1 // Copyright 2010 Google Inc. All Rights Reserved.
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
10 // inline YUV<->RGB conversion function
12 // The exact naming is Y'CbCr, following the ITU-R BT.601 standard.
13 // More information at: http://en.wikipedia.org/wiki/YCbCr
14 // Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16
15 // U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128
16 // V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128
17 // We use 16bit fixed point operations for RGB->YUV conversion (YUV_FIX).
19 // For the Y'CbCr to RGB conversion, the BT.601 specification reads:
20 // R = 1.164 * (Y-16) + 1.596 * (V-128)
21 // G = 1.164 * (Y-16) - 0.813 * (V-128) - 0.391 * (U-128)
22 // B = 1.164 * (Y-16) + 2.018 * (U-128)
23 // where Y is in the [16,235] range, and U/V in the [16,240] range.
24 // In the table-lookup version (WEBP_YUV_USE_TABLE), the common factor
25 // "1.164 * (Y-16)" can be handled as an offset in the VP8kClip[] table.
26 // So in this case the formulae should read:
27 // R = 1.164 * [Y + 1.371 * (V-128) ] - 18.624
28 // G = 1.164 * [Y - 0.698 * (V-128) - 0.336 * (U-128)] - 18.624
29 // B = 1.164 * [Y + 1.733 * (U-128)] - 18.624
31 // For YUV->RGB conversion, only 14bit fixed precision is used (YUV_FIX2).
32 // That's the maximum possible for a convenient ARM implementation.
34 // Author: Skal (pascal.massimino@gmail.com)
36 #ifndef WEBP_DSP_YUV_H_
37 #define WEBP_DSP_YUV_H_
40 #include "../dec/decode_vp8.h"
42 // Define the following to use the LUT-based code:
43 // #define WEBP_YUV_USE_TABLE
45 #if defined(WEBP_EXPERIMENTAL_FEATURES)
46 // Do NOT activate this feature for real compression. This is only experimental!
47 // This flag is for comparison purpose against JPEG's "YUVj" natural colorspace.
48 // This colorspace is close to Rec.601's Y'CbCr model with the notable
49 // difference of allowing larger range for luma/chroma.
50 // See http://en.wikipedia.org/wiki/YCbCr#JPEG_conversion paragraph, and its
51 // difference with http://en.wikipedia.org/wiki/YCbCr#ITU-R_BT.601_conversion
55 //------------------------------------------------------------------------------
56 // YUV -> RGB conversion
63 YUV_FIX
= 16, // fixed-point precision for RGB->YUV
64 YUV_HALF
= 1 << (YUV_FIX
- 1),
65 YUV_MASK
= (256 << YUV_FIX
) - 1,
66 YUV_RANGE_MIN
= -227, // min value of r/g/b output
67 YUV_RANGE_MAX
= 256 + 226, // max value of r/g/b output
69 YUV_FIX2
= 14, // fixed-point precision for YUV->RGB
70 YUV_HALF2
= 1 << (YUV_FIX2
- 1),
71 YUV_MASK2
= (256 << YUV_FIX2
) - 1
74 // These constants are 14b fixed-point version of ITU-R BT.601 constants.
75 #define kYScale 19077 // 1.164 = 255 / 219
76 #define kVToR 26149 // 1.596 = 255 / 112 * 0.701
77 #define kUToG 6419 // 0.391 = 255 / 112 * 0.886 * 0.114 / 0.587
78 #define kVToG 13320 // 0.813 = 255 / 112 * 0.701 * 0.299 / 0.587
79 #define kUToB 33050 // 2.018 = 255 / 112 * 0.886
80 #define kRCst (-kYScale * 16 - kVToR * 128 + YUV_HALF2)
81 #define kGCst (-kYScale * 16 + kUToG * 128 + kVToG * 128 + YUV_HALF2)
82 #define kBCst (-kYScale * 16 - kUToB * 128 + YUV_HALF2)
84 //------------------------------------------------------------------------------
86 #if !defined(WEBP_YUV_USE_TABLE)
88 // slower on x86 by ~7-8%, but bit-exact with the SSE2 version
90 static WEBP_INLINE
int VP8Clip8(int v
) {
91 return ((v
& ~YUV_MASK2
) == 0) ? (v
>> YUV_FIX2
) : (v
< 0) ? 0 : 255;
94 static WEBP_INLINE
int VP8YUVToR(int y
, int v
) {
95 return VP8Clip8(kYScale
* y
+ kVToR
* v
+ kRCst
);
98 static WEBP_INLINE
int VP8YUVToG(int y
, int u
, int v
) {
99 return VP8Clip8(kYScale
* y
- kUToG
* u
- kVToG
* v
+ kGCst
);
102 static WEBP_INLINE
int VP8YUVToB(int y
, int u
) {
103 return VP8Clip8(kYScale
* y
+ kUToB
* u
+ kBCst
);
106 static WEBP_INLINE
void VP8YuvToRgb(int y
, int u
, int v
,
107 uint8_t* const rgb
