1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 // MSVC++ requires this to be set before any other includes to get M_PI.
6 #define _USE_MATH_DEFINES
10 #include "base/bind.h"
11 #include "base/bind_helpers.h"
12 #include "base/strings/string_number_conversions.h"
13 #include "base/time/time.h"
14 #include "build/build_config.h"
15 #include "media/base/sinc_resampler.h"
16 #include "testing/gmock/include/gmock/gmock.h"
17 #include "testing/gtest/include/gtest/gtest.h"
23 static const double kSampleRateRatio
= 192000.0 / 44100.0;
25 // Helper class to ensure ChunkedResample() functions properly.
28 MOCK_METHOD2(ProvideInput
, void(int frames
, float* destination
));
32 memset(arg1
, 0, arg0
* sizeof(float));
36 // Value chosen arbitrarily such that SincResampler resamples it to something
37 // easily representable on all platforms; e.g., using kSampleRateRatio this
39 memset(arg1
, 64, arg0
* sizeof(float));
42 // Test requesting multiples of ChunkSize() frames results in the proper number
44 TEST(SincResamplerTest
, ChunkedResample
) {
45 MockSource mock_source
;
47 // Choose a high ratio of input to output samples which will result in quick
48 // exhaustion of SincResampler's internal buffers.
49 SincResampler
resampler(
50 kSampleRateRatio
, SincResampler::kDefaultRequestSize
,
51 base::Bind(&MockSource::ProvideInput
, base::Unretained(&mock_source
)));
53 static const int kChunks
= 2;
54 int max_chunk_size
= resampler
.ChunkSize() * kChunks
;
55 scoped_ptr
<float[]> resampled_destination(new float[max_chunk_size
]);
57 // Verify requesting ChunkSize() frames causes a single callback.
58 EXPECT_CALL(mock_source
, ProvideInput(_
, _
))
59 .Times(1).WillOnce(ClearBuffer());
60 resampler
.Resample(resampler
.ChunkSize(), resampled_destination
.get());
62 // Verify requesting kChunks * ChunkSize() frames causes kChunks callbacks.
63 testing::Mock::VerifyAndClear(&mock_source
);
64 EXPECT_CALL(mock_source
, ProvideInput(_
, _
))
65 .Times(kChunks
).WillRepeatedly(ClearBuffer());
66 resampler
.Resample(max_chunk_size
, resampled_destination
.get());
69 // Verify priming the resampler avoids changes to ChunkSize() between calls.
70 TEST(SincResamplerTest
, PrimedResample
) {
71 MockSource mock_source
;
73 // Choose a high ratio of input to output samples which will result in quick
74 // exhaustion of SincResampler's internal buffers.
75 SincResampler
resampler(
76 kSampleRateRatio
, SincResampler::kDefaultRequestSize
,
77 base::Bind(&MockSource::ProvideInput
, base::Unretained(&mock_source
)));
79 // Verify the priming adjusts the chunk size within reasonable limits.
80 const int first_chunk_size
= resampler
.ChunkSize();
81 resampler
.PrimeWithSilence();
82 const int max_chunk_size
= resampler
.ChunkSize();
84 EXPECT_NE(first_chunk_size
, max_chunk_size
);
87 static_cast<int>(first_chunk_size
+ std::ceil(SincResampler::kKernelSize
/
88 (2 * kSampleRateRatio
))));
90 // Verify Flush() resets to an unprimed state.
92 EXPECT_EQ(first_chunk_size
, resampler
.ChunkSize());
93 resampler
.PrimeWithSilence();
94 EXPECT_EQ(max_chunk_size
, resampler
.ChunkSize());
96 const int kChunks
= 2;
97 const int kMaxFrames
= max_chunk_size
* kChunks
;
98 scoped_ptr
<float[]> resampled_destination(new float[kMaxFrames
]);
100 // Verify requesting ChunkSize() frames causes a single callback.
101 EXPECT_CALL(mock_source
, ProvideInput(_
, _
))
102 .Times(1).WillOnce(ClearBuffer());
103 resampler
.Resample(max_chunk_size
, resampled_destination
.get());
104 EXPECT_EQ(max_chunk_size
, resampler
.ChunkSize());
106 // Verify requesting kChunks * ChunkSize() frames causes kChunks callbacks.
107 testing::Mock::VerifyAndClear(&mock_source
);
108 EXPECT_CALL(mock_source
, ProvideInput(_
, _
))
109 .Times(kChunks
).WillRepeatedly(ClearBuffer());
110 resampler
.Resample(kMaxFrames
, resampled_destination
.get());
111 EXPECT_EQ(max_chunk_size
, resampler
.ChunkSize());
114 // Test flush resets the internal state properly.
