1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
5 #include "net/base/backoff_entry.h"
11 #include "base/basictypes.h"
12 #include "base/logging.h"
13 #include "base/numerics/safe_math.h"
14 #include "base/rand_util.h"
18 BackoffEntry::BackoffEntry(const BackoffEntry::Policy
* const policy
)
24 BackoffEntry::~BackoffEntry() {
25 // TODO(joi): Remove this once our clients (e.g. URLRequestThrottlerManager)
26 // always destroy from the I/O thread.
30 void BackoffEntry::InformOfRequest(bool succeeded
) {
33 exponential_backoff_release_time_
= CalculateReleaseTime();
35 // We slowly decay the number of times delayed instead of
36 // resetting it to 0 in order to stay stable if we receive
37 // successes interleaved between lots of failures. Note that in
38 // the normal case, the calculated release time (in the next
39 // statement) will be in the past once the method returns.
40 if (failure_count_
> 0)
43 // The reason why we are not just cutting the release time to
44 // ImplGetTimeNow() is on the one hand, it would unset a release
45 // time set by SetCustomReleaseTime and on the other we would like
46 // to push every request up to our "horizon" when dealing with
47 // multiple in-flight requests. Ex: If we send three requests and
48 // we receive 2 failures and 1 success. The success that follows
49 // those failures will not reset the release time, further
50 // requests will then need to wait the delay caused by the 2
52 base::TimeDelta delay
;
53 if (policy_
->always_use_initial_delay
)
54 delay
= base::TimeDelta::FromMilliseconds(policy_
->initial_delay_ms
);
55 exponential_backoff_release_time_
= std::max(
56 ImplGetTimeNow() + delay
, exponential_backoff_release_time_
);
60 bool BackoffEntry::ShouldRejectRequest() const {
61 return exponential_backoff_release_time_
> ImplGetTimeNow();
64 base::TimeDelta
BackoffEntry::GetTimeUntilRelease() const {
65 base::TimeTicks now
= ImplGetTimeNow();
66 if (exponential_backoff_release_time_
<= now
)
67 return base::TimeDelta();
68 return exponential_backoff_release_time_
- now
;
71 base::TimeTicks
BackoffEntry::GetReleaseTime() const {
72 return exponential_backoff_release_time_
;
75 void BackoffEntry::SetCustomReleaseTime(const base::TimeTicks
& release_time
) {
76 exponential_backoff_release_time_
= release_time
;
79 bool BackoffEntry::CanDiscard() const {
80 if (policy_
->entry_lifetime_ms
== -1)
83 base::TimeTicks now
= ImplGetTimeNow();
85 int64 unused_since_ms
=
86 (now
- exponential_backoff_release_time_
).InMilliseconds();
88 // Release time is further than now, we are managing it.
89 if (unused_since_ms
< 0)
92 if (failure_count_
> 0) {
93 // Need to keep track of failures until maximum back-off period
94 // has passed (since further failures can add to back-off).
95 return unused_since_ms
>= std::max(policy_
->maximum_backoff_ms
,
96 policy_
->entry_lifetime_ms
);
99 // Otherwise, consider the entry is outdated if it hasn't been used for the
100 // specified lifetime period.
101 return unused_since_ms
>= policy_
->entry_lifetime_ms
;
104 void BackoffEntry::Reset() {
107 // We leave exponential_backoff_release_time_ unset, meaning 0. We could
108 // initialize to ImplGetTimeNow() but because it's a virtual method it's
109 // not safe to call in the constructor (and the constructor calls Reset()).
110 // The effects are the same, i.e. ShouldRejectRequest() will return false
111 // right after Reset().
112 exponential_backoff_release_time_
= base::TimeTicks();
115 base::TimeTicks
BackoffEntry::ImplGetTimeNow() const {
116 return base::TimeTicks::Now();
119 base::TimeTicks
BackoffEntry::CalculateReleaseTime() const {
120 int effective_failure_count
=
121 std::max(0, failure_count_
- policy_
->num_errors_to_ignore
);
123 // If always_use_initial_delay is true, it's equivalent to
124 // the effective_failure_count always being one greater than when it's false.
125 if (policy_
->always_use_initial_delay
)
126 ++effective_failure_count
;
128 if (effective_failure_count
== 0) {
129 // Never reduce previously set release horizon, e.g. due to Retry-After
131 return std::max(ImplGetTimeNow(), exponential_backoff_release_time_
);
134 // The delay is calculated with this formula:
135 // delay = initial_backoff * multiply_factor^(
136 // effective_failure_count - 1) * Uniform(1 - jitter_factor, 1]
137 // Note: if the failure count is too high, |delay_ms| will become infinity
138 // after the exponential calculation, and then NaN after the jitter is
139 // accounted for. Both cases are handled by using CheckedNumeric<int64> to
140 // perform the conversion to integers.
141 double delay_ms
= policy_
->initial_delay_ms
;
142 delay_ms
*= pow(policy_
->multiply_factor
, effective_failure_count
- 1);
143 delay_ms
-= base::RandDouble() * policy_
->jitter_factor
* delay_ms
;
145 // Do overflow checking in microseconds, the internal unit of TimeTicks.
146 const int64 kTimeTicksNowUs
=
147 (ImplGetTimeNow() - base::TimeTicks()).InMicroseconds();
148 base::internal::CheckedNumeric
<int64
> calculated_release_time_us
=
150 calculated_release_time_us
*= base::Time::kMicrosecondsPerMillisecond
;
151 calculated_release_time_us
+= kTimeTicksNowUs
;
153 base::internal::CheckedNumeric
<int64
> maximum_release_time_us
= kint64max
;
154 if (policy_
->maximum_backoff_ms
>= 0) {
155 maximum_release_time_us
= policy_
->maximum_backoff_ms
;
156 maximum_release_time_us
*= base::Time::kMicrosecondsPerMillisecond
;
157 maximum_release_time_us
+= kTimeTicksNowUs
;
160 // Decide between maximum release time and calculated release time, accounting
161 // for overflow with both.
162 int64 release_time_us
= std::min(
163 calculated_release_time_us
.ValueOrDefault(kint64max
),
164 maximum_release_time_us
.ValueOrDefault(kint64max
));
166 // Never reduce previously set release horizon, e.g. due to Retry-After
169 base::TimeTicks() + base::TimeDelta::FromMicroseconds(release_time_us
),
170 exponential_backoff_release_time_
);