) {
108 rgb
[0] = VP8YUVToR(y
, v
);
109 rgb
[1] = VP8YUVToG(y
, u
, v
);
110 rgb
[2] = VP8YUVToB(y
, u
);
113 static WEBP_INLINE
void VP8YuvToBgr(int y
, int u
, int v
,
114 uint8_t* const bgr
) {
115 bgr
[0] = VP8YUVToB(y
, u
);
116 bgr
[1] = VP8YUVToG(y
, u
, v
);
117 bgr
[2] = VP8YUVToR(y
, v
);
120 static WEBP_INLINE
void VP8YuvToRgb565(int y
, int u
, int v
,
121 uint8_t* const rgb
) {
122 const int r
= VP8YUVToR(y
, v
); // 5 usable bits
123 const int g
= VP8YUVToG(y
, u
, v
); // 6 usable bits
124 const int b
= VP8YUVToB(y
, u
); // 5 usable bits
125 const int rg
= (r
& 0xf8) | (g
>> 5);
126 const int gb
= ((g
<< 3) & 0xe0) | (b
>> 3);
127 #ifdef WEBP_SWAP_16BIT_CSP
136 static WEBP_INLINE
void VP8YuvToRgba4444(int y
, int u
, int v
,
137 uint8_t* const argb
) {
138 const int r
= VP8YUVToR(y
, v
); // 4 usable bits
139 const int g
= VP8YUVToG(y
, u
, v
); // 4 usable bits
140 const int b
= VP8YUVToB(y
, u
); // 4 usable bits
141 const int rg
= (r
& 0xf0) | (g
>> 4);
142 const int ba
= (b
& 0xf0) | 0x0f; // overwrite the lower 4 bits
143 #ifdef WEBP_SWAP_16BIT_CSP
154 // Table-based version, not totally equivalent to the SSE2 version.
155 // Rounding diff is only +/-1 though.
157 extern int16_t VP8kVToR
[256], VP8kUToB
[256];
158 extern int32_t VP8kVToG
[256], VP8kUToG
[256];
159 extern uint8_t VP8kClip
[YUV_RANGE_MAX
- YUV_RANGE_MIN
];
160 extern uint8_t VP8kClip4Bits
[YUV_RANGE_MAX
- YUV_RANGE_MIN
];
162 static WEBP_INLINE
void VP8YuvToRgb(int y
, int u
, int v
,
163 uint8_t* const rgb
) {
164 const int r_off
= VP8kVToR
[v
];
165 const int g_off
= (VP8kVToG
[v
] + VP8kUToG
[u
]) >> YUV_FIX
;
166 const int b_off
= VP8kUToB
[u
];
167 rgb
[0] = VP8kClip
[y
+ r_off
- YUV_RANGE_MIN
];
168 rgb
[1] = VP8kClip
[y
+ g_off
- YUV_RANGE_MIN
];
169 rgb
[2] = VP8kClip
[y
+ b_off
- YUV_RANGE_MIN
];
172 static WEBP_INLINE
void VP8YuvToBgr(int y
, int u
, int v
,
173 uint8_t* const bgr
) {
174 const int r_off
= VP8kVToR
[v
];
175 const int g_off
= (VP8kVToG
[v
] + VP8kUToG
[u
]) >> YUV_FIX
;
176 const int b_off
= VP8kUToB
[u
];
177 bgr
[0] = VP8kClip
[y
+ b_off
- YUV_RANGE_MIN
];
178 bgr
[1] = VP8kClip
[y
+ g_off
- YUV_RANGE_MIN
];
179 bgr
[2] = VP8kClip
[y
+ r_off
- YUV_RANGE_MIN
];
182 static WEBP_INLINE
void VP8YuvToRgb565(int y
, int u
, int v
,
183 uint8_t* const rgb
) {
184 const int r_off
= VP8kVToR
[v
];
185 const int g_off
= (VP8kVToG
[v
] + VP8kUToG
[u
]) >> YUV_FIX
;
186 const int b_off
= VP8kUToB
[u
];
187 const int rg
= ((VP8kClip
[y
+ r_off
- YUV_RANGE_MIN
] & 0xf8) |
188 (VP8kClip
[y
+ g_off
- YUV_RANGE_MIN
] >> 5));
189 const int gb
= (((VP8kClip
[y
+ g_off
- YUV_RANGE_MIN
] << 3) & 0xe0) |
190 (VP8kClip
[y
+ b_off
- YUV_RANGE_MIN
] >> 3));
191 #ifdef WEBP_SWAP_16BIT_CSP
200 static WEBP_INLINE
void VP8YuvToRgba4444(int y
, int u
, int v
,
201 uint8_t* const argb
) {
202 const int r_off
= VP8kVToR
[v
];
203 const int g_off
= (VP8kVToG
[v
] + VP8kUToG
[u
]) >> YUV_FIX
;
204 const int b_off
= VP8kUToB
[u
];
205 const int rg
= ((VP8kClip4Bits
[y
+ r_off
- YUV_RANGE_MIN
] << 4) |
206 VP8kClip4Bits
[y
+ g_off
- YUV_RANGE_MIN
]);
207 const int ba
= (VP8kClip4Bits
[y
+ b_off
- YUV_RANGE_MIN
] << 4) | 0x0f;
208 #ifdef WEBP_SWAP_16BIT_CSP
217 #endif // WEBP_YUV_USE_TABLE
219 //-----------------------------------------------------------------------------
220 // Alpha handling variants
222 static WEBP_INLINE
void VP8YuvToArgb(uint8_t y
, uint8_t u
, uint8_t v
,
223 uint8_t* const argb
) {
225 VP8YuvToRgb(y
, u
, v
, argb
+ 1);
228 static WEBP_INLINE
void VP8YuvToBgra(uint8_t y
, uint8_t u
, uint8_t v
,
229 uint8_t* const bgra
) {
230 VP8YuvToBgr(y
, u
, v
, bgra
);
234 static WEBP_INLINE
void VP8YuvToRgba(uint8_t y
, uint8_t u
, uint8_t v
,
235 uint8_t* const rgba
) {
236 VP8YuvToRgb(y
, u
, v
, rgba
);
240 // Must be called before everything, to initialize the tables.