115 TEST(SincResamplerTest
, Flush
) {
116 MockSource mock_source
;
117 SincResampler
resampler(
118 kSampleRateRatio
, SincResampler::kDefaultRequestSize
,
119 base::Bind(&MockSource::ProvideInput
, base::Unretained(&mock_source
)));
120 scoped_ptr
<float[]> resampled_destination(new float[resampler
.ChunkSize()]);
122 // Fill the resampler with junk data.
123 EXPECT_CALL(mock_source
, ProvideInput(_
, _
))
124 .Times(1).WillOnce(FillBuffer());
125 resampler
.Resample(resampler
.ChunkSize() / 2, resampled_destination
.get());
126 ASSERT_NE(resampled_destination
[0], 0);
128 // Flush and request more data, which should all be zeros now.
130 testing::Mock::VerifyAndClear(&mock_source
);
131 EXPECT_CALL(mock_source
, ProvideInput(_
, _
))
132 .Times(1).WillOnce(ClearBuffer());
133 resampler
.Resample(resampler
.ChunkSize() / 2, resampled_destination
.get());
134 for (int i
= 0; i
< resampler
.ChunkSize() / 2; ++i
)
135 ASSERT_FLOAT_EQ(resampled_destination
[i
], 0);
138 TEST(SincResamplerTest
, DISABLED_SetRatioBench
) {
139 MockSource mock_source
;
140 SincResampler
resampler(
141 kSampleRateRatio
, SincResampler::kDefaultRequestSize
,
142 base::Bind(&MockSource::ProvideInput
, base::Unretained(&mock_source
)));
144 base::TimeTicks start
= base::TimeTicks::Now();
145 for (int i
= 1; i
< 10000; ++i
)
146 resampler
.SetRatio(1.0 / i
);
147 double total_time_c_ms
= (base::TimeTicks::Now() - start
).InMillisecondsF();
148 printf("SetRatio() took %.2fms.\n", total_time_c_ms
);
152 // Define platform independent function name for Convolve* tests.
153 #if defined(ARCH_CPU_X86_FAMILY)
154 #define CONVOLVE_FUNC Convolve_SSE
155 #elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
156 #define CONVOLVE_FUNC Convolve_NEON
159 // Ensure various optimized Convolve() methods return the same value. Only run
160 // this test if other optimized methods exist, otherwise the default Convolve()
161 // will be tested by the parameterized SincResampler tests below.
162 #if defined(CONVOLVE_FUNC)
163 static const double kKernelInterpolationFactor
= 0.5;
165 TEST(SincResamplerTest
, Convolve
) {
166 // Initialize a dummy resampler.
167 MockSource mock_source
;
168 SincResampler
resampler(
169 kSampleRateRatio
, SincResampler::kDefaultRequestSize
,
170 base::Bind(&MockSource::ProvideInput
, base::Unretained(&mock_source
)));
172 // The optimized Convolve methods are slightly more precise than Convolve_C(),
173 // so comparison must be done using an epsilon.
174 static const double kEpsilon
= 0.00000005;
176 // Use a kernel from SincResampler as input and kernel data, this has the
177 // benefit of already being properly sized and aligned for Convolve_SSE().
178 double result
= resampler
.Convolve_C(
179 resampler
.kernel_storage_
.get(), resampler
.kernel_storage_
.get(),
180 resampler
.kernel_storage_
.get(), kKernelInterpolationFactor
);
181 double result2
= resampler
.CONVOLVE_FUNC(
182 resampler
.kernel_storage_
.get(), resampler
.kernel_storage_
.get(),
183 resampler
.kernel_storage_
.get(), kKernelInterpolationFactor
);
184 EXPECT_NEAR(result2
, result
, kEpsilon
);
186 // Test Convolve() w/ unaligned input pointer.
187 result
= resampler
.Convolve_C(
188 resampler
.kernel_storage_
.get() + 1, resampler
.kernel_storage_
.get(),
189 resampler
.kernel_storage_
.get(), kKernelInterpolationFactor
);
190 result2
= resampler
.CONVOLVE_FUNC(
191 resampler
.kernel_storage_
.get() + 1, resampler
.kernel_storage_
.get(),
192 resampler
.kernel_storage_
.get(), kKernelInterpolationFactor
);
193 EXPECT_NEAR(result2
, result
, kEpsilon
);
197 // Fake audio source for testing the resampler. Generates a sinusoidal linear
198 // chirp (http://en.wikipedia.org/wiki/Chirp) which can be tuned to stress the
199 // resampler for the specific sample rate conversion being used.
