1 // Copyright (c) 2010 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #ifndef BASE_STACK_CONTAINER_H_
6 #define BASE_STACK_CONTAINER_H_
12 #include "base/basictypes.h"
14 // This allocator can be used with STL containers to provide a stack buffer
15 // from which to allocate memory and overflows onto the heap. This stack buffer
16 // would be allocated on the stack and allows us to avoid heap operations in
19 // STL likes to make copies of allocators, so the allocator itself can't hold
20 // the data. Instead, we make the creator responsible for creating a
21 // StackAllocator::Source which contains the data. Copying the allocator
22 // merely copies the pointer to this shared source, so all allocators created
23 // based on our allocator will share the same stack buffer.
25 // This stack buffer implementation is very simple. The first allocation that
26 // fits in the stack buffer will use the stack buffer. Any subsequent
27 // allocations will not use the stack buffer, even if there is unused room.
28 // This makes it appropriate for array-like containers, but the caller should
29 // be sure to reserve() in the container up to the stack buffer size. Otherwise
30 // the container will allocate a small array which will "use up" the stack
32 template<typename T
, size_t stack_capacity
>
33 class StackAllocator
: public std::allocator
<T
> {
35 typedef typename
std::allocator
<T
>::pointer pointer
;
36 typedef typename
std::allocator
<T
>::size_type size_type
;
38 // Backing store for the allocator. The container owner is responsible for
39 // maintaining this for as long as any containers using this allocator are
42 Source() : used_stack_buffer_(false) {
45 // Casts the buffer in its right type.
46 T
* stack_buffer() { return reinterpret_cast<T
*>(stack_buffer_
); }
47 const T
* stack_buffer() const {
48 return reinterpret_cast<const T
*>(stack_buffer_
);
52 // IMPORTANT: Take care to ensure that stack_buffer_ is aligned
53 // since it is used to mimic an array of T.
54 // Be careful while declaring any unaligned types (like bool)
55 // before stack_buffer_.
58 // The buffer itself. It is not of type T because we don't want the
59 // constructors and destructors to be automatically called. Define a POD
60 // buffer of the right size instead.
61 char stack_buffer_
[sizeof(T
[stack_capacity
])];
63 // Set when the stack buffer is used for an allocation. We do not track
64 // how much of the buffer is used, only that somebody is using it.
65 bool used_stack_buffer_
;
68 // Used by containers when they want to refer to an allocator of type U.
71 typedef StackAllocator
<U
, stack_capacity
> other
;
74 // For the straight up copy c-tor, we can share storage.
75 StackAllocator(const StackAllocator
<T
, stack_capacity
>& rhs
)
76 : std::allocator
<T
>(), source_(rhs
.source_
) {
79 // ISO C++ requires the following constructor to be defined,
80 // and std::vector in VC++2008SP1 Release fails with an error
81 // in the class _Container_base_aux_alloc_real (from <xutility>)
82 // if the constructor does not exist.
83 // For this constructor, we cannot share storage; there's
84 // no guarantee that the Source buffer of Ts is large enough
86 // TODO: If we were fancy pants, perhaps we could share storage
87 // iff sizeof(T) == sizeof(U).
88 template<typename U
, size_t other_capacity
>
89 StackAllocator(const StackAllocator
<U
, other_capacity
>& other
)
93 explicit StackAllocator(Source
* source
) : source_(source
) {
96 // Actually do the allocation. Use the stack buffer if nobody has used it yet
97 // and the size requested fits. Otherwise, fall through to the standard
99 pointer
allocate(size_type n
, void* hint
= 0) {
100 if (source_
!= NULL
&& !source_
->used_stack_buffer_
101 && n
<= stack_capacity
) {
102 source_
->used_stack_buffer_
= true;
103 return source_
->stack_buffer();
105 return std::allocator
<T
>::allocate(n
, hint
);
109 // Free: when trying to free the stack buffer, just mark it as free. For
110 // non-stack-buffer pointers, just fall though to the standard allocator.
111 void deallocate(pointer p
, size_type n
) {
112 if (source_
!= NULL
&& p
== source_
->stack_buffer())
113 source_
->used_stack_buffer_
= false;
115 std::allocator
<T
>::deallocate(p
, n
);
122 // A wrapper around STL containers that maintains a stack-sized buffer that the
123 // initial capacity of the vector is based on. Growing the container beyond the
124 // stack capacity will transparently overflow onto the heap. The container must
125 // support reserve().