241 void VP8YUVInit(void);
243 //-----------------------------------------------------------------------------
244 // SSE2 extra functions (mostly for upsampling_sse2.c)
246 #if defined(WEBP_USE_SSE2)
248 // When the following is defined, tables are initialized statically, adding ~12k
249 // to the binary size. Otherwise, they are initialized at run-time (small cost).
250 #define WEBP_YUV_USE_SSE2_TABLES
252 #if defined(FANCY_UPSAMPLING)
253 // Process 32 pixels and store the result (24b or 32b per pixel) in *dst.
254 void VP8YuvToRgba32(const uint8_t* y
, const uint8_t* u
, const uint8_t* v
,
256 void VP8YuvToRgb32(const uint8_t* y
, const uint8_t* u
, const uint8_t* v
,
258 void VP8YuvToBgra32(const uint8_t* y
, const uint8_t* u
, const uint8_t* v
,
260 void VP8YuvToBgr32(const uint8_t* y
, const uint8_t* u
, const uint8_t* v
,
262 #endif // FANCY_UPSAMPLING
264 // Must be called to initialize tables before using the functions.
265 void VP8YUVInitSSE2(void);
267 #endif // WEBP_USE_SSE2
269 //------------------------------------------------------------------------------
270 // RGB -> YUV conversion
272 // Stub functions that can be called with various rounding values:
273 static WEBP_INLINE
int VP8ClipUV(int uv
, int rounding
) {
274 uv
= (uv
+ rounding
+ (128 << (YUV_FIX
+ 2))) >> (YUV_FIX
+ 2);
275 return ((uv
& ~0xff) == 0) ? uv
: (uv
< 0) ? 0 : 255;
280 static WEBP_INLINE
int VP8RGBToY(int r
, int g
, int b
, int rounding
) {
281 const int luma
= 16839 * r
+ 33059 * g
+ 6420 * b
;
282 return (luma
+ rounding
+ (16 << YUV_FIX
)) >> YUV_FIX
; // no need to clip
285 static WEBP_INLINE
int VP8RGBToU(int r
, int g
, int b
, int rounding
) {
286 const int u
= -9719 * r
- 19081 * g
+ 28800 * b
;
287 return VP8ClipUV(u
, rounding
);
290 static WEBP_INLINE
int VP8RGBToV(int r
, int g
, int b
, int rounding
) {
291 const int v
= +28800 * r
- 24116 * g
- 4684 * b
;
292 return VP8ClipUV(v
, rounding
);
297 // This JPEG-YUV colorspace, only for comparison!
298 // These are also 16bit precision coefficients from Rec.601, but with full
299 // [0..255] output range.
300 static WEBP_INLINE
int VP8RGBToY(int r
, int g
, int b
, int rounding
) {
301 const int luma
= 19595 * r
+ 38470 * g
+ 7471 * b
;
302 return (luma
+ rounding
) >> YUV_FIX
; // no need to clip
305 static WEBP_INLINE
int VP8RGBToU(int r
, int g
, int b
, int rounding
) {
306 const int u
= -11058 * r
- 21710 * g
+ 32768 * b
;
307 return VP8ClipUV(u
, rounding
);
310 static WEBP_INLINE
int VP8RGBToV(int r
, int g
, int b
, int rounding
) {
311 const int v
= 32768 * r
- 27439 * g
- 5329 * b
;
312 return VP8ClipUV(v
, rounding
);
321 #endif /* WEBP_DSP_YUV_H_ */