200 class SinusoidalLinearChirpSource
{
202 SinusoidalLinearChirpSource(int sample_rate
,
204 double max_frequency
)
205 : sample_rate_(sample_rate
),
206 total_samples_(samples
),
207 max_frequency_(max_frequency
),
210 double duration
= static_cast<double>(total_samples_
) / sample_rate_
;
211 k_
= (max_frequency_
- kMinFrequency
) / duration
;
214 virtual ~SinusoidalLinearChirpSource() {}
216 void ProvideInput(int frames
, float* destination
) {
217 for (int i
= 0; i
< frames
; ++i
, ++current_index_
) {
218 // Filter out frequencies higher than Nyquist.
219 if (Frequency(current_index_
) > 0.5 * sample_rate_
) {
222 // Calculate time in seconds.
223 double t
= static_cast<double>(current_index_
) / sample_rate_
;
225 // Sinusoidal linear chirp.
226 destination
[i
] = sin(2 * M_PI
* (kMinFrequency
* t
+ (k_
/ 2) * t
* t
));
231 double Frequency(int position
) {
232 return kMinFrequency
+ position
* (max_frequency_
- kMinFrequency
)
243 double max_frequency_
;
247 DISALLOW_COPY_AND_ASSIGN(SinusoidalLinearChirpSource
);
250 typedef std::tr1::tuple
<int, int, double, double> SincResamplerTestData
;
251 class SincResamplerTest
252 : public testing::TestWithParam
<SincResamplerTestData
> {
255 : input_rate_(std::tr1::get
<0>(GetParam())),
256 output_rate_(std::tr1::get
<1>(GetParam())),
257 rms_error_(std::tr1::get
<2>(GetParam())),
258 low_freq_error_(std::tr1::get
<3>(GetParam())) {
261 virtual ~SincResamplerTest() {}
267 double low_freq_error_
;
270 // Tests resampling using a given input and output sample rate.
271 TEST_P(SincResamplerTest
, Resample
) {
272 // Make comparisons using one second of data.
273 static const double kTestDurationSecs
= 1;
274 int input_samples
= kTestDurationSecs
* input_rate_
;
275 int output_samples
= kTestDurationSecs
* output_rate_
;
277 // Nyquist frequency for the input sampling rate.
278 double input_nyquist_freq
= 0.5 * input_rate_
;
280 // Source for data to be resampled.
281 SinusoidalLinearChirpSource
resampler_source(
282 input_rate_
, input_samples
, input_nyquist_freq
);
284 const double io_ratio
= input_rate_
/ static_cast<double>(output_rate_
);
285 SincResampler
resampler(
286 io_ratio
, SincResampler::kDefaultRequestSize
,
287 base::Bind(&SinusoidalLinearChirpSource::ProvideInput
,
288 base::Unretained(&resampler_source
)));
290 // Force an update to the sample rate ratio to ensure dyanmic sample rate
291 // changes are working correctly.
292 scoped_ptr
<float[]> kernel(new float[SincResampler::kKernelStorageSize
]);
293 memcpy(kernel
.get(), resampler
.get_kernel_for_testing(),
294 SincResampler::kKernelStorageSize
);
295 resampler
.SetRatio(M_PI
);
296 ASSERT_NE(0, memcmp(kernel
.get(), resampler
.get_kernel_for_testing(),
297 SincResampler::kKernelStorageSize
));
298 resampler
.SetRatio(io_ratio
);
299 ASSERT_EQ(0, memcmp(kernel
.get(), resampler
.get_kernel_for_testing(),
300 SincResampler::kKernelStorageSize
));
302 // TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to
303 // allocate these on 32-byte boundaries and ensure they're sized % 32 bytes.
304 scoped_ptr
<float[]> resampled_destination(new float[output_samples
]);
305 scoped_ptr
<float[]> pure_destination(new float[output_samples
]);
307 // Generate resampled signal.
308 resampler
.Resample(output_samples
, resampled_destination
.get());
310 // Generate pure signal.
311 SinusoidalLinearChirpSource
pure_source(
312 output_rate_
, output_samples
, input_nyquist_freq
);
313 pure_source
.ProvideInput(output_samples
, pure_destination
.get());
315 // Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which
316 // we refer to as low and high.
317 static const double kLowFrequencyNyquistRange
= 0.7;
318 static const double kHighFrequencyNyquistRange
= 0.9;
320 // Calculate Root-Mean-Square-Error and maximum error for the resampling.
321 double sum_of_squares
= 0;
322 double low_freq_max_error
= 0;
323 double high_freq_max_error
= 0;
324 int minimum_rate
= std::min(input_rate_
, output_rate_
);
325 double low_frequency_range
= kLowFrequencyNyquistRange
* 0.5 * minimum_rate
;
326 double high_frequency_range
= kHighFrequencyNyquistRange
* 0.5 * minimum_rate
;
327 for (int i
= 0; i
< output_samples
; ++i
) {
328 double error
= fabs(resampled_destination
[i
] - pure_destination
[i
]);
330 if (pure_source
.Frequency(i
) < low_frequency_range
) {
331 if (error
> low_freq_max_error
)
332 low_freq_max_error
= error
;
333 } else if (pure_source
.Frequency(i
) < high_frequency_range
) {
334 if (error
> high_freq_max_error
)
335 high_freq_max_error
= error
;
337 // TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange.
