.NextProcessEntry()) {
1199 base::PlatformThread::Sleep(base::TimeDelta::FromMilliseconds(100));
1200 } while ((end_time
- base::Time::Now()) > base::TimeDelta());
1205 bool CleanupProcesses(const FilePath::StringType
& executable_name
,
1206 int64 wait_milliseconds
,
1208 const ProcessFilter
* filter
) {
1209 bool exited_cleanly
=
1210 WaitForProcessesToExit(executable_name
, wait_milliseconds
,
1212 if (!exited_cleanly
)
1213 KillProcesses(executable_name
, exit_code
, filter
);
1214 return exited_cleanly
;
1217 #if !defined(OS_MACOSX)
1221 // Return true if the given child is dead. This will also reap the process.
1223 static bool IsChildDead(pid_t child
) {
1224 const pid_t result
= HANDLE_EINTR(waitpid(child
, NULL
, WNOHANG
));
1226 DPLOG(ERROR
) << "waitpid(" << child
<< ")";
1228 } else if (result
> 0) {
1229 // The child has died.
1236 // A thread class which waits for the given child to exit and reaps it.
1237 // If the child doesn't exit within a couple of seconds, kill it.
1238 class BackgroundReaper
: public PlatformThread::Delegate
{
1240 BackgroundReaper(pid_t child
, unsigned timeout
)
1246 WaitForChildToDie();
1250 void WaitForChildToDie() {
1251 // Wait forever case.
1252 if (timeout_
== 0) {
1253 pid_t r
= HANDLE_EINTR(waitpid(child_
, NULL
, 0));
1255 DPLOG(ERROR
) << "While waiting for " << child_
1256 << " to terminate, we got the following result: " << r
;
1261 // There's no good way to wait for a specific child to exit in a timed
1262 // fashion. (No kqueue on Linux), so we just loop and sleep.
1264 // Wait for 2 * timeout_ 500 milliseconds intervals.
1265 for (unsigned i
= 0; i
< 2 * timeout_
; ++i
) {
1266 PlatformThread::Sleep(TimeDelta::FromMilliseconds(500));
1267 if (IsChildDead(child_
))
1271 if (kill(child_
, SIGKILL
) == 0) {
1272 // SIGKILL is uncatchable. Since the signal was delivered, we can
1273 // just wait for the process to die now in a blocking manner.
1274 if (HANDLE_EINTR(waitpid(child_
, NULL
, 0)) < 0)
1275 DPLOG(WARNING
) << "waitpid";
1277 DLOG(ERROR
) << "While waiting for " << child_
<< " to terminate we"
1278 << " failed to deliver a SIGKILL signal (" << errno
<< ").";
1284 // Number of seconds to wait, if 0 then wait forever and do not attempt to
1286 const unsigned timeout_
;
1288 DISALLOW_COPY_AND_ASSIGN(BackgroundReaper
);
1293 void EnsureProcessTerminated(ProcessHandle process
) {
1294 // If the child is already dead, then there's nothing to do.
1295 if (IsChildDead(process
))
1298 const unsigned timeout
= 2; // seconds
1299 BackgroundReaper
* reaper
= new BackgroundReaper(process
, timeout
);
1300 PlatformThread::CreateNonJoinable(0, reaper
);
1303 void EnsureProcessGetsReaped(ProcessHandle process
) {
1304 // If the child is already dead, then there's nothing to do.
1305 if (IsChildDead(process
))
1308 BackgroundReaper
* reaper
= new BackgroundReaper(process
, 0);
1309 PlatformThread::CreateNonJoinable(0, reaper
);
1312 #endif // !defined(OS_MACOSX)