127 // WATCH OUT: the ContainerType MUST use the proper StackAllocator for this
128 // type. This object is really intended to be used only internally. You'll want
129 // to use the wrappers below for different types.
130 template<typename TContainerType
, int stack_capacity
>
131 class StackContainer
{
133 typedef TContainerType ContainerType
;
134 typedef typename
ContainerType::value_type ContainedType
;
135 typedef StackAllocator
<ContainedType
, stack_capacity
> Allocator
;
137 // Allocator must be constructed before the container!
138 StackContainer() : allocator_(&stack_data_
), container_(allocator_
) {
139 // Make the container use the stack allocation by reserving our buffer size
140 // before doing anything else.
141 container_
.reserve(stack_capacity
);
144 // Getters for the actual container.
146 // Danger: any copies of this made using the copy constructor must have
147 // shorter lifetimes than the source. The copy will share the same allocator
148 // and therefore the same stack buffer as the original. Use std::copy to
149 // copy into a "real" container for longer-lived objects.
150 ContainerType
& container() { return container_
; }
151 const ContainerType
& container() const { return container_
; }
153 // Support operator-> to get to the container. This allows nicer syntax like:
154 // StackContainer<...> foo;
155 // std::sort(foo->begin(), foo->end());
156 ContainerType
* operator->() { return &container_
; }
157 const ContainerType
* operator->() const { return &container_
; }
160 // Retrieves the stack source so that that unit tests can verify that the
161 // buffer is being used properly.
162 const typename
Allocator::Source
& stack_data() const {
168 typename
Allocator::Source stack_data_
;
169 Allocator allocator_
;
170 ContainerType container_
;
172 DISALLOW_COPY_AND_ASSIGN(StackContainer
);
176 template<size_t stack_capacity
>
177 class StackString
: public StackContainer
<
178 std::basic_string
<char,
179 std::char_traits
<char>,
180 StackAllocator
<char, stack_capacity
> >,
183 StackString() : StackContainer
<
184 std::basic_string
<char,
185 std::char_traits
<char>,
186 StackAllocator
<char, stack_capacity
> >,
191 DISALLOW_COPY_AND_ASSIGN(StackString
);
195 template<size_t stack_capacity
>
196 class StackWString
: public StackContainer
<
197 std::basic_string
<wchar_t,
198 std::char_traits
<wchar_t>,
199 StackAllocator
<wchar_t, stack_capacity
> >,
202 StackWString() : StackContainer
<
203 std::basic_string
<wchar_t,
204 std::char_traits
<wchar_t>,
205 StackAllocator
<wchar_t, stack_capacity
> >,
210 DISALLOW_COPY_AND_ASSIGN(StackWString
);
216 // StackVector<int, 16> foo;
217 // foo->push_back(22); // we have overloaded operator->
218 // foo[0] = 10; // as well as operator[]
219 template<typename T
, size_t stack_capacity
>
220 class StackVector
: public StackContainer
<
221 std::vector
<T
, StackAllocator
<T
, stack_capacity
> >,
224 StackVector() : StackContainer
<
225 std::vector
<T
, StackAllocator
<T
, stack_capacity
> >,
229 // We need to put this in STL containers sometimes, which requires a copy
230 // constructor. We can't call the regular copy constructor because that will
231 // take the stack buffer from the original. Here, we create an empty object
232 // and make a stack buffer of its own.
233 StackVector(const StackVector
<T
, stack_capacity
>& other
)
235 std::vector
<T
, StackAllocator
<T
, stack_capacity
> >,
237 this->container().assign(other
->begin(), other
->end());
240 StackVector
<T
, stack_capacity
>& operator=(
241 const StackVector
<T
, stack_capacity
>& other
) {
242 this->container().assign(other
->begin(), other
->end());
246 // Vectors are commonly indexed, which isn't very convenient even with
247 // operator-> (using "->at()" does exception stuff we don't want).
248 T
& operator[](size_t i
) { return this->container().operator[](i
); }
249 const T
& operator[](size_t i
) const {
250 return this->container().operator[](i
);
254 #endif // BASE_STACK_CONTAINER_H_