339 sum_of_squares
+= error
* error
;
342 double rms_error
= sqrt(sum_of_squares
/ output_samples
);
344 // Convert each error to dbFS.
345 #define DBFS(x) 20 * log10(x)
346 rms_error
= DBFS(rms_error
);
347 low_freq_max_error
= DBFS(low_freq_max_error
);
348 high_freq_max_error
= DBFS(high_freq_max_error
);
350 EXPECT_LE(rms_error
, rms_error_
);
351 EXPECT_LE(low_freq_max_error
, low_freq_error_
);
353 // All conversions currently have a high frequency error around -6 dbFS.
354 static const double kHighFrequencyMaxError
= -6.02;
355 EXPECT_LE(high_freq_max_error
, kHighFrequencyMaxError
);
358 // Almost all conversions have an RMS error of around -14 dbFS.
359 static const double kResamplingRMSError
= -14.58;
361 // Thresholds chosen arbitrarily based on what each resampling reported during
362 // testing. All thresholds are in dbFS, http://en.wikipedia.org/wiki/DBFS.
363 INSTANTIATE_TEST_CASE_P(
364 SincResamplerTest
, SincResamplerTest
, testing::Values(
366 std::tr1::make_tuple(8000, 44100, kResamplingRMSError
, -62.73),
367 std::tr1::make_tuple(11025, 44100, kResamplingRMSError
, -72.19),
368 std::tr1::make_tuple(16000, 44100, kResamplingRMSError
, -62.54),
369 std::tr1::make_tuple(22050, 44100, kResamplingRMSError
, -73.53),
370 std::tr1::make_tuple(32000, 44100, kResamplingRMSError
, -63.32),
371 std::tr1::make_tuple(44100, 44100, kResamplingRMSError
, -73.53),
372 std::tr1::make_tuple(48000, 44100, -15.01, -64.04),
373 std::tr1::make_tuple(96000, 44100, -18.49, -25.51),
374 std::tr1::make_tuple(192000, 44100, -20.50, -13.31),
377 std::tr1::make_tuple(8000, 48000, kResamplingRMSError
, -63.43),
378 std::tr1::make_tuple(11025, 48000, kResamplingRMSError
, -62.61),
379 std::tr1::make_tuple(16000, 48000, kResamplingRMSError
, -63.96),
380 std::tr1::make_tuple(22050, 48000, kResamplingRMSError
, -62.42),
381 std::tr1::make_tuple(32000, 48000, kResamplingRMSError
, -64.04),
382 std::tr1::make_tuple(44100, 48000, kResamplingRMSError
, -62.63),
383 std::tr1::make_tuple(48000, 48000, kResamplingRMSError
, -73.52),
384 std::tr1::make_tuple(96000, 48000, -18.40, -28.44),
385 std::tr1::make_tuple(192000, 48000, -20.43, -14.11),
388 std::tr1::make_tuple(8000, 96000, kResamplingRMSError
, -63.19),
389 std::tr1::make_tuple(11025, 96000, kResamplingRMSError
, -62.61),
390 std::tr1::make_tuple(16000, 96000, kResamplingRMSError
, -63.39),
391 std::tr1::make_tuple(22050, 96000, kResamplingRMSError
, -62.42),
392 std::tr1::make_tuple(32000, 96000, kResamplingRMSError
, -63.95),
393 std::tr1::make_tuple(44100, 96000, kResamplingRMSError
, -62.63),
394 std::tr1::make_tuple(48000, 96000, kResamplingRMSError
, -73.52),
395 std::tr1::make_tuple(96000, 96000, kResamplingRMSError
, -73.52),
396 std::tr1::make_tuple(192000, 96000, kResamplingRMSError
, -28.41),
399 std::tr1::make_tuple(8000, 192000, kResamplingRMSError
, -63.10),
400 std::tr1::make_tuple(11025, 192000, kResamplingRMSError
, -62.61),
401 std::tr1::make_tuple(16000, 192000, kResamplingRMSError
, -63.14),
402 std::tr1::make_tuple(22050, 192000, kResamplingRMSError
, -62.42),
403 std::tr1::make_tuple(32000, 192000, kResamplingRMSError
, -63.38),
404 std::tr1::make_tuple(44100, 192000, kResamplingRMSError
, -62.63),
405 std::tr1::make_tuple(48000, 192000, kResamplingRMSError
, -73.44),
406 std::tr1::make_tuple(96000, 192000, kResamplingRMSError
, -73.52),
407 std::tr1::make_tuple(192000, 192000, kResamplingRMSError
, -73.52)));